Simulating Binary Trees on X-Trees

(Extended Abstract)

Burkhard Monien*
Dept. of Math. and Computer Science
University of Paderborn
4790 Paderborn, Germany

Abstract

We show how to embed an arbitrary binary tree
with dilation 11 and optimal expansion into an
X-tree. To our knowledge this is the first re-
sult proving that every binary tree can be simu-
lated by a "natural” network of bounded degree
with constant dilation and constant expansion.
Our construction also leads to a universal graph
of bounded degree for binary trees, the degree
bound being at most 415.

1 Introduction

A lot of work has been done in recent years
studying the properties of interconnection net-
works for parallel computer systems. An impor-
tant feature of an interconnection network is its
degree of universality, i.e. its ability to simulate
Programs written for other architectures without
a significant time delay. The popularity of the
_hy percube network is based also on the fact that
It can simulate common program structures like
grids or trees in a very efficient way.

In this paper we are interested in the simula-
tion of binary trees. Binary trees reflect common
data structures and the type of program struc-
ture found in common divide-and-conquer algo-
tithms, Bhatt, Chung, Leighton and Rosenberg

"This work was supported by the grant Mo 285/4 from
the German Research Association (DFG).

[1] show that arbitrary binary trees can be em-
bedded into hypercubes with constant expansion
and dilation 10. In [7] Monien and Sudborough
improve this result and describe an embedding
with constant expansion and dilation 3. They
also show that every binary tree can be embed-
ded into its optimal hypercube (i.e. without ex-
pansion) with dilation 5.

Hypercubes have many properties distinguish-
ing them as an excellent candidate for an inter-
connection network. However their vertex de-
gree increases with the number of vertices. Cube
connected cycles and butterfly networks are net-
works of constant degree sharing the topologi-
cal propertics of the hypercube, especially they
have a small diameter and a very good rout-
ing behaviour. Up to now it is not totally clear
up to what extent these networks also have the
good universal behaviour of the hypercube. In
[3] Bhatt, Chung, Ilong, Leighton and Rosen-
berg give a negative and a positive answer. They
show that grids and X-trees cannot be embedded
with constant expansion and dilation into cube
connected cycles and butterfly networks. The
embedding of grids needs dilation O(logn) and
the embedding of X-trees dilation O(loglogn),
where n is the number of nodes. These are the
first graphs that are known to be efficiently em-
beddable into hypercube networks but not into
cube connected cycles or into butterfly networks.
On the other hand they show that complete bi-
nary trees can be embedded with dilation 0(1)
and expansion 0(1). The efficiency of simulat-

Permission 1o copy without fee all or part of this material is granted provided that the copies are not made or fiisu"ibutcd for dir_ect
commercial advantage, the ACM copyright notice and the title of the publication and its d:fte appear, and notice is given that copying
15 by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1991 ACM 089791-4384/91/0007/0147 $1.50 7

ing arbitrary binary trees is left open. To our
knowledge there exists no result showing that ar-
bitrary binary trees can be embedded into some
"natural” network of small degree with dilation
0(1) and expansion 0(1). The existence of such a
"universal” network of bounded degree is known
([1,2,6]), but the previous constructions lead to a
very large vertex degree which is left unspecified.

In this paper we study embeddings of binary
trees into X-trees. An X-tree is a graph that is
obtained from a complete binary tree by adding
cross edges connecting the vertices of the same
level. The X-tree of height 3 is shown in the fig-
ure 1 below. An embedding is a mapping of the
vertices of the tree into the nodes of the X-tree.
Given an embedding, its dilation is the maxi-
mum distance in the X-tree between images of
adjacent vertices of the tree. Our goal is to min-
imize the dilation, as the dilation corresponds to
the number of clock cycles needed in the X-tree
network to communicate between formerly adja-
cent processors in the tree. It is also important
to minimize the size of the host network. The
expansion of an embedding is the ratio of the
size of the X-tree divided by the size of the tree.

Figure 1: The X-tree of height 3

Often an embedding is not one-to-one. In this
case also the load factor measures the quality of
an embedding. The load factor is the maximum
number of vertices of the tree mapped to any
node of the X-tree. For networks of fixed size our
goal is to minimize the load factor, as the load
factor measures the computation work which has

to be done by a single processor of the X-tree
network.

Our main result is the following theorem, which
shows that every hinary tree can be embedded
with dilation 3 and load factor 16 into its "opti-
mal” X-tree.

Theorem 1: Let ' = (V,E) be an arbitrary
binary tree with n nodes, n = 16 - (2"*! - 1) for
some r. Then there exists an embedding of T
into the X-tree of height r with dilation 3 and
load factor 16.

From Theorem 1 we can easily derive the follow-
ing two theorems

Theorem 2: Let T = (V,E) be an arbitrary
binary tree with n nodes, n = 16(2"*' 1) for
some r. Then there exists an injective embed-
ding of T into the X-tree of height r + 4 with
dilation 11.

Theorem 3: Let T = (V,E) be an arbitrary
binary tree with n nodes, n = 16 - (2" — 1) for
some r. Then there exists an embedding of T
into the hypercube Q, with load factor 16 and
dilation 4,

It had to be expected that the embedding into
the hypercube found in theorem 3 by using the
embedding from theorem 1 cannot match thle
specialized technique from [7] for embedding bf'
nary trees directly into the hypercube (with di
lation 3 and constant expansion, and with dila-
tion 5 without expansion, respectively). How-
ever, theorem 3 gives some new information. It
shows that every hinary tree can be embedded
into its optimal liypercube with dilation 4 if we
allow non-injective mappings with constant load
factor.

