© 1986 Saciety for Industrial and Applicd Mathematics

SIAM J. ALG. DISC. METH.
001

Yol. 7, No. 4, October 1986

THE BAN
DV:’;/IDT'I;:[ MINIMIZATION PROBLEM FOR CATERPILLARS
HAIR LENGTH 3 IS NP-COMPLETE*

BURKHARD MONIENt

Abstract. It is
5 shy . -
own that the Bandwidth Minimization problem remains NP-complete even when
;al trees; they consist

restricted to “c i . A
of asimple cha?:;c{g:lli: :1Eh hahlrs of !eng(h at most three”. «Caterpillars” are spec
chains are called “hairs"‘; i’\ ) w1t.h various simple chains attached to the vertices of the body (the attached
hairs of length at most 2 . A previous re.sult in the literature shows that the pandwidth of caterpillars with
show that the bandwid can be fOl.md in O(nlogn) time (this Journal, 2 (1981), pp- 387-393). We also
width problem is NP-complete when restricted to caterpillars with at most one hair
hereby also provides an

attached to each
casier proof. thanvt;r\:::j 9&” the body. The proof is relatively straightforward and tl
e oot in (SLAM 1. Appl. Math., 3¢ (1978), pp. 477-495) that the bandwidth problem i5
o trees with maximum vertex degree 3.
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e bandwidth k if all of its nonzero

1. .
ntroduction. An n x n matrix A is said to hav
of the main diagonal and the k

entries ar

diagonalseo(:ln one Of' the 2k+1 diagonals consisting

is to determine“?er S‘d_e of this main diagonal. The Bandwidth Minimization problem
¢, for a given nxXn matrix A and infeger k, whether there exists an X7

permutati .
ion matrix P such that P- A- P" has bandwidth k. This problem is of great
he matrices arising in these

import; .
apglicz?tril::lslzrmany engineering applications. Typically, ¢ r
performed wit l: sparse 'and mau:1x operations like inversion and multiplication can pe
are placed with'a considerably improved computation time if all the nonzero entrics
of a matrix h 1;1 a small “ba_nd"_ Therefore the problem of reducing the band“'uc!th
have been ras een f’f great interest during the last 20 years. A nu.mber o'f l.‘lelvlnS(.lCS
problem its lefsf:ﬂted in the literature [11, {41, 171, [11]. The Bandwidth Minimization
exists no e{; S NP-complete [13] implying (to our present knowledge) that there
cient algorithm for solving this problem. The Bandwidth Minimization
h G and an integer

problem i .
is equivalent to the following graph problem: given a grap
¢ layout of G (i.e. integer labeling of the
the maximum

k d :

Ven:c:::::‘n(e; whether there exists a linea

difference betsuch tha! each vertex receives 2 unique intege .

also under ween adjacent vertices is bounded by k. The pl:oblem has been s'tudled

complete e a graph theoretic viewpoint [3], (41, [5), {6]. It s known to remain NP-
On theven f:°_" trees with maximum vertex degree 3 (8.

[14] that canpgsmve side, dynamic programming algorithms

O(n*y ste etermine whether 2 graph G

and that tf,s. I‘- is also known that bandwidth 2 can be dete

ere is a O(n log n) algorithm to determine t

Wwith haj ill:
hairs of length at most two” 21.A wcaterpillar’” is 2 special kind of tre¢ consisting
“backbone") with an arbitrary number of

Ofa . X

Simpi;uéﬂl? chain C (called the “body” or bitra c

C. (Th ains attached by coalescing an endpoint of the added chatn th a.vertex in

cate ie attached chains are calied “hairs’- i shown in Fig- 1.1. A

hav tpillar has hairs of length at most d to the body
¢ length at most k.

