Acta Informatica 8, 371 — 382 (1977) I rL’ |

. by Springer-Verlag 1977

The LBA-Problem and the Deterministic Tape Complexity

of Two-Way One-Counter Languages
over a One-Letter Alphabet

Burkhard Monien*

Abteilung Informatik der Universitit,
Postfach 500500, D-4600 Dortmund 50, Germany (Fed. Rep.)

Summary. It is shown, that NTAPE(n) is equal to TAPE(n) if and only if
every language L<=-{{1}*|- which is acceptable by a nondeterministic two-
way one-counter automaton whose counter length is bounded by the length

of its input is contained in TAPE(logn).

1. Introduction

The relationships between the classes defined by deterministic and nonde-
terministic tape complexity (denoted by TAPE(f(n) and NTAPE(f(n)). re-
spectively) have been of considerable interest in the last years. Several authors
[3, 4, 7, 8] showed that NTAPE (log n)=TAPE(log n) holds if and only if certain
subclasses of the context free languages (linear languages, one-way one-counter
languages) are contained in TAPE (log n).

In this paper we consider the original LBA-problem. that is the problem
whether NTAPE (n)=TAPE(n). We show that NTAPE (n) is equal to TAPE(m if
and only if each language L<-{1}*}, which 1s acceptable by some nonde-
terministic two-way one-counter automaton whose counter length is bounded
by the length of its input, is contained in TAPE(log n}).

This result gives another possibility to further investigations than the results
mentioned above. Since our one-counter automaton operates only on unary
input strings it is easy to see (§ 3) that this automaton has the same power as
some modified nondeterministic two-register machine with lineary bounded
registers. Therefore it is important to gain further knowledge about the functions
defined by nondeterministic two-register machines with lineary bounded

registers.

I want to thank Dr. Huwig {University of Dortmund) for numerous discussions and for his

careful reading of the paper.

* Pormanent address: Fachbereich Mathematik Informatik der Gesamthochschule Paderborn,

Warburger Str. 100, D-4790 Paderborn, Germany (F ed. Rep.)

372 B. Monien

2. Proof of the Main Result

We will use the following results proved in [5] and [1, 4], respectively.
Result 1. NTAPE(n)=TAPE(n)
< [LcH{1}* A LeNTAPE(logn)= LeTAPE(logn)]

Result 2. Let .7, ¥,, #; be three families of languages such that ¥, = %, and
¢, ¥y and Z| 1s closed under intersection. If there exists a family T of
mappings with the following two properties

LAV VYV [dl)=LinL,],

Le#3 teT Ly Lae¥

22N AltLe¥, = Le ¥]
Le#3 teT
then ¥, ¥ < ¥, c¥,.
Furthermore we use the notion of a two-way k-counter automaton (see f.e.

[2]).

Definition. A two-way k-counter automaton M =(S, X, J, s,, F) consists of a
finite memory (S-set of states, s,eS-starting state, F < S-set of final states), k
counters and an input tape (X-set of input symbols) with a two-way read-only
head. 0: S x X x {0, 1}k - 251~ 1.0+ 1" " is the transition function.

A configuration of M is a (k+2)-tuple (s,w,in,,....n)eSx X*x N1 In
the usual way o defines a relation — on the set of configurations. = is the
transitive closure of —. M is called deterministic if each image under & has at
most one element. Otherwise M is called nondeterministic.

We denote by %,, keN. the class of all languages acceptable by nonde-
terministic two-way k-counter automata whose counter lenghts are bounded by
the lenght of the input. More formally,

Le%,

<> There exists a nondeterministic two-way k-counter automaton M with the
following properties:
l. wel<dteF: iin,.neN:

{SU. W, l. 0. e 0) —u>([, Wi, My .., ”k)

2. For all wel there exists a sequence of configurations leading to accep-
tance such that all counter lenghts are bounded by /().
The following lemma can be proved with the same method which was used

in [2] in order to prove a simular result.

Lemma 1. NTAPE(logn)= | 6,.
keN
We are only interested in one-letter alphabets.
Definition. ¢! = {Le%, | L {1}*}).

Let TAPE'(log n), NTAPE(log n) be defined in the same way. Now we can
formulate our main theorem.

