Annals of Discrete Mathematics 25 (1985) 239-254
© Elsevier Science Publishers B.V. (North-Holland) 239

HOW TO FIND LONG PATHS EFFICIENTLY

B. MONIEN

Universitdt Paderborn

We study the complexity of finding long paths in directed or undirected graphs.
Given a graph G =(V, E) and a number k our algorithm decides within time O(k! -| V|
-1El) for all u,v € V whether there exists some path of Ienft? k from u to v. The com-
plexity of this algorithm has to be compared with 0(IV| "1 .|E|) which is the .wo-rst
case behaviour of the algorithms described up to now in the literature. We get similar
results for the problems of finding a longest path, a cycle of length k or a longest

cycle, respectively. . § f
Our approach is based on the idea of representing certain families of sets by subfa-

milies of small cardinality. We also discuss the border lines of this idea.

I. Introduction

In this paper we study the problem of determining a path _of length
k in a directed or undirected graph G = (V, E). This problem 18 closely
related to the longest path problem and to some other pr?plems
which we will describe later. By a ‘path’ we always mean a simple
path’ (see [5]), i.e. we do not allow that a vertex appears on a path
more than once. Without this restriction (i.e. by allowing a vertex to
appear more than once on a path) or for graphs without cY_CleS .the
problems is wellknown (see [10]) to be solvable in polynomial tunfa
whereas the problem of determining a simple path of leﬂgffh k, k arbi-
trary, is NP-complete. One can consider this problem as a s‘mgle-S(;PrC;
and single-destination problem (i.e. as the problem to decide for mt;
WY € V whether there exists a path of length k from u 10 v) or a.st e
more general problem to decide for all uy € V whether there exljl ;ha
path of length k from u to v. We will study her?kt)he SeCO.n_d :pp:::here-
That is we want to compute a matrix pk) = @ Iswsh

! ito] i h a path exists,
dii is equal to some path from 110 of length .k, g‘l suc ex:s)ts o
and dgk is equal to some special symbol A, if there

from i to j of length k.

240 B. Monien

The straightforward algorithm which enumerates all sequences of
length k+1 solves the problem within time 0 ({V] K1), It has to con-

sider for every pair of nodes (i, j) and for any sequence Ug,eee Upp Of
nodes

i,ul,....uk_l,j

whether i » Up2upy~>. .. > Up.1 > j holds. We get the slightly bet-
ter time bound 0(V| k-1 . |E}) if we take into account that we have
only to consider nodes y 1 with (i, up) e E. In the case k=2 the pro-
blem can be solved also by squaring the adjacency matrix of G (which
leads to an estimation 0(|V| *) with « < 3, see[1]). To our knowledge

no algorithm solving this problem for arbitrary k in less than 0(|V] X!
- |E|) time has been published.

The algorithm of Latin Multiplication which is described above all
in the literature (see [10Dfor solving this problem computes for I <p
Skorforp =1, 2, 4, ..., k, respectively) the matrices containing all
paths of length p. This algorithm also has a worst case complexity of
the above order.

We have seen that for any fixed k we have a polynomial time algo-
rithm to solve this problem but its computational behaviour is terri-
ble if the numbers k and | V| are not very small. In this paper we will
describe an algorithm whose behaviour is much better and which
will solve the problem for small k rather efficiently.

Theorem 1: Let G = (v, E)be any graph and let k ¢ N . The matrix
D) (G) can be computed within time O(Cy - V| - IE]), where Cy =
k!

Note that we have replaced the time bound o([v| k1. |E)by
OCy - VI - |El), Cx = k!. Estimations of this kind can also be found
for other problems. We want to mention here the vertex cover pro-
blem ([12], time bound 0(2m/2 4 [El), where u is the cardinality of
the solution) and the feedback vertex set problem for undirected
graphs (unpublished result of the author, time bound 0(2* - (logu)*
- VI [El) where again y is the cardinality of the solution). Our new
algorithm allows tg compute the solution for instances, e.g. |V| = 20

and k = 7, which were outside the computational practicability
before.

on the other side on [V| ang E| . The dependence on k (i.e. Cx=k!)

