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THE APPROXIMATION PROPERTY FOR WEIGHTED
FUNCTION SPACES

Klaus-D, Bierstedt

I. Some remarks on Grothendieck’s approximation property

The approximation property for locally convex {Hausdorff topological

vector) spaces was defined by A, GROTHENDIECK in his ""thése" {17 ]:

1, Definition: A locally convex space E has the approximation property (a.p.),

iff (= if and only if) the identity idE of E can be approximated, uniformly on

every precompact subset of E, by continuous linear operators from E into

E of finite rank (i.e. with finite dimensional range).

If we denote by iC(E) the locally convex space of continuous linear opera-
tors from E into E, endowed with the topology of uniform convergenceﬁpon
precompact subsets of E, then it is required that idE belongs to EGE mC(E).
(B” is the [continuous] dual of E, and the space of continuous linear ope-

rators T: E —> E of finite rank is easily seen to be [algebraically ] isomor-

phic to the tensor product EQE’.)

The a. p. is quite important in connection with tensor products, with compact
and nuclear operators etc., as was shown by Grothendieck. The first examples
of locally convex (in fact, of separable reflexive Banach) spaces without a. p.
were given by P, ENFLO [10] in 1972. By refinements of his method, due to
DAVIE (8] and FIGIEL {11], it is known today that, for every p with 2<pse,

there exist closed subspaces of the sequence space 1P without a. p. (Whether

this holds true for l1<p<2, too, is an open problem.) And Hogbe-Nlend [18]
concluded that, as a consequence of Enflo’s counterexample, there are Fréchet-
Schwartz- and (DF)-(S)-spaces without a. p. The only classes of spaces for
which the a.p. is known, are Hilbert spaces, separable Banach spaces (or

a larger class of locally convex spaces) with a Schauder basis, and nuclear

(resp. co-nuclear) spaces. Also every complex commutative C*—algebra is

.



known to possess the a.p. (by the theorem of Gelfand and Nalmark).

On the other hand, one can prove that many of the "classical" spaces
arising in the applications have the a,p., e.g. the spaces Lp{u), l<pgeo,
C(X), X compact, and many others more. We would like to point out that

it seemns to be open whether the following Banach spaces have the a.p. :

(1) the sup-norm algebra H7(D) of bounded analytic functions on

the open unit disk of the complex plane,

(2) cg™

line which are n times continuously differentiable and such

(R), 1<n<ew, i.e. the space of functions f on the real

that f, together with all derivatives of order 1 up ton, is

bounded on R, equipped with the norm

gy = sup sup |01,
p=0,1,....,n x ¢R

{3) L (12) = bounded linear operators on the separable Hilbert

space 1{3 with the operator norm.

For many purposes, it turns out that an equivalence of the a, p., due to
L. SCHWARTZ [ 22 ]. is quite helpful. It makes use of the notion of Schwartz’s

¢-product for two locally convex spaces E and F (cf. [22}).

2. Definition, Fc is the dual of F with the topology of uniform convergence

on precompact subsets of F. With this notation in mind, we define:

Ee¢F = & (F’,E),
e ¢
i.e. the locally convex space of continuous linear operators from F; into
E, equipped with the topology of uniform convergence on equicontinuous
subsets of F’.
HE and F are assumed quasi-complete, E¢F * FtE, and we have an-
other topological isomorphism of the ¢ -product with a space of bilinear

forms on E'xF’ (see Schwartz [22]). Furthermore, E€F is complete, if

both E and F are complete spaces,
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Now, in a canonical way, E®F can be identified with a linear subspace
of E€F, and the induced topology is the so-called €-topology of Grothen-
dieck. -Thus we arrive at the equivalent condition for the a. p. given by

Schwartz [22]:

3. Theorem. The quasi-complete locally convex space E has the a.p. if

and only if E®QF is dense in E¢F for all complete locally convex spaces F

(or for all Banach spaces F).

So, if E is complete, it has the a.p., if E¢F = EécF for every com-
plete locally convex (or for every Banach space ¥, (Here E&-GF denotes

the cormnpletion of E ®.F, that is, of the tensor product with the ¢ -topology).

