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TWO-WAY MULTIHEAD AUTOMATA
OVER A ONE-LETTER ALPHABET (")

by Burkhard Monien (%)

Communicated by W. BRAUER

Abstract. — Let H (k) and NH (k) denote the classes of languages over a one-letter alphabet
acceptable by deterministic (respectively nondeterministic) two-way k-head finite automata. It will be
shown that H (k) & H (k+1) and NH (k) &£ NH (k+ 1) holds for all k 2 1. Hierarchy results are also
proved for the classes of languages over a one-letter alphabet defined by k-counter automata with linear
bounded counters and by k-register machines with linear bounded registers, respectively.

Résumé. — On désigne par H (k) et NH (k) les familles des langages sur un alphabet a une seule lettre
qui sont reconnaissables par des automates finis bilatéres a k tetes déterministes (resp. non
t{eterministes). On montre que H (k) & H (k+ 1) et que NH (k) ¢ NH (k+1) pour toutk 2 1.0n donne
e_galement une hiérarchie dans les familles de lungages définis par des automates d k-c ompteurs
linéairement bornés et par des machines d k-registres linéairement bornés respectivement.

L INTRODUCTION

In this paper we show that for languages over a one-letter alphabet two-way
automata with k + 1 heads are more powerful than two-way automata with k
heads,

This result is related to the results of [3 and 4] concerning the refinement of
complexity classes. It is wellknown that SPACE (log n), the class of languages
acceptable within space bound log n, is identical with the class of languages
acceptable by two-way multihead automata. Each two-way multihead
automaton can be viewed as a log n-space bounded machine with restricted
Storage abilities.

It was shown before that over a one-letter alphabet two-way (k +4)-head
automata are more powerful than k-head automata ([4. 5]) and that over a two-
letter alphabet k + 1 heads are more powerful than k ([2]; in [1] it was shown that
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68 B. MONIEN

k+ 2 heads are more powerful than k heads). It is also known that k + 1 heads are
better than k for one-way automata [6].

The method used here to show that k + 1 heads are more powerful than k for
two-way automata, even for a one-letter alphabet, is similar to the method used
in {1 to 5]. We define transformations which map multihead languages onto
languages defined by fewer heads. These transformations allow us to us.e the
assumption “k + 1 heads have the same power as k heads” repeatedly to arrive at
a contradiction.

We also prove hierarchy results for the classes of languages over a one-letter
alphabet defined by k-counter automata and by k-register machines whose
counters (or registers) are linearly bounded by the length of the input.

I am very obliged to 1. H. Sudborough who drew my attention upon the

subject of this paper and to J. I. Seiferas who proposed a more transparent way
for the construction of the proof.

2. DEFINITIONS AND RESULTS

A two-way k-head automaton consists of a finite control and an input tape
where k heads may move independently in both directions. The input is placed
between two endmarkers {—1 and F). The automaton starts in a disting,uishe.d
starting state with its k heads on the left endmarker. It accepts the input string if it
stops in an accepting state. The automaton is called deterministic if its next move
function is deterministic, otherwise it is called nondeterministic. Let Hj (k)
[NH:(k)]. be the class of languages over the alphabet ¥ acceptable by
deterministic [nondeterministic] two-way k-head automata.

A two-way k-counter automaton c

onsists of a finite control, an input tape
where one head

is moving in both directions and k counters. With
EWING, (] we denote the class of all languages over T acceptable by

deterministic [nondeterministic] k-counter automata whose counters are always
linearly bounded by the length of the input.

A k-register machine consists of a finite control and k registers. (In fact a
register is just the same as a counter
natural number and on which the o
be carried out.)

» namely a storage unit which can store one
perations + 1, — 1 and the predicate = 0O can

The machine starts with the input number in register 1 and the other registers
storing zero. Note that such a machine can destroy its input number. It accepts
an input number by reaching an accepting state. A register machine accepts 2
subset of N U {0}. Throughout this paper we denote by N the set of natural
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* that
numbers. Let R (k) [RN (k)] be the class of all langu'fxg.es'l]‘ kc {Oiite :::Chi :116
LYi inistic [nondeterministic] k-reg
O"e L} is accepted by a determinis pister
Evrllxlose regi}stcrs are always lincar bounded by the length of the inpu

lass of
Let us furthermore denote by SPACE; (L(n)) [INSPACE; (Lb (n))(]1 ettl;er rIcl i'c; s
languages over the alphabet I which are acceptable by
n 1 1 .
[nondeterministic] Turing machines within space bound L (n)