The LBA-Problem and Two-Way One-Counter Languages 373

Theorem 1. TAPE (n)=NTAPE(n)
< %! = TAPE(logn).

We will prove theorem 1 by means of result 2. The families we have to
consider are %, =TAPE'(logn), &,=%], ¥;=NTAPE'(logn). Furthermore
we have to define a family T of mappings such that property 1 and 2 hold.

For any f: NN we denote by f also the mapping from 24 into 2
defined by f(L)={-17"}|neN A {1"}-€L}.

_ Let B: IN— {0, 1}* be the injective mapping which associates to each neN its
binary decomposition. Then for any function f: N—N let F:10,11% > {0.1}* be
the mapping defined by

. {ﬁfﬁl(r), if vep(N)

G
r, otherwise.

e

Lemma 2. Let f: N—IN be an injective function such that f is computable by a
deterministic linear bounded automaton. Then for every Lc-{{1}*|

f(L)eTAPE (log n) implies Le TAPE (log n).

Proof. Let M be a deterministic log n-tape bounded Turing machine accepting
f(L). Then L is accepted by a deterministic Turing machine M with three
working tapes which operates on an input string -{1"F, neN. 1n the following
way:

I. M writes B(n) on its working tape 1.

2. M computes f(f(n) on working tape 1.

3. M simulates M step by step. During this simulation M stores on 118
working tape 2 the head position of M in binary notation and on its working
tape 3 the inscription of the working tape of M. In order to simulate one step M
examines whether working tape 2 stores 0 or the same inscription as working
tape 1.

It is clear that M works with the tape bound logn. [

Note that f is computable by some linear bounded automaton only if 1 1s

polynomially bounded.

Lemma 2 will be helpfull in order to prove pro
| have to define. In order to verify property 1 we have (o
automaton (with bounded counter length)
tomaton provided the input string
Therefore the main difficuity in

perty 2 of the family T of

mappings which we stil
show that every two-way k-counter
can be simulated by a two-way l-counter au
has been transformed in a suitable manner.
proving theorem 1 is to find pairing functions F: N¢— N which are poly-
nomially bounded and which have the property that given some number m=F,
(,....,n,) the test “which of the n,, t=1,....4; is equal to 0" and the operations
m—B g +ng.... ng+H) p.e{—10, +1j, can be performed b‘. a two-way one-
counter automaton. Because of technical reasons we will modify the notion of a
pairing function a little and will define functions

B (0., 200 =130 () o N

174 B. Monien

in such a way that for all n,...,n, m with ny, ..., n,<2'%"" the 3-nary
decomposition of F, (n,....,n,,m) is 2p,2...2p 2 with l{p)=1(f(m)) and p,
=0...08(n " for all t=1, ..., q. (Here | denotes lengths of a 0-1-string and ® its
reversal.)

Mappings b: N*-N; th I L1, 7, NN are defined for every ¢eN in
the following way

. [n
0, 1f [5‘] even
b(i,n)=)
(i) {], otherwise,
[(my=min {i|2">n},

L(n)=min {i{3'>n},
Imy— 1

thin)=> b(i,n) 3tm-1-1
=0

(Note that f(n)=b(0,n)... b(I(n)— 1, n), that {(n) is the length of the binary and
L(n) the lenght of the 3-nary decomposition of n and that the 3-nary decom-
position of th(n) is just the reversal of the binary decomposition of i.)

=g 101+ D) +q+1,

g—1
_[_q(n):_'srq(n). (Z 2. 3{'(l(n+1}+1)+3(q_1)~!(n+1)+q'rh(n+1) _+_2 _3q-l(n+1)+q)
v=0

+33rq(n)4-i

Note that 7 (n) has the 3-nary decomposition

0..020..02...20..0280n+1)%20...0 1

riny ln+1) I(n+1) r.(n)
g—1

We set T={1 |geN}.

Theorem 2. For each Lo |{1}¥- geN <t (L)eTAPE(logn) implies
LeTAPE (log n). !

Proof. Because of Lemma 2 we have only to define a deterministic linear
boun?ed automaton M, which computes i, Starting with some re{0, 1}* M,
tests first whet ' i =y IS 1 ¢

st first w (her there exists some nelN with f(n)=4. I this is the case then M,
writes the -nary decompositions of 7B~ Y(t)) on its working tape and computes
afterwards the binary decomposition. [

Theorem 3. For each LeNTAPE!

