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1. Introduction

We consider in this paper the problem of embedding graphs into binary trees. A
large variety of problems can be formulated as graph embedding problems where the
host graph is a tree. There exists an extensive literature (see [4,5,6,71). We want
to mention here only the problem of representing data structures in the storage of a
computer. It is well-known how binary trees are stored and worked with on a computer,
therefore the suitability of trees as host structures for various data structures
has been of great interest (see [11,12,13,14]). A lot of work also has been done con-
cerning the embedding of graphs into arrays (see [2,8,10]).As the cost measure of
such an embedding we consider in this paper the edge length, i.e. the maximum distance
in the binary tree between the images of nodes which are adjacent in G. We give a
formal definition below.

It had been an open problem for some time whether this embedding probiem is NP-
complete, even for the case of arbitrary guest graphs the complexity was not known.
This was contrasting to the behaviour of other host structures, such as lines (band-
width problem, [3]) or grids, [1]. We show in this paper that the edge length mini-
mization problem for embeddings of graphs into binary trees is NP-complete even when
the class of input graphs is restricted to trees of a special structure.

Theorem 1: The edge length minimization problem for embeddings of graphs into
binary trees is NP-complete, even when the class of input graphs is restricted to
consist only of trees of height 3.

In some sense it is remarkable that this problem is NP-complete already for trees,
since for trees there exists an approximation algorithm with a very good behaviour.
This (straightforward) algorithm replaces the d sons of a node of the guest tree by
the leaves of a subtree of height [1092 d] in the host tree, i.e.

is replaced by [Tog, d]

O....0 +

d

It is clear that this algorithm produces an embedding with edge length [log2 d]
where d is the maximal degree in the input tree. On the other hand it is not diffi-
cult to see that for any graph G and for any embedding of G into a binary tree, the
edge length is at least [Tog, (maxdegree (6))] - 2, see [5]. Therefore the failure
of the above algorithm is at most an additive constant of 2. The only other NP-com-
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plete problem which we know to have such a good approximation algorithm is the edge
colouring problem.

Hong and Rosenberg showed in [5] that outerplanar graphs are almost binary trees,
i.e. they showed that for any outerplanar graph G there exists an embedding into a
binary tree with edge length 3-[1092 (2-max degree (6))]. Because of the lower bound
mentioned above, this algorithm can be viewed as an approximation algorithm whose
failure is at most a multiplicative constant of 3. We wanted to show that outerpla-
nar graphs are even closer related to trees, i.e. we wanted to show that for any
outerplanar graph G there exists an embedding into a binary tree with edge length
flogz(max degree (G))]+c for some constant c. Unfortunately we were not able to do
s0, but we improved the Hong-Rosenberg result considerably.

Theorem 2: Let G be an outerplanar graph. Then there exists an embedding € of
G into a binary tree with cost(€) < [1og, 4] + [Tog,log, a1 +5, d=2-maxdegree(6)-2.

This algorithm can be viewed again as an approximation algorithm and its worst
case performance is bounded by 1 + € for any €>0.

We have some further results for specially structured graphs. Preo
inorder trees can be embedded into binary trees with edge length 3. This improves
results (edge lengths 9 and 6, respectively) from [5]. We could also show that outer-
planar graphs of maximal degree 3 can be embedded into binary trees with edge length
3. It is not difficult to see that this result is optimal. For outerplanar graphs of
maximal degree 4 the construction in section 3 will show edge length 6. We do not be-
lieve that 6 is the optimal result. There are still a lot of open questions ta be

rder trees and

answered by further research.
We will prove theorem 1 in section 2 and theorem 2 in section 3 and want to

give some definitions now.