In fact, 3. is a slight refinement l) of Schwartz’s original theorem (see
(2] and [5]).' -Theorem 3 will be used later on to give a proof of the a. p.
for some function spaces. All the function spaces we deal with here are
subspaces of the so-called weighted spaces which we are going to intro-

duce next,

II. Weighted spaces of vector-valued functions

In this section we look at weighted spaces of functions with values in a

locally convex space E, These spaces were introduced in the scalar case

1) Let us remark in this connection that (for instance for a proof of the
equivalence of the a. p. for Banach spaces with the approximation of
compact operators by operators of finite rank) it seems important to

_ Potice that, for a Banach space E, the a.p. of E is even equivalent to the
density of EGF’ in E F’ for all Banach spaces F. In fact, E has the a.p.
HE@EK' is only dense in E EK' for all absolutely convex compact sets
K, see Séminaire Schwartz [23]. (Here the notation E is used with its
usual meaning. ) On the other hand, even for any quasi-complete locally
convex space E, the density of EQE’ in E¢E lc is already enough to im-

Ply the a.p. for E, of. [22]
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by L. NACHBIN (see [ 19]). And in the vector-valued case J. B. PROLLA
studied spaces of this type independently in [20].

Let X be a completely regular (Hausdorff) space. A real-valued non-
negative upper semicontinuous function v on X will be called a weight

(or weight function) on X. Let V # # be a system of weights on X. This

system is called a Nachbin family on X, if for any v, v,€ V and for any

A2 0 there exists a veV such that Avl, AVZS.V (pointwise on X). So a Nach-
bin family is directed upward in a certain sense. {There is no loss of
generality in assuming to have a Nachbin family of weights : If we are
given a fixed non-empty system of weights on X, we can take the sup of
any two weights and the positive multiples of each weight as weight fune-
tions, too, without changing the weight conditions. In this way, we obtain

- a Nachbin family "equivalent” to the original system, )

We fix X, a Nachbin family V on X, and a locally convex space E to
define our weighted spaces of continuous E-valued functions as follows:

4. Definition:

CV(X, E): = {fe C(X, E) = space of continuous E-valued functions on X;
(vf)(X) is bounded in E for every ve V},
CV‘D(X, E): = {fe C(X, E); (vf){X) is even precompact in E for every ve V),
CV (X, E): = [fe C(X, E); vf vanishes at infinity for every veV},
where vf is the function from X into E defined by (vf{x): = v(x)f(x) for

every x¢ X, and where a function g: X —>» E is said to vanish at infinity,

if for every continuous seminorm p on E and for every €>0 there is a

compact subset K = K(p, €} of X such that p(g(x))<e for all xe XK,

One of the reasons t6 admit only upper semicontinuous weights is that such
functions are always bounded on compact subsets of X, Using this property,
it is easy to show that the following inclusions hold among the linear spaces
defined above:

- CV_(X.E)c cVP(X, E)c cvix, E).

Let us introduce a locally convex topology on CV(X, E) and on its sub-
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spaces CVp(X, E.) ‘and CVO(X,E) by defining a system of semi-norms:

Let ipa; 0.€A} be a (directed) system of semi-norms which gives the to-

pology of E, and put for g¢A, ve¢V:

bv (f)
a

sup pa(V(x)f(X))
x ¢X

xeX

sup v(x)pa(f(x)), feCV(X,E).

So we endow CV(X, E) with the "weighted" topology induced by

bv_;
{ Vo vev, a€Al.

To assure that this topology is Hausdorff, we assume from now on

V>0, i.e, that for every x¢X there is at least one veV with v{x)>0. -

It is easy to see that CVO(X,E) and CVp(X, E) are always closed sub-

spaces of CV(X, E) in the weighted topology.

Some examples of weighted spaces are given in the diagram below (see
+
[3]). Remark that, for a linear subspace U of C(X) = C(X, C), the set U

of all non-negative real-valued functions in U is always a Nachbin family.

9. Examples, X,E as usual.

[t = e e e

Nachbin family V

) r
CV(X,E) : CVO(X, E)

A +

Z=Z(X}):=positive
.Jconstants on X

+
{or CB (X), instead)

W=W(X):={AXK;)QO. {C(X,E), co)
K compact subset of
x|
1 R

CB(X,E) 1 C (X,E)
I o

both with the topoiogy of

uniform convergence on X

o

‘-XK= characteristic fune-

e vt it 5 s St = 4 oo e et e
[

Remarks

At e o A IR = e £ e o 1

e D L n m e e v e - M s —

1
f
tion of K, co=topology :
{
of uniform convergence ;

on compact subsets of X

CB = continuous and
bounded .
C°=continuous and va-

nishing at infinity :

o
C, X}, X locally

compact

(CB(X,E), 8)

B="strict’ topology of ‘
BEURLING and BUCK [7], |
co< f<uniform topology

+
C (X) X locally com-

pact and g-compact

(Cc(X,E), i) for any

normed space E

Cc= continuous with compact

support, i=( canonical) inductive

et e gy e B e e

limit topology
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To give a nice sufficient condition for completeness of weighted spaces,

we need some more terminology. For two Nachbin families Vl' V, on X,

2
we shall write VISVZ, iff for every vy ch there exists a v, (Vz such that

vls Vs If this relation holds, (e.g.) CVZ(X,E) is continuously embedded
in CV1 (X, E).