A graph U with n nodes is said to be universal
for a family G of n-node graphs if every graph
in the family is a subgraph of U. This is a very
strong simulation property since every comput&
tion on a network belonging to the family G can
be simulated by U in real time. The problem
of constructing minimal graphs for the family of
all trees with the fewest number of edges ha's
found considerable attention. In [4] and [3] it

148

was shown that O(n - logn) edges are necessary
and suflicient. This result can be improved if we
restrict ourselves to the family of binary trees.
In [1], [2] and [6] it is shown how to construct
a universal graph of bounded degree d, d being
very large and left unspecified. We extend our
embedding into the X-tree and construct a uni-
versal graph of "small” degree. This way we get
a universal graph if the number of nodes is equal
ton = 2 — 16 for some ¢. We have no doubt that
one could generalize this result to hold also for
arbitrary n, but we have not done so in this pa-
per.

Theorem 4: For every n € N, such that n =
2' ~ 16 for some 1, there exists a graph G, of
degree bounded by 415 such that every hinary
tree with n nodes is a spanning tree of G,.

Theorem 1 is proved in section 2 and the other
results are proved in section 3.

2 The Proof of Theorem 1

In this section we will prove theorem 1. We
start with a few definitions and two helpful lem-
mas about the separation of trees. The proofs
of these lemmas are rather straightforward and
a similar approach was used already in [7], but
there are some details which are different from
the formulation in [7] and which are important
ff)r the proof of theorem 1. This, we think, jus-
tifies to state the proofs also in this paper.

Let us recall the definition of an X-trec from 8]

Definition: The X-tree of height r, denoted by
X(r), is the graph whose nodes are all binary
strings of length at most r and whose edges con-
hect each string z of length ¢(0 < 2 < r) with
the strings za,a in {0,1}, of length 2 + 1 and,
When hinary(z) < 2 — 1, also connects & with
Successor(z), where binary(z) is the integer z
Tepresents in binary notation and successor(r)
denotes the unique binary string of length 1 such
that binary(successor(z)) = binary(z) + 1. (For
completeness let binary(e) = 0, where € is the
émpty string).

Note that if we have given some tree T = (V, E)

and some set S C V of nodes, then the graph
Ts = (S, {{u,v} € E;u,v € S}), induced by §
and T, is a forest. Let us denote this forest by

F(S,T).

Definition: S is called collincar with respect
to T, or just collinear if T is understood, if any
tree from F(V — S,T) is connected by at most
two edges to nodes from §.

Lemma 1: Let T = (V,E) be an n node bi-
nary tree with two designated nodes r; and ry.
Let A be some natural number with n > 4A/3.
Then we can find two sets S;,5; C V with the

following properties.

(1) {ri,r2} CS;US

U 52
(2) 191 <415, <2

(3) The deletion of the edges connecting nodes
from S; with nodes from S; splits T' into two
forests Ty, Ty with ny, ny nodes, respectively,
such that T} contains all nodes from §; for
1=1,2and jn; — Al < [%LIJ

(4) S; is collinear in T; for ¢ = 1,2.

Proof: Let T and A be as described above.
For convenience we replace T with a directed
tree T', containing the same vertices, but replace
each edge {z,y} of T by an edge connecting z
and y and directed away from the designated
node ri. (In our proof, for ease of reading, T
will denote the directed tree T".) With directed
edges we can refer without loss of generality, for
any node z in T, to the subtrec of T' with root
2, denoted by T(z). Also, by T'(z,y) we denote
the largest subtree of T(z) that does not contain
the vertex y.

First we consider the procedure find 1 which will

find a node u with
([4A/3] = 1)/2 < T(u)] £ 44A/3.
procedure find1 (u);

while |T(x)] > 4A/3 do
let u be the child of u of maximal cardinality;

It is not difficult to verify that ||T(u)] — 4] <
[(A+1)/3] holds. Furthermore ry # u, since we

149

have assumed that n = |T(r))| > 4A/3 holds.
Therefore we will define 5),S, in such a way
that Ty = T(u), Ty = T(ry,u) holds. We have
to guarantee that S; andsS, are collinear and we
consider two cases. Let z be the father of u in

T.

I T(u) contains r, then we set §; = {ri,z},8, =
{u,r3}. If T(ry,u) contains ry then there exists
some node y in T'(ry,u) such that the path from
r1 to u and the path from r; to 7, part at node
y. Of course y may be equal to r, or equal to

T2, but in general y is a node different from r1.Tq
and z.