How to find long paths efficiently 241

is :
o ;lr(;t j;)pot::alr. Tl;e “I[‘ead('er w.ill notice that we do not estimate very
on 2. On th}; oct)h. e will discuss this topic again at the end of sec-
close to Optjma(]) er han'd the behaviour in V| and |E| seems to be
improved al orit’h1 .. an improvement of this behaviour would lead to
already in ofder tms also for other wellknown problems. Note that
nced O V] - IE| 0 f:ompute the m_atrix of all paths of length 2 we
are 1ot willing ¢) time (at least this .is our present knowledge) if we
tion. A Similifr Obuse one of the algorithms for fast matrix multiplica-
problem of d %.Servatlon can be made when we are faced with the
given graph Gec;hl-ng whether there exists a cycle of length k in the
trix D(k-1) (d) ' problem ¢ax .be solved by computing first the ma-
(i)eEwol z;(nd then comparing pk-1) (G) with E, ie. for every
Therefore o ook whether t?lerf.: exists a path of length k-1 form j to 1.
G= (V. B }i can compute in time O(Cy_q - IV . |E]) whether a graph
ther a g,ra h :: Sa Cyf:le of lt.ength k. The problem of determining whe-
ly, since fI')or as(ﬁl triangle (i.e. the case k=3) has been studied careful-
problem of dun lre.:c_ted graphs there exists a n’-reduction from the
ing a trianel et%r]mlmng a shortest cycle to the problem of determin-
algorithmsg(ft: tim Also for the problem of determining 2 triangle only
fast matrix m :ntle'con-]plexuy o(V] - |[El) and the algorithms for
the tion ultiplication are known, [8]. Therefore it is likely that
e bound O(V| - IE|), which holds for any fixed k, is rather

sharp.

N .
ote that as a simple corollary of Theorem 1 we have proved above

the following theorem.

let k e N. We can

Th . -
eorem 2: Let G = (V, E) be any graph and
ether G has a cycle

deci .
o:(;lde within time 0(Cy_; - IVl IEl), C = k!, wh
ength k and compute such a cycle if it exists.

Theorem 1 also to find a

We will show in Section 4 that we can use
r finding a longest cycle

lon
we ieSt path and a longest cycle efficiently (fo
an apply our method only if the graph is undirected)-

mpute a longest

Th .
eorem 3: Let G = (V, E) be any graph. We can cO!
!, where p is the

Path of G within time O(c, 1 - V! - [El) Gy =#
length of oy g
of the longest path of G.

242 B. Monien

Theorem 4: Let G = (V, E) be an undirected graph. We can compute
a longest cycle of G within time O(CZ,u-l - VI - IED), C, =u!, where
p is the length of the longest cycle of G.

It was shown before, [7], that a longest cycle in an arbitrary graph
G = (V, E) can be found within time 0(IVl ¥ . |E|) where u is the
length of the longest cycle of G. Both problems, determining a longest
path as well as determining a longest cycle, are well known and well
studied and are important in many applications (see [13]).

Before we start to prove our theorems we want to give an idea
about the method we use. We feel that this method is quite general
and should have further applications.

Let a graph G = (V, E), V = {l,..., n} , and a number k be given.
The first consideration is very simple. We start from the set of edges
and then we compute successively for all p, 2 < p <k, and for all 1,]
€ V all the paths of length p from i to J- If we have already computed
for all i, j e V all the paths from i to j of length p, then we can use this
information to compute the paths of length p H by Latin Multiplica-
tion (see [10]). This approach is very time consuming since the num-
ber of paths of length p can be very large. We overcome this difficulty
by considering instead of the family of all paths of some given length
between two nodes some subfamily which we really need in order to

compute finally paths of length k. We call this subfamily a representa-
tive for the family of all paths.

