Information Processing Letters 18 (1984) 239-242
18
North-Holland June 1984

DETERMINISTIC TWO-WAY ONE-HEAD PUSHDOWN AUTOMATA ARE VERY
POWERFUL

B. MONIEN
University of Paderborn, 4790 Puderborn, Fed. Rep. Germany

Communicated by K. Mehlhorn
Received 2 January 1984

We show that if a language over a two-letter alphabet belongs to P. then its unary encoding belongs to 2DPDA(L).

Keywords: Complexity classes. pushdown automata, one-letter input alphabet

1. Introduction

A large number of classes of languages occurring in complexity theory and formal language theory are
defined by automata of different types. We distinguish deterministic and nondeterministic automata.
one-way and two-way automata (according to the way the input string 1s scanned) and a further essential
distinction is given by the nature of the storage access. For proving classes of languages not to be equal
there exist mainly two methods. In the case of powerful automata (and these are usually the two-way
automata) we have the method of diagonalization which has been refined by padding. transformation and
recursive padding [5.6.8]. In the case of not so powerful automata (and these are usually the one-way
automata) there is constructed some witness language belonging to onc class but not to the other [4.9].
Recently this scheme of proof techniques has lost some of its general validity. Duris and Galil {2] showed
by constructing a witness language that a deterministic two-way pushdown automaton is more powerful
than a deterministic two-way counter automaton.

The straightforward generalization of the counter is the pushdown tape. Restricting the mput alphabet
to only one symbol makes the device even simpler. Can we find a natural language over a one-letter
alphabet not acceptable by a two-way pushdown automaton with one head? Apparently there has been
done work in this area over some time and there was a rumour that the language {a" [n €N} is such a
witness language. In this paper we will show that deterministic two-way one-head automata are very
powerful even when restricted to a one-letter alphabet. Of course. as a general statement this was known
before {3.7]. We want to mention especially the results of [6]. where it is shown that for every k €N the
class 2DPDA(K) is ‘nearly equal’ to the class of languages acceptable by some random access machine
within time O(n*). The result of the present paper has a different flavour. We define explicitly a large class

of languages which is contained in 2DPDA(L)-

We show that if the *binary version’ of a language belongs 1o
polynomial time. then its ‘unary Vv
f languages acceptable by deterministic two-

P. the class of languages acceptable by
deterministic Turing machines 1n ersion” belongs to 2DPDA(L). Here
2DPDA(k), k € N, denotes the class 0 way k-head pushdown
automata.

For words w € {1, 2}*, w=2a,3;.-

L c {1, 2)* we set un(L)= {f(w) |[w € L}.

.a,, We use the bijective encoding f(w)=2X. ,a,2" and for a language

239

0020-0190,/84,/53.00 © 1984, Elsevier Science Publishers B-Y. (North-Holland)

Volume 18, Number 5 INFORMATION PROCESSING LETTERS 18 June 1984

Theorem. Let L C {1, 2}*. Then
LeP = un(lL)e 2DPDA(1).

This theorem can be generalized in two directions. First it is clear that it holds also for languages L C
{1, 2,...,p}*. p N provided the mapping ‘un’ is defined in an appropriate way. Furthermore using the
same proof technique the theorem can be generalized such that un(L)e 2DPDA(1) holds also if L is
accepted by a deterministic Turing machine within the time bound t(n), where t is some nice subexponen-
tial function, i.e., t is ‘simple computable’ and lim(f(n))* /2" - 0 holds for n — a0 and for every k e N.

It is clear that the theorem annuls the rumour mentioned above. The language containing all binary
encodings of quadratic numbers is computable in polynomial time and therefore {a“2 In € N} belongs to
2DPDA(1).

The theorem is known to the author since many years and it is implicitly contained in [7]. The theorem is
published now since the result and the proof technique seem not to be known to everybody working in the
field. The proof uses no really deep idea. It is a little bit tricky since the limited access of the automaton to
its pushdown tape has to be overcome by recomputing some of the information again and again.

2. Proof of the theorem

L € P implies that there exists a k € N such that L & 2DPDA(Kk) [1]. Furthermore it is well known that
in this case the language

Lk=1wa...a;weL
S —

wi*

belongs to 2DPDA(1) [7]. Let M be the deterministic two-way one-head pushdown automaton accepting
L,.

We have to define a pushdown automaton M accepting un(L). M will simulate M step by step. A
configuration of such an automaton is described as 2 4-tuple (internal
position, inscription pushdown tape).