(log n) there exist geN and TAPE!(log 1),
L,e%, such that 7(L)=L,NL,. qeN and L, e (log

Proof. Because of Lemma 1 there exists a peN such that Le®!. Set g=p+2.
P

(We will encode_ l_)y one number the contents of the p counters and the distances
of the head position from the endmarkers.)

The LBA-Preblem and Two-Way One-Counter Languages 375

I. Set L,={{1""}|nelNj}.

In order to test whether an arbitrary meN is of the form t,(n), a Turing
machine has to compute the 3-nary decomposition of m and has to test whether
it is of the form 07201~ 1 24207 1 with some ve{0} U {0, 1}* {1} and r=g-1()
+¢+ 1. This can be done using not more than log n cells.

2. Now we have to define a nondeterministic two-way one-counter auto-
maton M which accepts an input string of the form — 7™ if and only if {17}
el We don’t have to consider the behaviour of M on input strings which are

not of this form.
Let M=(S, {-.1.}},d,5,. F) be a nondeterministic two-way p-counter auto-

maton accepting L in such a way that its counter lenghts are bounded by the
fenght of its input. M will simulate M step by step. Formaily we define our
“pairing functions™ F, keN, in the following way:

Py(m)=2,
B (s s ooy) =24 31 =00y n) 4 310 R)

for all meN and ng, ny, ... 1 <2

+ 1

To each configuration 4 =(s,~1"|[. .71y, - n) of M with
A [n,<2'™ V] we associate the configuration

k(A Y=(s, 19"k, Pny,.ony, 1= 1 m+2—i, m+1),0)

of M. We will define M in such a way that for any two configurations

A =(s,, 1"k i, 0 1), meN v=1,2,

4

of M with A A [n}*<2um+1»]
:

refl.2) jeil.....p

H—,;> A; implies K(Ay) > K(A)

and
WA) ";—* K(Ay) implies Ay A2
1) be some configuration of M. We have to show

fet 4 =(s, 1" Lap ... 0 ion _
f M. This simulation 1s done in three steps:

how M simulates the next move o
A. M computes all the information which is necessary 1n order to apply the

transition function of M.

B. M applies the transition function of M.

C. M changes its head-position according to the a
M.

lternations performed by

A. First we show how M starting with some configuration

H =(5, 1" Bz, o0 24, 2), 00 SES 21 s 2 zeN and

376 B. Monien

n=3"74" 1y with some n' €N, decides which of the z,...,z, are 0. (Re-

member that L(B(z;.....z,.2))=q - {(z2)+ g+ 1) M performs the following algo-
rithm A1:
h =— D, (h)

a =— Ry (h)

[F*— h+a-Dy (n)l

deterministic
finite control

IRETURN

Here h denotes the head position of M and D,, R,: N—IN are the
functions D,(i)=max {k|3k<i}, Ry())=i-3-D,(i). It is clear that M can com-
pute D;(h) and R;(h) simultaneously by using its counter. In order to compute h
+2-Dy(n) M stores h on its counter and successively adds « to its counter
whenever 1t moves 3 cells to the right with its head.

The finite control stores how often x has had the value 2 and uses its
RETURN:-exit when this number is ¢+ 1. Furthermore the finite control stores
for each occuring x=2 (except of the first one) whether the preceding 0-1-string
contained a 1. Note that in the 3-nary decomposition of Bz, ...,z 7) 4
substring ... 20/* 2 occurs if and only if the corresponding z, 1s zero.

Starting with the configuration (s, 417}, P(z,, ..., 2.2 0

r—1

Rizy.....z,.0)= a3 ael0,1,2) Ye=0,...,r—1;
r=10

5

r=LIR(zy.2. 2 N=qg-lZ)+q+1, M reaches after i. 0<i<r, runs of the algor-
ithm the head position

r—1 i—1

h=3% a3 "+ % a Dy(n).
i s f)

We will prove this by induction.

i=0: h=P(z),....2,. 7).

ey gy Z

Now suppose
r—1 i—1

h=Y a3 '+ Y a, D (n)
i r=0

v=1

and i <r. Then M will perform another run. Note that n=3". n’ with some n'eN.