>
It is straightforward to see that for every k 2 1,

R(k) = Cyo) (k—1) = Hygy (k) = Cpoy (k) = R(k +2)

and that . )
= k)= | ) Hyy (k)=SPACE, (log n).
) R(K)= U Cioy (F) kyv 10}

keN keN

The corresponding result holds in the nondetermlmsgc‘: casl;:l.} Lot 76 be the
In the following we only consider languages L < { 0{ Or;e NS N b the sarme
class of all languages [ such tha' - ° H{fo} (1:1)1: rct?hf;rcc::omple;xity classes occuring
il kript ~ for
way we will interprete the supers

in this paper.

n 2k.n
W i - {on Nt = {27lneN ]} defined by T,(2")=
¢ use the mapping T : {2 |ne } { l }and .

and whenever it is appropriate we will identify {0}

First we will prove the following lemmas:
Lemma 10 B (k) & SPACE (log n), ﬁ(k) 4 I\EI:A‘C_}/E (log n) for all ke N.
Lemma 2: For all Legl;A‘CI?Z (log n) [N/Sﬁ (log n)] there exists a number
keN such that T, (L) € R (3) INR(3)].
Lemma 3: For all LeSPACE (log n) and for k., j = 1:
T.DeA () INH() = LeHkj) INH k)
LEMMA 4: For all LeSPACE (log n) and for k> j 2 2:
T (eA() INHGY = TD)eA(+DINH (G+Dk
From these lemmas our first theorem follows immediately.
THeorEM 1: For all je N:
Hoy(EH; o, G+ and NH o, (j/)ENH,; (j+1).
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70 B. MONIEN

Proof: We give the proof only for the deterministic case. The proof for the
nondeterministic cage is exactly the same.

The result is true for j=1 since {0%; neN } €Hy, (2)—H, (1)

Now suppose there exists some j > 2 such that Hy,, (j)=H{0} (j+1). This
implies & ()=H ( J+1) and therefore the following is true

Le SPACE (log n)

= 3k, Ti(LeRB) = A@G3) lemma 2
= TDeAG+1)=H())
= Tk_l(L)eﬁ(j+l)=I7(j) lemma 4 —..
= ,-+1(L)€F1(j+l)=17(j) lemma 4
= LeH((j+1).j) lemma 3.
Therefore H,, (/)=H\o; (j+1) implies NSPACE (log n) = A (j-(j + 1)) which is
4 contradiction to lemma 1, O

We will prove lemmai, . .4 in sectjon 3. The
(as it could be seen already) the proof of theore
central point in thijg Paper s t

In section 4 we will formuyla
defined by counter automata

pProofsoflemma 1, 2 and 3 and
m 1 are not really difficult. The
he proof of lemma 4

H}: (k) < Space,_ (]()g2 n, 2&)
and that ‘

SPace{o} (n)s~ Space{o} (n, m)
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for every meN. . ing defined by: bi(n) =@ <=1 ¢
. bijective mapping de : . :
letbi: N — {0, 1}*be the . mapping of bi.

is Egvgir?ary notatic{m of n. Let un : {0, 1 }* — N be the inverse pp

Then |
LeSpace, y(n) = wun(L)eSpace, (log,n

and .
LeSpacey, (log, n,m) = bi(L— {c})eSpacey,,(n, 2m+1)
(0 ’

i i order to prove the second result we
The first O~f these ;;l:t;:o:: ‘::());llimlg tape is divided .int.o two t?ck;;l;li’:;
o e g mac ing the simulation the same inscrlptlc{n. as tf eh uring
i Stor'es du‘rmgt L. The upper track stores the pos.mon of the i gde
maiihir;i\/IM vtthri:l;ya:gf:tisc)n .We need one additional symbol in order to enc
head o in bi .

iti head.
the position of the work tape ' o
Ffom the above results we get immediately the following

Space (log n)
LeSpace (n) = un (L)e Space (log
and l)
2m+1).
LeSpacey,, (log, n,m) = bi(L—{&})eSpace, (n,2m
e . i keN such
N ready to prove the lemma. Suppose there exists some
OW we are
that fJ (k)=Space (log n).
Then the following implication holds:
LeSpace, (n) = wun(lL)eSpace (log n)=H (k)
= un(L)eSpace (log,n, 2%),
+2
= L=Dbi (un (L)) Spacey, (n, 2k+ 2y
Therefore Space (log n)= H (k) implies
k+2
Space,q; (n)=Space;, (n, 2¢%2)
i inning of this
hich i ntradiction to the result mentioned at the begi g
which is a co
proof. [J
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72 B. MONIEN

Proof of lemma 2

Let LeSpace (log n) be an arbitrary chosen language and let M be a Turing
machine accepting 7. within space bound log .

