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TENSOR PRODUCTS OF WEIGHTED SP ACES™

Klaus-D. Bierstedt

In part of our previous paper (6 1, an exposition of some results on the
approximation property (a.p.) for weighted function spaces was given. The
methods used to derive the results were then combined with a vector-valued
generalized Stone-Weiersirass theorem gue to PROLLA to obtain a new
theorem on a ''localization' of the a.p. for certain subspaces of weighted
spaces of type CVO(X), and the applications of this theorem were demon-
strated by a few typical examples. - We shall deal here with a different
aspect of the theory, namely with the tensor product representation of
weighted spaces of vector-valued functions and of functions of several
variables. It is convenient to keep the notation introduced in {6}, so we

refer to this paper for all terminology.

1. The e -products E€CV{X) resp. E€CV0(§1_

The key to the method of proof used in [:6] was theorem 8. which gave
a representation of the ¢ -product Ee CV(X) resp. Ee¢ CVO{X) as a space of
vector-valued functions, in fact as CVP(X,E) resp, CVO(_X,E), if E was
quasi-complete and if ZgV or WV and X=km-space. As this theorem is
quite important for the results of this paper, too, we will give its proof

here. - So suppose that, from nowon, E isa (separated)} locally convex

space, X a (Hausdorff) completely regular topological space, and V>0 a

Nachbin family on X. As a consequence of the assumption V>0, any point

.evaluation 6x: f — f{x), x€X, is continuous on CV(X) resp. _CVO(X),, so
belongs to (CV(X)) resp. (CVO(X))'_.
1. Lemma ([30). For Z<V or WgV and X = kg, -space, the mapping

4: X ~— 6x is continuous from X into (CV(X))cresE. (CVO(X))C.

Proof. The case Z<V is easier to-be treated, so we will assume WgV

and X kR-space. Let C = CV(X) resp. CVO(X). It is trivial, by definition
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of the weak *—topol_ogy, that p: X — C"[o(C’, C) ] is always continuous.

But for any Kc X compact : (K} [feC; 1l fHK =sup {f{x)f<1] ..
X€ )
And hecause of W< V, the set {feC; Hf‘lKS 1} is a neighbourhood of 0 in
C, so its polar is equicontinuous in C°, This implies that, for any compact

: . . #*
K, A(K) is contained in an equicontinuous subset of C°. The weak -topology

and the topology A{(C”, C) 9_{_(3; coincide on such sets, as an important re-
sult in the duality theory of locally convex spaces proves (cf. Kéthe {19]).
Hence we can conclude that, for every compact subset K of X, AlK:K-—-—» C;
is alreadx_ continuous, C; is completely regular, so we obtain the continuity

of 4 from our assumption X = ko -space (see the remark following defini-

tion 6., in [6]). In the case of Z< V, the whole of A(X) is contained in an

equicontinuous subset of C°, so we are done after our first argument al-

ready for this assumption. =

Actually a simple exercise on taking polars will show:
2. Lemima ({3 ])_, A X ——J(CV(X}); resp. (CVO(X)); is continuous if and only

if each precompact subset of CV(X} resp. CVO(X) is equicontinuous.

Now H. BUCHWALTER [12] defines X to be an infra-kR-space. if each pre-

compact subset of (C(X), co) is equicontinuous. So a simple application of 2.

proves that §: X — (CV(X)); resp. (CVO(X)); is contiruous for WV and X
-space. As you can see for instance by taking V=W in 1. and

only an infra-k

R
2., every kR-Space is a fortiori an infra-kn-space. The converse, however,

is not true, as an example of HAYDON (see [12]) shows. Thus we have a slight

refinement of 1. Even more general results of this type are true, but we will

not go into the details here,

3. Corollary ([3]). Let u be an element of Fe CV(X) = L ((CV(X));,E) resp.

EeCVO(X). Then u.j belongs to C(X, E), if the conclusion of 1, hoids.

We want to prove a little bit more for functlions of type u.4 as in 3.

4. Lemma ({3 1). Let u be as in 3. and assume that the conclusion of

1. holds. Then any function uej is even an element of CVP(X,E) resp.




cv (x. ) Y
e

Proof. Start with ue Ee CV(X) and take veV arbitrary. We obtain for

bv(f) = sup v{x) ]f(x){, fe CV(X), and
xe X
bv, = {feCV(X); bv(f)<1])

the inclusion fv{x) 8 xexle (bv,)] But, by linearity of u,
[v(u«:A)](X) = {v(x)u(bx); xeX]| = u({v(x)&x; xeX}).

Notice that, by the Alaoglu-Bourbaki theorem and by the result from '
duality theory mentioned in the proof of 1., the equicontinuous and weak™-
closed set (bv1)° is compact in (CV(X));. Hence ue J’l((CV(X));, E) takes
the subset [v(x)bx; xeX} of (bv1)° onto a relatively compact subset of E.
Thus it is obvious that [viu o4)J(X) is precompact in E for any veV, and

hence u«p belongs to CVP(X,E).

In the case of ueEaCVO_(X) the proof is a bit more complicated. For
veV arbitrary we obtain {v(x)éx; xeX!c(bv1)° as above, where now
bv, = {feCv o %) bv(flc 1}, Then remark (as in the proof of 1.) that on
(by ) the topologies A(CV (X)) Ccv {X)) and o ((CVO{X))', CVO(X)) coin-

c1de and that therefore u ](b ). is continuous from the weak*-tOPOIOEJ’

ol (CV ()\}) into E. So, given a continuous seminorm p on E and €>0,
there is a neighbourhood U of 0 in the weak™ -topology of (cv, (X))} such

that u Up(bv )°)c feeE: p{e)ce}. We can assume:
U= luecv (xp s lulf) < (i =1, ., )}

for appropriate ne NN, $>0, f.fCV ( ), i=1,...,n Asall the ¢ % belong
to Cv (X) we can find a compact subset K of X with the property that
vix) . {x) <dfori=1 ,n and all x X\K., This implies that

L vix) Gx xe X\Klc un (bv, ) and hence for any xe¢ X \K:

plvix){u.a}x)) = PlU(V(x)bx)k c.

1 .
)By taking E = (CV(X)); resp. (CVO(X))’ and u=1d(cv(x)) resp. ld!CV (X)) '€

€ EeCV(X) resp. EeCVo(X) in 4., we obtain: A=u.pe CVP(X (CV(X)): o) resp.

Cv (X, (CV_X) ) o) a strengthening of lemma 1

-
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Thus it is clear that v(u.p) vanishes at infinity for any veV énd hence

qu€CV0(X, E). o

5. Remark ([37). If ueESCV(X)cEeCV(X) resp. E®CV (X)cEeCV (X),

then [without any assumptions {except of course V>0)] u-fp always be-

1 b
ongs to CV* (X, E) resp. CVO(X,E).

An iﬁspection of the proofs of lemma 1. and 4. snows this, because the
.elements uofe g E®CV(X) are even continuous from (CV(X})” with the
weak*~topology into E. The assumptions on X and V were only needed in
the proof of 1., i.e. in order to show continuity of 4: X -—)(CV(X));_

But 4 is always continuous w.r.t. the weak*-topology on (CV(X))".