It is reasonable in many applications to assume that W€V, i e. that
CV(X, E) and CV (X, E) are continuously embedded in CW(X, E)=(C(X, E), co).
If we do assume this, we have, of course, tied up the weighted topology
with the {weaker) topology co. To make this assumption more meaningful,
we should then assume that X contains "enough” compact subsets (in the

following sense).

6. Definition: X ig called a kR-space (notation introduced by H, BUCH-

WALTER), iff a function f: X —> R (or €) with the property fIK contin-

uous for every KcX compact is already continuous on X,

It is a2 simple consequence that, on a kR-space X, a function f with

values in any completely regular Space E is continuous if and only if
fiK is continuous as a function from K into E for every compact subset
K of X. A theorem, due to §, WARNER [28 ) says thata completely re-
gular X is a kg-Space, if and only if {C(X), co) is complete. Examples

of kR-spaces include the class of k-spaces (of Kelley), so for instance all

locally compact or all metrizable spaces,

Then it is easy to deduce (see e.g. [2):

1. Proposition: CV(X,E) (and hence a fortiori CVp(X,E) resp, CVO(X. E))
is complete if either ZgVor if W<V and X = ~l'ER-sEEtce.

We do not want to’ give a more general completeness theorem which
could be derived in a simjlar way (see e.g. Prolla [20] and A. GOULLET

DE RUGY [15] for spaces of type CVO(X,R }). Proposition 7, is enough
for most practical purposes.

To finish this section, let us assume (for simplicity} from ndw on that
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we deal with complex scalars all the time. Thus we define (for instance):
CV(X) := CV(X, €) = CVP(X, €) and CV (X) := CV (X, T).

These are the original weighted spaces of Nachbin [19].

III. Connection between vector-valued functions and the g-product of a

space of scalar functions; application to the a.p.

The key to the relation between the a.p. for shbspaces of weighted spates

and (weighted) spaces of vector-valued functions is the following theorem

the proof of which will be si.etched in [4]:
8. Theorem ([3]), Assume that Z<V or that W<V and X = kR'EE‘.ES:_L_e-L

E be a'quasi-complete locally convex space, Then there are natural topo-

logical isomorphisms as follows:

CV(X)eE ¥ CVP(X,E), CV _(X)¢E ¥ CV X, E).
When the isomorphic spaces are 1dent1fled (which we will do from now on},
E® CV(X) resp. E® CV (X) corresponds to the space of functions feCV(X, E)

resp. CV (X E) such that f(X) is contained in some finite dimensional li-
ds even without the assump-

near S‘—‘bspace of E. (This part of the theorem hol

tions on X, V, and E above.)

By the way, let us remark that a similar, but more complicated descrip-

t1 1
ion of the ¢-products {or, rather, of a related space which we are used to

call ‘¢-product) is known, even if E is not quasi-complete and if none .of the

assumptions on V and X mentioned in 8. holds. For more infermation on

this see [3 ]

To apply theorem 8. to our situation in which we would like to ook at sub-

spaces of CV(X) instead it is important to observe that the ¢-product be-

F‘z are.quasi-complete To-

being a topological linear subspace of -'E‘z, we Ob-

d the nature of the

haves nicely with respect to subépaces: ILE F,

cally convex spaces, F

viously get F, ¢ECF,¢E topologically. Taking this an
topological 1somorphxsm in 8. into account, we obtain a refinement:

9. Theorem ([37). Assume the conditions of 8. and let Y be a closed topo-

logical linear subs
ubspace of CV(X} (resp. CVO(X)}.
ological linear subspace

Then there is a natural

topological isomorphism of Y¢E with the tap
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{f(CVp(X,E) (resp. CVO(X,E)); e’ of ¢Y for eache’¢E’ |
of CV(X, E).{(e” of(x) = e’(f(x)) for all x€X.] And Y@ E "is" the subset

of all f out of this space with the property that f(X) is contained in a finite

dimensional linear subspace of E.

As a direct consequence of 9. and 3., one arrives at {under the condi-

tions of 9, }:

i0. Theorem ([3]). The following conditions are equivalent:

1 - -

(1} Y (as a topological linear subspace of CV(X) resp. CVO(?())
has the a, p. '

(2) For all complete locally convex (or all Banach) spaces E,

the space of functions ""with finite dimensional ranges'' is

dense in

P ce’ofeY f ’
{feCV (X, E) resp. CVO(X, E); e”f¢Y for every e’ ¢E
{(under the weighted topology}.