Let G = (V,E) be a graph. An injective mapping €: y » {0,1}* is called an
embedding into a binary tree. Note that strings from {0,1)* can be interpreted in 3
natural way (0 = go to the left, 1 =90 to the right) as nodes of a binary tree. Set
Im(€) = {€(v); v € V}. The nodes from Im(€) do not necessarily form a tree since we
do not demand that for any two nodes a,B€ IM(€) also all the nodes on the path from
@ to B belong to IM(€). Let us denote by T¢ the class of all binary trees whose node
set contains IM(€), i.e. TE TE iFf T < {0,1}*, T forms a tree, IM(€) = T. The edge
length cost(€) is defined to be the maximum distance in the binary tree between the
images of nodes which are adjacent in G, i.e. cost{€)=  max E{1e"9th of the path
between €(u) and €(v) in some tree TE€Tc}. tu,v} €

We do not consider here embeddings with further restrictions on the image tree.
See e.g, [4], where the case is studied that the height of the image tree is as small
as possible, i.e. i€(v)l < []ogz(lvl +1)] -1forall ve V. We want to mention

only that our theorem 1 holds also in this case.
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2. The complexity of embedding trees

In this section we prove theorem 1.

Theorem 1:  The problem of embedding graphs into binary trees is NP complete
even when the class of input graphs is restricted to consist only of trees of
height 3.

We do the reduction from the 3-partition problem.

input: Gysweeslg,s P EN
such that

p/4 <q; < p/2 for all i = 1,..,3n

3n
and i§1 q; = n-p. .

problem: does there exist a partition {1,...,3n} = 191N1

with INil =3 and XE ix = p for a}] i

The 3-partition problem is NP complete even in the strong sense, i.e. it re-

1,...,n ?

mains to be NP complete if the number p is of the same order as the number n. We will
consider only the class of problems for which n < p holds.

Let u be the smallest integer such that p < 2%-2 holds. Set Ar=p+l. We will con-
struct a tree of height 3 which can be embedded into a binary tree with edge length
A if and only if the 3-partition problem has a solution.

Construction of the tree T

1.) We denote the root of T by r. r has 3_(2x_1) sons some of which are leaves. The
other sons we distinguish according to the structure of the tree they are rooting as
a-,b- and c-nodes, respectively.

e+l D eeely Wees0, W o o0y

3-2271 n In 3-(2"1on-1)
a - nodes b - nodes ¢ - nodes leaves

2.) The a-nodes are roots of the following tree.

-2
leaves
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3.) The b-nodes are roots of the following tree.

2h5
leaves

. 0

M, Al _5

-2 2

4.) FEvery c-node is the root of a tree encoding on of the numbers q;-

Denote the corresponding c-node by Cye

J . 0y

v—
4

We finish the description of our tree by denoting those sons of a b-node which

are no leaves as d-nodes and the distinguished d-nodes as dl-nodes. The above consi-

deration is only possible if 2 1-n-12 0 and 2"-5 2 0 hold. The first condition

holds since n < p < 2%-2. In order to guarantee the second condition we assume that

A 23 holds.
lemma 1: If the 3-partition problem has a solution then T can be embedded

into a binary tree with edge Tength A.
Proof: Let Ni’ j=1,....n, be a solution of the 3-partition problem and

let o: {1,..,3n} » {1,..,3n} be a permutation such that Ni=¥o(3i—2),c(3i‘1),0(31)}
holds for all i = 1,..,n. Construct a binary tree B in the following way

1.) r is the root of B.
The a-nodes and b-nodes form the level A of B and the c-nodes and the leaves
adjacent to r fill exactly the levels 1,..,x-1. The c-nodes are placed in such
a way that for every i, 1 < i <n, the following subgraph is contained in B

(here we identify the node ¢ with j).

This construction is
possible

since

ngpe= 1
and therefore

i< 3227 1p




2.)

a.)

iy
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The tree rooted at an a-node is laid out as a complete binary tree of height
2\, with the root at the a-node and with edge length x. Denote this tree by A.
Up to now we have got the following layout.

o~
3)/ \0(6) ~_~
/

/"\
V.
o Q O..0 o O0...0
| 3-2""?4n
A“Al A JA 1A al |al A A A

The sons of a b-node are laid out as a binary tree of depth A. The d-nodes are
laid out in the level 2) and the leaves adjacent to the b-node are laid out in

the Tevels x+1,..,2x-1. The 3 free places are filled with the e-nodes associated
already with the corresponding b-node.