We will need the information contained in the next lemma, as we go
on. {6. is a simple consequence of the bipolar theorem.)
6. Lemma ([3)). We denote by bv, the set {feCV(X) resp. CV _(X):bv(f)<1]}
for veV arbitrary. Then the absolutely convex hull T fv(x) 6:):: xeX| of the
set {v(x)bx; x€X| is weak”-dense in bv1°. (So it is a fortiori dense in the
topology of (CV(X)), resp. (CV (X))’.)
Proof, In the fixed dual system <CV(X), (CV(X}}") [(CVO(X). (CVO(X))'>} we

get : by, = [v(x)éx; x€X|°. Hence by the bipolar theorem:

(bv )" = [vix)s_; xeX}"" = TTv(x)s ; xeXT,

where the closure may be taken in the weak*-topology or in the topology

of (CV(X)), [resp. CV X)) o

To make use of this lemma, let {pn; a€A] be a system of seminorms
giving the topology of E. Remember that lbvﬂ.; veV, a¢Al induces the to-
pology of CV(X, E) resp. CV (X, E) where

bv (f) = sup p_(v{x)f(x)) = sup v{x)p (f(x)), feCV(X, E).
a a [+ 4
x¢ X xeX
On the other hand, the topology of E¢CV(X) resp. EsCVo(X) is given by
the system lq, ,;a€A, vev]: '

q, v(u)— = sup .pa(u(p)). ueE¢CV(IX),

ut(bvl)
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because the sets of the form (bvl)", V€V, are a basis for the equicon-

‘tinuous subsets of (CV(X))’ by the properties of Nachbin families,

7. Lemma ([3}). For any geA and any veV, ueE@CV(X) resp, E@CVO(X).

we obtain bva(ug} = qa V(u), and under the assumptions of 4,

»

also true for ueEeCV(X) resp. EeCVO(X).

, this is

Proof. By 5., u.A¢CV(X, E) - for the second part of 7, apply 4. instead

of 5. - and so we can look at bva(uo{,\,). Applying 6. now, we get:

9 W) = sup . P, (ulu)) (})SUP {p (u)); ueTv(x)s_; xeX]}
! uE(va)

—
Hib

sup {pc(um)); ut‘[V(X)bx; x€X}}] = sup P, (u(V(X)b ))
. xeX

= sup p (v{x}{u.8)(x)) = bv (uea),
xeX = ¢

where we used 6. in (1), together with the contmun‘y of u] _ from the

V1
weak -topolog‘y into E. For (2) we have only to remind that Py is a semi-

norm, i.e. thatp (2, Y€ <z [y |p (e, )s max p (e.), if only
i=1 i=1 j=1, n & 1
e e, v.e € (ic1,...,n), Z?=1|yi|sl. =

After these preparations we are now ready to combine everything we

proved up to now in the following result:

8. Theorem ([3]). By the identification u = Uu.§, the e-tensor product

Eg, CV(X) resp. E@.CV (X) is always topologically isomorphic to a sub-

space of CVP(X, E) resp. CV X, E). Under the assumptions ZgV or WV

and \ {infra.) k]R-space, we even obtain EeCV(X)c CVP(X,E) resp.
E eCVO{X)c CVO(X, E) topologically under the same identification.

For the first part of 8., we must only be aware of the definition of
the ¢ -topology on the tensor product ag the topology induced by the ¢ -
product. And in both cases we have to realize that the mapping u —>u.Q

is, of course, linear and that 7. also proves that this mapping is injec-

tive and a topological isomorphism (into).

It is not hard to show that, by 8., E®,CV(X) r esp. E®,CV _(X) is iden-
tified with the subspace of CV(X,E) resp. CvV (X E) consisting of all
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functions f with the additional property that f{X) is contained in a finite

dimensional subspace of E. It is remarkable that, in the case of weighted

spaces, the space of the vector-valued functions always induces the ¢-to-

pology on the tensor product {provided V0).

If E is supposed quasi-complete, we will show in a moment that, under

_(resp. CVO(X, E)}actually coincides with the whole space. - Look at any f¢
CV(X, E) resp. CVO(X,E), and take e’¢E” arbitrary. It is trivial that e”.f¢
CV(X) resp,. CVO(X), so we can define Wyl e —> e’of as a linear mapping
from E’ into CV(X) resp. CVO(X).

9. Lemma ([4 ])._li‘_glfecvp(x, E) resp. CVO(X,E) we always have W €
VIX)sE = L(E7, CV(X)) resp. CV_(X)<E.
Proof. It is enough to show the assertion for feCVP(X, E)o CVO(X, E). So take

a neighbourhood of 0 in CV(X) which, by the properties of Nachbin families,
can be assumed of the form bvl. P = (vi}{X) is a precomr_;act subset of E,
so P° is a neighbourhood of 0 in E; with the property wf'(P°)<:bv1, because
for e"¢P’:

' bv(wf(e'))=bv(e'.f)=sup v(x)]e’(f(x)) |=sup |e"(v(x}f(x) |gl. &
X X x€ X
10, LLemma ([4]). Let us suppose that E and CV(X)} resp. CVO(X) are quasi-

complete. Then the transposed map twf of W, in 9. belongs to E¢CV(X) resp.

E‘CVO(X) and th(bx) = f(x} for all x¢X,
M. For quasi-complete spaces E and F, F¢E T E¢F by transposing. Hence
9. implies the first part of 10, For the last assertion we notice that the de-

finition of twf rmeans:

Cglud ey = G, w e )) (u.e’s £) for all e’c E’, u€(CV(X))’ resp. 4CV_(X))’

and that tnerefore e'( w (6 )) = e’{f(x)) for each e‘¢E’ which proves the

equality w (6 ) = f(x) for any xeX. ©

Take feCVP(X, E) resp. CV (x E) and suppose E and CV(X) resp. CV_(X)
are quasi-complete. Then up = waEcCV(X) resp. E¢CV (X) by 10. and
(u -A)(x) = (tw AHx) = ‘w (5 } = f(x)}for all xeX. Hence, by the identification

U+ 4,4 in 8. . EsCV(X) resp. EsC’VO(X) is not only a subspace, but (to-

the assumptions of the second part of 8., the subspace EeCV(X) (O)KX) of CVP(X, E)
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pologically isomorphic to) the whole space CVp(X,E) resp, CVO(X, E), and
we nave finally proved theorem 8. from [6] which we formulate again for

the convenience of the reader:

11. Theorem ([4 . Fora quasi-complete locally convex space E and under

the assumptions Z<V or WeV and X kIR-space, the following canonical to-

pological isomorphisms hold: :
CVP(X,E) = EeCV(X) = CV(X)eE,
CVO(X,E) = EECVO(X) = CVO(X)GE.

Denote by E;o the dual E” ' (of the locally convex space E), equipped with

the topology of uniform convergence on all absolutely convex compact sab-

sets of E. The T-product of the two locally convex spaces F and E is then

introduced as FeE - £e(E;0‘ F}. Obviously E;o = E; and FeE = FeE, if

only E is quasi-complete, With this notation in mind we mention the more

general result:

12. Theorem ([47). Up to topological isomorphisms Ef OV(X)=CV(X)eE=

[feC(X, E[o(_E',E)]);fcr each veV the set T(vE(X)) is relatively ecompact in

Ef{w.r. t. the original topology of E) l,
EECV (X) = CV (XITE = [£eC(X, E[o(E, E')]); for each vV the set N{(vH{X))

s relatively compact in E, and vf vanishes at infinity |},

where, on the respective subspaces of C(X, E[o (E, E’)]), a locally convex

topology is introduced by the system [bva;c,sA, ve V| of semi-norms de-

fined exactlv as a®ter 6. above (for a system {pa;c,cA} of semi-norms in-
ducing the tonology of E) . bva(f) = sup {pu(v(x)f(x)); xeX |, fe C(X, E[o(E, E’)])

with {(vi}{X) bounded in E.

Finally we want to remark that weighted spaces of E-valued functions

could be defined nmore generally for arbitrary (Hausdorff) topological vec-

tor spaces E. It turns out that, under assumptions as in the second part

of 8., (e.g.) Ee CVO(X) is again a space of continuous E-valued functions

and that one can characterize the e-topology as an induced {natural) topo-

logy. So a result more general than 8. and somewhat similar to it holds

true for generalt.v.s, E. In 9. and 10., however, we made use of the
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dual E” of E. Consequently 11. cannot be generalized to non localiv con-

vex spaces F {with possibly E” = [01} in the way indicated here. In fact, a

e T —.

useful characterization of E:CV (X} as a '"nice” space of E -valued functions
e

seems much harder, and only partial results are available, see [3] and (7 :i

As far as I know, some of the problems mentioned in {:3] in this connection

are still unsolved.