—
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(a)
(b)

FiG. 1.1. (a) A ca i
. terpillar with hai
to every vertex in the b airs of length at m
od, ost 3. (b) A caterpiilar with
at most one hair anached

We show that th .
. e Bandwidth Minimizati
restricted to caterpi . g inimization problem is NP-
when restricted tr: lcl:];?r;:::h ha“:S of length at most 3 and tshatli)t‘i:;’l::lz]et]fl; cor W}’ o
body. Caterpi ars with at most i 0 NP-complete
. pillars ; one hair attach .
degree 3. Our prozl;t:fl‘sr]\?;,ter type are a special kind of tr:e(: :/)it;very vertex in the
provides an easier proof for ;}cl‘;ffg)l:‘eteness is relatively straightforw:;?ixlxr?lgri;ei:gx
i ]maXimum degree 3 [8] -completeness of the bandwidth problem on trec)s]
n the case of caterni y i
body, we do n. erpillars with at most i
) ot bound t one hair attached t
and with hairs of lengthh::t length of the hairs. Caterpillars withznzgmveneg o th;
Bandwidth Minimization {,nOSt k have bandwidth at most k and hum gyl
We have said above lt’l‘l'o lem can be decided in polynomial tim tgerefore thel
with hairs of length at rnostazt 'the Bandwidth Minimization probleme f[or] ’c[alt3]' itiars
with hairs of length at most 3 I'S §Olvab1e in polynomial time whereas fi el.p!ll
border line we have determi it is NP-complete. The proof in § 2 'Su o e e
Minimization problem iSe]l\‘In]’l:ned 15 even sharper. We will se hwl show that‘the
to _which hairs of length 3 -complete for caterpillars which h(:wte att the Bandwnd(;h
hairs of length at most 1 are attached, while all the other nades z:)f ‘El?tb‘;gi rIll“:w::
In [12] a weaker for
er form of th
paper a caterpillar is ¢ NP-completen
. en R ess result
chain, i.e., the binary enzzg?: asa chain with numbers atta:lv'zsdstltl)o::/m " tl(;e alfx:l::
respect to this encoding th g 1S “Sed‘ for the length of the hairs. It i ;ry no l: ° th
'NP-completc. In this inte ¢ B:andwldth Minimization proble.m fSS Ownt'ﬁt WIis
;nstance of a special kindrz;‘eta}t,lo; a caterpillar is not viewed as % ca;eré)lt . n
ength of the hairs scheduling probl a graph but as @
m em. N . .
we use the usual 2y grow exponentially in th ote that under t'hxs encoding the
We formul graph encoding ¢ length of the encoding. In our paper
ulate the two .
THEOREM 1. Th results of this pape
le - the Bandwidth Minimi per as theorems.
ngth at most 3 is NP-complete. Minimization problem for caterpillars with hairs of

THEOREM 2. Th
hair attached 1o ¢ e Bandwith Minimizati

ed lo every vertex i mization problem for caterpi i e

We will prove Theor in the bedy is NP‘mmplete{ aterpillars with at most 0%

em 1:
2. Caterpillars with h:l 1in §2 and Theorem 2 in § 3.

?;om the Multiprocessor SI:; :; length at most 3. We prove Theorem 1 by reduction
18257+, 4} of tasks (the ith uling problem [8, p. 238). That i iven l'esct T=
S processors, we b ask in T has execution time 1), il D, and 2

to satisfy the d k if and only if the task: caterpillar C and an integer k such that
and therefoere e\:: fine D. The m“lﬁpmcess::; Thcan be scheduled on the m processor
can assume that all the ¢, :f_:::&:ﬁ Pl_':ﬁle:l is strong NP-complet®

mially bounded in m
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We first construct two portions of the caterpillar called “parrier” and “turning

point”. They are shown in Fig. 2.1.
The barrier of height p and the turning point of hei
(a conesPonding layout for the turning point of height
fgnstruc_tlon of the caterpillar C is based on the fact that i
e turning point both nodes a and g either belong to the first half of the layout or

to the second half of the layout, i.e., in every optimal layout of the turning point the
of this behaviour for our

:Zrclls‘:’°ﬂ§ has to be folded. Because of the importance .
hei ruction, we will give a careful proof below. Let 7, denote the turning point of
eight p. T, has exactly 6p+1 nodes.

Lemmal. LetT,=(V, E),leta: v{1,---,6p+ 1}bea layout with jo(i) —o(j)=
pfor all {i,j}e E and let p=4. Then either o{a), o(8) <3p+1lor ola), a(g)>3p+ 1.
first :'Oof Let vg, - - * , U be the nodes with o(v)=i-p+11 =< i=6. We want 10 show