Q
N
—

If we denote the i-th b-node by b then this layout has to have the form (here
we identify e with e,

Jevel A (JrJ,;fJ’J

level 2x-2 j
level 2x-1 1’-1) \9(3 -2) 1
Tevel 23 (‘/} //' {
d1-node F\
I

The sons of the d-nodes (at this point we still exclude the di-nodes) are laid
out as a complete binary tree of height A.

Now we have to lay out the ra 1-p-Z sons of the dl-node and the p 6(3i)’ p

o(3i-1)°
Py(3i-2) SONS of the § nodes. Note that P a(3i) P o(3i-1) + Pa(31 2) =P and
therefore exactly 2* -2 nodes have to be laid out. We have to show that this

can be done with edge length A,
The sons of the dl-node are laid out as far as possible to the bottom and fill
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up the Tevels 3 and 3x-1 (this is the true since 2A+1—p—2 2 2A+1 = 3-2A'1).
The son of the nodes e (31) and e,(3i-1) can reach the level 3A-2 and they fill
the rest of this level (this is true since Po(3i-2) < p/2 £ 2u'1-1, i.e.
A=
<2 2-2). The levels 2A+1,..,2X-3 can be reached also from node

Po(3i-2)
with edge length } and therefore also these levels are filled totally.

€o(3i-2)
[n}

Lemna 2: IfTcanbe embedded into a binary tree with edge length A then the 3-

partition problem has a solution.

Xﬁﬁggf: The tree T has 3-(2A-1) sons (i.e. nodes on its level 1),
(3-2"" _g).(2K+1_2) on - (2A+l_5) F3n = 3-(2A_1-1)(2A+1-2) nodes on its level 2
and (3-2 '1—n)-2'(2“1-2) . n.(z“l—p-Z) N n-(2A—1)(2“1-2)+ np - (3_2%1_1)(2“1-2)

A
(2 1-2) nodes on its level 3.

Let B be the binary tree into which T has been laid out with edge length x. The
above computation shows that B is a complete binary tree (its root having also degree
3) of depth 3x and that the Tevels i+atl,...,(i+1)"2 (i=0,1) are filled exactly with
the nodes from T on level i.

Futhermore the nodes on level 2\
nodes on level 3x have to be sons of the nodes on level 2i.

have to be sons of the nodes on level A and the

level » v is a
edge length edge length son of u .
A s ) 1'n T a,‘
level 2x ‘

4 the layout preserves the genealogic succession
hich is its predecessor of

i.e. at least on the levels X, 2%, 3
of T (a node on level A, 2, 3) is the son of the node w
distance A in T).

As an immediate consequence we get
have at least 2" sons. Therefore the a-n
d-node together with the sons of the a-nodes which are ne
of B.

Let us consider now the tree rooted at a b-n
is laid out on level A and its successors on level

cent to it.

that every node on jevel » and level 2x must

odes and b-nodes form level » of B and the
leaves form the level 2x

ode chosen arbitrarily. The b-node
2y are exactly the d-nodes adja-

level A

level 2 e v s
dl- Y

node d-nodes

Note that this structure guarantees also that every grandson of an a-node or
b-node, respectively, is laid out in B as a successor of its grandfather. We have
seen already that all nodes from T of level 3 have to be 1aid out in B on level
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2x+1,..,3x. Therefore the 2A(2Hl

levels 2x+1,..,3x as its successors. The free places in these levels can be filled

-2)-p grandsons of a b-node are laid out in B on

only with the grandsons of some c-nodes. Note that if some grandson of a c-node is

a successor of some b-node then all its grandsons are successors of the same b-node.
Therefore for every b-node the grandsons of 3 c-nodes are laid out as its successors.
Let o(3i-2), o(3i-1), o(3i), i = 1,..,p be the c-nodes whose grandsons are laid out
as successors of the i-th b-node. Then o{3i-2) + o(3i-1) + o(31) = p for all

i =1,..,p and we have found a solution of the 3-partition probiem.