II. Tensor products and vector-valued functions

The (completed) e -tensor product E& F of two locally convex spaces E and

F, i.e. the completion of E@eF, has proved useful in many applications, sece
e 2. GROTHENDIECK {16}. The relation between the ¢ -product and the
tensor product is quite simple (involving the a. p., however) as Schwartz’s
theorem (cf, [6}, 3.) shows: In many cases, the &-product and the ¢ -tensor
product are topologically isomorphic. - We intend to give our results on ten-
sor products EﬁeY for subspaces Y of CV(X)} in this section. The first resu.is
we will mention are just a rewording of our former theorems in terms of

the ¢ ~tensor product.

13. Theorem ([3 ])_ Let X be any completely regular space, E locally con-
vex and V>0 a Nachbin family on X. Then, as a topological isomorphism,
(CVO(X%GE =) EéeCVO(X) = cvo(x,E). iff CVO(X,E) is only compiete.

Proof. By the first part of 8., E@gCVO(X) is always (identified wiih) a topo-
logical linear subspace of CVO(X,E). And by [6], 18., this subspace is

also dense. So 13. follows immediately. &3

In the case of CV(X) [instead of CV_(X)], things are notquite so easy.

As we remarked in [61 already, a partition of unity arguient does not seem

to work and hence a general result {corresponding to [5]. 13.) about den-
sity of E®CV(X) in CVp(X.E) is not available by now. - Combining 11, and
(6] 21. with Schwartz’s theorem mentioned above, however, we can derive

nevertheless:
14, Theorem ([4 1. Let E be complete, assume ZgVor WgV and X kﬂ-space.

Suppose furthermore that the conditions of [6 1 21, hoid, i.e. (1) for every

VeV the restriction v'supp v is continuous, and {2) for all f, e CV{X} and
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every veV there exists geCV(X) with g}supp v fo'!supp v -Lhen

(CVX)B.E =) E¥,CV(X) = cvPx, E).

To formulate an immediate corollary to this, let us introduce the following
notation: For any set X ¥ @, look at a fixed system V of non-negative real-va-
lued functions on X with the property that for any x>0 and all vy vst You can
find ve V such that J\vl, sz:?v. If then E is some locally convex space, we defimn

BVP(X,E) = {f: X -~ g {(vEH{X) precompact in E for every veV}, For a syster

P, : &€ A] of semi-norms giving the topology of E, the system {bva;o.eA, veV |
of semi-norms,as after 6. above, can again be introduced and induces a

{canonical) locally convex topology on BVP(X,E). Put BV(X):=BVP(X. €).

15. Corollary. If E ig complete and if to every xeX there exists at least one

. " :
veV with v(x)s0, we obtain BV*(X, E) E® BV(X).

Proof. Take X with the discrete topology. So X is a kﬂ-space- (It is even

Inetrizable and locally compact.) V is a Nachbin family on X satisfying not

only V50, but also W< V. (Any compact subset of X is finite.) In fact, V

i ‘ontj i ‘ in 14. hold
consists of continuous functions on X only, and hence (1) and (Z)Pm
true (cf. the corresponding remark before [6],21. ). By 14., CV(X,E) =
E§€ CV{X), but becausg of X having the discrete topology, this is nothing

else but our assertion, o

As in (67, it is important to observe that a simple argument allows to
derive from 13. and 14, theorems on the representation of YéeE, Y a sub-

space of CV(X), as a subspace of CVp(X,E).

To do this, we must first of all remember that the proofs of 9., 10.,
(and 11.) show that the canorical topological isomorphism of CVP(X, E)
onto CV(X)eE = ef;e(z:;,cwxn (under the assumptions of 11, } is given by
the mapping I with Hf): e” —ae’ot MI(CVPD{, E). Indeed, each
fe CVP(X,E) can be represented (ef. 11. ) as = o4 for some ueECV{X)

and then If-= tue CV(X)e Efor this u. Hence the function (If){e” )eCV(X)
can be recovered from f by an application of the formula

<(1f){e”), 8> = <tu(e'). b0 = <e’, uld,)> = Ce”, (uea Nx)) = {e’, f(x))
for all e’¢E’ ang xe X,
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If then Y is a topoiogical linear subspace of CV(X), it is easy to see thai

YeE is a topological linear subspace of CV(X)eE, too. So under the identi-

fication of CVp(X,E) with CV{X)¢E as above, YcE is topologically isonior-
phic to the topological linear subspace {fECVp(X, E): e .f€Y for each e"€¢E’}|

of CVP(X,E), as we will now immediately realize. This leads to the fol-
lowing theorem (the first part of which is just {6], g. and) the last part of
which is simply an application of Schwartz’s theorem to the first statement

" of the theorem.
16. Theorem ([47). Let E be quasi-coinplete and assume ZgV or WV

and X k_ -space. For a closed topological linear subspace Y gf_CV(X) resp.

R

CVO(X), there is a canonical topological isomorphism (As described above)

of EeY = Yek with the following topological linear subspace of CVP(X, E}):
» . » 2
lfeCVp(X,E) (resp. CVO(X,E));e JfeY for each e’¢E"} )

E®€Y = Y®€E is the subspace of all such functions f with the additional pro-

perty that f takes its values in a finite dimensional subspace of E.

Thus we obtain the topological isomorphism

E¥,Y = Y$,E - (fe VP(X,E) (resp. CV (X, E)); eofeY for each e’¢E}, if

Y {or E) has only the approximation property and if E is even complete.

As a first example of theorem 16., we can apply tie result to the closed
subspace CVO(X) of CV(X). We immediately discover in this way a simple
remark which, however, is somewhat easier (and in greater generality) to

be establislied in a direct way:

17. Remark, Let X be a Hausdor{f space. E locally convex and f: X — E

a function with f(X) precompact in E. Lf_e'of vanishes at infinify for every

e’¢ E’, then f itself vanishes at infinity. - Consequently we always have:

CV_(X,E) = (f¢CVP(X, E); e’ +feCV_(X) for each e¢E}.

Proof. The second assertion readily follows froin the first. So let f be as in

the hypothesis, Then on the precompact set f(X) (its closure in the comple-
A
T ]

, - ” A ’
tion £ of E being compact) the topology o(E, E") (induced by G(ﬁ, E’) = ¢(E,E))

2
hs Y is closed, our proof also shows :

YeE= [ftCVP(X,E) (resp. CVO(X.E)); e’sf &Y for eache’€¢T’|, if T" is some

total subset of E; )
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and the original topology of E (induced by the topology of g) coincide. To
Show that f vanishes at infinity, we fix a neighbourhood U of 0 in E and will
exhibit a compact set KcX with I00\K)cU. By our previous argument, there
exists a weak neighbourhood of 0, say V = {e¢ E;|e'i(e) <€, i=1,...,n} for
given eitE' (i=1,...,n), such that f{(X)n"VL(X)nU. As all eg.f vanish at infi-
nity, we have already compact sets KicX (i=1,...,n) with |(e’i.f)(x) ]<‘

n
for all x€X\K.. Take K:= Ki’ and we are done, o

1

L2

Remember that it is not true in general, however, that feCB(X, E) with the
property e’ofGCO(X) for each e’¢E’ already satisfies ftCo(X, E), not even for

locally compact X and Banach spaces E. The following simple example

illustrates this: For the canonical n-th unit vector e in the sequence space
C, the function n — e belongs to CB(N, co)\Co(]N, co), but for each

L4 1 -

= 1 = ¢° i ’ = i t in-
e (Im)mfN ¢, the composed mapping n ~—e (en) fn vanishes a
finity,

Another insight is provided by the next remark:
18. Remark ([4)). Let X be completely regular, E locally convex, ZgV or
W=V and X k -space, Then a function f€BVP(X, E) with e”.f€C(X) for each

e’€E’ is even continuous, i.e. belongs to CVP(X, E).