The LBA-Problem and Two-Way One-Counter Languages 377

r-t i1
= h= Z a,,3"‘i+n’-3'_i Z a3,
r=10

r=1

r—1

1—1
= ax=R,(h=a, and Dih= } a, 371+ Y a, DYV).
r="0

r=i—+1

Performing h«—h+x-D,(n) M reaches

r—1 i
h= % a3 7" D4 > a, DYV (n)
r=20

r=i+1

Therefore we have proved our assumption and it s clear that during this

process M notices which of the z,,...,z, are zero. In r runs M reaches the

r—1
configuration ((s, b,, ..., b, 41"k . a. D5 "(n),0) with
r=20

if - = .
br: O’ 1 i 0 Vl':l,...,q.
1, otherwise

B. Now suppose tz:rq(nz), z=m+1, z,=n, forrv=1..,p and =, =i— I. Zpe2
—m+2—i Then # —x(#) and b =0<n,=0 for all i=1,....p b, =01
=1,b,, ,=0<i=m+2. Note that if the configuration of M is " then M reads

the symbol

[‘L lf bp+1:0
a=+F, if b, ,=0
ll, otherwise.

We have to consider the following cases.

a) d(s,2,by,....b,) is not defined. Then the actual computation o
without accepting. _

b) There exist s'eS and nl....,nqe{—l,O, + 1} (possibly not .uvmque) sgch
that 5, = —n, , and (s 7, 1Moo ,)E0(5. %, b,.....b,). The transition fun.ctfon'
of M is defined in such a way that in any of these cases and for arbitrary

:]q :ZEN

{ M ends

(P AR Kt =T Y 7a([s'. Hyooeeo i1 s A1 200 2

holds if s'¢ F and M accepts 41" otherwise.

C. Remember that so far

k(A Y=(s, 17", Blng. ..o s i—t,m+2—im+1),0)

r—1
* ' Tgtm) r—v ,0
T ([S’n].?"" rl'p’ ﬂp+19 F—']p-b- 1]7—|1 |ﬁ9 r:ZOarDS ‘Tq(’n)))

1

where P(n,, ..., N Ji—l,m+2—im+1)= Z a, 3% r=r(m).
q P 0

378 B. Monien

We will now complete this part of the definition of M in such a way that M
reaches deterministically the head position

h=F(n +ny...on,+n, i+, —1,m+2—i-n, ,,m+1)

if A [m+n;<2"" 1] and stops without acceptance otherwise. Since T, (m)
L
3r 4 331 with some z,, < 3" and since r=r,(m)

r—1 r—1 r—1
Z a, Dy (g (m) =(z,,+3°""1)- (Z a, 3)—z +32r+1 Z a, 3"
~0

with some z, <32"* 1
M performs the following algorithm A2:

o =-=— max {jE{O. 1, 2}/j-D3 (n) = h}
h =— h —«a-D; (n)

!
deterministic finite control A
(computes Pe {O. 1. 2¢)

-
[g}
+
%)
-

ERETUR}\'

We will show below that for all i=1,...,r the value of x computed in the i-th
run of A2 isa,_,.
The deterministic finite control operates in the following way:
1. It stores how often x has had the value 2.

2. 1f this number is ¢+ 1 then it goes to its RETURN-EXit.

3. After reading x=2 for the v-th time it simulates on the 0-1-string
following up to the next value x=2 a finite automaton which performs the

binary addition of n,. The value f is the output symbol of this automaton when
it reads the symbol a.

4. When it reads 2 =2 and the carry of the addition performed in 3. is still 1
then it goes to its STOP exit. Otherwise it sets f=2.

By induction on i we will prove the following result:
Let M start A2 with the configuration

r—1

([S, Mis oo os Mpalpyas —np+1]9_|ltq(m)l—’ Z ajDSAj(Tq(m))’ 0)-
j=0

The LBA-Problem and Two-Way One-Counter Languages 379

Then for all i=1,....r (i=1+v(I{m+D+1)+p, 0=v=<g, 0Zpuslim+1),
v =g = u=0) exactly one of the following two cases will occur.

