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Discrete-Time Model of an Induction Motor

J. Bocker

Abstract

If a state-space observer of a continuous-time process is to be realized on a sampling microprocessor system,
a discrete time model of the process is needed. Time-varying continuous-time parameters require the on-line
computation of the discrete-time model. For this purpose numerical integration algorithms are used to get
an approximate model instead of the exact model in discrete-time. For the model of an induction motor it is
pointed out that the often-used first-order algorithm of Euler (RK1) is crucial. Even the choice of the con-
tinuous-time differential equation system, which has to be discretized, influences the quality of the dis-
crete-time approximation in a decisive manner. On the one hand even stability problems appear while on the
other hand, by choosing the equation system in a skilful manner, one obtains a simple and accurate dis-
crete-time model, which can be used for microprocessor implementations.

1 Introduction

For state observers, as well as for parameter esti-
mation in state-space, a state-space model of the con-
sidered process is required. Often this process is con-
tinuous in time while the observer or parameter
estimator is usually built up as a digital sampled data
system in discrete-time. Hence the required model must
be a discrete-time one. The evaluation of such a dis-
crete-time model, starting from a given continuous-
time one, is a standard problem in the theory of dis-
crete-time systems.

In the case of linear systems the transition matrix
gives the general solution of this problem [6]. Except
for special cases where a closed solution can be found,
the evalutation of the transition matrix requires exten-
sive numerical computations. If possible, these com-
putations should be done off-line, but even for linear
but time-varying systems this approach is often not
applicable. Also, continuous-time parameters may not
vary with time, but are known only at run-time, Or per-
haps an on-line calibration is desired. In all these cases
the transition matrix must be evaluated on-line using a
microprocessor system with relatively small computing
power, which usually has only a poor library of nu-
merical subroutines.

Therefore, instead of “exact” discretisation, ap-
proximation methods are used. In the case of nonllr}ear
systems this is mostly the only chance to geta solgtlon.
From the various numerical integration algorithms
available [9, 13], the explicit algorithm of Euler (RK1)
is often found in technical realisations [1, 2, 8, ll', 12].
This is a Ist.order approximation from the family of
Runge-Kutta algorithms. It approximates'the 1ptegra—
tion by stepwise summations. This algorithm 15 very
simple, but its numerical performance 1S cruc1a1:

This paper intends to point out the difficulties and
limitations of such a RK1 discretisation, put it shows
also that the quality of the RK1 approximation qepends
in a decisive manner on the choice of the continuous-
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time model. (For every system several models can be
found, which cannot be converted into one other by a
linear time-invariant transformation.) As an example
the model of an induction motor is used.

2 Continuous-Time Model of an
Induction Motor

We start from a mathematical model of an induc-
tion motor with the widely-used complex vector nota-
tion to describe two-dimensional real-valued state var-
iables [4]:

ye(n) = =Ry (1) +u (1), (1)

yr(r) = =R (1). (2)

Here

.. v, denote the stator and rotor magnetic flux link-
ages,

i, i the stator and rotor currents,

u the (external) stator voltage and

S
R.R, denote the stator and rotor resistances.

The upper index indicates the reference system of
a complex vector (Fig. 1). For example, i denotes the
complex vector of the stator current in the reference
system of the stator and i is the same current, but with
respect to the rotating rotor system.

If linear inductances are assumed, the magnetic
fluxes can be expressed in terms of the currents
through

v (1) = Li (1) + Mi (1), 3)
(1) = Mi (1) + Lyi (1) ' 4)

where L, and L, denote the stator and rotor self-
inductances and M the mutual inductance. Because of
the rotational symmetry of an induction motor these
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Fig. 1. Complex vector representation in various reference
systems

equations are valid in every reference system so that the
upper indices may be omitted here. Solving for the
currents gives

. _ 1 M
ls(t) - O'LS (Ws Lr ‘/’r j’ (5)
=Ly M
lr(t) - O'Lr [Wr LS Ws) (6)
where

. M?
o=l-"r (7)

is the leakage coefficient. Substituting the currents in
egs. (1) and (2), the differential equations (degs.) be-
come now

RM

IS —_£ ] s 3
Vi) = oL, () + oLL Vi) +u(t),  (8)
. R RM
T 1) = — T r T r .
v (1) oL yr()+ oLL v (1) 9)

In these equations the fluxes appear as state vari-
ables only, but with references to both stator and rotor
systems.