Direct proof. It is trivial that f is already an element of C(X,E[o(E,E") ). Now

Z<V means that we can find veV, v=1 on X. Therefore f(X), as a subset of

T{vi}X)), is precompact in the topology of E by definition of BVP(X, E). There-
fore, by the argument in the proof of 17, » o{E,E’) and the initial topology of
E coincide on {X) which proves f¢C(X, E).

In the case of WSV, we get in the same way that the restriction of f to
any compact subset of X is continucus w.r.t. the jnitial topology of E. The

assumption X RR-Space is then sufficient to show our assertion in this

case, oy

Now apply to 16. the simple idea which we already used in the proof of

15. Hence we have as 3 consequence of 16, :

19. Theorem. Let X be a non-void set and V a system of non-negative real-

P
IS a2
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valued functions on X with the properties:

. > _r 3 “
(i} for any A=Qand all vy vZGV there exists veV with )wl, AVZSV,
(ii) for each x¢X we have v{x)>0 for at least one {appropriate) veV.

Assume furthermore that E is a quasi-complete locally convex space and

that Y is a closed topological linear subspace of BV(X). Then
YeE = {teBVP(X,E); ¢ of € for every e’eE’ |,
with the topology induced by BVP(X, E).

And this, in its turn, leads to the following corollary, where the notation
is completely analogous to the terminology in [6], but slightly more general:

20. Corollary., CV(X)¢E = cvP(X, E) holds under the following conditions:

(1) X is some (Hausdorff) topological space {not necessarily com-

pletely regularj,

(2) V>0 is a Nachbin family on the space (X,d), d the discrete to-
pology (so the weight functions need not be upper semicontinuous),

(3) E is a quasi-complete locally convex space,

{4) CV{X) is closed in BV{X) {or, equivalentily, CV(X) is complete),

(5) a function f €BVP(X, E) which is weakly continuous - i.e. has the

property e of¢C(X) for any e’¢E’ - belongs to C(X, E) already,

Conditions (1), (2), (4) in 20. are certainly satisfied if X is a (completely
regular) kp -space and W<V or if Z<V. And, by 18., in this case condition
{5) is also fulfilled, This means that 20. implies (the first part of) 11. So,
if we take into account that, by way of 16., 20. was derived from 11., we

notice that ¢-product representations for BVp(X, E) and CVp(X, E) are equi-

valent (in a certain sense),

In fact, 20. is more general than 11. First of all, neither in the proof of
completeness for CV(X) nor in the proof of 18. {for X kR-Space and W<V

or for Z<V) did we actually make use of the upper semi-continuity of the

functions in V. Therefore this assumption can be dropped. This could also

be done in the following considerations, but to point out another interesting

possibility of generalizing 11. with the aid of 20., let us return to the case

of X completely regular and V>0 a Nachbin family on X.
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21. Definition. X is ecalled a VR-space, if one of the following equivalent

conditions holds:

; . i tin-

(i) Iff: X —a R has the property that ff (xeX; v(x)=1] 1® con
uous for every veV, then feC]R(X).

(11} If E is any completely regular (Hausdorff) space, and if

f: X — E satisfies f) [x€X; v(x)>1} Sontinuous for every veV,

then f is continuous from X into E.

By our former terminology, a WIR-Space is nothing else but a kR-Space-
anc each X is a ZR -space. If \"1."_5‘iu"2 for two Nachbin families on X, then

T - i i -
of course any (VI)R space is again a (VZ)JR space,

22. Proposition. The weighted spaces CV(X, E), CVP(X,E), and CVO(X.E)

are complete, if E is complete and if X is a VR-space, V>0.

1_31‘3_9_{. It is enough to prove our asseriion for CV(X,E), as CVP(X,E) and
CVO(X,E) are closed subspaces, A generalized Cauchy-sequence {fa!c.fA
in CV(X, E), however, converges pointwise ({because of V> 0) to a function
X—E (aé E is complete), And Vfa—i vf uniformly for every veV, so
(vE(X) is always bounded. Finally, fatends to f uniformly on every set
xeX; v(x)=1 L, v eV, by definition of the topology of CV(X,E), and f and f

o]
are h T i i i £
ounced on such sets. We immediately conclude: fl (xeX: v(x)21]

tinuous for each veV, and our assumption X=VR~space is enough to obtain

con-

fC{X,E), because E is completely regular (as a Hausdorff topological vec-

tor space). This finishes the proof. o

21. and 22. were suggested by the article [14]of A, GOULLET DE RUGY.
In this article, Goullet de Rugy obtained a partial converse to 22., namely
that under some (mild) restrictions the completeness of CVO(X) already im-

plies X=VR-space. A theorem of BLANCHARD and JOURLIN [10] on coms-

pleteness of CV(X) in the case V = the Nachbin family of all positive multiples

of characteristic functions of the so0-called "bounded" (=relatively pseudo-

compact, ¢bornéy) subsets of X, however, suggests that for completeness

of CV(X), X--Vﬂ-space might not be necessary in genergl.
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23. Proposition. If E is locally convex and Xa VR-space, any function
f‘BVp(X. E) with e ef¢C(X) for each e’¢ E” belongs to C(X, E).

The proof of 23. is the same as the last part of the proof of 18. (We have to

replace the compact subsets of X by the sets {xeX; v(x)= 1}, veV, of course.)

It should also be pointed out that lemma 1. remains true for a Nachbin

family V 0 on any (completely regular) VR-space, so by 2. each precom-

pact subset of CV(X) is equicontinuous in this case, too. - But instead of

going through the whole proof of 11. once more, we immediately obtain {rom

20., 22., and 23. the following generalization:

24, Theorem. Let X be completely regular, V>0 a Nachbin family on X and
-gpace, CV(X)<E=

E a quasi-complete locally convex space, If X is evena VIR
CVP(X, E) and CV_(X)eE = CV (X, E).

(The last part of 24, is clear from the first conclusion, frome.g. 19. and

17.) As an easy consequence of 24., by the way, we get:

25. Corollary. Assume that the conditions of 24. hold and that E is even com-

plete.
(1) Then CV (xm E = CV (X, E), and CV _(X) bas the a.p.
(2) if, furthermore (1) and (2) in 14. are satisfied, CV(‘()G E=

CVp(X,E) is true, too.
Proof, The first part of (1) follows from 22. and 13., and the second part
of (1) is then obvious after (6], 3. (2) is implied by 24. and (6], 21.c

It is still possible to give a more general result than 24. along the same
lines of proof. We will only sketch the ideas therefore.
. 26. Definition. Let (e.g.) X be some completely regular space and E a

locally convex space. We introduce the following notation for a Nachbin

family V>0 on X: T is the system of all {closed) subsets F = {xeX;
vi{xj=1} (veV) of X, And RVP(X, E} := {feBV Pix, E); f[S contmuous for each

S¢ TV b RVO(X.E) = {fcRV?X,E), vf vanishes at infinity for each veVl,
where both linear spaces are equipped with the locally convex topology induced
from BVP(X,E). Again put RV{X) := RVP(X, €). RV (X) := RV (X, €).
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We immediately realize that RVP(X,E) = CVP(X,E) and RVO(X,E) = CVO(X,EL
- dXisa VR-space. (This holds also true, if only each function fEBVp(X, E)

with fIF continuous for every veV is already continuous on X.)