1. A2 uses its STOP exit before the start of the (i+1)st run if and only if
+n;22'm* D for some je[g+1—v. 4]

2. After performing the i-th run A2 has computed the head position

u—1
h=Y b(j,n,_,+n,_,) VIR Py o 1y e By T MDD
j=0
.rfl—i
+3 Y a, Dy (g, (m).

k=10

[In this expression PO(an—H,'qH,...,nq+nq,m+1) has to be identified with

Fy(m+1).]

r—1
Proof. 1. i=1 (u=v=0). A2 starts with h="Y ang‘f(rq(m)). It 1s clear that

=0 _
a, ,-Dy(r (m}=sh On the other hand we mentioned above that these €xists a

z, < 3%+ 1 guch that

r—1
h:Z;"+32r+l Z aj3j=2;+ar_1,33r
j=0
(r,(m)<hj since d,_,

with some z/ <3%. Therefore a,_, =max{je {0, 1,2} Dy

=2 the finite control computes f=2 and the instructions A« h
hep+3h yield

h=2+3-) a;D5(z,(m)-
j=0
ached after i runs the head position

2. Now suppose i= 1 and i<r and A2 has re
)< h. On the other hand

statet above. Then obviously a,_, _;Ds(z,(m)

1+v(l(m+1)+1)
B{n, .y Hhgiw o mE 1) <3

and therefore there exists a =< 3' such that

r—1—i

h=z+3. Y a.-Dy*r,m)
k=0
p—1—i

e h=o4 3 432 Z ak3k
k=0

= h=z"4a,_,_;3" with some 7' <3
$arri*i:max{je{07132}]j'D3(Tq(m))<h}'

)< 3" and therefore for every pe{0.1,2} B

r+1

. B 2
with some ' <3

(Note that h—a,_, _;D;(t,(m) +3-(h
—a, ;_ ID,;,,(TQ(m))<2+3"’5’*1 <z,(m).)
Two cases have to be distinguished

380 B. Monien

a) u=Im+1). In this case r—~1—i=(q—v—1)-I(m+1) and thereforea, _,_,
=2. If the carry stored in the finite memory is still 1 then b(/(m+1), n, tn,_.)
=land n, +n,_ 22D and A2 uses its STOP exit. Otherwise the finite
memory has ff=2 as its output and the instruction heh—ox-Dy(n), he—pf+3h
yield

F-1—i
h=F_ (g Hn, gt m+ 14370 % g, DY 4 (m)).
k=0
b) u<l(m+1). In this case a,_, _;€{0,1}. The finite control computes f§ as
the binary addition of @, | _; and the carry. Since a, , ,=b(y, n,_,) it is clear
that f=>b(u,n, +n,). It is obvious that heh—a-D;(u), he p+3h generate
the correct head position.
Therefore the upper result is proved.
Because of this result M reaches the head position

hzlfi(nl—Hyl,.‘..np+r,'p,i——1—}—npﬂ,m+2——i—np+l,m+l)

if n,+y, <2 Vioralv=1, .. p

Therefore for any two configurations J#}, 2, such that A\ = A5 and w(A))
and x(#5) are defined K(Jifl)f‘ff Kk(A43) holds. Note that for every |1*}- L. there
exists a sequence X}, i=0,....k, of configurations such that Ho=(5,,-1"F,
LO,...,0), #;— >4, | and K (A7) is defined for all i=0,...,k— 1 and .#, =(t,...)
with some teF. Therefore K(%)‘A{'—)K({é/k}.

We end this proof by constructing M in such a way that

(Sg. - 17™ 1,0)—;{-»(50,4 [ratm B(O,....0,m+1,m+1),0)
=K(54,-11" 1,0,...,0)

holds for all meN.

Note that 1 (m)=3"""-P(0, ..,0. m+1, m + 1) 4 33ram =1,

M operates in the following way (Algorithm A3):
l. he—max {'3j!3f§rq(m)}, h<—rq(m)—h (afterwards h=3ratm . P (0, L0 m,
m+1)).
2. While Ry(h)=0do h«D,(h).

After performing these operations M reaches the head position
h=PE(0,....00m+1.m+1) and therefore the configuration x(s,,{1™}--1,0,....0).

We have constructed our automaton M in such a way that for every melN
and for every configuration % of M

(0. A1 L0 0) o A < (0. 19, 1L, O)— (1),

Therefore {1™eL if and only if 1™ is accepted by M. Let L, be the
language accepted by M. We still have to show that L,e%}.

