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Abstract

An analogue of Mergelyan's approximation theorem A(K) = P(K) 1is
proved for functions with values in a complete locally convex topolo-
gical vector space, The result is applied to obtain an approximation
theorem for scalar functions on product sets K = E% X ...X:Kn of
¢’ (n>1). In the second part, algebras of continuous functions on
a compact Hausdorff space with values in a Banach algebra X are
considered, There are some conditions, involving the approximation
property (which, however, is not easily verified in speciel cases)
that guarantee that such an algebra is isomorphic to the completed
(biequicontinuous) tensor product of the algebra X with the corre-
sponding algebra of scalar functions, Applications to vector-valued
functions and to scalar functions on product sets are given,

In this paper, a method for dealing with vector-valued functions
is developed by using tensor products and L, Schwart's £ -product, The
results arc stated and there are given indications of how to prove
the main theorems, Complete proofs of most of the statements are given
in [2].

The theory was stimulatcd by an cffort to prove a vector-valued
version of Mergelyan's theorem, Let X be a complete locally convex
topological vector space over € and XK =2 compact Hausdorff space.
Then let C(X) be the Banach algebra of all complex-valued continucus
functions on X, C(K,X) the complete locally convex space of all
functions continuous on X with values in X with the topology of
uniform convergence on K, If K is a compact set in the complex
plane, let P(K) be the closure of the complex polynomials in C(X)
and A(K) the closed subalgebra of C(K) consisting of all functions
holomorphic on the interior K of K. Mergelyan's theorem states
A(K) = P(K), if the complement of K 1is connected.
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1., _Definition, For a compact set K in € , let A(K,X) be

the closed subspace of C(K,X) of all functions feC(X,X) (weakly)
holomorphic on ﬁ, l.e, for any x' €X' the scalar function

z —> x'(f(z)) 4is holomorphic on X. Let P(K,X) De the closure
in C(K,X) of all complex polynomﬁﬁls wizb coefficients in X,

that is of all functions z —> 3= x. 3 (neW, x; €X, i = 0,...,n),
1=0 1 1

What we are going to prove is.

2._Theorem, If the complement of X is connected, then

(1) A(K,X) = P(K,X).

(2) If X is a (F) - space, cach function continuous on ¥
and holcmorphic in ﬁ with values in X can be approxi-
mated uniformly on K by a Sequence of polynomials with
coefficients in X,

The following is an immediate consequence of 2 for special X and of

8], 4.4, - G.

3. Corollary, Let X and Y be Banach spaces over € , K a

compact set in € with connected complement, Let for every gz €K
a bounded linear operator A(z) from X to Y be given such that

(1) the function z —— A(z) is continuous on K with values
in the Banach space af)(X,Y) of all continuous linear
operators from X to Y,

(2) for any fixed x€X and any fixed y' €Y' the scalar
o]
function z —— y'(A(2)x) is holomorphic on K,

Then for any €50 there exists ne N and A, EJ?(X,Y) (i =0,...,n)
so that

sup  su HA(z)x - ZI:I A, xziHY .
z€K I‘XIX'é 1 i=o 1

To prove 2, let us first define the § -product and the tensor product

in an abstract way and let us consider some of their properties, Thus

for the moment, let X and Y be locally convex spaces over ¢ .

The &£ -product defined below was first instroduced by L. Schwartz [6]

who gave a different definition which is yet proved to be equivalent :

to 4, for complete X and Y. E
|
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4, Definition. By Y. 1s denoted the (topological) dual space
¥Y' of Y with the topology of uniform convergence on all absolutely
convex precompuact subsets of Y, Let then X§Y :fe(Yé,X) be the
locally convex space consisting of all continuous linear mappings
from Yc': into X with the topology of uniform convergence on all
equicontinuous subsets of Y!',

If X and Y are complete, so is XEY. If X and ¥ arc
Banach spaces, X§¢Y 1is the Banach subspace of & (Y',X) consisting
of all linear mappings from Y'! into X whose restrictions to tha
unit ball Yy of Y' are continuous from the o (Y',Y) - topolc.y
on Y% into X. For complete X and Y the space XE&Y 1is
canonically isomorphic (by transposition) to Y€ X.