We will describe this idea in the next section and we will also give
a close upper bound for the cardinality of the optimal representatives
(Theorem 5). In section 3 we show how representatives can be compu-
ted efficiently and prove theorem 1. There is still a rather large gap
between the cardinality of the representatives we get in section 3 and
the optimal ones. In section 4 we prove theorem 3 and theorem 4.

2. The use of representatives

Our first step is to consider instead of paths (i.e. sequence of nodes)
the sets of nodes lying on a path, i.e. we don’t distinguish between
paths running over the same set of nodes. From now on we will use
in our proof only these sets. In an implementation of our algorithm

g -

How to find long paths efficiently 243

one should encode such a set as a sequence of nodes which form a path
in G in order to have really paths available when the algorithm stops.
Letusset for 1 <ij<n,0<p<n-1

Fg-l = {U € Pp_1 (n) | U occurs as the set of inner nodes on a path
of length p from i to j })

Here Pp_l(n) denotes the family of all subsets of {1,..., n} of cardina-
lity p-I. Let us consider as an example the graph G given by figure 2.1.

Figure 2.1: The graph G

Then Fj, = {{24}, {1,5}, {1,6},{1,7},{3,6},{3,8},{4,8},{4,7}}.

Now let us define the notion of a representative. Let g € N with
0<q< nand let F be any family of sets over {l,..., n} . A g-repre-
Sentative F for F is defined in such a way that if we consider any set
Tc {1 n} of cardinality at most q and ask whether F contain's a
et U with T N U = @ then we get the correct answer also by looking

only through F.

Definition: Let F be a family of sets over {1,..., n}anfi let g € N,
0< q < n. A subfamily F c F iscalled a g-representative of F if the

following condition holds:

For every T e P (n), if there exists some U € F with TnNU = 0
then there exists also some Ue Fwith TnU =9.

244 B. Monien

Let us consider again the above example. F: = {{2,4} , {1,5 } } is a
I-representative for F2 Since F contains two disjoint sets for any
Tc{l,., n} with T = 1 the family F contains a set U with T n U
= {. Because of the analogous reason F: = {{2,4} , {1.5} ,{3,6}} is a
2-representative for FSV and it is not difficult to see that F: ={{2,4},
{1.5},{36}.{1,7},13.8}.{4.8} } is a 3-representative for F2,

We have said that we will use the idea of the representative to com-
pute the matrix p&k), Let u,v € V be two nodes. We have to decide
whether there exists a path of length k from u to v. What do we have
to know about the sets Filj('z, i,je V?

A path from u to v of lenght k consists of an edge {u,i } eE,itv,
and a path from i to v of length k-1 from i to v which does not contain
u.

u i v

length k-1

Therefore it is sufficient to know for every 1e V whether there exists
a path from i to v of length k-1 not containing u. This information is
given by a l-representative for Fk 2 We can formulate this simple
observation in the following way:

Assume that we know l-representatives for Fk -2, 1 <i, j<n.
Then we can compute O-representatives for F~'1, 1 < i,j < n.

Note that for any family F a O-representzi]tlve F of F is empty iff
F is empty and it has to contain only one arbitrary set from F if F
is not empty.

We can easily generalize the above observation and get the follow-
ing lemma which we will call the main lemma because of its impor-
tance for this paper.

Main lemma: Let p,q be numbers with 0 <p<nand 1 < q<n
Assume that we know g-representatives for FP | 1 < ij< n, but not
necessarily the sets Fp itself. Then we can Cjompute (g-1)-represent-
atives for all the families Fp“ 1<ij<n.

We can use the idea of the main lemma by computing first (k-2)-
representatives for F 11] , 1 < i,j < n, and then (k-3)-representatives
for Ff, 1< 1,j < n,...., until we reach O-representatives for Fil;."l, 1<

How to find long paths efficiently 245

i,j < n. We will show in the next section that we can do this computa-
tion efficiently. Closely related with the complexity of this computa-
tion is the maximum number of sets which may belong to a represen-
tative. Therefore we define

o (p, ¢, n) = max min {i | . F is a gqrepresentative for F}
Fc Pp(n)

It is remarkable that we know thlS function explicitely. Results

from [4, 9] imply thata(p, q, n) = (® pq)forn > p+q. Note that no
proper subset of F = Pp (p+q) is a g-representative of F and therefore
a(p, g, n) > P +q). In order to prove the other direction we have to

introduce some new definitions.
Let FCP_ (n) AsetTC { I,..., n} is called a hitting set of F if U

NT+ @forallUeF.