Let M’ be the following modification of M-

1. M’ writes bj (n), where 1 is the input number, on jts working tape {bi is
defined as in the proof of lemma 1).

Since M’ yseg atkmost k-log,n=k.m cells the numbers stored by the registers
are bounded by 2k-m during the whole Computation,
Itis clear that 4 accepts some number 2+.m if and only if A’ accepts 2". [J

Proof of lemma 3

The result s true for k=1, Now suppose that k > 7
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1 <+ J Sts

Let M be a j-head automaton accepting T, (L). Our k- j-head au:iomtzlilt.(:n ;]eos \:,

first whether the input is of the form 0°". It needs two.heads to (;) i .0 o
suppose M reads an input string O*". Then it starts to simulate M. During

simulation it encodes each head position A,

n (k—1).n < <2n,
O0<h<2"  h=l,+1,.2"+...+1.2 ., 0,

iti k of its heads.
of M by the positions I,, ..., I, of g .
Note that h=0iff |, =0for all v=1, ..., k and that h=2%"+1 iff Mhrtnc;:/f?s
starting from h=2"—1(I,=2"—1,Vv=1, ..., k) two cells to the right. It is

clear that M can simulate the moves of the heads of M since it can test easily
whether [, =0 or [,=2"—-1. [

Proof of lemma 4

Let M be a j-head automaton accepting T} (L); . ,

‘We have to construct a (j+ 1)-head automaton M acct.:plmg TF( ). o for

It can be tested easily (using 2 heads) whether the mput2 1sof 'the orr:; o
some ne N. If this is the case then M has to tes.t .whether o <1§ ac;:eApiI' y M.
In order to do so M encodes each head position h,, l v <j. o :

0<h, <2k+Dni]

by the position of its own v-th head A,:
0<h,£2k"+1

and by an additional number o,
0Zoc,<2"

e Akn
in such a form that always h,=h,+ o, 2 " . e
Note that h,=2%*+*D-"4 1 if and only if h,=2%"+1 and o, .

j i in the form
M uses its (j+ 1)-st head to store the j numbers 6. ..., 0,
j— - 1).n
Rivy=0,406,.2"+...+0;20 ryatk-bn
i+

is is possible since j < k. .
ThI;sirlsst I1)\~/?Sl'1as. to encofie the initial head posi-tions of A/; That means it has to set
Eju « 2%=1n This can be done casily (usu.lg 3 h_ea s). hich of the o
During the simulation M always stores in 1t§ finite mﬁmoryvzvs i I
encoded by ki, ,,areequal to 2"—1. M hZ.IS to mmula!;e t e:hr.n(l)1 o t?l;»ne;v e
0, +1 }, of the j heads of M. Furthenzlore it has tkondec1de wh_xc aoc ¥ only h;s o
equal to 2" — 1. This is simple if 0 < &, +n, < 2"+ 1. Inthisc

set ki, « h,+1,.0, remains unchanged.
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Now suppose i, =2%" 4 1 and Ny=+1.(Thecase h,=0and n,= —1 lead;ttz
analogous considerations.) Then M has to set fi, - 2,0,+-0,+ 1.( ;fﬁ?.t.e tha
ho=2%"41and n,=+1 imply o, < 2"—1, since &, + o, 2%" < 2 +1)

Performing the operation on o, is the difficulty in this proof. The o, ..., g
will be stored always by the position of the ( J+1)-st head but we shall rotate their

to the first position.

In order to do this we need the (j+ 1)-st head, the v-th head and one furtﬁe:
head (we can assume that v+ 1 and jn this case we take the first head). Note tha

the v-th head does not store anything and therefore it is free for intermediate
computations.