In order to see this consider an arbitrary number nelN and an arbitrary
configuration ¢ =(s,41"},z,,z,) of M with (0,~11"H,1,0)—2>%#". Then
7,2, =n. This is realized in the following way: M

The LBA-Problem and Two-Way One-Counter Languages 381

a) It is clear that during the execution of algorithm A3 the head position h is
bounded by n and therefore the same holds for the position of the counter (the
counter is used during the whole computation of M only in order to store
intermediate results).

b) Consider one run of Al and suppose that at the beginning of this run
h<n. Then

Ds(h)+R3(h)-D3(n)§g+2-g§n.

¢) During the computation of A2 it is examined in every run whether the
head position exceeds n. (Remember that this can hold only if n¢7,(N).} [

3. Register Machines

Definition. A nondeterministic k-register machine is a finite program consisting
of instructions of the type X;« X;+1, X, X;= 1, Goto m if X;=0, Goto m, or
Goto m,, where i,je{l,....k} and m, m,, m,eN.

A k-register machine M defines in a natural way (see fe. [6]) a partial
relation p,, on N. M is called deterministic if an instruction of the type ~ Goto
m, or Goto m,” docs not occur in the program. In this case py, can be identified

with a function f,;: N—N.

Definition. Let M be a k-register machine, let Lo A{1}*F and let 22 N — N be

some function.
M accepts L iff

J1"FeL<3m,,....meN: (1,0,....0) par (0, my. .omy)

M accepts L with register length Ay Aff

a) M accepts L.

b) For every 17|l there exists 2 computation of M starting with
(n,0,...,0) and ending with some (0,my, ... My,m,eN. such ihat during
the whole computation the contents of the registers are bounded by ~(n).

Definition. k-REG (4i(n) and k-N REG |
languages acceptable with the register length A
terministic k-register machines.

Because of Lemma 2 it is clear that

,(n) are the classes of one-letter
i) by deterministic and nonde-

TAPE!(logn)= (] k-REG(n), NTAPEI(10gw1):kUVk-NREG(r1).

kelN
We will show that for every kelN

(k+1)-NREG(n) <%, <(k+2)-N REG(n).

_In order to simulate a two-way counter

It is clear that (k+1)-NREG(m <%,]
e to consider the fact that a register

automaton by a register machine we hav

382 B. Monien

machine treats all its registers as counters whereas a counter automaton has the
possibility to ask whether the position of its input head is equal to the input
number during the whole computation. Obviously this test can be performed
also by a register machine which stores on an additional register the distance
between head position and right endmarker.

Theorem 1 states NTAPE(n)=TAPE(n)<= %! c TAPE(logn).

In this context it is very interesting to know how much additional power
can be gained in the case of a nondeterministic 2-register machine if the equality
between the content of a register and the input number can be tested. Theorem 1
implies NTAPE(n)=TAPE(n)< 3-NREG(n)c TAPE(logn). It is an open prob-
lem whether an analogous result holds for 2-register machines.

References

1. Book. R.V.: On the structure of complexity classes. Automata, languages and programming, 2nd
Colloquium, pp. 437-445 (1974)
. Fischer, P.C., Meyer, A.R.. Rosenberg, A.L.: Counter machines and counter languages. Math.
Systems Theory 3, 2653-283 (1968)
3. Galil, Z.: Two way deterministic pushdown automaton languages and some open problems in the
theory of computation. 15th Ann. Symp. Switch. Autom. Theory, pp. 170-177, 1974
4. Monien, B.: Transformational methods and their application to complexity problems. Acta
Informat. 6, 95-108 (1976)
5. Savitch, W.J.: A note on multihead automata and context-sensitive languages. Acta [nformat. 2,
249-252 (1973)
6. Schnorr, C.P.: Rekursive Funktionen und ihre Komplexitit. Stuttgart: Teubner 1974
7. Sudborough, LH.: A note on tape-bounded complexity classes and linear context-free languages.
J. Assoc. Comput. Mach. 22, 499-500 (1975)

8. Sudborough. [. H.: On tape-bounded complexity classes and multihead finite automata. J. Comput.
System Sci. 10, 62-76 {1975)

2]

Received August 20, 1976

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12