F is called g-minimal if for every U ¢ F the family F - {U} has a

hitting set of cardmallty q which is not a hitting set of F.
It is clear that F C F is a q-representative of F iff every hitting set

of F of cardinality at most q is also a hitting set of F.
This implies that every family F C P (n) has a g-representative which

is g-minimal.

It was conjectured in [3] and shown in [4] and [9] (see also [2]),
that every family F ¢ P, (n) which is g-minimal contains at most
(p; Q) sets. Therefore we get the following theorem:

Theorem 5: a(p, g, n) = (pgq) forn>q +q.

This theorem does not imply that we can compute a g-representati-
ve with cardinality < (p+ Q) efficiently. The method which we will
use 1n the next section leads only to grepresentatives of cardina-

lity ; E <1 pl. Therefore we do not think that the constant Cy=k! in our
Theorem 1 is close to be optimal. Note that a lower bound for Cy
using the method of representatives is given by

ke kl k1 k2 el okl
E ekl =2 (ep1= % (P72
p=1

s 4'33‘ 9

246 B. Monien

q .
It was already noticed in [3] that a(p, q, n) < i_Z:Ipl

The author realized the connections between the work of [3,4,9] and
the work presented here only during the last stage of preparing this

paper.

3. Proof of theorem 1:

We want to compute the matrix D(k) = (d(k)) where d(k) is some
special path from i to j of length k, if it exists, and 4l = otherw1se
As we described in the introduction we have to cojmpute (k-p-1)-re-
presentatives for all the sets F1 LjeV, 1<p<k-1.

Actually we define trees whose nodes are labelled with the sets
from Ff such that the family of ail the sets which occur as node labels
in this tree form a (k-p-1)-representative of F;Jp The tree structure
enables us to do the computations, described by the main lemma, ef-
ficiently. We will call such a tree a (k-p-1)-tree for F;}p :

Definition: Let F C Pp (n) be a family of sets. Let q be some natural
number. A g-tree for F is a p-nary node labelled and edge labelled tree
of height at most q which satisfies the following conditions:

(1) Its nodes are labelled with sets from F or with the special symbol
A. Its edges are labelled with elements from { I,..., n}.

(i) If a node is labelled with some set U ¢ F and if its depth is less
than q, then it has p sons and each of the p elements of U occurs
as a label of one of the edges connecting this node with its sons.

(iii) If a node is labelled with the special symbol X or if its depth is
equal to q, then it has no sons.

(iv) Between the labels of the nodes and the edges the following rela-
tion holds: For any node ¢ of this tree, if E(¢) is the set of ele-
ments from { l,..,n } occurring as edge labels on the path from
the root of this tree to &, then either label (¢) € F and label (¢)
N E(¢) = O or label (¢) = A and there exists no U € F with U N
E@¢)= 0.

As an example (see figure 3.1) we want to describe a 3-tree for the
set sz which we considered in the introduction, i.e. for F = Fuv

How to find long paths efficiently 247

{24} ,{1,5}. {16}, {1.7}.{3.6}.{3.8}.{4.8},{4.7} }. Note that for
0< q < 2, the first q levels of this tree form a g-tree for the family F.

1,6

/ \
3,8 4,7
8 \ / \
2,4 4.8 1,7 1,5
4/ 2 8/ \4 7 \1 1/ 5
3,6 4,7 2,4 > 1,5 3,8 Z,4 3,8

Figure 3.1: A3-tree for the set FI.ZJV

Lemma 1: LetF C Pp (n) be a family of sets, let g be some natural
number and let B be some g-tree for F. Then the family F consisting
of all sets which occur as node labels in B form a q-representative of
F. Furthermore we can decide for every T € Pg (n) in O(p - q) steps
whether there exists some U e F with TN U = @ and compute such

a U if it exists.

