Neuere Ergebnisse zum Approximationsproblem
von Banach-Grothendieck

von Klaus-Dieter Bierstedt

In der Funktionalanalysis wurden in den letzten Jahren mehrere , klassi-
sche®, seit langer Zeit offene Probleme geldst, die sich im Rahmen der Ba-
nachraumtheorie sehr einfach formulieren lassen. So bewiesen Lindenstrauss
und Tzafriri 1971 endlich, da$ ein (reeller) Banachraum, fiir den jeder ab-
geschlossene lineare Unterraum (topologisch) komplementiert — d.h. also
stetig projiziert — ist, bereits topologisch isomorph zu einem Hilbertraum
sein muf. Wihrend ein solches Resultat insbesondere fir die Strukturtheorie
der sog. klassischen Banachriume Konsequenzen hat, ist von seinen vielen
Anwendungen her seit langem das Approximationsproblem von Banach-
Grothendieck von besonderem Interesse gewesen. Dieses vielschichtige
Problem steht auch in engem Zusammenhang mit dem { Schauder-) Basis-
Problem bei separablen Banachrdumen , das mindestens ebenso lange be-
kannt war und besondere Bedeutung gewonnen hatte. Beide Probleme sind
nun seit 1972 durch ein recht kompliziertes Gegenbeispiel von Per Enflo
negativ gelst. Man muf die bisher genannten Ergebnisse so interpretieren,
dafl zwar, wie bekannt, fiir manche Anwendungen der Rahmen der Hilbert-
riume zu eng gefaft ist, daf aber andererseits beim Ubergang zu Banach-
riumen sehr viel mehr verloren geht, als dies zunichst offensichtlich war.

Im vorliegenden Uberblicksartikel soll nun zunéchst (im 1. Kapitel) das
Approximationsproblem mit einigen seiner Aquivalenzen vorgestellt wer-
den. /m 2. Kapitel geben wir einen Abrifs der Entwicklung, die zur Losung
des Problems gefiihrt hat, und streifen neuere Entwicklungen. Aus den Er-
gebnissen, die Enflos Gegenbeispiel bereits benutzen, um weitere (negative)
Konsequenzen herzuleiten, haben wir im 3 Teil die Sitze von Milne und
von Hogbe-Nlend herausgegriffen, weil sich ihre Beweise recht einfach skiz-
zieren lassen und weil ihre Aussagen von einiger Bedeutung fir die Anwen-
dungen sind.

Zur Abgrenzung soll betont werden, dafl darauf verzichtet wird, eine voll-
stindige Darstellung aller Aquivalenzen des Approximationsproblems zu
geben, um nicht zu viele Definitionen und Begriffe einfilhren zu miissen.
Beziehungen des Problems zu topologischen Tensorprodukten werden nur
sehr knapp erwihnt; auch sind die angegebenen Aquivalenzen z.T. nicht be-
wiesen, weil in die Beweise zwar interessante, aber doch recht komplizierte
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Schliisse eingehen. Ebenso tauchen technische Variantep der Ap?romeI-E
tionseigenschaft (A.E.) in der isometrischen Theorie (wie beschranlfted _—
metrische A.E. etc.) hier nicht auf, Fir ein (sehr viel) tieferes“Verstan nis
des Approximationsproblems wiiren solide Grundkenn_tnisse iber lf)ka]kOH'
vexe topologische Vektorriume erforderlich, die wir nicht aligemein VOI};
aussetzen wollen. Der groRte Teil des Artikels halt sich daher an den Ra. d
men der Banachriume (aus deren Theorie sogar relativ wenig benutzt wir )
Um allerdings einige neue Entwicklungen andeuten zu kénnen, Werden n
gewissen Abschnitten auch lokalkonvexe Riume vorkommen. Diese Ab-
schnitte konnen uberflogen werden, wenn der Leser nicht mit Iokalen-
vexen Riumen (das heifit: Vektorriumen mit einer Topologie, die mittels
eines Systems von Halbnormen gegeben wird) vertraut ist. — Die Stoffaus-
wahl orientiert sich selbstverstindlich etwas an den personlichen Interessen
nmoglich, im gegebenen Rahmen alle neueren Er-
gebnisse im Kreis um das Approximationsproblem auch nur zu erwihnen.
Teile des Artikels beruhen auf einem Vortrag, den der Autor am 2. April