So the a.p. of Y is equivalent to the approximation of vector-valued
functions by functions with values in finite dimensional subspaces. The
definition of the a.p. requires to approximate precompact subsets of Y
{a space of scalar functions) uniformly - and in a linear way - by sub-
sets in finite dimensional subspaces of Y. On the other hand, by 10. (2),
it is "enough' to approximate each (single, arbitrary, fixed) vector-va-
lued function {in "a'" certain space) by functions of finite dimensional

range.

Both directions of the equivalence in 10. seem to be important:
(1) = (2) requires to know the a.p. for certain function spaces and gives
applications tothe tensor product (see [4 ]). Here we deal only with the eon-

verse implication (2} » (1) which allows to prove the a.p. for many weighted

spaces and for some subspaces, This will be sketched in the remaining

sections. In the next section we intend to apply a vector-valued "genera-

lized Stone-Weijerstrass theorem' due to J. B. Prolla [21] to the present

situation,
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weighted spaces of type CVO(X) instead of C{K) for a compact K - J. B. Prolla

[21] proved the following "generalized Stone-Weijersirass theorem':

12, Theorem. Fix a subalgebra A _qf_C(X), and assume that for all ae€A and

all veV the resitriction a ‘supp v is bounded. (This is clearly the case, if

e. g AcCB(X) or if VcCc(X). The condition implies that CVD(X) is a module
‘over the algebra A [with respect to pointwise multiplication].)

Let W be a vector subspace of CVO_(X, E), E a given locally convex space.

Suppose W is an A-module with respect to pointwise multiplication. (So it

is an A-submodule of‘CVo(X,E).)

} —CV, (X, E)
Then f(CVO(X,Iu) belongs to W

- N
have flxg\\’ ‘KC(V ]K)O( ™ E).

if and only if for each K¢ 'JJA we

{Notice that the restriction VIK of the Nachbin family V to K is a Nachbin
famnily on K such that the weighted space C(V IK)O(K. E) is well-defined. This

space has the natural "restriction topology" of CV_(X,E).)

To enlighten the conditions of the theorem (somewhat), we remark that,
in Bishop’s original theorem, one approximates by the elements of a cer-
tain subalgebra, and that this igcrucial (in a certain sense). On the other
hand, in general neither CVO(X) nor C(X,E), E localiy convex, has the
structure of an algebra. Therefore it is natural to assume that we deal
with a submodule W of CVO(X,E) over a certain algebra A instead. For
a more detailed discussion of questions of this kind, of the so - called
"weighted approximation problem" - we look only at the ''bounded case"
of this problem here - and of the results similar to 12. see e. g. Nach-

bin (19], Prolla [21]. and W. H. SUMMERS [25), [26].

After all the preparations we made, now we come to our main result.

Namely by a combination of 10. and 12., we can prove:

13. Theorem. LetY be a closed subspace of CVO(X), X locally compact

+
and 0< Ve C (X). Let A be a subalgebra of C{(X) such that for all a¢A and

all v¢V the restriction function alsupp v is bounded. Assume that Y is an

A-module with respect to pointwise multiplication.
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Then Y (with the topology induced by CV (X)) has the a.p., if only for

every Ke X, the restriction space Y., equlpped with the patural re-

striction) topology of C(V'K)Q(K)' has the a.p.
i

Proof. By 10. (2) we must show: For any (fixed) complete locally convex

space E and any (fixed) 1E'¢CV0 (X, E) such that e «f¢¥ for every e’ &,
belongs to YQE VaE *VolX: E). But apply 12.to theA-module W = YREcCV (X, E):

We must now verify that fchY IKGEC(V "<'°(K E) for Ktu‘(, However,

f[K i8 an element of C{V Ik O{K, E) with the {erucial) property e of;KtY Ik

for every e”¢E’. We know that YlK has the a. p., and if this space is
closed in C(VIK)O(K)' a direct applic_ation of (I);;(Z) in 10. yields the re-
quired approximation. Even if we do not assume that YIK is closed in

C(VIK)O(K): we can proceed in the same way and use a slight strengthe-

ning of 3., 9., and 10. (instead of 10. itself) in the last step.&

{(In fact, in 13. one does not really need the a.p. for the spaces Y}K’

bUtaSlightlyweaker_property which we are used to call Schwartz’s a. p. -

approximation of the identity on absolutely convex compact sets only

[instead of precompact ones ]. A revision of the proof of 13. manes this

clear.)