S A =0~ Vs form a path in T, and that v;=d holds.
and 7_;’ 15 COnIfected and every pathin T, has length at most 6. Since o{(ve) —o(v)=6p
an tSlnce l“(’) —o(j)}=p for all {i,jteE, it follows that on the path from vp t0 e
s fhwo adjcent nodes have the difference p with regard to . Therefore to— 01"~ 7%
¢ only path from v, to ve of length 6. Every path of length 6 has the node d as

its centre. This implies d = v;.
the nv:e :ave seen that o(d)=3p-+1 holds.
,engthm ers1,-+-,porSp+2, ,6p+1toancde
end o_at least 3.from d to u. This is true only _1f u is one of
asslll:nmt of a hair of length 3 or a point on 2 hair dangling att
sh ¢ that there exists an optimal layout & with a'(a)<a(d)<o'(g). We have to
ow that this is not possible.
et @) < () implics that not all th
ab dt en o(a) = p must hold and p
]eng’m ) (eiterm}ne 3p nodes which have &
Bpt2.4 angling at ¢ and the two remainin '
pxa ’DP +1] with respect to o. This is not possibl
the Jh € caterpillar C which we associate to the instance Y=, e
m bulnprocessor Scheduling problem is shown in Fig. 23. we will see 13 oo
oy mer p has to fulfill some * ondition. We consider only instances Y with Zi-1 &7
co m. It is well known that the Multiprocessor Scheduling problem 18 strong
mplete also when restricted to instances of this class.

;; : 0.0‘..
—— = (p-2)
o0

2p-2

ght p both have bandwidth p
4 is shown in Fig.2.2). Our
n every optimal layout of

at o can associate one of
xists a path of

(retched out to the

can be §
with the nodes

¢ hairs of length 3
h 3 together

_1 hairs of lengt 1
to be laid out 10 the left of d. The hairs of

g neighbours of d have to get values from
e since 3(P ~2)42>p holds for

v ‘n}y Dv m) Of
at the
=

height p, p=0mod -

(a)
FIG. 2.1. (a) The barrier of height p.

(b) The turning point of

4 hairs of ength 3

Wof(hemningpoﬁ"dwt"“-

FIG. 2.2. Am optimal
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The caterpillar C, A=2 {m- (D +2)-2}, P has to be chosen in an appropriate way.

of 501,:: f::gz,l,l z:;C gf)ns:sts‘f)f an incoding of the sequence of execution times and
by the turning ointoof glg m “holes™ each of size D. These two parts are connected
every layout wiI:h b od %ght P+1+2n The behavior of the turning point will force
It is a matter of te:chil:-1 ‘;lld th P+1+2n to place these two parts one upon the other.
if and only if each “(_:ah etails to show that a layout with bandwidth p+1+2n exists
encoding certain eeruttioi ltl'mes can be ﬁlled'by using all the nodes of the blocks
a solution). imes (this in turn is equivalent to the instance Y having
our X:crv:gtli ogrllvfe;s f:::gl proof in the remainder of this section. In order to make
body from the outermost ;rsogne, e use some special terminology. The part of the
part from the tummi 0st barrier to the turning point we call “ground line” and the
:13 point to the other end of the body we call “sweeping line”. The
with the hairs attajhne’dc?ns'lsts of the Chair_l of length ¢, of the sweeping line together
LEMMA 2. If Y K oIt Th? ground line consists of A = m(D+2) +1 nodes.
Proof. Wé will gs a solution then C has bandwidth p+1+2n
() The rounde[' ne 'the corresponding layout explicitly. Set 8= p+1+2n.
. |10 Is stretched as far as possible, i.e. the points of the ground

them to the right of the center.

(ii) Por the turning point we

g the numbers A- B+1 and ) - p use an optimal layout which associates with a and

. +2. This la . L 1=jS
6-B+1, for th . s layout uses the numbers A-8+j, 1=J

nodes (ie. the eﬂ:;::so?rt }‘lhe turning point and has bandwidth 8. All the remaining
A-B+1. ¢ sweeping line and its hairs) get numbers smaller than

{1,- ! tlt)n}Yar::; ?Oluf.'f" ;" therefore there exist sets I, 1= m, such that U1 §,=
i ‘<] '—g forallj=1,... m For every i, if i€ I, then the nodes of
between the mth barrier ane;V:;’;:nt the jth and the (j+1)st barrier (in the case j=m:
D- p nodes between any two ba Lrming paint). Note that by doing so we put exactly
triers. Of course we must bear in mind that adjacent

nodes have to
we can reach iiith?su:r]:; r: o1 most B apart. But it is clear that this can be done and
which has the property th partial layout which fulfills the bandwidth constraint and

at .
out 50 far exactly b oo between any two nodes of the ground line there are laid

(iv) Now we ha .
fength A=2. (4 -3) ve 10 1ay out the chains between the blocks. Every chain has

- It can be laid out in such a way that the bandwidth constraint
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: tl
is fulfilled and that between any two nodes of the ground line the':;e ari ;;llzllc;:z e;ha;n;'
two nodes of the chain (see Fig.2.4). That is, after we ?a;e I?Lu:; line, i.e., C has
exactly p+2n nodes are placed between any two nodes of the & ’

bandwidth g=p+2n+1. O . lution.