It is readily shown that RVp(X E) and RV (X E) are always closed subspaces

of BVp X,E), so they are a fortiori comp‘ete if E is only complete (but X an

arbitrary completely regular space). Furthermore, as in 18, and 17., we

1

can derive that a function f¢BVP(X, E) with the property e’ ofe RV(X) resp. RV (X

for all e’¢E” nwst necessarily be an element of RVP(X, E)} resp. RVO(X.E)-

Thus 19, implies:
27. Theorem. For any Nachbin family V>0 on an arbitrary completely regu-

lar space X and for quasi-complete E, RV(X)¢E = RVp(X, E) and RVO(X)cE =
RV (X,E).
o

We note in passing that for instance the completion CV(X of CV(X) al-
ways equals CV(X)cRV(X). So, if CV(X) is also dense in RV(X), we have, of
course, CV(X) = RV{X), and then CV(X) is complete iff any function f€BV(X)

with f'S continuous for each S c?’v is already continuous on X.
i

Let e.g. V consist of the positive multiples of characteristic functions for
a given system ¥ of closed subsets of X (with the property that Sl’ S‘Z € J
implies the existence of Sc ¥ sueh that SIUSzCS). Then CV(X) is certainly
dense in RV(X), if for each Se 3’1, and each f¢RV(X) the (bounded) function
f]S can be extended to some geCV(X). But the last hypothesis is true, if the

system S consists of compact sets only or if X = normal. [Compare
Blanchard and Jourlin [10], and see Goullet de Rugy [14] for CV (X) instead
of CV{X). ]

We turn to some other typical applications of 16. without trying to give the

most general formulations. So we will assume from now on (for the rest of

this section) that E is a_quasi-complete locally convex space, X a fixed com-

pletely regular space, V a Nachhin family on X with Z<V, or with WgV and
lhE"l X even a kR—space
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28. Definition. Let P be a property that a function fecVP(X,E) resp.
: p ' -
Cv (X E) may have for not). Define pvY(X,E) resp. PVO(X,E) :

‘f€CVp(X E) resp. CV (X, E); f has property p}. with the topology in-
PVO()x)F

duced by CVP(X E). We put for convenience PV{X ) = PVp(X, ),
PVO(X. €). (So we omit E, if it equals €.) We will only admit linear pro-

perties P, i.e. such properties P to make a linear space out of pPVvP(X, E)

resp. PVO(X, E).

Let B be a linear property that the functions in CV(X) resp. CVO(X) may

have and denote by PV(X) resp. sV (X), as defined above, the corresponding

subspaces of CV(X). We say that the property P 1S weakly determined by P

if a function f in cvPX, E) resp. CV (X E) has property P iff for each e ¢E’
~ 3

the function e’ «f (belonging to CV(X) resp. CVO(X)) has property P.

So if P is weakly determined by P, we get in our terminology:

PVP(X, E) resp. PV _(X.E) = (£CVP(X, E) resp. CV (X, E); e’ of €PV(X) resp.
PV (X) for each e’¢ E'}.

Remark that §V(X) resp. PV (X) closed in CV(X) resp. Ccv (‘() and P

weakly determined by P implies
Ccv (X E). To prove this, assume the generahzed

that pvP(X, E) resp. PV (X, E) is a closed

subspace of CVP(X,E) resp

3) is an element of cvP(X, (CV(X));)

By note 1 after lemma 4., &: X — b

resp. CV (X, {(CV, (X))). Composing W1tn the
—— CV(X) resp. PVO(X) — CVO(X), and noting

t
transposed mapping I of the

canomcal m]ectmn I: PV(X)
’ _topologies on the duals, we obtain that &,

that I is continuous w.r.t. the o
as an applmatmn into (PV(X)) resp. IPV (X)), belongs io cvPix, (-PY(X))'C)
resp. (5v (X)),

resp. CV (X (PV (X)) ). Now assume that for E = (PV(X))
ined here) and remark E’s PV (X)

in CV(X) resp. CVO {X) (which
pelongs to PVP(X, (FV(X)))

Pl'Operty P is weakly determmed by P {as def
resp. BV JX) if the last space is only closed

we will also assume). It is then clear that & even

resp. PVO(X, (Pv o(X)) c) .
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sequence {f ] me A CODVErges to f in CVp(X E) resp, CV (X E) and that all
f have property P. Then for each e¢eE’, e afa—-—be of in CV(X) and

e ofa( PV(X) resp. PV (X) for all aeA. Our assumption implies esf¢PV(X)
resp. PV (X}, and as thls 1s true for each e€E’ and as P is weakly deter-

mined by P 1ePVP(X,E) resp, PV S E). ?

As a reformulation of 16. in the terminology we have just introduced, we
find now:
29, Theorem. Suppose broperty P as in 28. is weakly determined by B.
Suppose moreover that Bv(x) ) resp. ?‘V (X) is a closed subspace of CV(X). !
Then PVP( X, E) = EByux) resp. PVO(X,E) = EePV_(X),

We can even replace the ¢-product by the ¢-tensor product in these

equalities, if F is complete and if EV(X) resp. ﬁVo(X) (or E) has the a.p.

(From the ¢-product representation of PVP(X, E) resp, PV (X E) it would
p
have been clear anyway that, for closed PV(X) resp. PV (X) in CV(X), PV'(X, E)
resp. PV (X E) must be closed in CVp(X,E), as one can easily see, )

A variation of the same idea which gave rise to 29. was presented in [4 ].

3.5 and 3.6. There, for a given topological linear subspace YE of CVP(X, F) '
resp. CVO(X,E), a corresponding space Y0 of scalar functions was defined '
by:

Y = {gecv(x) resp. CV (X); g = e”«f for some f€Yp, and some e E’}.

The following condition was imposed on YE:
For any e¢E and any geY , the function f: X — E, defined by f(x) = eg(x} for

all xeX, is an element of YE‘

It was then proved tnat Y 15 a linear subspace of CV(X) resp. CV {X) which
is closed, if only YE is closed in CVP(X E). And for complete E, closed
YE' we obtained YE = YOQ E = Yer, 1fY had the a, p.

The formulation we gave in 29. might be more suitable for some concrete

applications to which we proceed now. To start with, let me exhibit a more
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or less trivial example: For a {Hausdorff) topological vector kR—Space X
(e.g. X metrizable), let V denote a Nachbin family on X consisting of the
positive multiples of the characteristic functions for a given system ¥ of

subsets of X with the following properties:

(i) each Se¢ 7 is closed and bounded,
(ii) for every compact subset K of X, we can find SeY with _with KcS,
(iii}) for 5,,5,¢€ f there exists Se ¥ such that §,uS,cS.

Then, for CVP(X,E) and CV(X), the properties P and P of linearity of
functions in CVP(X,E) and CV{(X) resp., are well-defined, and P is, of
course , weakly determined by P. In the usual notation, f"V(X) = X}, and
PVp(X,E) = laf (X,E) := {ueZ (X, E); u(S) precompact in E for each Sef |,
both with the topology of uniform convergence on all sets Se¢¥. Now 29,
gives, for instance, for complete E: Z)f (X,E) = X} %eE._i_f_E or (the

locally convex space ) X} has the a.p. The assumptions here are a littie

bit too strong, and somewhat weaker conditions are sufficient according
to our former considerations. (The result we obtained is related to.Gro-

thendieck [167, "Prop." 37. (d).) Continuous affine (instead of linear)

functions could be treated in a similar way.

What we originally had in mind when writing [4] were holomorphic func-

. N )
tions. So agsume that X is an open subset of € (N=1), W=V for a Nachbin

family V on X, and E a quasi-complete locally convex space. It is well-
known that for functions in CVp(X,E) [or CVO(X, E)] and CV(X) for CVO(X):!
the properties P = H and B = H of being holomorphic are related in the way
which we call " P is weakly determined by P'. As an immediate consequence
of 29, , we can therefore state:

30. Corollary ([4¢). HVP(X,E) = E€HV(X) and HV _(X,E) = EeHV (X), with
@s replacing ¢ for complete E, if E or HV(X) resp. HV (X) has the a.p.

 As it turns out, much more is true. We could take in 30. (resp. 29.} X =

an open subset of a topological vector space Y (over €} with the property

that X is a kR-space under the topology induced from Y (so e.g. Y metrizable
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is enough4)), and then P and P might denote certain kinds of analyticity with
the only restriction that, for E and V as above, a function feCVp(X, E) resp.
CVO(X, E) is analytic in the sense of property P if and only if e’ of ¢CV(X)

resp. CVO(X) Is analytic in the sense of property B for each e’¢E”.