As a first application of this interesting theorem, we derive immediately:
+ -
14. Coroliary. Under our assumptions {0<VcC (X) and X locally compact),

Cv oX) has the a p.
PI‘OOf Take Y = CV (X), This is a module over A = CB(X). As we men-

tioned earlier, 3{A consists of the one point sets only in this case. So

every Y|K' Ke¢X., is a one dimensional space, and we are done by 13.83

It should be remarked that weaker assumptions than those in 14. are

already sufficient for the a.p. of the spaces CVO(X)- We return to this
remark in the next section. - An application of entirely different type

is given next.

15, Corollary. Let K be a compact subset of the complex plane and G
sets with the_

{i=1,...,n;neN) - for simplicity only - open connected
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properties GiCK' -6_1 = G,, and G N G =@ (i7j). Then the algebra

1 ———

A= [feClK); 1|, analytic for i=1,...,n],
1

€quipped with the sup-norm on K, has the a. p.

- +
Proof. Here X = K compact, (C(K), |i-|) = CVO(X) for e.g. V= CB (X).

Take now Y = A, This is an A-module, and all our assumptions are
satisfied in this situation. It turns oﬁt that the maximal antisymmetrie
s3ubsels of ¥ with reéspect to A consist of-C-}-i (i=1,...,n) and one point
sets in K\(gj1 E}-;), There is of course no problem with restrictions of
A to sets of the last type. On the other hand, one can easily establish
that for i=1,. .., n:

AIG- = Af i) = {f¢C(G_.); f analytic on the interior G.=a-._ of _G—;]

and that the restriction topology is the sup-norm topology on G But,
by a (rather difficult) result of FIFLER (9] and DAVIE (cf. GAME LIN
"12]), we know that all sup-norm algebras A(Gi)possess the a. p. So
apply 13. 3

This example can be extended in several ways, as the preceding proof
suggests. (We could for instance allow countably many G in 15. under
some extra conditions.) We do not deal with such extensxons here. We
have just wanted to mention some applications of 13, in this expository
paper and do therefore intend to present simple, but typical examples

only.

For the next application let X be locally compact, §# ¥ G an open sub-
set of (} (‘\'>1) For @ A open in GxX and x ¢X arbitrary define the "slice"
Ax;={z(G; (z, x) ¢/.}. This is always an open subset of G,

r

1

F L
t
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We then consider the following locally convex space
CH(A) = {f¢C(A); £(-, x) holomorphic on A, for each x€X
(or for each x¢X such that Ay i@l
equipped with the topology co.

The idea of studying spaces of this type is due to B. GRAMSCH (cf. [15]_:
notice also the connection to recent work mentioned in [6 P
16. Corollary. CH(A} has the a.p., too.
Proof. For V = CZ(A), CV_(#) = (C(A), co), and Y = CH(4) is 2 closed
Subspace. As algebra Atake

A = [f¢C(A); f is constant on each set A% ix{, (i.e.
f(z" ,x) = f(z”, x) for all z, z’ﬂ\x)}.
It is trivial that Y is an A-module, and an obvious argument proves that
each maximal antisymmetric subset of 4 with respect to A has the form
Axxlx} for some x¢X. Every set K of type Axx[xl is closed in A, and of
course, by a simple isomorphism, we can identify Y|, (with its topology)
with a topological linear subspace of (H(A ), co), the space of holomorphic
functions on Ax' (H(Ax), co) is nuclear, hence the subspace YIK is nuclear,

too. This yields the a.p. of Y|K for any K¢ '}{_A, which is enough by 13.11

Of course, 16. rather indicates a whole class of examples, for which
13. proves the a. p. (Compare [6] and remark on the other hand that

We did not really make use of weight functions in 16.)

In application 16. we were lucky enough to find that any Y| (Ke J¢y)
. had the a.p. as a subspace of a nuclear space. In other {similar) cases
it might not be so easy. YIK could for instance always be a topelogical
linear subspace of a well-known function space with a.p. To be able to
conclude that YIK has the a.p., 'however. we do need some more infor-
Mmation. How this difficulty can sometimes be overcome in practice is

demonstrated in the last example of this section.

Here X is again locally compact. § 7 A will be a closed subset of -

CxX, and the notation Ax = {z¢€; (z, x)er} for x¢X is in.trodt.i.ced in 3“

k3
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analogous manner as above. In this case A, is always a closed subset
of €. We assume that for each x¢X the set Ax is even compact and de-
fine
CA(p) = {f€ClA); f(-, x) analytic on ;tx for every x ¢X {such that l{xi"ﬂ)’.
with the topology co of compact convergence on A,

Furthermore, we need a certain kind of (geometric) ﬁgularity condition

(%) on A:

(¥} For each x¢X, Ax does not separate the plane, i.e. G\Ax is connected.