In this case we set §; = {ri,ra,7,9},5, = {u}.
It is obvious that S, and S, are collinear. O

Lemma 2: Let T, n,r,, and 72 be as in Lemma
1 and let A be some natural number, A < n,
Then we can find two sets 51,8y C V which

fulfill conditions (1) and (4) from lemma 1 and
additionally,

(27) 1511,152) < 4

(3') The deletion of the edges connecting nodes
from S; with nodes from Sy splits T into two
forests Ty, T, with n1,n3 nodes, respectively,

such that T; contains all nodes from S, for
1=1,2 and

A44
Inz—AISL%J

Proof: As in the proof of lemma 1 we assume
that we have directed the edges in T away from
the node r;. Note that we can find a partition
fulfilling condition (3') by applying procedure
find1 twice. But we have tq be a little bit more
careful than in the proof of lemma 1 in order to
guarantee the other conditjons.
that |T| = n > 4A/3 holds. We start our algo-
rithm by calling the following procedure find 2

with the argument v set to the designated node
Ty

First we assume

procedure find 2 (v);
while |T(v)| > 4A/3 and o #ry do

let v be the child of v op the path from r,
to ry;

This call computes a node v on the path fromr,
to ry such that either |T(v)| < 4A/3 or [T(v)[>
4A/3 and v = ry. We consider three cases. In
all these cases the condition n > 4A/3 remains
invariant during the computation.

l. v=ryand |T(v)] > 4A/3
In this case the designated nodes ry and r,
are placed both into the set S;. We find our
partition by applying procedure find1 twice
starting from node r,.

2. |[T(v)] < A
Let = be the father of v in the tree T. In
this case the nodes r; and z are placed into
set Sy and the nodes r, and v into set S
We find our partition by applying procedure
find1 twice in T(z,v) starting from node z.

3. AL|T(v)) <4-A/3.
Let again z be the father of v in the tree
T. The nodes r, and z are placed into t.he
set S) and then the partition is used which
is found in lemma 1 with the entries T’ =
T(v),A" = |T'| = A and designated nodes

I /I _
ry=vand ry =,

We still have to consider the case A < "'5
4A/3. In this case we solve the problem with
Ar=n-A< A/3 and interchange the roles
of S; and S, and of Ty and T, afterwards. Note
that n > A > 4. Ay/3 and therefore we cal
apply the algorithm described above. Further
more ny — Al = |ny — Ay| < |(A; +4)/9) €
(A +4)p9). °

Now, we proceed to describe our embedding_ of
an arbitrary binary tree into an X-tree Vf”th
load factor 16, dilation 3 and optimal expansion
Note that any graph that is embeddable into &
X-tree of height r with load factor 16 and opti
mal expansion has at most 16 - (274t 1) nodes

Theorem 1: Let T = (V,E) be an arbitrary
binary tree with n nodes, n = 16 - (2 - 1)_ for
some 7. Then there exists an embedding int

the X-tree of height r with dilation 3 and load
factor 16.

Proof: The main idea of our construction i n‘?t
very difficult, but we have to be very careful I

150

describing it.

We define iterative partial embeddings 6; : D; —
XiyD; CV,fori =1,...,r. For every i these
embeddings will have the following propertics:

(1) & is an extension of &_;: i.e. Di; C D;
and &;(u) = 6;_1(u) Yu € Di_y.

(2) If ¢ < r, then & has load factor 16 and
[Dil = 16 (271 = 1); ie. if i < 7, then
exactly 16 nodes of T are mapped onto ev-
ery node of the X-tree X;.

(3) & has dilation 3; ie. if u,v € D; and
{1,v} € E, then there exists a path of
length at most 3 connecting 6;(u) and &().

(4) If two nodes u,v € V are neighbors in 7,
then the levels of their images in the .X-
tree differ at most by an additive constant
of two. Le. let u,v € V with {u,v} € E.
Assume u € D; and let §;(u) be a vertex
in the X-tree on level j, j < i —2. Then
v € D; holds and the level of the vertex
8i(v) is some number j* with |j — j'] < 2.

First we will describe the construction infor-
mally. Let R, = V —~ D; be the set of nodes
of T not laid out so far. We attach every node
from R; to some leaf of X,, 1.e. we define a map-
ping p; : R; — {0, 1}'. To every vertex a of the
X-tree X; we associate all the nodes of T which
are mapped or attached to itself or to one of its
Successors in the X-tree, i.e. we set

Ai{a) = 67a) Up'(a) fora € {01}
Ai{a) = 67 (@) U Ai(al) U Ai(al)
for a € {0,1},5 < 1.

_Let us set n; = 16- (241 —1) for 1 € N, i.e. n;
1 the maximum number of nodes which can be
embedded onto an X-tree of height ¢ with load
factor 16. In the final embedding 6, we have of
course |A,(a)| = n,_jy for all a. This is not
true for values i < r, but our aim is to dcfine
the Mappings §; and the attachments p; in such
A way that the differences [n,-jo| ~ |Ai{@)]] get
smaller and smaller for increasing values of 7. We
will try to get better approximations by going
from the embedding &; to the embedding &i41

and we will use the horizonta) edges on level i +1
of the X-tree Xy to obtain this improvement.

Furthermore we have to split A;(a), ja| = 1, into
the sets A;41(c0), Aipy(al), and we will use the
edge {a0, a1}, to get good values for [A;;1(ad)|
and [Aip1(e1)]. Thus we use every horizontal
edge on level 7 4 1 for one such adjustment.

To describe this construction more formally, let
us consider R; = V — D;. Let F; be the forest
induced by R; and T. Since T is connected, ev-
ery tree from F; is connected by at least an edge
to some node from D;. 6; will have the following
additional properties:

(5) D; is collinear.

(6) If for some tree T = (V, E) from F; there
exist two different nodes u,v € D; and
wy,wy € V with {u,w,}, {v,w;} € E, then
u and v are mapped by é; to the same ver-
tex, i.e. &;(u) = &(v).

Thus, for every tree T = (V,E) from F; the
value &(u) for any node u € D; with {u,w} €
E for some w € V is determined uniquely and
will be denoted by o(T). We will call o(T) the
characteristic address of T. Note that because
of property (1) the characteristic address is a
vertex on level i — 1 or on level 1 of the X-tree
Xi.