We will denote the position of the first head by % and the position of the
(j+1)-st head by . In the case j < k—1 jt i favourable to introduce the new
numbers Cj+1=Cj =, =G, =0.

k-1
A= Z GM.Z(P‘U.H_‘_ZUC-I)JI.
u=1

Furthermore we cap assume that y < k-n
going two cells to the right. If » > kn
difference in the finite memory.) We dec

(M can test whether x < 2" by
then we set x=2%n _ and store the
Ompose % in the form

with 0y, < 2% 0y, < 261

Now we are ready to describ

¢ the rotation technique.
1. M changes the positions o

f head 1 and head (+1) into
w=\,+ 26D
}‘:Rn(\l’l)+0'1 2%+ +04_y 26~ Dun
where for any x <2" R,

(x) is defined in the following way:
Let(p,,(x)e{O. 1}* [(@

»(9) | =n.be the binary notation of x lengthened by an
ading zeros. Then R,(x) < 2" is that number whose

above head positions by the application of the following
algorithm:

%oy 2k

While ) < 2k.n Do
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%
% J— —
Begin u«-—I:E]andou—u 2 [2]

A—a+2A
End
7\.4—)\.—2’“’

i ing its v-th head during the
v i tation using its v-th
i M can perform this compu ] : ad during the
ItA is ‘{lear t?i;—,c division. In order to see that this algf)f\lltllm{o} et
oy on ao€{0, 1}*. If we further denote b}' Q: it (O
;p}'l’f\llhl )b='a"_; (.ie-:éonc;position then after i loops, 0 < i < n, the
the binar ,

en)=10...0 0(Y3) ap-1...4a;
k=1)-n>
@A) =10,(Ck-1)---9a(01) do...ai_y. |
" ] daz= 2k
i is implies A < 2¥"fori <nmand A 2
=(k—1).n+iand this implies _ r22
Therefme"l"ilcp (llel):s( kcarrze('il out exactly n times and this leads to
for i=n. The lo

positions ¥ and A which we wafnlt]ed:d | and head (j4 1) into
a .. ea
2. M changes the position o

u=0‘kv1+\|/2 2n, et
—-Nn 2 - D
" L 2% Cx-2+
A=R,(y,)+2"c+ ..

First M changes A into

—1)n ,
A=R,(y)+2". 0o+ ... 42U -Og-1

e (R, (V,), if Rn(\yl?zlmod 2,
R"(¢1)={R,,(\|J,)+l, otherwise.

(8] eth h n e(l I[Sll(:]la Way d
aton y e a g i that )\. bcCOmcS an Od
. ' l \l’ VS Odd or even )
th lowest blt 0f}\. 1S C 1 .
N : b (I‘ ils StOred in the ﬁnite memory Whethel J(n( 1)
umber.

Afterwards M performs the following algorithm:
While x < 2%" Do
Begin o « 2*"-th bit of A
If =1 then A « 2% —2*"
Ifa=0then A <22
He—a+2u
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End

In order to see what is done by this algorithm we consider the decomposition

A= +o 2kn=1 X< 2kn-1

exactly n times. Dur ing this algorithm the number o, _, is carried over from A to

ed by this algorithm into
N=04_ +2", 247

—~—
)\=2"R,,(\lll)+2n0, RIERE AN S
We obtain the head positions

(a) subtracting 2%n from y;

(b) adding 2%n (o A;

which we wanted by:

(¢) dividing by 2 as long as the remainder is 0;
(d) changing R, (V) into R, (y,).
(Note that 2%

is given by the position of the right endmarker.)
In the followin

g let us use a simple abbreviation,

Instead of
k—1
K=ay+1, 27 A= % a, 207Dy Sy
H=1
O§a"<2", Vu=0,...,k~1,
we write
(x; A-)‘(010» oy Qp_y)

(ogsay, . - ak—l)_’(ak—l; R, (), Ay oo, s z)
Therefore we get by k—v applications ’
Wy Sy oonn, 0k—1)"‘°’k-1§ Rn(“’l)» C1, .., Sk-2) ...
_)(Gv’ Rn(cv+1)’ ] Rn(o-k—l)r Rn(‘l’l)' Gy onny Gv—l)‘
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test whether the new o, is equal to 2™ — 1 (this is true iff all bits which are carried
; tions
over are equal to one). Afterwards we apply 2 and get the head position

(0 -1 Rn(0v+1): Rn(6v+l)’ L] Rn(ck—l)v Rn(‘l’l)’ Ty vens 0'v—Z)-

Since R,(R,(0))=a for all o < 2" a further application of this rotation
technique leads to

e, Ok_1)-
(‘l/l;o-l'""o.v—lvo-v+1'0-v+l» k—1

By this whole computation we get the old position of the first heaq argeali;,cvevg
have changed the position of the (j + 1) st head in s.uch away ;liai Tvﬁ]is };hows
by o, +1 and we have tested whether the new o, is equal to .
that M is able to simulate M step by step. [