(Regularity conditions were suggested by the work of Gramsch [16].)
17 Corollary. Under our assumptions, CA(A) always has the a.p.

Proof., Take again V = C:(A); 850 CVO(A) = (C{A), co) and Y = CA(]) is

closed herein (all the Ax being compact). The algebra A is chosen as
before, i.e.
A = {feC(A); f is constant on each Axx[x]}
So Y is a module over A and S{,A = ¢4 K:= A x|z} x€X]. For KeM,,
Y |k can be identified (exactly as in 16.) with a topological linear subspace

of the sup-norm algebra (on Ax) A(/&) = !f(C(Ax); f analytic on ].&}

By Eifler”s theorem (from [97) already mentioned in the proof of 15., we

know that A(A ) always has the a.p. [ At this point, we do not really make

use of (¥), as Davie's generalization of Eifler’s theorem indicates.]

Yet, it is not clear a priori whether the subspace Y[K of A(Ax) has the

a.p., too.

Our regularity condition (#) implies by MERGELYAN’s famous theorem
on polynomial approximation that the polynomials are dense in A(Ax}.
So, by a simple reasoning, Y'K is a fortiori dense in A(Ax). Remark

now that a locally convex space E possesses the a,p. if only its com-

pletion does. As the completion of Y; is A(Ax), we conclude that every

K
Y_IK' Ke MA, hence also Y, has the a.p. O

A careful inspection of the proof of 17, reveals that (#) was only needed

to obtain the density of Y!K in AfA). [ We made use, however, of the a. P.
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of A(S) for (any) compact S in the complex plane, ] Thus a generali-

zation of 17. to certain subsets AcﬂJNxX, N>1, is possible {using

recent results on polynomial approximation in N [due to LIEB, cf.
WEINSTOCK [29]] and the proof of the a.p.of A(S) for special compact
S in the complex N-space, see BEKKEN [1]).

A final remark seems in order at this place. The main assumptions we
had to make in this section (i.e. X locally compact, VCC+(X)' and the
condition for the bounded case of the weighted approximation problem,
namely that for all a¢A and all veV the restriction function alsupp v
is bounded) were only imposed in order to be able to apply Prolla’s
vector-valued generalized Stone-Weierstrass theorem 12. to the tensor
product Y®E (in the proof of 13.). So one could hope to generalize 13.
considerably, if there was a different method to prove a localization
of the a,p. for subspaces of weighted spaces which made use only of
scalar functions. If such a method could be developed, we could apply
Summers’ extremely general solution of the weighted approximation

problem (see [257, [26], and [277) instead of Prolla”s result.

V. The a.p. for CVO(X) and CV(X)
In this section we return to coroilary 14. and deal with Er_o_‘ffﬂ
the a.p. for the weighted spaces CV_(X) and CV(X) themselves. Except

for some technical restrictions, it turns out that all these spaces have

the a.p.

Instead of using 9. or 10, and a general Stone - Weierstrass theerem,

it is more convenient in the case of CVO(X) to have a second look at 8.

Indeed, a relatively simple partition of unity argument (which we are not

going to give here) shows directly:

18. Theorem ([2]). For any Nachbin family V>0 on a completely regu-
(identified

lar space X and for arbitrary locally convex E, E®CV (X)

with a subspace of CVO(X,E), of. the second part of 8.) is dense in
CVO(X.E).

So, combining 8., 8., and 18., we obtain:
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19. Theorem ([2 V. I either ZgV or WV and X = kR-J)ace, then CVO(X)

possesses the a. p.

This generalizes 14. considerably : For instance, every metrizable

topological vector space is a kR-space, but only finite dimensional ones
are locally compact. And in 19. we also allow upper semicontinuous,
but not necessarily continuous weight functions. (There are some famous
examples - e.g. in connection with the strict topology - which show that

such systems of weights can be of interest, too.)

In which concerns upper semicontinuous weight functions, we would

like to mention that it is possible to prove the following result by a more
technical and somewhat more complicated, but very similar method:

20. Theorem (]2 )). For locally compact X and V>0, CVO(X) always has

Schwartz’s a.p. (i.e. approximation of the identity by continuous linear

operators of finite rank is possible uniformly on absolutely convex

compact sets). Hence CVQ(X) then has the usual a.p., if it is only quasi-

complete.