3. Embedding of outerplanar graphs

A graph G is outerplanar if there exists a planar embedding that places all ver-
tices of G in one face. In this section we extend a technique described by J.W. Hong
and A.L. Rosenberg in [5]. Hong/Rosenberg showed that if G is an outerplanar graph,
then there is an embedding € of G into a binary tree with Cost (€) <
3-[1092(2maxdegree(G))]. We improve this result and show that there is an embedding
with Cost < [1og,(d)] + [Tog,log,(d)] + 5 where d = 2 - maxdegree(6) - 2. |

Our proof uses also the technique described in [5]. We look more careful into
this technique and show that we can find a good embedding for outerplanar graphs by
studying the embedding of & line into a binary tree under a special cost measures.
This cost measure is a combination of three wellknown measures. One of this measures
is the edge length (denoted by Cost (€)), the other one is the height of the image
tree (denoted by height (€)) and the Tast one (denoted by Dist(€)) describes the di-
stances of the image nodes to the leaves. If all image nodes are leaves then
Dist(e) = 0 holds. Otherwise we choose a tree T from Te and we associate to every

image node uniquely a leaf from T such that the distance between any image node and
the Teaf associated to it is as small as poosible, i.e.

Dist(€) = Min  Min Max Dist(u,p(u)).
TeT, @:Im (€) »Leaves(T) u€lm(€)
wpinjective

The following figure shows an embedding € of a line of 6 nodes into a binary tree
with Cost(€) = 2, Height(€) = 3 and Dist(€) = 1.

We know the optimal embedding of a line with respect to all these measures and
we still do so if we combine two of these measures, e.g. there exist wellknown or
straight forward embeddings € of a line of n nodes such that
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Cost{€) = 3 and Height(€) = [logz(n+1)] -1
or Cost(€) = 3 and Dist (€) = O
or Cost(€) = 2 and Dist (€) = 1
or Dist(€) = O and Height(€) = [log,n].

Here we need a result for the combination of all three measures. We consider
Totalcost(€) = Cost(€) + Height(€) + Dist(€). We want to find an optimal embedding
of a line with respect to this measure, i.e. we are interested in Line(n):= min
{Totalcost(€); € is the embedding of a line of n nodes}.

We defined this measure Totalcost since we can prove the following lemma. The
proof is rather technical and is given in [9].

Lemma 3: Every outerplanar graph of maximal degree d can be embedded into a
binary tree with edge length Line(2d-2}.

We wanted to show that every outerplanar graph of maximal degree d i
with edge length log, d + ¢ for some fixed constant c. This would be the case if
there would exist an embedding of a line which is close to optimal with respect to
all three measures. We were not able to show that such a measure exists. In the fol-
lowing we show that Line(n) < [logon] + [Togylogon] + 5 holds. We think that there
really exists a trade-off between these three measures.

In order to prove the above result we construct binary trees with the property

e is associated a leaf within a fixed distance. After-
ry binary

s embeddable

that to every inner node ther
wards we use the fact that we can embed a line with edge length 3 into eve

tree with a sufficient number of nodes. L
Definition: Let T be a binary tree. Let V(T) = L u L, where L is the set of K
leaves of T and 1 the set of "inner" nodes. A g-mapping on T,e€ N, is an injective
mapping i: I - L such that for every u € 1 the length of the path from u to A{u) in
T is bounded by ¢. T is called a dist-2-tree if there exists a g-mapping on T.
Note that the only dist-0-tree consists of one node and that the dist-1l-trees
have the form described in the following figure. This figure Shows also the dist-2-

tree of height 4 with the maximal number of inner nodes.

nces the number of nodes in a tree of a

The property to be a dist-i-tree influe
leaves of depth h in a dist-i- :

given height. We let f (h) be the maximal number of non
tree. It is obvious that f,(h) = M for h < 4.