Proof: We will prove the second assumption first. Consider the fol-

lowing algorithm:

procedure Disjoint-Set (¢: node of B; T: element of PSq (n))
begin
if label (¢) + A and label)N T+ P then
begin
Let £ be some son of ¢ such that the edge
from £ to £ is labelled with some element

=

248 B. Morien

aelabel ()N T,
call Disjoint-Set (£, T)
end else
If label (¢) =) then write (There existsno U e FwithUN T = ®
else if label (5) N T = @ then write (U = label (¢) fullfills Ue F
andUn T = @),
end;
Initially we call this procedure with Disjoint-set (root of B, T) and we

have to show that it always produces the correct output. We observe
three facts:

1.) If the algorithm finds a node ¢ with Label () N T = # then
clearly U = label (¢) has the property that Ue FandUN T = 0

since every node label either is the special symbol A or a set be-
longing to F.

2.) Now assume that the algorithm reaches a node ¢ with label (%)
= A. Let E(¢) be defined as in the definition of the g-tree. This
definition implies that there exists no U ¢ F with UnE@E) =90

But because of our algorithm E(¢) C T and therefore there exists
noUeFwithUnT=0,

3.) There still is to show that always one of the write-statements is
reached. If £ is a node of depth g, g < Q. then either we reach a
write-statement or we call the procedure again with some node
£ of depth q + 1. If £ is a node of depth q, then |E(¢)| = q and
since on the other hand E() € T and IT| = q we can conclude
that in this case E(¢) = T. Therefore if label (¢) + A then

label (() " T = @ and we reach a write-statement since the con-
dition of the while-statement is not fullfilled,

We have shown now that our algorithm computes a set U ¢ F with
TN U = Qif such a set exists. The Computation needs 0(q-p) steps,
since the number of calls of the procedure is bounded by the depth
of the tree B (and this depth is bounded by q) and since during
every call two sets of size p have to be compared (which needs 0(p)
steps).

Thus our second assumption is proved. The first assumption fol-
lows directly from the above consideration since the above algorithm

How to find long paths efficiently 249

computes for every T € P<q (n) some set U e F with T n U = @ if such
a set U exists. Furthermore this set U occurs as a node label of tree B
and therefore it belongs to F. Thus F is a q-representative of G. 0

Being a p-nary tree of depth at most q, B has at most (pq+1-l)/
(p-1) nodes and therefore the cardinality of the representative F is
bounded by (pat1-1)/(p-1).

Now we want to show that if g-trees for all the sets Filj’ 1<i,j<n,

areriven, then we can compute efficiently (g-1)-trees for the sets
Fifj’ :
Lemma 2: Let 0 < p < n, 1 < q<n. Assume that g-trees B}’-jfor Fup’
1 < i,j < n, have already been computed. For u,v € {1,..., n{ we can
compute a (g-1)-tree for Ffv"'l in time 0(q-(p+1)q . degree (u)), where
degree (u) is the degree of u in the graph G.

Proof: We compute the node labels and the edge labels of the (g-1)-
tree B for Ff H jevel-wise, i.e. we compute first the label of the root of B

v .
and the labels of the edges leaving the root. After having computed
ecting

the labels for all the nodes of depth i and all the edges conn
nodes of depth i with nodes of depth i+, we determine the labels for

the nodes of depth i+].

E() C{1,... n} be the set
Note that all these edge
set U e F‘EH

Now let ¢ be some node of depth i+. Let
of edge labels on the path from the root to £.
labels have already been computed. We have to find a
with U N E(¢) = @ (if it exists).