Only one possible type of analyticity shall be investigated here in more
detail: Let X, Y, V,E satisfy the assumptions made up to now and take G&-
leaux - analyticity as P and P (see . g. HERVE (17], 111 1.3.). By the very

~
definition, it is already clear that P is always weakly determined by P

(L17), p.66). we will call holomorphic (Fréchet-analytic in [17], T-ana-

lytic in PIZANELL]I [22 1) all continuous Giteaux-analytic mappings and

therefore denote by HVP(X, E), HV (X, E), HV(X), BV_(X) the spaces
PVP(X,E) = {1eCVP(X,E);: £ is Gateaux-analytic |

PVO(X,E}, 5V(X), and }?VO(X), respectively. Using [17], III. 2.2., The-

orem 2, we have obtained:

31. Corollary. HVP(X,E) = EeHV(X) and HV (X, E) = EeHV_(X) in this case,

too,

—

Note that the conditions on X (or Y) can be relaxed, if the Nachbin family V

on X is considerably "stronger" than W.

In the case V = W, the e-product representation in 31. is due to M.
SCHOTTENLOHER (23] who also gave many interesting examples and re-
lated results. As in general the space HW(X) is no longer nuclear, the
question of the a.p. for HW(X)_g_!;g_s_e_, This question (among other problems)
was investigated by R. ARON (his paper is [1 1) and SCHOTTENLOHER.

They found out, for instance, that a Banach space X has the a. p. if and only

if HW(X) has the a. P. In their paper [2 1 they prove generalizations and
- -_—— -

many other beautiful results, among them equivalences for the a.p. of the

space ol holomorphic functions {on a Banach space), equipped with stronger

topologies than co (e, g. with Nachbin’s ported topology etc.) which are not
4)

By the Banach-Dieudonné theorem (cf. Kothe {19], §21, 10.(1)), every
’c-dual of a Fréchet space is a k-space, so a fortiori a kR -space. Hence,

for instance, (separated) {1.S)-spaces Y are always kR-spaces, too, and so

a fortiori, are open subsets of such spaces,
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weighted topologies in our sense.

Instead of looking at holomorphic functions only, as we did in 30., we

could aiso have drawn attention to harmonic functions or to soluilons of cer-~

tain linear partial differential equations. Results of this type are related to

our research in [9].

We want to mention some simple spaces of ''mixed” fype next. These are

the spaces of [6], 16. and 17., first introduced by B. GRA\‘ISCH (157 Let

X be a locally compact space, G a non-void open subset of C (N=1), and

Af$ open in GxX. As in (6], we use the notation A_:* {2 €G; (z, x) €A} and de-

fine for a quasi-complete locally convex space E:
CH(A E) := {feC{AE); f(., x) holomorphic on ﬁx for each x€X}.
if A#0is a closed subspace of

equipped with the topology co. Similarly,

CxX with A compact for each x€X, we can define the space

CA(A, E) := ({f€C(A, E); f(., x) analytic on A for each x€X}, co),

Condition (%) in [6] requires that for each x€X, Ax does not separate the

plane.
32. Corollary. CH(A, E) = E ¢CH(A) (=Eé€_ CH(A) for complete E); and CA(AE) =

E2CA(A), which equals E§€CA(A)_'1_{E is complete and if E has the a.p. or

condition (% holds.

Proof. For a continuous function f: A — E, the property that f(.,x) is ho-

lomorphic on A resp. A for every x€X is weakly determined. Hence, by 29.,

the equations for the ¢ -products are true. For the rest just remember ; 6 I8

16. and 17. &3

. N )
Gramsch [157], 1.11 assumed for open AcGXXeC xX the following regu-

larity condition:
(R) A is H(G)-convex for each xeX(with A # @), i.e. we always have den-

sity of H(G)|, in (H(A,), co).
X

Under this assumption, he directly established (among other things) the

- density of (H(G)®C(X)) %AGE in CH(A,E). We shall give another proof oi this
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fact by applying the approximation results of PROLLA and SUMMERS.
{For instance a scalar version of [6], 12, is enough for our purpose,)

Take V = C:(f-.), A = ({ constants on G} ® C(X) )|A and set W := (H(G)®C(X))M.

Then by [6] 12., fe C(A) belongs to —W'(CM)’ co) iff for each xeX,

. (C(Ax), co)
‘x

(., x)e H(G), . So condition (R) assures density of {H(G)®C(X))

|A
in CH(A). Hence (H(G)@C(X))IA® E dense in CH(A, E) can be deduced

from 32,

We conclude this section with two remarks on applications of the

¢ -product representations we have proved here.

First, L. SCHWARTZ [ 24], Cor. 2, p.48 shows that the € -product

EecF (or the e -tensor product E® F) of two complete locally convex spaces
€

E and F with a. p. also possesses the a. p. Thus a corollary to the results

in this section and in [ 6], we have the a, p. for many spaces of functions

with values in a complete locally convex space with a.p.

Finally we will state a theorem due to H. BUCHWALTER [ 11], 2.7.a):

lLet E and F be Fréchet spaces one of which has the a.p. Then

(= eF)'c = (Eﬁe F)’c = E(’: @nF; holds 5). Hence our results have appli-

cations to r-tensor product representations of the ;-duals of spaces of

vector-valued functions, too.

There is a similar theorem due to Buchwalter, loc. cit., 2.7 b} 7
——for a proof of the slightly different statement we give here see [ 8],4.1:

letboth E and ¥ be (F)-spaces [or Montel (DF)-spacesL Then
(E® F)' = E' ¥’ .
T e c c

This can be used to show (in an obvious way) that for such spaces E and F,

if they both have the a. p.. their m-tensor product also possesses the a. p.
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III. Functions of several variables and the slice-product

Ever since DIEUDONNE s famous result of 1937 that for two compact
spaces K1 and Kz the tensor product C(K1)® C(Kz) is {identified with}
a dense subspace of the sup-norm algebra C(K1 XKZ) has the tensor pro-
duct been recognized as an important aid in dealing with functions of

several variables.

The next step in the development to our theorem below is due to

L. NACHBIN [21], where a ''weighted Dieudonné theorem for density in

tensor products' was proven, In the following, let Xy and X, be com-

pletely regular spaces and Vl > O resp. V2 > 0 Nuchbin families on XI

resp. Xz. We denote by v ®v2 as usual, the function defined on

= ;
X3. Xlxxz _lzz_(v ®v Hx l.xz) vl( W (xz) and by V V1®\2 the set

of all v1®v2, vlevl and VZEVZ. It is not hard to see tnat VS is a
Nachbin family on X, with V_> 0. Nachbin proved that under the linear

3 3
mapping
n n
T: L {8 — ({x,x,) —> £ f(x )g(x))
., 1 "1 1’72
i=1 i=1
for ne N, fiGCVl(XI), gcCVz( 2) i=1,....n; (xl,xz}fxs, the tensor

product CVI(X1)® CVZ Xz) is identified with a linear subspace of CV3(X3),
and that the subspace C(V 1)0(X1)® C(VZ)O(XJ) is {after the same identi-

ficati i .
ation) dense in C(VB)O(Xs)

The first to look at the topology induced on the tensor products by the
Epace CV3(X3) was W, H. SUMMERS [25]. In[5], we gave a simpier

argument to the following effect:

33. Lemma: It is always true that CV3(X3) induces the ¢ -topology on the

Spaces CVI(X1)® CVZ(Xz) and C(VI)O(X1)3 C‘Vz)o(xz)'
Proof: It is clearly enough to look at the first case only. The following
notation is convenient: For 1= 1,2 set '

b(v)l--{chv (X) sup v(x)lf(x]ls 1} and vA fv.(x.)&_;x..ex.f.
ch R A
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* .
Remember from 6. tnat I‘(viA i) is always weak - or ;-dense in
b(vi)z. It is then easy to verify the following equality for all v,€ Vl’
n
vzf‘\/‘2 and f= T 1‘i®gi € CVI(XI)G@CVZ(XZ) :

i=1
sup | {6 ® )] (u,vlebly ) xb(v,)] |
n
= sup | | Zalt)vig) | (e, v)eblv )] xbiv,)} |
n
= sup | fi‘ilu(fi)v(gi) Fs(u,v)e F(VIAI)XF(VZAZ) }
(1) n
= sup { !ilvl(xl)bxl(fi) vz(xz)bxz(gi) | ;xiEXi, i=1,2]

‘ I}
. | .
sup { "1("1"‘2("3) 'i}=:1 Lxpelx,) | (x),%,)€ X, xX, }

sup | vlﬁvzl(xs) !f(xs)] P Xg€ X3 b= b(vl®vz)(f) .