1974 anlaflich seines Habilitationskolloquiums am Fachbereich Mathema-
tik der Universitit Kaiserslautern gehalten hat,

1. Ein Uberblick iiber das Approximations])roblem und einige seiner
Aquivalenzen
Beginnen wir sofort mit dey folgenden Definition-

T=T(, €} von E in sich mi
lx— Tx IE < e fiir alle



Approximationsproblem 47

2. Definition: Ein lokalkonvexer (Hausdorffscher topologischer Vektor-)
Raum E (iiber [R oder] €) hat die A.E. genau dann, wenn idg gleich-
miRig auf jeder prikompakten Teilmenge von £ durch stetige lineare
Operatoren von E in sich von endlichem Rang approximiert werden kann.

Die A.E. eines Raumes E bedeutet danach, daR E in einem gewissen, recht
schwachen Sinn durch seine endlichdimensionalen Teilrdume approximiert
wird. Die A.E. von E impliziert (und ist also dquivalent dazu), daf fir je-
den Banachraum F [bzw. jeden lokalkonvexen Raum F}sich jede stetige
lineare Abbildung 7T : E - F (oder T': F— E} stets gleichmafig auf pra-
kompakten Teilmengen von E (oder F) durch stetige lineare Abbildungen
endlichen Ranges zwischen diesen Réumen approximieren laft. In der

einen Richtung sieht man dies, indem man T=To idg (oder T =idg ° T
schreibt und beachtet, daf das Bild prikompakter Mengen unter stetigen
linearen Abbildungen wieder prakompakt ist und daft die Zusammensetzung
einer beliebigen stetigen linearen Abbildung mit einer solchen endlichen
Ranges wieder von endlichem Rang ist. In der anderen Richtung braucht
man nur T = idg bei E = F zu setzen. — Die A E. eines Raumes E besagt
also auch gerade, daf beliebige stetige lineare Abbildungen von diesem Raum
in andere oder von einem anderen Raum nach E in einem schwachen Sinne
durch solche endlichen Ranges approximiert werden konnen.

Grothendieck gab viele Aquivalenzen fur die A.E. an und stelite folgende
Frage:

Approximationsproblem: Hat jeder Banachraum — oder jeder lokalkonvexe
Raum - die A.E.?

Man kann leicht zeigen, daf bereits alle lokalkonvexen Riume die A.E. be-
sitzen, wenn nur jeder separable Banachraum sie hat. (Separabel bedeutet,
wie iiblich: Es gibt eine abzihibare dichte Teilmenge.) Dies folgt einmal

aus gewissen Vererbungseigenschaften der A.E., die das Problem auf Bana‘ch-
riume reduzieren — wir kommen darauf spater noch zu sprechen'. Die wei-
tere Reduktion auf separable Banachraume liefert eine einfache Uberlegung
mit dem Satz von Hahn-Banach, wenn man bedenkt, dafd die Abschlieffung
der linearen Hiille einer kompakten Menge in einem Banachraum immer
einen separablen Unterraum bildet. Also ist das Approximationsproblem

von Grothendieck dquivalent Zu:

Reduziertes Approximationsproblem: Hat jeder separable Banachraum die

A.E?

In separablen Banachriumen gab es schon viele Jahre vor Grothendieck. ein
offenes Problem, das aus der Zeit (Schauder 1927) stammte, als man die
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Funktionalanalysis von Hilbert- auf Banachriume zu verallgemeinern ver-
suchte.