2._Lemma, If the topologies of X resp. Y are given by the
directed systems {q,,x€A} resp. ltp(“‘(AEB} of seminorms, then the
topology of XEY can be given by the system {qx(s,ocej‘i,(g €B| =7

seminorms: q, , (1) = sggg 9, (u(y")) for every ueX £Y, whers 5.
1s the set of extreme points of the (sbsolute) polar E% or ‘

Ep={ve¥, p,(») <1f.

The proof consists in an application of several theorems or.
locally convex spaces including e,g. those of Alaoglu-Bourlball 2.2
Krein-Milman,

By using the Hahn-Banach theorem and the universal property of
the tensor product one can see that

Il

n
E'} XJ_@ yi — (y; —_— ;;.1 Xi Y'(yi)) (nE]N, Xi EX,yi EY,

1=1,000yn, y'EY")

defines a one-to-one lincar mep of the algebraic tensor product
X®@ Y into XEY., Ve identify X® Y with the corresponding sub-
space of X&Y, The complection of X ® Y 1in the induced tovology
is denoted by X & Y and called the injective tensor product of X
and Y, If X and Y are complete, Xé Y can be considered as
the closure of X® Y in X ¢V,
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6. _Proposition (L. Schwartz [6]). If X is complete and X (0 Y

1s dense in X€Y for each locally convex space Y, then X has
the approximation property (i.e. the identity of X can be approxi-
mated uniformly on precompact subsets of X by operators of finite
rank). Conversely, if X has the approximation property and Y is
any complete locally convex space, then X &Y is dense in Xy,
If X has the approximation property and X and Y are complete,
then of course Xé} Y= X¢{Y,

L. Waelbroeck [9] proved that for a Banach space X the fact
that X ®Y is dense in XE£Y for all closed subspaces Y of (co),
the space of sequences converging to zero (with the sup-norm), implies
that X possesses the approximation property. Schwartz's proof of 6.
indicates that for complete X from X €@ X' dense in XiXé already
follows that X has the approximation property, but in general one
cannot handle the space Xé easily,

We now look at function spaces and denote by Y a closed linear
subspace of C(K), X some fixed compect Hausdorff space.

Z._Theorem, By u —> (% —»u(%t)) (nex sy, teK,St the

corresponding delta-functional) an injective map of X EY into
C(K,X) is defined,

The topology on X €Y is given by the system LIy
of seminorms: r,(u) = £ qa(u(gt)) for every u€X£Y, i,e, the
topology of Xg¥ 4is induced by C(K,;X).

The proof uses 5, and the Arens-Kelley characterisation of the
extreme points of the unit ball Y% of Y¥' as delta-functionals.
The main ideas in the proof of 5. and 7. arc duc to B. Gramsch and
D. Vogt DE] . Their tensor product arguments could be carried over to
the ¢ -product with some minor changes,

@(.

YCcXEXYaC(X,X) by
identifying some topologically isomorphic spaces, If then Y = C(¥),

For a complete X we get X ® YcX

it is easy to sec (by using the partition of unity argument) that
X& C(K) = XEC(K) = C(K, XD,

Now return to the actual proof of 2, and take the notations as
defined there, By a simple argument using 7, we have

X@ MK C AKX
1 U
X&P(K) < P(X,X).
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All we now have to show is X(é A(K) = A(K,X). By 6. and a
theorem of L,Eifler [3] proving that A(X) possesses the approxi-
mation property (if K does not separate the plane), all that is
left to prove is A(K,X)C XEA(K). Looking at thc identifications
above, the equality C(K)g X = C(K,X) means that by the mapping

£ — (x' —> (z —>x'"(f(2)))) (£eC(K,X), x' €X', z€K)

f €C(K,X) 1is mapped into C(K)E& X. But by definition of A(K,X),
cach f €A(K,X) 1is mapped into A(K)E X, that is, in our notatiocn
one gets A(K,X) <X £A(KX), which completes the proof,

To give an application of 2, to scalar function algebras, let
us take for some compact K'c € with connected complement X = A(K!').
Then, by the proof of 2., A(K)® A(K') = A(K',A(K)) and by identi-
fying A(K',A(K)) with an appropriate space (defined below) of
functions of two variables on the product set KxK' and proceeding
by induction one obtains an approximation theorem of Mergelyan type
for product sets of ¢ © (n>1).