LEMMf3. ’}fp >2n- (d+4) and if C has bandwidhp + | +b2n’£v§3$ Zai:si 1+2n

Proof. We will show first that every layout @ of C with :;r; y
mmbers the ground line up to symmetry in exactly the .S?hmetumir;g point has 68 +1

The turning point of height B is a subgraph of C. ela out with bandwidth 8
nodes and its longest path is of length 6. Therefore every zof Lemma 1 we know
has to assign to its nodes 68 +1 consecutive num_bcrs.. Becaus t to o either to the left
that the ground line and the sweeping line both lie with re;'l;z:efore the nodes of the
of the turning point or to the right of the turning point. the largest 68+1 numbers.
turning point have to get the smallest 68 +1 numbers of

int is lai ight end.
. i t is laid out at the ng :
N ikhenmore e barrier o heit a subgraph of C. Thi

Furthermore the barrier of height p 15 e associates
nodes and its longest path is of length 2. T-here ore o herefore we can
consecutive numbers. No edge can Cross this bal"ner a <th the barrier of height B the
from the considerations made above that & associates Wi

L. in Fig. 2.5.
numbers 1, - - -, 28+ 1. The current situation is shown 10 Fig
Note that C has

s barrier has 28 +1
to its nodes 2B +1
conclude

i ti:{6+m-(D+2)}'B+1
=1

68+1+(D—1)- m+m: (2p+3)+dntn-AFP
rrier of height B and the
{m-(D+2)—2}~B—l
int are connected
ssociate

i ith the bal
rs associated with t el
g o e hest 0. raphs the remaining

tuming point. Between these two subg ing po
nodesghalzre to be laid out. The barrier of height B a;)d—t lzle;;:le?gr}; ohastoa
by the groundline, i.e. by a path of length 7" (D+ mb'er (i-1)-B+i .
with the ith node of the ground line 1=1 =, th? n: numbers the ground line and

We have seen that every layout with bandwidt €v¢ have to show now that tf
the turning point in the same way up o sy‘r.nmetr),'; iven by the ground ling and 1t
sweeping line can be encompassed into the “frame " £

fution. r ,
barriers only if the scheduling problem Y has aﬂig:umbefs z=B D+2)-j+8 :tlo
Note that the centers of the barriers have go! say that task i, 15i=m belong

de u of the

g+1. We
hof C encoding the

j=0,---m—1.Set Z,=p(D+2)-m+ <Z
the jth interval, 1= = m, if and only if Z-1 '<ea(tlc‘)) the subgraph of intervals.
Sweeping line belonging to the ith block (i€ belong to two different 11 !
e : . ;11 show fir: sk cannot belOnE ls. Then there exist
xﬁclll‘tlon time ;). We wnlLs OWk i ifferent mterl\]la it'h block such that
et us assume that the tas ine and to the
two adjacent nodes u, v belonging 10 fine

st thatata
belongs to tWo d
the sweeping

| i blocks.
FI1G. 2.4. Layout of the chain connecting Iwo
turning point
g barrier : O
o0 O - . 00
' rel rebsl
layout 12 2841 .(D+2)-p.

Fic. 2.5, Layout o, 7= ™
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FIG. 2.6. The situation where a task belongs to two intervals.

o(u) < Z; < o(v) holds for some J. Let w be the node with o(w) = Z;. This situation
is illustrated in Fig.2.6. Set &i=0(u)—(Z,-B) and s,= Z+B—o(v). {uvieE
implies o(v) — o(u) = 8 and therefore 8,+8,= 3 holds. There are p —1 hairs dangling
at each of the nodes u and v and 2p hairs dangling at w. At most B — 8, hairs dangling
at u can get numbers smaller than Z;— B and at most B — 8, hairs dangling at v can
get numbers greater that Z,+B. Therefore 5 +2p+2(p-1)—(B-8,)—(B-8,)=
3+4p—B=2+43p—2n nodes have to get numbers between Z; 8 and Z;+p. This is
not possible since 28+1=3+ 2p+4n and p=8n hoid.