As above, let T = (V,E) be a tree from F.
Nodes w € V with {u,w} € E for some u € D;
are called designated nodes of T. Note that ev-
ery tree from F; contains at least one designated
node and (hecause of property (5)) at most two
designated nodes. Following the notation from
[7] we call a tree with two designated nodes an
interval. Furthermore we are building pairs of
trees with the same characteristic address con-
taining only one designated node. Such a pair
of trees will also be called an interval. Note that
this way to every vertex of X; on levels ¢ —1 or
i there are associated at most 16 intervals, since
every node from D; has at most 2 neighbors in

R;.
We will now use the characteristic addregses to
define the attachment p; : Ry — {0,1}. All

151

nodes of some tree T are attached to the same

~

vertex. If a(T) € {0,1}, then we set p;(u) :
o(T) for all nodes u of T. If o(T) € {0,1}*7,

then we set pi(u) = o(T)A(T) for all nodes u €
T and for some B(T) € {0,1}.

Thus in order to define the attachment we need
a mapping ; : R; — {0,1}, where R; is the set
of all nodes u € R; for which there exists some
node v € D; with {u,v} € E and 6;(v)| =1 ~1.

pi will fulfill the following properties:

(7) If two nodes u,v € R, are neighbors of the
same node w € D;, |6;(w)| = i — 1, then

pi(u) # pi(v).

(8) If two nodes u,v € R, belong to the same
trecin F; then pi(u) = py(v).

The mappings é; and y; determine the embed-
ding and the attachment and therefore also the
sets Ai(a) for all a € {0,1}70 <Jj <t Inorder
to measure the quality of embedding and attach-
ment we introduce the notations nh(j,i),nl(j,1)
and A(j,i) for 0 <5 < <r.

Let nh(j,7) and nl(j,1), respectively, denote the
maximal (and minimal, respectively) cardinali-
ties of the set of nodes associated to any node
on level j of the X-tree after ; rounds. A(j,1)
measures the maximal number of nodes which

still have to be shifted between vertices on level
J after / rounds. Le.

nh(:j,.i) = maX{lAi(CY)';|”| =J}

nl(j,i) = min{IA,'(a)I;I(YI = J}

A(0,7) = ¢

A = Imax,.,, 14i(a0)] - | A(al))]

for j > 0.

We are now ready to describe the construction
of the embeddings 6,0 <i<r,

We start by defining &. We choose some subtree
Do C 'V of 16 nodes and set Bo(u) = € for all 4 ¢
Do. All nodes from R, =V -D, are attached
to the vertex ¢, i.e. Po(4) = € for all 4 €R,.

Now the embeddings §; 1 <1<, are defined

by the iterative algorithm X-TREE which is de-
fined below.

algorithm X-TREE

forz:=1tordo
begin
forj:=0to1—-2do
for all @ € {0,1}) do
ADJUST(a0, al,?);
for all o € {0,1}*"! do SPLIT(a,5)
end;

The procedures ADJUST and SPLIT are fie-
scribed in detail later. They determine which
nodes from R;_; are mapped to the Iefwes
a,le| =1, of X;. Note that during round ¢ we
don’t change the layout performed in the pre-
vious rounds and therefore 8; is an extension of
;_1, i.e. condition (1) holds.

Both procedures ADJUST and SPLIT use the
partition lemmas 1 or 2, respectively. The call
ADJUST (a0, a1,3),0 < || <¢-2,shifts oneor
two subtrees attached to the node a01:~1°! to the
node al0*-*l (or vice versa). Note that every
vertex attached to node a01i-12! is also attaChe_d
to a0 and every vertex attached to al0°! B
also attached to o1 and therefore we can Ol?ta’n
this way values for |A(a0)| and |A(al)] with 2
better balance. The call SPLIT (1), |l =
t — 1, partitions the set of trees attached to @
into two sets which are attached now to a0 and
al. During these calls all the designated nodes
defined by using the partitions from lemma 1 of
lemma 2 are laid out. Also, during the Ca”. of
procedure SPLIT all nodes are laid our Wh’C_h
are children of nodes laid out at level i — 2 (if
this has not been done before).

Note that this way 16 nodes are associated 10
every vertex of the X-tree. 4 nodes result from
applying procedure SPLJ T, 4 nodes from apé
plying procedure ADJUST and there may be

nodes which are children of nodes laid out in the
grandparent vertex. Note that also 16 nodes are
laid out in the grandparent vertex, which may

. 4
have 32 children which are distributed among
vertices.

We can show that for 0 <7<i<r

152

AGi)<7H ificr

A(j,8) K 2rH¥1-% f 5 < f and
U<r+)+1

A(j,9)=0 yf2i2r 4542

This implies that A(j,r) = 0 for j < r =2
and the final embedding (i.e. A(j,r) = 0 for
all 0 < j <7) can be obtained by some simple
rearrangement in the last two levels.

The details, will be described in the following
subsections:

(i) The procedure ADJUST
(i) The procedure SPLIT
(iii) Estimations of A(j, 1), nh(j,i),nl(j,?)
(iv) Revision of the procedure ADJUST
(v) The final embedding

Because of lack of space the subsection (iv) and
some details in (ii) and (iii) will not be described
i this extended abstract.