(For (1) use the same trick as in the proof of 7. (2) twice, ) Next re-
mark that, because of the properties of Nachbin families, a basis for
the equicontinuous subsets of (CVi(Xi) ) is given by the sets b(vi); .
Vi€ Vi’ So, by definition of the € -topology as the topology of biequicon-

tinuous convergence, tne equality we have just derived proves everything

we want, —

After Nachbin’s weighted Dieudonné theorem , our next theorem is an

immediate consequence of 33, :

34. Tn 3 : =

eorem ([ 5]) C(V,), (X,) V) X, ) & C(V,) (X,) iff
C(VS)O(X3) is complete,
As a simple example, take v, = W(Xi) { = the Nachbin family W on Xi)
fori=1,2, It is then obvious that V_ = VIGV‘z induces the co-topology

3
on C(Vs)o{xaj. So we get a theorem previously obtained by Buchwalter [11]=

35. Corollary: (CX,). co) = (C(X,).c0) &, (C(X,). co) X, is a kp -8pace.
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. ) ol K - , _
it is true that X3 kJR space implies X1 and Xz k]R spaces, but the con

verse does not hold. The product XS = X1 X X‘3 is a kB-space under

the following conditions, however:
XZ‘ Xz kR

both metrizable or both hemicompact kR-spaces (see iill], (2.2) ).

-spaces with one of them even locally compact or X1 and Xz

The tensor product representation in 34. is certainly true if Z(Xi)-_c_ Vi
for i = 1 and 2 (where Z(Xi) = Nachbin family Z on Xi) or if W(Xi)s. Vi’

i=1,2, and X_ = k_, -space, because we then have Z(XB)S V3 resp.

3 R
W(X3)s V3, too. So 34. generalizes a theorem of Summers [25], where
a great number of interesting examples is given,

In the case of spaces of type CV(X) there are again more difficulties:

In general, CVI(Xl) ® CVZ(XZ) is nof dense in CV3(X3)° And at the time,
when [5] was written, no theorem was available that gave a description
of the closure of the tensor product. Recently, G. KLEINSTUCK 18]

discovered a new access to our result below. Here we will only sketch

the argument we gave in [5] .

By identifying a space of functions of two variables with the corres-
ponding space of (vector-valued) functions of the first variable taking
their values in the space of (scalar) functions of the second variable -

this is done in the canonical way - we obtain:

36, Lemma ( [5] ) : The mapping 1:{ ~——— ((xl,xz) — [f(xl)](xl))

defines a topological isomorphism of the space C(Vl)p(xl, CV,,(Xz) )

onto the topological linear subspace

p . = . . 1 roy s
CIVIP(Xg) 1 = { feCVy(Xg) i vylx )lx;, o) xeX, 1€ CV, (X)) is
relatively compact and fvz(lef(.,xz) P XX, le CV.(X,) is relatively
€V vaEY, b of CV,(X,),

i i <7 i = = -
if_ Z(Xi)s Vi or if W(Xi).a Vi (i=1,2)and X3 kB space,

compact for each v

Remark that, by 11., C(V)°(X,,CV,(X,)) = CV,(X,): CV (X)) =
CVI(XI) ¢ Cvz(xz) = C(Vz)p(Xz, CVI(XI) )} in our case, and hence the
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following is proven:

37. Theorem { [5", ) : Under the conditions of 36.,
. P

TN Y 2 = X L = X.,), where we can

CV, (X Ye cvz(\cz) cvz(\z) e cvlfhl) C(VB) ( 3) w

write & , if for V) (and X;) or V, (and X,) (1) and (2) in 14. hold.

Kleinstlick’s metnhod reveals some interesting connections and indi-

J(Xg)

will in general (i, e, not under the restrictions made in 37.) look quite

cates that the description of the closure of CV, (X )® CV, (X,} inCV

similar, {See the note added in proof.)

The question of general conditions for C(V

= Z(X,), v

< .
g (Xg) = CV, (X,) is not

an easy one, as the example V = Z(XZ) already shows.

1 2

Namelv, CB{X xX_.) = CB(XI)Qe CB(XZ) (with the sup-norm topologies)

1~z
if and only if Xlxxz is pseudocompact, And the last condition implies

Xl and XZ pseudocompact, but the converse is false, ( The theorem we
have just mentioned is due to GLICKSBERG and TAMANO, sece e.g.
Buchwalter [ 11], (5.7) ).

We turn to subspaces of weighted spaces. Assume that, in the following,

Y, resp. Y, is a topological linear subspace of CV,(X,) resp. CV,(X,)
r .

. or (..(VI)G(XI) resp. C(VZ)O(XZ) ]

38. Definition: The slice-product Yl # Yz of Y

and Y_ is the topolo-

1 2

gical linear suhspace
P Pix v ; |
1 e C(Va) (XB) L or C(VS)O(XB) ]: f(.,xz)t’ Y1 and f(xl. .Je YZ

for all (xl.x e X xXz l

2 1

of CVg(X,).
iﬁemark that for &CV3{X3) [ or C(VS)O(X3) ] f(.,xz)c CVl(Xl)
Lor C(V,) X)) T and flx,,.)e CV,(X,) [ or C(V,) (X,) ] nolds for all

(xl.xz)z Xg, if only VI>0 and V,> 0,

2
Let us assume, additionally, for the rest of this article that ZX)<s V,

WX, i= T - 8 ' i
or WiXJ)= V. (i=1,2) and X, kp-space and that Y. is closed in

CVXy Lor C(vy) (X} Tfor i=1,2 too.It is then not very hard to derive:
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39. Theorem ([5]): Under our conditions, ¥, % Y, Y eY,;

S0 also equal to YI és Yz, if Y1 or Yz has the a,p.

Actually the proof of 39. is nothing else but looking at various kinds
of topological isomorphisms established up to now and applying lemma 6.

2)

as well as note in 16, twice.

Slice products were, at least in the case of compact spaces X1 and Xz
and of sup-norms, well-known for a long time (see e.g. EIFLER [13]).

The problem whether at least the slice product of uniform algebras was

always equal to the (completed) tensor product was finally solved in ihe

negative, as a consequence of ENFLO’s counterexample to the approxi-
mation problem, by H, MILNE [20}. In this article, Milne proved that

every complex Banach space is isometrically isomorphic to a comple-

mented subspace of a suitable uniform algebra. As a consequence of

Enflo’s example, it is then not hard to establish the existence of two

uniform algebras A and B with A§ B { Aée B.