For any complex vector x(¢), the relation between
its representation in a reference system P and another
reference system Q is given by

xP (1) = e7orenz0(p), (10

and for the time derivative x(r) by

(1) = = jopg (1) xF (1) + P50 4 1

Here OES ®op (1) is the rotation angle of the
system P measured from system () in mathematical
convention (Fig. 1) and

Wpy (1) = Ppy (1) (12)

is the angular frequency.

With these relations, eq. (9) for the rotor voltage
can be transformed into the stator reference system.
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Both degs. are then obtained in a common reference
system:

s —_— RS s RSM s H

y/s (t) - O'Ls Vs (t)+ O_LSLr Wr(f) +us(t)7 (13)
%3 _ Rr . S RrM S

Wr(t) - [— O'Lr +Jwrs([):lWr(’)+ O-LSL, Ws(t)' (14)

Now the angular frequency @, (angular velocity 9f
the rotor measured from the stator system) appears in
eq. (14). If the angular frequency is constant, egs. (1.3)
and (14) become a system of linear time-invariant dif-
ferential equations in canonical form:
X(1) = Ax(1)+ Bu(t). (15)

From this the system and the input matrices can be
identified as

_ R RM
_| oL oLL, _|! 16
A=| p'u R B=lyf (16)
5 +Jwrs
oL L oL,
using the state vector
t 5
x(1) = ["‘( =] ww (17)
x, (1) v (1)
and the input variable
u(t) = ur) . (18)
I O ik
S —_ 280280
\
/‘”\ 260260
-%1%‘4k \\ 240240
— \\\ [ 1001220
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— 42007200
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Flg 2. Loci of eigenvalues of the continuous-time model of
an induction motor with angular frequency as parameter
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The state vector consists of complex-valued ele-
ments. This form is retained although it is possible to
change from the 2nd-order complex-valued system to
a 4th-order real-valued one. Because all mathematical
tools such as Laplace transform or z-transform are also
applicable to complex-valued functions in the time-
domain [3] (although not usually used), there is no
reason to do this. Of course, complex eigenvalues of
such a systemn no longer appear as complex conjugate
pairs.

Both eigenvalues of the above system were com-
puted for a 1.2 MW induction motor example. The root
loci are shown in Fig. 2. The parameter used is the an-
gular frequency @,,. With increasing angular frequency
the imaginary part of one eigenvalue tends to the an-
gular frequency itself while the real part tends to the
negative reciprocal value of the rotor leakage time
constant
1.:=0L./R,, (19)
which can be shown by limit calculations. Hence we
find that for large angular frequencies this eigenvalue
is approximated by

si=-1117 + jo,. (20)

3 Discrete-Time Model of an Induction
Motor by Means of RK1 Discretisation

Suppose the input function u() is constant between
sampling instants ¢ = kT (a zero-order hold). Then, with
the transition matrix

@ = AT (21)

and the discrete-time input matrix

T

H:=[e*"drB, 22)
0

the discrete-time system of the deq.-system (15) is as

follows:

x((k+1)T) = @ x(kT) + Hu(kT). (23)

As pointed out in the introduction, this model is not
appropriate for on-line computations, because the tran-
sition matrix @ and the input matrix H have to be re-
evaluated each time the angular frequency varies. The
same problem occurs with variations in other parame-
ters, for example, with a varying sampling period T.