While describing the procedures ADJUST
and SPLIT we will also show that the
embedding computed by our algorithm X-
TREE fulfills conditions (2),....(8). Instead of
conditions (3) and (4) we will prove the slightly
stronger condition (3").

(3') Let u,v € D; with [§;(u)] < 16i(v)].
Then {u,v} € E implies that
éi(v) € N(6;(u)).

Here for each vertex a of the X-tree X; let N{a)
be the set of all vertices from X; which can be
teached from o by following a path in X; con-
Sisting of at most three horizontal edges or of at
Most two downward edges followed by at most
two horizontal edges. For the case |a] <1 -2,
@#00...0,a # 11...1, the set N(a) is shown
n figure 92,

O— —0

Figure 2: Some vertex a and its set N(a)

It is clear, that condition (3) and condition (4)
follow directly from condition (3').

(i) The procedure ADJUST

In the i-th loop of the algorithm the proce-
dure ADJUST is called with the parameters
(a0,01,3) for all « € {0,1}7 and (in this suc-
cessive order) forall 7 = 0,1,...,7—2. Consider
now some fixed j and some « € {0,1}7. Let
A(a0) and A{a1) be the sets of nodes associated
to a0 and a1, respectively, when the algorithm
calls ADJUST (a0,al,7).

Let A = [3(|A(a0)] - |A(al)])] be half the dif-
ference between [A(a0)| and |A(al)| and assume
w.lo.g. that |[A(a0)] > |A(al)| holds. Using

lemma 2 we will now "shilt” some nodes from
A(a0) to A(n1) such that afterwards half the dif-
ference between |A(a0)] and [A(al)] is at most
[(A +4)/9]. In doing so we consider the sets of
trees in F;_; which are attached by p;_; to the
leaves a0172"1al and @107-2-lol,

First let us assume that in the set of trees at-
tached to a01'=2-1ol there exists some interval T

which has at least A nodes.

From the definition of the attachment we know
that the characteristic address 3 of T is either
equal to a01=2-1 or to the parent of a01=?-l
in X;_;. Now consider the two trees T} and T
obtained by splitting T by using lemma 2.

We add the nodes from S; U S; to the domain
of the embedding &; (which we are constructing

during this loop) and we set

(S,‘(?‘) = nﬂ]i""”" V?’ € S]
,(v) = alli-t-ll Yo e S,

Now let us assume. that all infervals from the set
of intervals attached to a01'=*~"! have cardinal-
ity less than A, but that there exist two intervals
I 1y with || 4 | > 48/3. Let [L] 2 |1).
Then 2A/3 < || < A holds. Let ry,mp be
the two designated nodes of ;. First we shift
the whole interval from a01'=271! to @10'=27lel,
This is done by adding ry and r; to the domain
of §; and by setting 8(ry) = 8(rz) = alQi-1-lel,
Afterwards half the difference between |A(a0)|
and |A(al)| is equal to Ay = A = [[i] S A/3.

153

Now we apply lemma 1 with the interval I, and
the value A;. We can do the partition accordin g
to lemma 1 with a set S, of at most 2 elements.
We add the elements from S; U S, to the domain
of §; and set again

bi(v) = a0l*1=kl for 4 ¢ S
6i(v) = al0=1-ll for 4 ¢ Sy

In this way we guarantee that 13(]Ai(a0)] -
[Ai(al)])] < (A + 4)/9] holds and we have
mapped at most 4 nodes from R; to a01'~1-lel
and 4 nodes to a10-1-lel

Note that A — |(A + /9] < T < A +
L(A + 4)/9] and therefore after these shifts
[3(14:(e0)] = [Ai{a1)])] < |(A +1)/9] holds,

This call of ADJUST laid out a few more nodes
and we have to show that al| the conditions re-
main valid. Conditions (2), (7) and (8) are not
influenced by a call of ADJUST. Condition
(5) remains valid since Si is collinear in T; for
t = 1,2, and condition (6) remains valid since
all nodes from Sy and from

S3, respectively, are
mapped to the same vertex.

We still have to show that condition (3') is not
affected by a call of ADJUST. Let us consider
first the case where T has at least A nodes.

Edges inside S,

U S, connect nodes which are
laid out at the same vertices or at adjacent ver-
tices of the X-tree. o we have to consider only
edges connecting nodes from S, U S, with nodes
laid out earlier. Condition (5) holds and there-
fore at most 2 edges are connecting T witl) D;_,.
These edges connect two nodes which are laid
out at the characteristic address B of T with the
designated nodes of T We just laid out these
designated nodes (at the vertices a01i~1-lol o
al0=1-lel) and since B is equal to a01i~2-lel o
to the parent of q]i~2-lol in X;_y, also these
edges do not affect conditjon (3")

The second case, where there exist two inter
valls 1), I, with L]+ 112] > 4A/3 can be stud.
ied now easily. First the designated nodes of I
are mapped to a leaf of the X-tree and (s does
not affect condition (3), Afterwards lemma 1
is used and we can see just in the same way as
above that condition (3') remains valid, 0

(ii) The procedure SPLIT

In the i-th loop of the algorithm the procedure
SPLIT is called with the parameters (1) for
all @ € {0,1}~1. Note that during the previous
computations in this loop (i.e. by the calls of
the procedure ADJUSTY) some extension of 6;_;
has been computed already and at most 4 nodes
from R;_; were mapped to each of the addresses
a0 and @1. Then A,(a) is the set of nodes asso-
ciated to o during this previous computation.