Note that every path fromutoV of length
(u,w) € E, w ¢ v, and a path from wto v of len
contain the node u. Therefore there exists a set Ue FPH with E@) n
U = @ if and only if there exists some W e{l,... n}-{:TWith (u,w)e. E
and some U e FP with U n (E(®) u{u}) = 9. But for every w € V with
(u, w) e E we c?an decide because of lemma 1 in O(p-q) steps whethefr
there exists a set U € F‘fv with U n (E(®) u{u}) = @ Since we do this
computation at most degree (u) times, we cail compute one node
label in time O(p-q-degree (u)). Computing the labels of the eflges
leaving this node takes no additional time. The lemma follows since

B has at mostﬁ_ﬂlq__nodes. O
q

p+2 consists of one edge
gth p+ which does not

Y

rm

250 B. Monien

Note that Fi? contains exactly the empty set if (i,j) ¢ E and it is the
empty family if (i,j) ¢ E. Therefore a g-tree for Fi? has the form @, if
(i, j) € E and the form A, if (i, j) ¢ E.

We have to compute the matrix DY) which we get because of Lem-
ma 1, if we know all the O-trees for Fi‘.('l, 1 <1i,j € n. We start from
the (k-1)-trees for Fi‘j), 1 <i,j <'n, (which we don’t have to compute
since these ‘trees’ are given by the set of edges E) and then we compu-
te successively the (k-2)trees for Fij}. , 1 £1i,j < n, the (k-3)-trees for
Fijz, I <ij<n, and so on. All these computations can be performed
because of Lemma 2 within the time.

k1 k-1

c- T pkP-(kp)-IVI.IEI<c(k-1)-Z pkP.iv|.|E|.
p=1 p=1
S
It can be shown easily by induction that Z p P<L(k-1)! fork> 5.
Thus we have proved Theorem 1. p=1

Theorem 1: Let G = (V, E) be any graph and let k e N . The matrix
D) (G) can be computed within time O(Cy - VI - El), where C} =
k!.

4. Proof of theorem 3 and theorem 4

It is clear that we find a longest path by computing successively the
matrices D(l), D(Z), D(3),... until we reach for the first time a matrix
D(Q)whose entries are all equal to X. Then the matrix D®1) has some
entry which is not equal to A and this entry is a longest path. The
computation of D(l), D(z),..., p®) needs no more time than the com-
putation of only D). This is true since when we have computed some
pk) and have to compute ptk+1) then all the trees which have been

constructed while computing D) cap be used and have to be enlar-
ged by one level.

Theorem 3: Let G = (V, E) be any graph and let u be the length of
the longest path of G. We can compute a longest path of G within
time O(Cy+1 - IV . IED,C“ =u!

How to find long paths efficiently 251

The application of our method for computing a longest cycle is not
so obvious. We are able to do so only for undirected graphs. In the ca-
se of undirected graphs there is some relationship between the length
of the longest path and the length of the longest cycle. It was shown
in [11] that in any k-connected graph with a longest path of length
% the length of the longest cycle is at least gk': . 2. We will not use

this result here but use some simple lemma.

Lemma 3: Let G be an undirected graph and let A be the diameter
of G. Suppose there exists a cycle C with |C| > 2 - A +2. Then there
exists also a cycle C with —%— ici<ici<icl.
As usually the diameter denotes the maximum distance in G.
Before we prove the lemma we want to show that it gives a sharp
estimation. Consider the graph G given by figure 4.1.

Y3k

Figure 4.1: The graph G

th 4k, its diameter is A = k +1 and

This graph has a cycle of leng
les of length 2k + 1 and

besides its Hamiltonian cycle it has only cyc¢
2k 2.

Proof of lemma 3: icl
Let C be a cycle with IC| >2 4 + 2. Set k= I.TJ .Thenk>A
holds. Let a,b be two nodes on C such that both paths from a to b

on C have length at least k. Let Py, Py be the two paths on C from
a to b. Then Py , IPyl > k. Let P be a shortest path from a to b

inG,IPl € A<k

woms

252 B. Monien

We have to consider two cases.

(i) Except for the endpoints P and Py (or P and P,, respectively) e?re
vertex-disjoint. Then C = pp 1 (or C = PP, respectively) fulfills
the conditions of the lemma.