For practical purposes, we would like to reformulaie 39, in a simiiar

manner as we did with 16. in section 2, So we make the following defini-

tion (resembling, in a certain sense, 28.):

40, Definition: Let P be a linear property that a function f in C(Vs)p(xa)

resp. C(V3
functions in CVi(Xi) resp. C(Vi)o(Xi) may have, i=1,2,

. p .- P, : ]
Define P(V,)"(Xg) resp. P(V,) (Xg) : { fe C(V4)"(X,) resp. C(V,) (X} ;

)o(XB) may have (or not}. Let Pi be a linear property that

f has property P} and PiVi{Xi} resp.
: = ; £ bo(i=

P(V) (X): { feCV (X)) resp. C(V) (X);f nas P i (i=1,2).
By our assumption on P, Pl. and PZ' these spaces are linear subspaces
of CV3(X3) and CVI(XI)' CVZ(XZ)' respectively. We equip them with the
induced weighted topologies.
We say that P is a slice property with respect to P1 and PZ' if a functicn
f i p 4 = = = -~

in C(V3) (}(3} resp. C(V3)O(X3), }&3 XIMX2 and V3 an Vz’ has
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pProperty P if and only if the partial functions f{(., xz) and f(x_,.) have

13

properties 'E’1 and Pz, respectively, for al (xl,xz)eX

q°
So if P is a slice property w,r.t, P’1 and PZ‘ we get in our termino-

logy:

P(\ ‘( ) resp. P(V ) (X ) = PIVI(XI)H PZV (X ) resp.
(V)(\)‘?P(V)(X)

Remark that in thig case P A% {X ) resp, P (V ) (X ) and P A4 (Xz) resp.

sz 2) D\ ) closed in CvV (X )resp Ccv (Xz) 1mp1y P(Vs) (Xs) resp.

I‘(V ) (‘( ) closed in CV (X ), as one can easily see,

Now the reformulation of 39. we intended to give reads as follows:

4l. Theorem: Suppose property P as in 40, is a slice property with
respect to P1 and P2 Suppose moreover that P V. (X ) resp. P, (V ) (X, )
is a eclosed subspace of CV. (X ) resp. C(V ) (X. ) for i=1 and 2. Tnen
PV (X, - PV(X)ePV(X) as well as P(V,) (X,) =
(V ) (X Je P 2(V,) (X ). and we can replace the e -product by the
€- tensor product .J at least one of the spaces PV X)) P,V,(X,) resp.
PV )O(Xl), IZ(VZ)O(XZ) has the a, p.

Among other things, 41, allows to give tensor product representations

for spaces of holomorphic functions of several variables or for spaces

of functions with "mixed" dependence, i, e. for instance holomorphic in

the firet (gset of) variable{s) and only continuous in the second (set of )
variable(s), We do not dea] here with the last type of examples, but

will state the results for holomorphic functions after another {rather
trivial) example, ‘

For hoth X, and XZ topological vector spaces Buch that X, = X x X

3 17772

is a kR-space (e.g. X and Xz, hence X 3» metrizable), let V resp, Vz

denote specia] Nachbin families associated with systems J" resp, ‘-?2
of (closed and bounded) subsets of X resp, Xz as after 29, above. We

will assume that :f' satisfies the condmons (i) to (iii) given there for
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i=1,2. Then, of course, the property P of being bilinear (a bilinear

functional) on ‘( xX is a slice property with respect to the properties

P1 and F’2 of bemg 1mear T in the first and second variable, respectwe;ye

In the usual terminology, Pivi(xi) = i _‘f.'

PV (X,) = 3 P (x,X,): = [ fe BIX),X,) ; £(8), %,) relatively com-

pact in 1 ’j’ and f(x Sz) relatively compact in (X )j’ for all (fixed)
(x,, %) € xlxx2 5.6 ¥, Sy 7,1 ]

s - ’ v/
So, by 41. if (X )J° ( ) _‘F has the a.p. 3)0 ’..p (X X,) (Xl)jplﬁa (erfo-

4

The result on holomorphic functions of several variables, on the other

hand, makes use of the simple fact that for functlons on the product
A
X3 = XlxXZ of two open subsetsX resp. X of GI resp. ¢, the

property P of being holomorphic on Xlx Xz is a slice property w.r.t.

Pi = holomorphic on Xi (i=1,2), We can, for convenience, denote P,

P. by H and obtain immediately:

P
1" "2

42, Corollary ([5]): For open subsets X, < (Ilh, X,c (CM (N,M=1)

and any Nachbin families Vi 911_1(1 with W(Xi} < Vi (i=1,2)

[where Vg © V1®V again]:

H(V ) Hv (X je HV (X ) and h(V ) (\ } = H(VI)O(Xl)e H(VZ)O(XZ).

For open sets X1 and Xz in { complex) topological vector spaces I,
resp. E2 with X3 = Xlxxz a kR-space[ as mentioned abhove, it is

sufficient to take E1 and Ez metrizable 6 ], we could as well treat

{continuous and) holomorphic functions on Xlx XZ by use of 41. Remember

4)

6) By the general theory. of such spaces and by note (separated)

(LS)-spaces are always hemicompact kB-spaces (i. e. have a countahble

basis for the compact seis). Hence, using e.g. Buchwalter’s result

mentioned after 35., we can conclude that both X1 and Xz (LS)-spaces

implies Xlx Xz = kB-space. And again, a fortiori, open subsets of

X, xX

i 2 are then kn-spaces, too.
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that, if W(xi)s Vi fori=1,2, and if p, Pl, and Pz denote any types
o holomorphic functions on X3. XI’ and Xz, respectively, we only need |

the following conditions in order to apply 41,

(i) PiVi(Xi) resp. Pi(Vi)o(Xi) is closed in CVi(Xi) resp.

ClV) (X)), i=1,2, and

(ii) P is a slice property w,r.t, P1 and P2 » l.e. a function

fe C(Va)p(Xs) resp, C(VB)O(X3) is holomorphic in the sense of property
P if and only if the partial functions f(x;,.) and (., x,) are holo-.

morphic in the sense of properties P, and P, for all (x,,%,)€ X xX,.

As we did in 31., we will deal here only with the case P, P1 and Pz

Indicating holomorphic functions in the sense of G-analyticity ( = Giteaux-

analyticity) plus centinuity, Then (i) is certainly satisfied under our

assumptions, and so we have only to assure that G-analyticity is a slice-
Property w.r. t. {separate) G-analyticity in the first resp, second variables.
Now it ig trivial thys G-analyticity already implies separate G-analyti-
city. The converse was for instance shown by Schottenloher [23} (using

a simple trick that e.g. Pizanelli [22} had given before). For complete-

ness, let me record the proof here,

For a separately G-analytic complex-valued mapping f on X
we first establigh that the mapping

A +
Apry) —— fx 421, PALPLIN

. s e . .
With arbitrary (fixed) X alexl. Xy, azexz, is anlytic on

\ : inite dimen-
i ()\1. ?2)6 <Iz ; x1+llalexl, x2+A2a2cX2 }. But by the finite .

. i s ity f
sional Hartogs theorem, it ig enough to prove separate analyticity for

3 = Xlxxzp

this mapping, and this is obvious from the assumption of separate
G- analyticity of f, Having proved this fact, we consider the function
A — (0,0 1t defines, of course, an analytic map of
frec; X thaeX,, X,+haeX, | into

' 2

(A : i th
1 ( pralee”; xlfllalcxl, x2+kza2txz }. The composition of the

two (finite dimensional) analytic mappings we exhibited yjelds the
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{analytic) function A —— f(x1+?\al, x2+}\az) = f(x+Aa) for arbitrary

fixed x = (xl, xz), a-= (al, azkxlx Xz. Hence we have the conclusion:

f is G-analytic.

Denoting holomorphy = Giteaux-analyticity plus continuity by H, as

before, we have established:

43, Corollary: Under the more general conditions just given (i. e. Xl‘ x,

&

open subsets of complex topological vector spaces EI’ Ez with XB = le,xo

km-space, W(Xi) < Vi fori=1,2, and H = holomorphy), 42, remains

true,

For the special case of the co-topologies, 43. is again due to

M. Schottenloher [ 23].

In concluding, let me remark that a generalization of many resuits
in this section is possible (in the same way as we got generalizations
of 11, in numbers 20., 24., and 27.). More examples could be given,
too (cf. the remarks in section 2.). Finally, a repeated application
(and a combination) of the results of section 2. and 3. will yield even
more general ¢ -tensor- or ¢ -product representations for vector-
valued functions of several variables, (You may sometimes need the

associativity of the ¢ -product here ([ 24])).
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