Note that A,(a) is given by the 16 nodes from
Di_y mapped already to a and by at most 28
intervals from Fi_;. These 28 intervals can .be
divided into three sets. There are at most 8 in-
tervals whose characteristic address is equal to
the father of a. Let S, be the set of these inter-
vals. Their designated nodes have to be mapped
now to a0 or o, respectively. There are at most
16 intervals whose characteristic address is equal
to a. Let S, be the set of these intervals. These
intervals have to be attached now to a0 or ‘.’17
respectively. Finally there are 4 intervals which
have been mapped provisionally to a0 or al, 1&
spectively, during the computation of the pro-
cedure ADJUST. Let Ss be the set of these
intervals. These intervals may be shifted agaib
from @0 to al or vice versa by the algorithm
described below.

Let us consider again the set S,. Note t.hat th‘;
children of the designated nodes of an interva
form one interval and two trees.

These two trees are combined logically to define
a new interval. Now let] be any interval whose
designated nodes have been mapped to the ver
tex a. Then one of its children will be attached
to a0 and the other one to al.

We perform the following algorithm in order t0
split A;(a) into two sets My and M,.

1”() = M] = @ ’
while S U S, U S, #0 do
begin

take two intervals I, I, from the same set St
or Sz or S3;

wlo.g. |I| > |L; p
add], to the larger one of the two sets Mo

154

or M; and I; to the smaller one
end.

Here we can assume that each of the sets
81,52, 53 contains an even number of intervals.
Otherwise we add an empty interval. If in S,
there are still two intervals which are children of
the same interval then choose one of them as I
and the other one as .

In this way we guarantee that each one of the
sets M, and M; contains

- at most 4 intervals from S
- at most § intervals from S,

- at most 2 intervals from S5

and furthermore

- A = 2. (IM,] - |M]) is bounded by the
cardinality of the largest interval
in Sl U 52 U S3.

In order to get good estimations we have to asso-
ciate the sets M, and M| to the vertices a0 and
f’l in such a way, that the calls of ADJUST
I the next round of our algorithm are influ-
eiced in a positive way. We will see in (iii)
that we have to take special care about the call
'ADJUST (a0,a1,i +1),|a] = i — 1. Note that
i the (74 1)st round each pair of vertices 0, a1
'(except the special cases @ = 0", a = 1"") is
influenced by exactly three calls of ADJUST.
One of these calls is ADJUST (a0,al,i + 1)
fmd for each of a0, al there is one further call
mﬂuencing it.

I we consider the case o = a107,6 € {0,1}7,
P> 0, then these two calls are ADJUST
0, successor(a), i+1), ADJUST (40,41, i+1).
The first, of these calls influences al and the sec-
ond one influences ad.

Likewise if ¢ = 4017, & € {0,1}*,p > 0, then
thf‘:Se two calls are ADJUST (predecessor(a),
%t+1) and ADJUST(a0,41,i +1).

Let Ao, Ay be the two differences existing be-
tween the two pairs of trees that are adjusted.

Then we associate My and M, to a0 and al in
such a way that the larger difference affects the
larger set of nodes. l.e. in our first case @ = 4107
these two differences are

A = %(M;(M)I ~ |Ai(&0)]),
Ay = 3([Ai{a)] ~ | Ai(successor())|)

and My is associated to o0 iff Ay > A, and
Mlol > MI;, or A() < Ay and M{o' < 'M1,

The nodes from §) and S5 are laid out now. Note
that at most 12 nodes are mapped to each of af
or al. The trees from S, are attached to al or
al, respectively, and in this way the mapping g;
is defined.

The 4 free places in a0 and al are used now to
reduce the difference between A(a0) and A(al).
Note that there exists a tree T with at least A
nodes. Therefore A < nh{v — 1,2) and we can
reduce the difference to A(7,¢) < [(nh(z —1,7) +
4)/9] by applying lemma 2.

If the number of nodes mapped to af (or al, re-
spectively) is smaller than 16 then the free places
are filled by taking iteratively nodes which are
attached to a0 (or al, respectively) and which
are not laid ont so far, but which have at least
one neighbonr which has been laid out already.

Note that therefore condition (2) is fulfilled if the
numbers |A;(a0)}, |Ai(al)] of nodes attached to
al and al, respectively, are not smaller than 16.
We will show in (iii) that for every 4 € {01}’

le([}), Z nl(iv 7) Z Myei — (l(I', ?)
2]G(Qr-iﬂ _ 1) _ 2r+?—i _ Qr-i
>16(2°-1)-22-22>16

holds for 7 < r. Therefore condition (2) is ful-

filled for ¢ <r.
Because of lack of space we omit the proof that
also the other conditions hold.

(iii) Estimations of A(j,1),nh{7,7),nl(3,1)

We will show that for 0 < j <i<r
Afi,i) < 2% Jifi<r
A(, i) KTHH-E ifj<iand 2 <r+j+1
Afj,1)=0 Jif2 274542

155

and - nh(j,7) < n,.; +a(j,9),
nl(],l) 2 Nr_j = (l(j,i),

where _ .

a(t,0) S22t i<

a(y,1) < 3.rti- yifj<iand 20 <r4j
a(j,i) <1 2 =r 4541
a(7,1) =0 2> 4549

We will prove this assumption by induction on
1. The assumption is true for ; — 0, since

A(0,0) =0, nh(0,0) = nl(0,0) = ng = n

Now let us assume 7 < r and let the assumption

be true for 0 < j <7 - and let us consider the
i-th run of the algorithm.