R MACHINES
4. HIERARCHY RESULTS FOR COUNTER AUTOMATA AND REGISTE

i lasses
Theorem 1 leads immediately to hierarchy results for the complexity cla
. . »
defined by counter automata and register machines. Sinc

c 3),
R(W < Coy (k—1) & Hyo) (k) & Hygy (k+1) & Croy (k+1) = R(k+3)

we get immediately
Cioy (k)& Cpop(k+2), VE20

d
" R(ky& R(k+3), Vkz1,

and the same results hold in the nondeterministic case.] oo e

In the following we will improve three of these four resu ts.onl e]cme;ns o
register machines. We show that for languages co.ntam(;nf o Siymu]ate s o the
form 2™ meN, only k + 1 registers are necessary 1n orde

automaton.

LEMMA S : _
H(k) < R(k+1), NH(k) = NR(k+1y  for k=2.

Proof: The proof is the same for deterministic and for nongl.elermjirn}:st;:
roof: The term e
automata. We consider here the deterministic case. Leltw L cce{ ?inéL o be
some language such that there exists a k-head automaton M accep .
define a (k + 1)-register machine M. o o
M tests first whether its input number is of the form 2"‘lj).y dlzl):ismbg tits th;i)rd
number successively by two and storing the number of divisi 3
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register. If the input number is of the form 2" then afterwards n is stored by’
register 3. M checks whether n is an even or an odd number (we will see later why
this is done) and computes 2" again afterwards.

Now suppose the input number is 2”. Then A7 simulates M. In order to dosoit
stores the head positions h,, ..., h, of M by its first k registers in the form

rv=h,+2",  Vv=1, ... k
where

p_fh. if Osh,<2m,
YUl 2n if hy=2"+1.

(Ifh,=2"+ 1 then additionally a corresponding bit is stored in the finite memory
of M.) Note that 0 < r,£2:2"holds for all v=1, ..., k.

First M has to initiate this encodingby settingr, =2"*landr,=... =r,=2"
In order to simulate one step of M the register machine M has to decide for all
v=1, ...,k whether I, =0or k,=2". Note that this is the case if and only if r, is
a power of two. Therefore M proceeds in the following way:

(@) It checks whether there exists pe{l, ..., k}such that r.#r,.(This can be
done by means of register k4 1.)

(b) Let such a p exist and suppose thatr, < r,. Then M divides the v-th register
successively by two (using register k+ 1) as long as the remainder is zero. The
number of divisions is not stored. In this way M decides whether r, is a power of
two. If this is the case then rv=2""1since 2" <r,, rey=2""tandr,<r,
Afterwards M multiplies the v-th register by two as long as the content of register
vis smaller then r , (content of register p). It has computed r, again when register

v stores for the first time a number greater than r . (It is clear that in the same way
M decides whether r=2"ifr,>r,)

(C) rlzrp.VI,,l:Z, ey k.

In this case M uses 3 of its register to divide r
the remainder is zero) and to store the numb
(Therefore it can fecompute r, again.) If r, is
r1=2"*'. M checks whether the number stored
an even or an odd number. Knowing whether n
can decide whether r, =2" or ry=2"*t. O

1 Successively by two (as long as
er of divisions in its register 3.
a power of two, then r, =2" of
by register 3 (thisis n or n+1)is
is an even or an odd number M

From lemma 5 and theorem 1 we get immediately:

THEOREM 2: For all jeN:

RMDERG+D)  and  NR()¢ NR(j+2).
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e . it
Let us consider now deterministic counter automata. We will prove an resu
analogous to lemma 4.

LEMMA 6: For all LeSpace (log n) and for k >j = 2:
Tk+1(L)€C(j_‘1) = Tk(L)EC(j)-

Proof: The proof is very much the same as tl'1e proof of lemma 4. Let tM b:rz;
deterministic (j— 1) counter automaton accepting T, (L) whose coun e'rs_stic
always bounded by the input number. We have.to c9nstruct a de:iern’\ljlm .
j-counter automaton M accepting T, (L ). There will exist a constantde N suc
that its counters are bounded by dm if m is the input number.