We determine recursively a lower bound for fz(h). We do this explicity for & = 3.
Let T be a dist-3-tree. Then the trees T, and T,, defined by the two sons of the root

TP L
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of T are also dist-3-trees. Furthermore one of these two trees must have an additio-
tional leaf of depth < 2 which in the overall construction is associated to the root.
Therefore we define additional classes of trees in the following way:

Definition: A binary tree T is called a dist-%-i-tree, 1 < i < £, if there
exists a f-mapping » on T such that at least one of the leyves of T of depth <i is
not contained in the domain of A.

By f}(h) we denote the maximal number of nonleavesof depth h in a dist-2-i-tree.

The consideration made above shows that

F3(h+1) 2 f,(h) + f5(h) holds.

In order to find a recursive description for fg(h) note that we can construct
& dist-3-2-tree by placing the additional leaf of depth <2 into the left subtree and
the leaf associated to the root into the right subtree. Because of this construction
we get f5(h+1) 2 F5(h) + £3(h). In a dist-3-1-tree one of the sons of the root has to
be a leaf i.e. fi(h+l) 2 F3(h).

Now let 93,g§,g§ be the functions defined by

a3(h) = g5(h) = g3(h) = " for 0 hs 2
2

93(h+1) = 93(h) + 93(h)

g5(h+1) = g(n) + gi(h) for > 3

Then f3(h) 2 g3(h) and it is not difficult to transform the recursive equation
into g5(htl) = 293(h) - 93(h-2).

In the same way we can show that fg(h) > gQ(h) for £2 1 where g, is defined by

g (h) = 2" for h<t

g, (h) = 2-g, (h-1) - g,(h-12) for hzy
We will use this recursive description in order to prove the following lemma:

Lemma 4: Line(n) < [1ogzn] + [1ogzlogzn] +5

Proof: Using the above recursive description it is not difficult to show that

4,1-¢\h
gg(h) 2 (2-52° 7)" holds for ¢> 4. Furthermore we constructed dist-g~trees of depth

h, h € N, which have for any i, 0 < i < h, at least g,(i) nodes of depth i. Therefore

such a tree has
- 4 1-8,
ifg Wli) 235 (2-5277)

(2 __% 1-2)

We know that we can embed a line with edge length 3 into every binary tree which
has enough nodes. If we use the above construction then we can embed a Tine of at most
B(h,%) nodes into a binary tree with Cost=3, Dist = £ and Height = h. The problem we
have to solve now is to choose for any given n the numbers h,%, so that B{(h,2) 2 n
holds and h + & is as small as possible. We choose %= flogzlogzn] +1, h= flogzn]l+1-
Then B(h,t) +1=2 - g_. o flogZIngn])flogzn] +2
flogon] + 2

h+1_

v

1 = B(h,t) non-leaves of depth <h.

2 4-n.(1 - ngn )
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The function y(r) = 1 - ;%—)

For n > 32 we have [1ogzn] > 5 and []ogzlogzn] + 1 > 4. Therefore g(h,2) > n holds
if we choose h = [logzn] +1and 2 = []ogzlogzn] + 1. I.e. for the case n > 32 we
have found an embedding with Cost = 3, Height = [1ogzn] + 1 and Dist = []ogzlogzn]+1.
For n < 6 we have described already an embedding € with Totalcost (€) = 6. It is
not difficult to give an embedding fulfiliing the lemma for every n < 32. A complete

proof is given in [9]. o

r+2 is monotonically increasing in r and y(5)>0.3.

Theorem 2 follows immediatelly from lemma 3 and lemma 4.

Acknowledgement:  We want to thank I.H. Sudborough for many helpful ciscussions.
Especially he brought to our attention that the question about the complexity of the
Edge Length Minimization Problem for embeddings inte binary trees had been an open
question for some time.
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