Using instead the integration algorithm of .Euler
(RK1), the matrices & and H are replaced by their Ist-
order approximations

(ﬁ =I+TA, (24)
ever, the dis-

Where ] denotes the identity matrix. HoW d
advantages of this algorithm are known: The stability
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domain of the RK1 algorithm in the (continuous-time)
plane of eigenvalues is a circle with center at —1/ T and
with radius 1/7. This is obtained from the stability do-
main |z| < | of the plane of discrete-time eigenvalues
via the inverse mapping of eq. (24) [5, 9] (see Fig. 3).
All eigenvalues s; of the continuous-time system must
be located inside that circle to get a stable RK1 dis-
cretisation:
|s;+1/T|<1/T. (26)

If a continuous-time system has only stable eigen-
values (with negative real parts), but some of them are
placed outside that circle, the RK1 discretisation is un-
stable. Crucial are those complex eigenvalues which
are situated close to the imaginary axis. If the sampling
period T is too large (the larger the sampling period the
smaller the stability circle), these eigenvalues may
come close to the stability boundary or may lie outside
the stability circle. From eq. (26) an upper limit for the
sampling period T can be derived as

T < T, = min -ﬁ%s— @7
I Sl

to guarantee stability of the discrete-time approxima-
tion of a given stable continuous-time system, An in-
tuitively chosen sampling period, using for example
n =10 ... 20 samples per period of self-oscillation,
T = min|2%/s;|/ n, (28)
results in instability even with damping rates —Re s,/ Is ]
of 0.3 ... 0.15. This is the reason for the poor properties
of the RK1 method in cases of weakly-damped oscil-
lating systems. In Fig. 2 the stability circle is shown for
T =1 ms (its center lies outside the diagram) together
with the loci of eigenvalues. Obviously the RK1 dis-
cretisation becomes unstable at an angular frequency
of about 195 s™'. To ensure stability, referring to

ET009.3A

Fig. 3. Stability and instability domains of a RK1 discretisa-
tion in the plane of continuous-time eigenvalues
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eqs.(27) and (20), the sampling period has to be small-
er than

2/ 7, 2

=~ = . 29
/2 +02 t0l 29)

max

Here the inverse proportionality of the maximum
sampling period 7}, and the leakage time constant T,
is evident. Hence, especially for large motors with rel-
atively large time constants, very small sampling peri-
ods are required to ensure stability. On the other hand,
it is possible to get an appropriate result for small mo-
tors with small time constants using larger sampling
periods. The considered motor has a leakage time con-
stant of 53 ms. With a nominal angular frequency of
@, = 21 50 Hz this yields a maximum limit of
T,.x=038ms. (30)

This corresponds to about 50 samples per period.
This is a number for which one might assume instabil-
ity would not be a problem at all. To ensure not only
stability but also a good accuracy, an even smaller
sampling period must be chosen.

To find a quantitative measure for assessing the
precision, an error quantity consisting of the difference
between a state variable x; of the RK1 model and its
value x; in the “exact* discretisation is introduced. This
is then related to the maximum value of the nput se-
quence. Next a search for the maximum absolute value
(better: supremum) over all sampling instants kT and all
possible input sequences u is made:

Sup|E; (KT) - x,(kT)|
= sup &

g
u sup |u(kT)|

i

3

The supremum of the absolute values of a sequence
is its L_ norm and it is denoted by lI-ll.,. The operators
of the mappings of the input sequence u onto the se-
quences of state variables x; and X; are defined:

~

Liu—sx, Tiu-si,.

(32)

Now the desired error quantity can be written as

up
“ . e, S ]/

(33)

The last term is the L_ norm of an operator. It can be
evaluated through the absolute sum of the corresponding
weighting sequence (the pulse response sequence) [3].
In the example considered, the rotor flux x, = y?,
is of main interest, since knowing this state variable
enables the realisation of various control strategies for
induction motors. For this state variable the error
quantity was computed as a function of the angular
frequency and for varioys sampling periods (see
Fig. 4). The instability, already known from the results
of the eigenvalues, is seen here as an error increasing
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Fig. 4. Error quantity éw of model (@ . H)versus angular
frequency @,

over all limits. The local error maximum. at about @,
=~ 1057, is caused by the second eigenvalue. This is
located, for small angular frequencies. near by the
imaginary axis (see Fig. 2) so that again some of the
insufficiencies of the RK1 method can be seen. With
increasing angular frequency this eigenvalue moves
away from the imaginary axis and the precision be-
comes temporarily better.