(i) Besides a,b the path p contains some further node from P and
some further node from P5. Then we can assume that there
exist d and e such that the path P has the from described by
figure 4.2 and the following conditions hold:

Figure 4.2: Partition of the path P

d belongs to Py - {a}, e belongs to P - {b}, P’ contains no inner point
from P5 and P” contains no point from P or from P5.

Let Pyy, Py, P31, Py, be the subpaths of p |- Py defined by d and
¢ (see figure 4.3),

21 . CPy,

Figure 4 3. Cycle C, path p»

How to find long paths efficiently 253

Since P is the shortest path from a to b we know that|P" | <[Py
and | P" | < IP21|holds. Let C denote the cycle P P"Pyy and let Cy
denote the cycle P{9P"Pyy. Then|Cy [+ 1 CyI=ICI+P"I >[Cland
|C I <ICl(because of |[P"| <[Pyl)and |C4| <ICl(because of | P"|
<1Pyql). Therefore the longer one of the two cycles Cy, C, fulfills
the conditions of the lemma. O

We use this lemma in order to compute a longest cycle. We can
assume that the graph is biconnected (otherwisc we compute the bi-
connected components, this needs time O(|El), see [1,5]). Then we
compute the diameter A of G and for two nodes a,b with distance A
we determine two vertex-disjoint paths from a to b, i.e. we compute a
cycle of length k, k > 2A (this computation needs time o(IVI-IEl),
see [1,5). Then we compute successively DY for2 =k, k +1,... By
comparing DY with E we check whether there exists a cycle of length
2 + 1. We stop when we have reached for the first time some p2&!
such that there exists no cycle of length u for 8 < u < 2. Because
of Lemma 3 we know that in this case the length of the longest cycle

1s equal to £.

Theorem 4: Let G be an undirected graph and let u be the length of
the longest cycle of G. We can compute a longest cycle of G within

time 0(Cy,,_; - IVI - IE), C, =l

The author wants to thank R. Schulz, E. Spec-

Acknowledgement:
discussions we had during

kenmeyer and 0. Vornberger for the many
the preparation of this paper.

References

[t] Aho, AV., JLE. Hopcroft and J.D. Ullman: The Design and Analysis of Computer

Algorithms, Addison-Wesley, 1974
[2] Betge, C: Graphs and Hypergraphs, North Holland-American Elserier, 1973
[3] Erdés, P, and T. Gallai: On the Minimat Number of Vertices Representing the Edges
of a Graph, Publ. Math. Inst. Hung. Ac. Sc. (Mag. Tud. Akad.) 6(1961), 181 - 203
[4] Erdes, P., A Hajnal and J. Moon: A problem in Graph Theory, Math. Notes, Am.
Math. Monthly 71(1964), 1107 - 1110
[5] Even, S: Graph Algorithms, Pitman Publishing Limited, 1979
[6] Garey, M.R. and D.S. Johnson: Computers and Intractability,
1979

Freeman and Company,

254

[7]
(8]
[9]
[10]
[11]

[12]
[13]

B. Monien

Hsu, W., Y. Ikura and G.L. Nemhauser: A polynomial algorithm for maximum weighed
vertex packings on graphs without long odd cycles, Math. Progr. 20(1981, 225- 232
Itai, A. and M. Rodeh: Finding a Minimum Circuit in a Graph, Proc. 1977 ACM Symp.
Theory of Computing, 1 - 10

Jaeger, F. and C. Payan: Détermination du nombre maximum d’aretes d’un hypergra-
phe T-critique, C.R. Acad. Sc. Paris 273(1971), 221 - 223

Kaufmann, A. : Graphs, Dynamic Programming and Finite Games, Academic Press,
1967

Locke, S.C.: Relative Lengths of Paths and Cycles in k-Connected Graphs, J. Comb.
Th. B 32(1982), 206 - 222

Monien, B. and 0. Vornberger: unpublished paper

Roy, B. : Algebre moderne et théorie des graphes, tome 1,2, Dunod, 1969

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16