8._Definition, For a compact X in €@ (n 2 1) let P(K) and

A(K) be defined as usual. If K = Koxoon,x K71 with Ki compact in
C , define

A(K) = [f €C(K); the function of one variable z; —> 1(2,..,
Zysseesz,) Dbelongs to A(K) for arbitrary fixed 7 EKj (i 4 1),

130 = Tyeeasnn

A-(XK) 1is a closed subspace of C(K) and it is obvious that in
general, for n>1, A (K) i A(K), but A(K) = A(K), if K 1is a
fat sct (i.e. K is the closure of its intcrior).

The theorem mentioned above looks like follows:

A(K), if 7 ~ K; 1is connected (i = 1,,.,.n), one obtains

v V4 v v
(1) A5 K) = AMED® ... @ AK) = P(KPO ..., @ P(X) = P(K)
(2) Each function in A_(K), for fat K of course each

function in A(K), can be approximated uniformly on K
by polynomials in n variables.



Another proof of 9, can be provided by theorems in [3].
9. generalises a result in [7], it seems to be quite interesting
because counterexamples by E, Kallin [5] show that the equality
A(K) = P(K) is falsein general even for fat compact polynomially
convex sets K in €% (n>1),

From 2, one can see that in our proof of the important rclation
AK,X) = X% A(K) we used the approximion property for A(K), 6. and
7+s which apply to any closed subspace Y of C(K), and the
definition of weak holomorphy. An analogue of this property can be
found in many spaces of vector-valucd functions, too. Thercfore,
without changing the proof really, we can proceced to generalise the
theoren,

-

To fix the ideas, let K be a compact Hausdorff space and X
be a Banach algebra with identity ¢ (|le|l = 1), By the map
A —>)e consider ¢ as a subalgsbra of X, Lot C(X,X) be the
Banach algebra of continuous L-valued functicns on K and identify
X with the subalgebra of C(KyX) of all X-valued constant functions
on K, If 8 is any subelgebra of C(¥,X), dcnote by
5o ={ T€C(K); the function t —» £(t)e belongs o 5}

C L

the corresponding algebra of sealar functions in S, We shall not
scalar function t —— £(t) and the

vector-valued one t —3 £(t) ¢, low consider the following

make eny difference between the

propcrties that a subalgebra S of C(¥,X) can possess:

(1) S 1s closcd in C(K,X),

(2) 5 contains the constants (in our notation XCs),

(3) S, separates points,

(4) for an arbitrary f €5 and an arbitrary x' €X' the
function t — x'(f(t)) belongs to Sy

(5) £ or 5, has the approximation property.

If & satisfies (1), (2) and (3), SO is a scalar function
algebra, Conversely, if SO is a function algebra on K, then
X SO is an algebra of continuous X-valued functions with provper-

ties (1)-(4). Other examples of subalgebras of C(X,X) satisfying



(1)~(%) are for compact KC € the algebras A(K,X), P(X,X).
Condition (Y4) is very restrictive. It allows to prove the
following theorem by just the same method as 2.

10,_Theorem, Let S be a subalgebra of ¢ X,X) with proper-

ties (1), (2), (4) and (5). Then

This is an approximation theorem for vector-valucd functions which

reduces the vector-valued case to the scalar one,

r%

To stats a few applications of our method for vector-valued
functions, the following corollarics arc immedicte from 10. and well-
known theorems on function ulECCTQSg tensor products and vector-

valued functions,

11, _Corollary, Let S De a subalgebra of C(X,X) with

properties (1)-(3). Then cach of the following conditions cnsures
S = C(K,X)

(i) S, 1s self-adjoint (di.e, with f eS8, the complex
conjugate T belongs to S,y too),
(i1) Re Sg = {Refjfes | is closed in C(X) or (real) sub-

algebra of C(K),

(1i1) K is finite or countable,
(iv) X 1s totally disconnccted, and the maximal idcal space
WI(E) of S_ is cqual to K,
~ el - . 3
(v) Kce , 5 =PEX), K=¢, and €~X is conncected.