4 Modified Discrete-Time Model of an
Induction Motor

The problems related to the RK | method, described
in the preceeding section, can of course be avoided by
using other efficient integration algorithms. The RK4
algorithm, for example, is well suited for weakly-
damped systems [9, 13]. As a special method for the
induction motor, a discrete-time model, which switches
from the RK1 algorithm for lower frequencies to the
Adams-Bashforth algorithm for hi gher ones, is given in
[8]. Series expansions for approximation of the transi-
tion matrix are used in {10].

In this paper it should be pointed out that the choice
of the continuous-time model to be discretized has al-
ready influenced the quality of the discrete-time ap-
proximation in a decisive manner, even if the same in-
tegration method is used.

The starting point is now egs. (8) and (9), instead
of egs. (13) and ( 14). The transformation of stator and
rotor flux to a common reference system is skipped at
first. Applying the RK| discretisation to these equa-

tions, we obtain
vk + hr)

RM
(KT +ul (kT |.(34)
or1, VDT ](

N R
SWAKT)+T) ——— @ (kT
v, { ol W (kT)+

Vo ((k+1)T)

[ R ~ RM
=y kTY+T)| — —x_ T s r
r( ) !: [ 'l‘r(k )+ ’ l[/s(ld )J (35)

. oL,

) The symbol ~ denotes approximations of state var-
iables, matrices and operators related to the method of
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Fig. 5. Error quantity £, of model (®. H) versus angular
frequency w,,

this section. After discretisation we now transform to
a common reference system. For the rotating angle ¢,
which is required for the transformation, we also apply
a RK1 discretisation to the deq. (12)

¢ ((k+DT) = @, (kT) + To, (KT). (36)

After carrying out the transformation into the stator
reference system, we have
¥ ((k+1)T)

=[1-r R
oL

RM_ g kr)+ T (T, (37)
oLL,

S

)lil:(kT)+T

N

¥ ((k+1)T)

jTew, (kTy R ~ 8 RrM
=e " |- T— KDY+ T
{[ oL )W‘( L

T

u"/_;.“(kT)}- (38)

T

With that we again obtain a canonical form of
eq. (23), whereby now

M
1-T Ri T:E,L
¢ = T o (39)
eﬂ““f‘(”)T RM eij,\(/\Tl - T R, ]
ol oL,

appears as approximation of the transition matrix. The
approximation of the input matrix

o[

(40)

is identical to the preceeding one. _

The error quantity of the rotor flux, corresponding
to eq. (33), is evaluated for this model (P.H). as
well. The results are shown in Fig. 5. We recognize
approximately the same error as in Fig. 4 in the range
of small angular frequencies of model (&.H ) . For
higher frequencies the error is now distinctly smalle_r.
Stability problems do not occur. To get the same di-
mension of error with the model (@, H) as with the
model (@, H) also in the higher frequency range, the
sampling period must be chosen about 10 times small-
er.
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Fig. 6. Pulse-width modulation of phase U with regular
sampling method

5 Simulation

The various models were investigated by means of
simulation studies. On the one hand the continuous-
time model (A, B) and on the other hand both dis-
crete-time models were computed in parallel. For sim-
ulating the continuous-time model, the RK4 method
was used to get the desired continuous-time behaviour
with high precision.

To show a realistic mode of operation, the contin-
uous-time model was fed with a pulsed voltage (1) as
input signal. This voltage was generated from a refer-
ence voltage 1’ (t) by a pulse-width modulated in-
verter. In comparison the discrete-time models were
fed directly with the reference values u} (kT as input.
Modulation, sampling and timing of reference values
are synchronized with each other. The period of the
modulation carrier is fixed at twice the sampling tme.
Fig. 6 shows this timing (known as “regular sampling"
method) for phase U of a three-phase inverter. The
complex voltage vector u'(t) is obtained by composi-
tion of the three phase potentials [4].