Thus we have shown that every task belongs to exactly one interval. Let I,1=j=m
be the set of tasks belonging to the jth interval, We have to show that },_ W=D holds
forall j=1,.-- » m. o has associated numbers between Z;_y—p and Z;+ B to all the
nodes belonging to a task from I (there are p- Y. . ¢, such nodes) to the hairs of the
two barriers (4p nodes) and to the corresponding pai—t of the groundline (D + 5 nodes).

This implies
Py t,-+4p+D+5§(D+4)(p+2n+1)+1
iel;

and therefore

$ n=p+2nD+a) o
iel; P

Theorem 1 follows from Lemma 2 and Lemma 3.

3. Caterpillars with at most one hair attached to every vertex in the body. The proof
of Theorem 2 does not differ m

ng point. The barriers and the turning point have
nt way. They are shown in Figs. 3.1 and 3.2.

as (2p~1)* nodes and the length of its body is equal to
note that p- (4p—4)+1 = (2p—1)?) and it is easy to sec

length

-2 =,

2p-2
FIG. 3.1. The barrier of height p.

to be defined now in a differe
The barrier of height p h
4p—4 . It has bandwidth p(
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-1

|
‘ p-1 p-t ©
: ) barrier
| = barrier . ) rri —o——\__r_—g
o— —0——0:_7__4 = -—%
—

p

2
A A-1

i =4p-5.
FIG. 3.2. The turning point of height p, A =4p

as possible to the left
that the strategy which lays out all hairs of the left paft::li:is topan optimal layout
and all hairs of the right part as far as possnb.le to the rig I hire and to pay att'eml on
(in doing so we have to go from the outer hairs toft lzlfel;zight p also has bandwxd‘llll ?t
to the bandwidth restriction). The turning P0“"'t o i1 hairs of length 2A ~1to the' e
This time we get an optimal layout by stretching & two chains such that both tm;e;
and organizing the layout of the two barriers and_ tf}e :t difficult to see that for p=

one barrier and one chain overlap. Furthermore 1t 1S I ith bandwidth P both nodes @
| an analogue of Lemma 1 holds, i.c. for every layout Wi

. he layout.
right half of t
and o either belong to the left half of the layotl;t (;;1 1tso ttt;::n egto the insm?::apply
. hich we associal ‘n Fig. 3.3. We can als
{ The tc?telgplrlr:?rof tcl;e ;V-Plartition problem 1s Sho-wnl:'r; f;ie showing that if Y has
thel ,Proo;' (;f ,Le’mma 2 with only technical changes in "
4 solution then C has bandwidth.l’+?+2n' follow the pr
In order to prove the other direction we turning point deiin
Sround line together with its barriers and its be embedded. As 1
the sweeping line together with its hairs has to

i me interval. ) al if pZ6n
3 we define the notion of a task belongn:lg ;obz’ongs o xactly one intery
A simple calculation shows that a tas

. dy of a bartier
. Since the bodY id out
. two intervals. 510 task i are laid ou?
holds, task i belongs to tWO I/ longing to n
has leﬂlgt:l: ‘;sp:-i:iu::i tst;itc: nodes of the sweepﬂ:)% glneell;:rrief, there are m:or:;:::sibll’c
- ter - or. This is
as well the right of the center O he barrier-
nodes b;?otr:;r:fttoatsa;z i laid gc,ut within the regtonl of t

if p=6n holds.
p-ta
o 4??
o 0 ¢
a

ooty S, SR
ST T [

oof of Lemma 3. AgainhF:le,
into whi
fines a frame 10
¥ 1 the proof of Lemma

‘ chosen in 47
4}, phastobe
FiG. 33, The mm'qA‘”{m.(pu) 4}, p
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A similar straightforward computation shows that if I,, 1 <j = m, denotes the set
of tasks belonging to the jth interval, then Z,.E,, =D holds for all j=1,-- s m
provided p fulfills PZ2n-(D+4). Thus we have shown that if C has bandwidth
P+1+2nandif p=2n- (D+4) holds then Y has a solution. This completes the proof
of Theorem 2. [
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