12._Corollary. Let S be o subalgebra of C(X,X) with propcr-

ties (1), (2), (%) and (5) and let X be commutative. Then

(1) It X 1is semi-simple, so is 8.
(ii) 7 (8) = Wf(X)x‘ﬁf(So) (up to a homeomorphism),
(iii) When identifying the maximal ideal spaces by the

homeomorphism in i), the Silov-boundaries coincide:

Moo= 1, x {7,
ol X DO .
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The case of non-commutative X scems to be of special interest
because of its applications to the space X =2 (Y) of bounded
linear operators on a Eanach space Y, The following is obtained by
applying [1], 3.14:

ra of C(X,X) satisfying

b
K, Then S has the fixed

(1)-(5), and let 7%&(80) be equal t
ideal property (see [1]).

13. Corollary., Let & be a subalge
o)

Let £ (k= 1,...,m m€WN) be functions in 5 such that Tor
arbitrary tE€X there exdst x €X (k= 1,...,m) with

hga)
il

g Xy . (L) = 2,

o

Then there exist €5 (k = 1,.4.,00) With
gk 9 9

il

5— o :
J_ g (t) £,(t) = ¢
K= k -Lk

for all teK. Especially, a function f €35 is left (right) inver-

[

tible in S if and only if for cvery t €K +the value f£(t) 1ig
left (right) invertible in X.
Notice that,in a Banach algebra, one-sided inverscs are not

defined uniquely (in general),

Corollaries 12, and 13, apply to the algebra A(K,X), 1if &K

is connected,

Added July 16th, 196G

At the "Summer Gathering on Functicn Algebras" in darhus, the
auther was informed that gquite the same result as t
independently shown by E, Bricmy K,B, Laursen and W, Federsen in
a preprint: "Mergelyan's theoren for vector-valucd fun
an application to slice algcbras", Aarhus, Dec., 1963,
are very different from ours and do not apply to more general spaces
of vector-valued functions: they show that Rudin's proof of Mergelyan

theoren can be imitated in the vector-valued casc,



Results similar to 2, and 9, were; as I was told in Aarbus,
announced by T.W, Gamelin and J, Garnett in Sce, 6 of their article:
"Constructive techniques in rational aprroximation', Their methcd
consists in imitating the scalar case, too; their vgsult corre-
spending to 9, seems to need some minor correcction,

The following theorem shows the connection betwsen the & -product

and the slice-product:

1. Definition (L. Fifler [31). Let X, and K, be compact
Hausdorff spaces and A resp., B closed linear sucspaces of C(K,)
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the function ty ~=ﬁ-f(t3,t2) belengs to 4 for every fixed ty €K,
and the function Ly v f(t1,t2) belongs to B for every fixed

bl EK T

identified with 2 subspace of

we)
I

A D,

1f one looks at the embedding proved in 7. and identifies L(KQ,C(Y7>}
with  C(X, x K,) in the obvious way, then

AP B = LfEC(KijQ),’

the function t1 — b'(f(t1,t2)) (where b' is applied with
respect to the seccond veariable tg) bclongs to A for arbitrary

bt EC’(Kg), and the function t, —> a'(f(tq,tQ)) (a' applied with
respeet to t1) belengs to B for arbitrary a"EC’(K1)§ .

llow the proposition is an casy conscquence of c.g. the standard
Krein=Milman and Arens-Kelley argument above,

The 014 slice algebra problem

. - N v L
Glven two function algebras A and B, must then A®RB = A#B?
1s now by 6. seen to be (perhaps not cquivalent, but) very close to
the problem, whether cvery function algcbra possesscs the approximation

property. 6. and 15, imply a result or the slice nroduct first



and then also shown in a
d 1

announced by L, Eifler [3]

the paper by Briem, Leursen and Pedsrsen, 6, an 5

partial converse of this theorem.

s (e.g., in
!lwood”

Somey but not many function algebras
published re , C(K), T
to possess the approximation

sults P(X), and for

proeperty

in

ly difficult problem to find out

function algebra possesscs the

Finally, I wish to thank Dr., B, Gr and Dr,
ur

Xy, ACD)
and it seems to be an cxXtrenmo-

gach single case

10.

di

which concacrns

ar: known

I

whether given

approximation property.

D, Vogt for their

help and the university of Aarhus and Dr. K.B. Loursen for the kin
invitation to jeoin the mceting and the opportunity to write these
notes,
* * * Z
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