Let M (M, respectively) start in the configuration

state, inscription input tape, head

N

(so.~]wa...a|—.0.e) and ('so‘kla'“lf.O.e). m = un(w)

pw*
respectively. Whenever M reaches a configuration
‘s. -|wa...al-, h, uj,

N
fw|*

4

then M reaches the configuration (s, ~[a™|-

, h, u). In order to simulate the next step of M the automaton M
has to compute the hrh symbol of

—|wa...al-.
——
pwi*

240

Volume 18, Number 5 INFORMATION PROCESSING LETTERS 18 June 1984

Note thatAM knows the actual internal state of M and the actual upmost symbol on the pushdown tape
of M. First M computes n = [w|. If h > n holds, then M reads the symbol a and therefore M can simulate
the next step of M. If h < n holds, then M computes the hrh symbol of w by dividing m successively by
two. We shall show in the following that a pushdown automaton can perform these computations.

(i) M writes its head position on the pushdown tape and computes n = w| = |log,(m + 1)}, e,

(s, -a™|-, h, u) ;f» (51, "~ 0, u#1") KZ (55, ", 0, u 1" # 1).

The last computation is done by moving the head first to position (m+1) and then dividing the head
position successively by two. The number of divisions is stored on the pushdown tape.
(i) Now M compares h with n (we have written down this computation for the case h < n).

- L
e (s5, ™. n,u# 1") 2 (s4» 2"~ 0 = h, u).

If h > n holds, then M reads the symbol a in its actual configuration and therefore M can simulate the next
step of M. Now let us assume that h<n holds. M has to compute the hih symbol of w. First M has to

recompute h,

- 5 (55, ", 0, u# 1"7") % (s " 0w 1P #17) = (550" s u).
M

(i) In order to compute the htk symbol of w we have to divide m exactly h times by two. ‘"l_'he
remainder of the last division determines the hh symbol of w. This computation destroys thc. head position
h. Therefore we have to compute first a copy of h. In order to do this we multiply h with n+2 (1.e.,
h— h(n+ 2)) and afterwards we divide by n+1 and store the number of subtractions and the last

remainder. Note that we are doing this computation only if h < holds.
The multiplication is done by:

N (s*, —Ja™|-, 0, u # 1"#1%# 1“) —; (Sqx, "o m F Lu#l")
M M

* n * h- n+2 n
;;(s*,.*,-|am|-,o,u#1h*‘#1 +2);Z(s,.,—|a"’|—,o,u:rt1 lg 17t 2#1%)

A ;’(58’—Iam|"h(n+2)’“)'
M i

The division is done by

LS (s*, ", 0 u#lo#l"‘"”’#l") —'>(s*"‘,—|a'“|—,1"‘*‘““*2’+1,u#]‘)
M b b b M

y —1¥n * mi 1 (h—l)(n+2)+ 1n

2 (s***, —|a""|f,0,u:iqr'fl1 #1024 1) 2 (s*, -Ja"-. 0. u# 1 #1 1#1")

S ees 5 (g " B u % 1Y)

M M

ute the hth symbol of W and can simulate the next step of M.

(iv) Now M can comp 1
), if and only if M accepts

In this way M accepts a™, m = un(w

241

Volume 18, Number 5
Acknowledgment

I want to thank Zvi Galil who draw my atten-
tion to the subject of this paper.

References

(1] S.A. Cook, The characterization of pushdown machines in
terms of time-bounded computers, J. Assoc. Comput. Mach.
18 (1971) 4-18.

P. Duris and Z. Galil, Fooling a two-way automaton or one
pushdown store is better than one counter for two way
machines. Theoret. Comput, Sci. 21 (1982) 39-53.

Z. Galil. Some open problems in the theory of computation
as questions about two way deterministic pushdown au-
tomaton languages. Math. Systems Theory 10 (1977

211-228.

—
2

3

242

INFORMATION PROCESSING LETTERS

18 June 1984

[4] J. Hromkovig, One-way muitihead deterministic finite au-
tomata, Acta Informatica 19 (1983) 377-384.

[5] O.H. Ibarra, On two-way multihead automata, J. Comput.
System. Sci. 7 (1973) 28-36.

[6] B. Monien, Characterizations of time-bounded computa-
tions by limited primitive recursion, in: Automata, Lan-
guages and Programming, 2nd Colloquium 1974, Lecture
Notes in Comput. Sci. 14 (Springer, Berlin, 1974) pp.
280-293.

[7] B. Monien, Transformational methods and their application
to complexity problems, Acta Informatica 6 (1976) 95-108;
also: Corrigenda in: Acta Informatica 8 (1977) 383-384.

[8] J.I. Seiferas, M.J. Fischer and A.R. Meyer, Separating
nondeterministic time complexity classes, J. Assoc. Com-
put. Mach. 25 (1978) 146-167.

91 A.C. Yao and R.L. Rivest, k + 1 heads are better than 4. J.
Assoc. Comput. Mach. 25 (1978) 337-340.

	Seite 1
	Seite 2
	Seite 3
	Seite 4