The motor was simulated in steady state with an
angular frequency of @, = 21-50 Hz = 314 5. The
input frequency (frequency of the rotating complex
voltage vector) is 319 s7', that is with positive slip fre-
quency and in motor operation mode. In Fig. 7. voltage.
current (which is evaluated via eq. (5) from the flux
state variables) and rotor flux of the various models are
shown as real parts of their complex vectors. The initial
values (left margin of diagram) of the discrete-time
models are set to those of the continuous-time model.
As anticipated. the model (lf).l? ) is unstable. The
model quantities (solid lines) quickly depart from the
state variables of the continuous-time model.

In comparison, model (@, H) accurately approxi-
mates the state variables (dotted lines). Because of the
chosen sampling period, the discrete-time model can-
not detect the current ripple caused by the voltage
pulses. Nevertheless, at the sampling instants 1 = kT the
actual current values are met quite well. There is no
noticeable ripple in rotor flux due to the low-pass
characteristic of the transmission from stator voltage to
rotor flux. At the sampling instants the state vari-
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Fig. 7. Simulation results of continuous-time model (4, B) and both discrete-time approximation

models (@.H) and (@, H)

able ¥, (kT) meets the variable W(kT) of the contin-
uous-time model very well.

6 Discussion

Although both differential €gs. (13) and (14) on the
one hand and eqs. (8) and (9) on the other hand are
equivalent, the same discretisation method leads to
models of totally different quality. The reason is found
in the application of the rotation transformation in
eq. (10).

Considering the rotor voltage equation only, the
transformation of the rotor-referred €q. (9) into stator
reference of eq. (14) causes a shifting of the eigenvalue
-1/1, of this (decoupled) differential equation by ja,.
Due to the coupling of the complete system that eigen-
value is obviously displaced only a little (for higher
angular frequencies), as can be seen from approxima-
tion in eq. (20). From this weakly-damped complex ei-
genvalue the stability problems involved with the RK |
method in section 3 occur. Hence it seems to be very
natural. to skip the transformation first and thus avoid
the critical eigenvalue shifting. The discretisation of
€q. (9) with real damping is not crucial. The rotation, to
which the problem can be traced, is better discretized
by approximation of eg. (36).

At this point it should be noticed that the problems
of the original discretisation cannot be avoided by
choosing the rotor as a common reference system in-
stead of the stator. In this case the voltage eqation of the
rotor does not cause any problems at all, but the same
problem now occurs with stator voltage equation,
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The above results can be applied to other weakly-
damped oscillating systems, if weakly-coupled oscil-
lating subsystems can be separated. The eigenvalues of
the decoupled subsystems are then displaced only a
little by coupling them together as a complete system.
Applying a rotation transformation to each of those
subsystems with a frequency fixed to the natura! fre-
quency (the imaginary part of the concerning eigen-
value), the subsystem can be approximated using a
simple discretisation method, After discretisation, the
coupling of the subsystems is restored by the inverse
rotation transformations.,

7 List of Symbols

continuous-time system matrix
continuous-time input matrix

discrete-time input matrix

current

identity matrix

imaginary unit

sampling index

self-inductance

mutual inductance

resistance

real part

eigenvalue of continuous-time system

time

sampling time )
maximum sampling time, which ensures stabil-
ity

u voltage

~N e (’JDUx

ﬂ

max

ETEP Vol. 1, No. 2, March/April 1991



EIEP

voltage reference value

state vector

state variable

operator of mapping from input u to state vari-
able x;

error quantity of approximated state variable x;
leakage coefficient

rotor leakage time constant

rotation angle

transition matrix

flux linkage

angular frequency

approximations with RK 1 method of section 3

approximations with modified method of sec-

tion 4

rotor quantities

stator quantities

rotor reference system

stator reference system

L., norm of a sequence or of an operator
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