Suppose the input is of the form 0" with some n e N (this can t.>e. che;kzﬁ (oj:ats}llje/
by M). In this case M simulates M. It encodes. the head posm.o'n i the
contentsc,,1 £ v £ j—1, of the counters obey its own head position
contents ¢,, 1 < v <j, of its own counters in such a way that

with some constant de N (which will be determined later) and

h=h+04 2,
co=0Cy 0o, 2%, Yv=1,....j-L
with some o,
0<o,<2" VYv=0,...,j-1
and
j— n —1)n

¢;=0Co+0, 2"+...+0,_; 2V Dny 2k

hold.

This encoding already shows that this proofis slight]y more dlf{:CL}l: l:h?: t:le
proof of lemma 4. We allow the ¢, to grow up to d times the length o ,ettc:t in.
This is necessary because (in contrast to the snuatl'on of lemmz:‘ .;4) —}N;:z:sn Lestin
each step whether the number stored by a cou.nter isequal to 2*". Thi . :mrker)
only if one of the counters is set to zero (or if the rlead reaches an enh - i;
Therefore we must allow the counters to grow until one of_ them (or the hea s
free. We show in the following that during such a computation the counters gro
at most up to 4 -2%" for some d.
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80 B. MONIEN

During the simulation of one step of M the automaton M has to distinguish
two cases:

(@) The head of 1 does not scan one of the endmarkers and ¢, > 0 for all
v=1,...,j—1. In this case also the head of M does not scan one of the
endmarkers and also ¢,>0forallv=1 ... Jj—1. M simply changes its head

Position and its counters in the same way as M would change its head position
and its counters.

_(B) F=00r F=2%"+1 or ¢,=0 for some ve{l, ..., j—1}. In this situation
M has one counter free for intermediate computations. It checks for all
v=1....,jwhetherc, > 2%" and if this is the case it performs ¢, « ¢, —2*"and

Oveo,+1aslongasc, > 2% holds. In order to change o, it uses again the
rotation technique described in detail in the proof of lemma 4. Note that M has
one counter free and therefore it can compare the content of one of its counters
with 2%" whenever it wants it. It is clear that M can change the A, ¢, and o,,
0Osvsij—i, according to the changes performed by M.

In this way §&1 simulates each ste

that it accepts T (L). It remai
that ¢, < g 2kn

P of M and we can construct M in such a way
ns to show that there exists a constant d € N such
holds during the whole simulation for all v=1, .. i1

Suppose (b) holds, that means the hea
one of th

and a state ¢ such M reaches the states

S—= .. ot .. >t

4o moves 4, moves

Pel 80.8).0sv< J—1, be the distances by which the head position and the first
jf-l counters of M are changed during the first qo moves and during the
ollowing 4, moves, respectively. During this computation M moves its head

al;ld its first j— | counters in the same way as M does and therefore (since M halts)
8070 or there exists voe{l, .. -»j—1} such that §! < ¢
Vo .

Set p=0 or H=Vo, respectively.

[When we want to accent

1(s), 89(s) 31(s)] uate the dependence of u, 82, 8! on s we will write
S), v \S), v S).

RALRO. Informatique théorique/Theoretical Informatics

81
TWO-WAY MULTIHEAD AUTOMATA
i t
Therefore M reaches again a configuration of the type (b) after at mos

k.n V]
r=f_2 ;:6" .4, moves.
"

' - ded b
The contents of the counters ve{l, ..., i 1} - {Spi} <ar(;e 2bkgu;:) ! som)er
2%" 4+ 594+ 81 7. And for sufficiently large n2*"+8,+0,.r=d.
deN. ' .
Whenever M reaches a configuration of the type (b) it changes the numbers
stored by its first j— 1 counters into numbers

c,<2% forall v=1,...,j—1,

and therefore because of the above considerations
. <d-2%" holds for all v=1, ..., j—1

during the whole computation of M. o i
Furthermore the counters of M are always bounded by 2¢ . Thlts 1:‘1)11)1 10f
that < 2" holds for all v=1, ..., j—1 during the whole computa
0-V ’

M. 0O
TuEOREM 3: For all je N: )
- i NCip (J)ENCoy (j+2).
Cioy(NECy (j+1)  and oy U o)

’ i inning of this
Proof: The nondeterministic case was already proved m~thet}?:gsl::1e gway "
section. The deterministic case follows from lemma 6 in

theorem 1 follows from lemma 4. [ N -

It should be noted that the proof of lemma 6 really uses :-hciz:?:::is:; gle he
automata. The argument holds also in the nondetermlr'us 1(;, e e e
show that for any input string there exists a compu:}anor:1 e e ey as
moves performed without reaching an endmarker is boun

in the proof of lemma 6.
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