First A;_1(0) and Ai~1(1) are adjusted using
lemma 2, therefore Al1) < [QM;IMJ <
A(Li-1)

4 :
Applying the procedure Adjust shifts some
nodes between the forests AiZ1(0) and Ai(1).
This influences also the trees

A1 (01), Ai—l(lo),Ai-l(Oll),A.‘q(lOO), etc.

The cardinality of the forests associated to 01,
10, 011, 100, ... and therefore also the differ-
ences of brothers on the Jevels 12<j<i- 1,
can be changed this way. Since half the dif.
ference between Ai21(0) and AiZi(1) before ap-
plying Adjust is at most A(Li = 1) and after-
wards at most A7), the cardinalities of the

trees T(01). T(10), ... are changed at most by
AL+ M1 -),

Note that in general every node in depth j can he
nfluenced by at most ope application of Adjust
smaller than §. Since the differ-
cnees M) = 1) are in(‘roasing M J, we know
that after having applied the procedure Adjust

to all \'crtir_os on levels smaller then 5, the actual

difference Al - 1) between siblings on level j
1s at most

in some depth

Ajr=1) <AGi-1)4 2A(- Li)+A(-
li-1)

AU =24+ A~ 2, 1)).

We now apply the procedure Adjust and get

AL < [(AGi-1) 4 /9.

We have to compute A(j,i — 1).

By the induction hypothesis, if j <7-1and
20 <r+4j -1 then
A(],Z _ 1) < or+j+3-2i + % . (2r+j—2i 4 OrHiAln
FrHim1- gr+i+l-2i)
S 2r+j+3-—2i + % . 2r+j—1—2i . (15)
< 3. 9rtite-2

Note that (6 + 4)/9] < z holds for all
real numhers x > 1 and therefore A(j,1) €
N follows for 1 <7 <i1-1ad
%<rtj-1.

We have to consider also the remaining cases for
J<i~1.

| AG,i-1) | A1)
di=rtj |<8+IA324D)<12 <|gl=!
N=r+i+1<4+1i241)<6 SL§J=1
Zzrtj+2(<a+iy<s < 5] =0

The estimations of A(j,i) for j =i — 1 and for
J =1 and the estimations of the a(j,1) cannot
be described here hecause of lack of space.

(v) The final embedding
The mapping 6, fulfills the following properties:

1. 6, has dilation 3,

2. 6, has mapped 16 nodes to any inner verte)r(
of the X-tree X;, and for every a € {0, 1}

it has mapped 16 nodes to iff |4, (a)] 16
holds.

3. 6 fulfills the estimations from (ii1), espe
cially A(j,r) = 0, ifj<r-2

Therefore for every a € {0,1}7-2 (defining a sub
tree of height 2), we can now distribute the nodes
not laid our so far to free places among the leaves
a00.a01,010.a11. This embedding has still di

lation 3 and therefore we have proved theorefg
1.

3 Proofs of Theorems 2,3,4

We can transform the embedding with load fac-
tor 16 from Theorem 1 i & straightforward way

156

into an injective embedding.

Theorem 2: Let T' = (V,E) be an arbitrary
binary tree with n nodes, n = 16(2"t! - 1) for
some r. Then there exists an injective embed-
ding of T' into the X-tree of height r + 4 with
dilation 11.

Proof: Let é be the embedding into the X-tree
X; described in Theorem 1. § has dilation 3 and
load factor 16. We define an injective embedding
Y into the X-tree X,,, in such a way that for
everyu € V

X(u) = b(u)o p

for some 1 € {0,1}*, |u| = 4.

For every address a,lal < r, of the X-tree X;
there are exactly 16 nodes from 7' mapped onto
o by 6. It is clear that we get an injective
mapping y if we use the 16 different addresses
o, [uf = 4, as images of these 16 nodes. We do
not have to specify this further in order to show
that x has dilation 11. Of course we have to use
that 6 has dilation 3.

Let a, B,7,w be some nodes from X, forming a
Path of length 3. Let i and v be some strings
of length 4. We have to show that in X, 44 there
exists a path of length at most 11 between ay
and wy. Note that a and ap (and w and wy,
respectively) are connected by a path of length
fi. Therefore ap—...~a—f~y-w—...—wy
'Sa path in X, 4 of length 11. 0

It is wellknown that a complete hinary tree B3,
can be embedded into its optimal hypercube
r41 with dilation 2 (see [§]). One way to cs-
tablish this is the so called "inorder embedding”,
which is formally defined by

bio UiSr{U,l}i - {0,1}"1,

biofa) = a1071el for o € {0,1)",]a] < 7. & bas
dilation 2, since §;,(a0) = 01077,

i (011) = al107~1~lol and therefore the image of
the edge {a,a0) has dilation 2 and the image of
the edge {@, a1} has dilation 1. Furthermore ;,
123 the property that for any natural number A,
if a anq B are nodes in B, with distance A, then

bis(a) and 6;,(8) have distance at most A + 1 in
Qr+1'

The proof is straightforward. Let a and 8
have distance A in B,. Then there exists some
v € {0,1}* and w,w, € {0,1}* such that
o Y, B = quwp and A = |u| 4 |w,l.
Note that &;,(0) = yw 107" M=kl and 6,,() =
qwz 107112l and therefore the distance be-
tween éi,(v) and 6,(8) in Qrq1 is at most

max{w |, lwnl} + 1.