This seems to be the right place to come back to our remark after
theorem 10. In fact, the proof of the a.p. for CVO(X) we gave in 19,
(although already much less complicated and more direct than the proof
of 14, ) might still look strange and far-fetched at first glance. One

could therefore ask whether a proof of the a. p. of CVO(X) starting right

from the definition of the a.p. in 1. is possible (instead of using an

Involved argument with vector-valued functions and tensor products).

Let me point out that this can indeed be achieved under additional

assumptions on V and X. For instance in the book [13] of GARNIR,
DE WILDE, SCHMETS, the authors considered weighted spaces of

type CVO(X), tco, where X is a locally compact subspace of Rr" (n>1),
however, and where all weight functions ve¢Vs0 are supposed contiinuous.

They establish a characterization of precompact subsets of CVO(X) by
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an Arzela-Ascoli type theorem and, as a consequence of this and of a

partition of unity argument (sic!), they succeed in obtaining the a.p. of

CVO(X). Their method is considerably more direct than the way sketched

here. It may also be possible to generalize this method, for instance to
any locally compact X, There will be (natural) difficuities, however - e. g.
with a generalization of the Arzela-Ascoli type theorem - in case X is no
longer locally compact or if V¢ C+(X). So in the end it may be as hard to
prove a theorem as general as 19, in their way as it (maybe) was in the
reasoning outlined here. On the other hand, the connection we found in 9.
will be of theoretical interest, and our method has a lot of different

applications, too, as we demonsirated in the last section.

The next part of this section will be devoted to a proof of the a.p.for
CV(X). All the proofs of the a. p. of CVO(X) we mentioned up to this mo-
ment relied (in one way or another) heavily on properties of CV _(X) that
CV(X) does not share: For approximation arguments in CV (X), it is im-
portant that we can restrict functions of type v, vV, f(CVO{X), to com-
pact subsets of X without losing too much information. This cannot be done
in the case of f¢CV(X) in general. So a partition ofunity argument in the
usual way does not seem to work. And up to now, a generalized Stone-
Weierstrass theorem for CV(X, E) is not available. (There are even some
theoretical limitations: There can for instance be no ''nice' Stone-Weier-
strass theorem for the sup-norm algebra CB(X], X not compact, and
one would have to look at the Stone-Cech compactification gX of X in this

case instead. )

We now sketch a different method to prove the a.p. of weighted spaces.

This method reduces the a.p. of either CV(X) or CVO(X} to the {well- known

2. p. of the sup-norm algebras C(K) g_n_q_Co(Y),Y locally compact. One could

- * 1 L)
also say: We make use of the a. p. for (complex} commutative C™ -aigeoras,

but by the Gelfand-Na¥mark theorem, every such algebra is equivalent to

some C (Y).
o
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So suppose X is completely regular and C = CV(X) or CVO(X) Hausdorff,
For technical reasons, we assume that no weight function in V vanishes

identically. We will also need the following conditions:

(1) For every veV the restriction v is continuous,.
|supp v
(2} For all f,f ¢C and any v¢V there exists a function g¢C such
that

gisupp v vit |supp A

We-could also reguire instead that onlty some Nachbin family V* "equi-
valent" to V, i.e. with V<V’ and V'<V, satisfies {1) and (2), because in
this case, CV(X) is topologically isomorphic to CV’(X) and the same holds
for CVO(X) and CV;(X).)

Usually, in presence of (1), another condition (2°) is more convenient
than (2) for practical purposes:
(2°) For each f¢C and each veV, one can find an extension

. i
fv ¢CB(X) of the function vf Isupp chg(supp v}.

That (2°) implies (2) is a simple consequence of the fact that C= CV(X)

or CVO{X) is a module over CB(X) with respect to pointwise multiplication.

Of course, in many cases (1) arid (27} are satisfied, e. g. whenever VCC+(X)
holds or if (1) is satisfied and X = normal.

21. Theorem ({3 ). 1t we assume conditions (1} and (2) (or (1) and (;‘2’)),

C = CV(X) resp. CVO(X) has the a_p.

Proof (sketched). The following notation is standard: With the seminorm

b(f) = sup v(x) |f(x) |, veV (and 1¢C), we put by l(0):= freCibv(n=0],
xeX
C C/b -1(0) C is a normed space with the norm |,f]| = bv(f) for all

f‘ec v where 1'(9 is chosen arbitrarily, Take C ¥ completion of (C iR [I ).

Then a_well-known theorem (which allowed to reduce the approxlmatlon

problem of Grothequeck to Banach spaces) states that C possesses the a. P,

if only all C do.