In a similar way X-trees can be embedded into
hypercubes (see [8]). This construction has not
been stated explicitly before and therclore we
formulate it here as a lemma. Furthermore we
need a special result for the construction we de-

scribed in section 2.

Lemma 3: For any natural number r there ex-
ists an injective embhedding é of the X-tree X,
into the hypercube Q.41 with the property that
if @ and B are nodes in X, with distance A, then
() and 6(f) have distance at most A + 1 in

QPH‘

Proof: |

Onr mapping & : Ui, {0, 1} — {0,1}7+! is de-
fined by é(a) = V()10 where for any a €
{0,1},a = ar...a;,0, € {0.1} for 1 < u <y,
: <r, weset

v(a) = bbb, € {0,1} for I < u <7 with
bhy=ayandfor2<v < b, =a, illa, =0
Note that [\(a)| = |a] for all a.

We show first that if @ and /3 are siblings in X,
then 8(a) and é(/3) are neighbors in Qry1.

We assume w.lo.g. that o # 1P and § =
successor(a), ie. a = G017 with some & €
{0,1,0 < p < rand g = alP. We will see
that y(a) and \(3) differ from each other ex-
actly in the (Ja] + 1)st bit.
If p = 0, then \(a) = (@b\(8) = x(@h,
where b € {0,1} fulfills b = 0iff the last bit of &
is equal to 0.

If p > 0, then x(a)
x(a1)10°-1.

x(G0)10°71, x(B) =

Now, let A he some natural number and let &, 8

157

two nodes in X, of distance A. Consider the Acknowledgement:

th between a and 8 in X,. Let Ay be the
mber of horizontal edges on this path and let
lenote the highest level reached on this path,
. p = min{|y];7 is a node on the path}. Then
are exist 1,72,wy,w2 € {0,1}" with |y| =
| =p, @ =mw,B = nwyd = do+ || +
2| and 41 can be reached from 7, by a path
nsisting of A; horizontal edges, A; < Ap.

te that §(a) = X(vl)zbllﬂr‘p‘lwll,&(ﬁ) =
¥2)tb2107P 12l with some iy, 1, € {0,1}7,
1] = ||, [iog] = [y

1ce x(m1) and x(72) differ in at most \; bits
d since A\; < Ay holds, we see that é(a) and
3) differ in at most Ao + max{fw], |wy|} + 1
8. a

>m Lemma 3 and Theorem 1 the following the-
'm follows immediately.

reorem 3: Let T = (V,E) be an arhitrary
ary tree with n nodes, n = 16 - (2" — 1) for
ne 7. Then there exists an embedding of T

o the hypercube Q, with load factor 16 and
ation 4.

1s again a simple corollary from Theorem 3
it every binary tree with at most 2" — 16 nodes

1 be injectively embedded into the hypercube
with dilation 8.

ir result about universal graphs follows also
sily from Theorem 1. For o € {0,1},0 <
< 1 let N(a) again be the set described in
ure 2. Note that for very vertex a of an X-
 the set N(a) - {a} has at most 20 vertices
d there exist at most 5 vertices Bsuchthat o €
B) and 3 ¢ N(a). Since our embedding from
corem 1 fulfills condition (3') it leads directly
a universal graph of degree 25-16 4 15 = 415.

1eorem 4: For every n € N, such that n =
— 16 for some i, there exists a graph G, of
zree bounded by 415 such that every binary
€ with n nodes is a spanning tree of G,.

158

The author wants to thank I.H. Sudborough for
many helpful discussions and R. Klasing for a
careful reading of this paper.

References:

1. S.N. Bhatt, F.R.K. Chung, F.T. Leighton,
and A.L. Rosenberg, ”Optimal Simulation
of Tree Machines”, Proc. 27th Annual
IEEE Symp. Foundations of Computer Sci-
ence, Oct. 1986, pp. 274-282.

2. S.N. Bhatt, F.R.K. Chung, F.T. Leighton,
and A.L. Rosenberg, “Universal Graphs for
Bounded-Negree Trees and Planar Graphs”,
SIAM J. Disc. Math. Vol. 2, 1989, 145-155.

3. S.N. Bhatt, F.R.K. Chung, J.-W. Hong,
F.T. Leighton, and A.L. Rosenberg, ” Op
timal Simulations by Butterfly Networks’,
Proc. 20th Annual ACM Theory of Com-
puting Symp., 1988, 192-204.

4. F.R.K. Chung and R.L. Graham, "On uni-
versal graphs”, Proc. 2nd. Int. Conf. on
Combin. Math., (A. Gerwirtz and L. Quin-
tas, Eds.); Ann. N.Y. Acad. Sci. vo. 319,
1979, 136-140.

5. F.R.X. Chung and R.L. Graham, ” On uni
versal graphs for spanning trees”, Journal

London Math. Soc., 27, 1983, 203-211.

6. J. Fricdman, N. Pippenger, “Expanding
graphs contain all small trees”, Combina
torica 7, 1987, 71-76.

-7

- B. Monien and LH. Sudborough, "Sim¥
lating Binary Trees on Hypercubes”, Proc
AWOC 88, LNCS 319, 1988, 170-180.

8. B Monien and LH. Sudborough, "Embed-
ding one Interconnection Network in A
Othera’, Computing Sllpp. 7’ 1990, 257-282.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12