Condition. (1) allows to define a mapping A C -—-—-)CB(supp v) by

Av(ﬁ = vf!supp v for any f(f\ It is a simple exercise to show that A is well-
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defined and an isometric isomorphism of C, into CB(supp v), equipped with
K
the sup-norm, Put Sv = Av(Cv)c: CB(supp v) and remark that S“r isa{ -)
A
subalgebra of CB{supp v) by condition (2}. But then Cv is isometrically iso-

‘morphic to the closure S ofS in CB{supp v). It is obvious that S isa
v v v

~

complex commutative C*-algebra. Therefore S_v-, and hence a fortiori Cv'

has the a.p. for every v¢V. By the aforementioned theorem, the proof is

finished. O

It should be added that the method of the proof used in 21. can be applied
to certain subspaces of weighted spaces, too. We formulate the correspon-
ding result in the simplest case and show how the argument above must be

modified,

Take X = D' = open unit disk of the complex plane and define, for a Nach-
bin family V on D,
HVO(D) = {f(CVo(D); f analytic on D}
with the weighted topology induced from CVO( m.

22. Definition. A continuous weight v without zeros on D is called normnal, if
(i) v is radial, e.g. v(z) = v(]|z]) for all z¢D, and
(ii) v{z) tends to zero as z approaches the boundary of D faster

than some power of (1-]|z]), but less fast than some other

power of (1-|z}), that is:

There exist k>¢>0 and r0<1 such that for all r= r. as

r—->31 -,
.._‘irl_\ 0 and v{r) / e
‘ k
(1-r) (1-r)
This definition and also the main resulis used in the proof of the following
theorem are due to SHIELDS and WILLIAMS [24].
23. Theorem ([57]). If the Nachbin family V contains only normal weight

functions, HVO(D) has the a. p.

Proof = - = E wi bv = |l fveV).
roof, Take E HVO(D)’ E E/bv'I(O) E with the norm bv = || “.v

E_ 18 a normed subspace of H(V ) (D), where V = fAv; x>0}, and it con-

tains all the polynomials (cf. {ii) in 22.). By a result of Shields and
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Williams L24J, the polynomials are dense in H(V ) (D), so we get for the
A
completion ﬁ of E : v H(VV)O(D).

Now another theorem of Shields and Williams [ 24] proves that, for any

fixed normal v, H(VV)O(D) is isometrically isomorpnic to a closed comple-

mented (i. e. continuously projected) subspace of CO(D) under the identifi -

cation f «—» vf, Therefore, with C (D), every H(V ) (D} has the a,p. (This
permanence property of the a.p. is well known. ) Hence we have proved the

a.p. for each E v V€ V, and can conclude as in the preoof of 21, O

Final remark. The space Hm(X) of bounded holomorphic functions on

X = D with the (induced) strict topology 8, i.e. (H (D), B) = HV (D) for

V= C (D), is not included in 23. One can prove, however, tnat this space
has tne a.p., too. Furthermore, this result remains true for instance, if X
is any simply connected region in € (instead of the disk D). This follows by
an easy application of the Riemann mapping theorem (see [3]). (The Rie-
mann mapping theorem allows also to generalize 23., but we leave the de-

tails to the interested reader.)

Added in proof: In his recent reprint entitled ''Der beschriinkte Fall des

gewichtelen Approximationsproblems fir vektorwertige Funktionen" {Pader-
born, April 1975), G. KLEINSTUCK has been able to prove a generalization
of Prolla’s vector-valued Stone-Weierstrass theorem: Theorem 12, of the
Fresent article holds for any completely regular space X and any Nachbin
family V on X (again under the assumption of the bounded case, that is if

for all aeA and all veV the restriction a| supp v is bounded). By use of

this result, tnhe method of the proof of 13, shows already (as indicated at
the end of section 1V) that theorem 13. remains true, if Z<Vor it WV
and X:kR-space'(instead of X locally compact and 0<VCC+{X)).
Moreover, in the same reprint, Kleinstlick obtained approximation results
and a vector-valued Stone-Weierstrass theorem for modules in CVP (X, E),
too. (In the corresponding statements, compactifications of X play a

crucial role, of course.) He was then able to derive, as a corollary, that
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CV(X)® E is always dense in CVp(X,E). And exactly as in the deduction

of 19. from 18., it follows that CV(X) has the a.p., if eitner Z<V or if

W<V and X=k_ -space.

R

For more details and the proofs {using information on the dual space of

CV{X) resp. CVO(X) and a reduction of some questions on vector-valued

functions to this information) we refer to Kleinstiick’s interesting paper.
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