3. Definition: Sei E (separabler) Banachraum. Man sagt, eine Folge
{x; }ien in E ist eine Schauder-Basis von E, wenn jedes e € E eine ein-

o0
deutig bestimmte Darstellung e = Z e;X; als in E konvergente Reihe
i=1

besitzt. (,,Eindeutig bestimmt besagt dabei, daR die e; < [Roder]C
durch e eindeutig festgelegt werden.)

hier mit keinen anderen Basisbegriffen zu tun haben. Es zeigt sich, daf bei
einer Basis {x;} icN von E die wohldefinierten Koeffizientenfunktionale
fi : e~ e; stetige Linearformen auf £, al5o Elemente des (topologischen)
Dualraum_es E’ von E sind. (Tatsichlich folgt die Stetigkeit der f; mit einer
»\{eiteren Uberlegung aus dem Open Mapping-Theorem .) — Ubrigens ist

ein Banachraum mit Schauder-Basis sicher Separabel, wie man sofort sieht.

n 0
Tu(e)= Z €;x; fir e = z €iX;, wohldefinierte stetige lineare Operato-
=] 1=1
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Implilc_qtion ist also nicht umkehrbar. Wir kommen aber jetzt zu einer wich-
tigen Aquivalenz fiir die A.E. eines beliebigen Banachraumes E, die mit dem
Begriff der kompakten Operatoren zusammenhingt.

5. Definition: Ein linearer Operator T : F— E, E und F Banachriume,
heilt kompakt, wenn das Bild TF; der Einheitskugel Fy von F relativ-
kompakt in E ist.

Kompakte Operatoren tauchen in den Anwendungen an vielen (verschiede-
nen) Stellen auf: z.B. bei gewissen Multiplikationsoperatoren in geeigneten
Folgenriumen, bei einigen Sobolevschen Einbettungsoperatoren und vor
allem bei Integralgleichungen (und somit auch bei gewohnlichen oder par-
tiellen Differentialgleichungen), s. dazu etwa das Lehrbuch [22] von Wloka,
§ 23ff. Wir erwihnen nur: Bezeichne C [a, b] den Raum der stetigen
(komplexwertigen) Funktionen auf dem kompakten Intervall [a, b] CR,
versehen mit der sup-Norm, und sei K : [a, b] X [a,b] > C (gleichmiRig)

b
stetig. Dann ist A : C{a, b} > C [a, b], Ax(t) = | K(t,5) 2(s) ds bei

a

X€Cla,b]und t € [a, b], kompakt, wie sich direkt aus dem Satz von
Arzeli-Ascoli ergibt. (Analog ist iibrigens ein entsprechender Operator A
auf L2[a, b] ansteile von C [a, b] erst recht kompakt, wenn die Funktion
K zwar nicht notwendigerweise stetig, aber etwa aus L?([a, b} X [a, b))
ist.) — Andererseits sollte bemerkt werden, daf natiirlich die Identitat idg
eines Banachraumes E genau dann kompakt ist, wenn bereits dim E < «
gilt. (Denn fiir die Kompaktheit der Einheitskugel E1 des Raumes E ist E
endlichdimensional notwendig und hinreichend.)

Die Bedeutung der kompakten Operatoren wird auch dadurch unterstri-
chen, daf fiir solche Abbildungen eine gut ausgebaute Spektraltheorie vor-
liegt (Riesz-Schauder-Theorie, Fredholmsche Alternative, Spektralsatz usw.).

Sind E und F wieder Banachriume, so bildet der Raum € (F, E) der kom-
pakten Operatoren von F nach E einen abgeschlossenen linearen Unterraum
des Raumes Z(F, E) aller stetigen linearen Abbildungen T': F ~ E, verse-
hen mit der Operatornorm (d.h. bei gleichmifiger Konvergenz auf der Ein-
heitskugel von F). € (F, E) enthilt offenbar den Raum F(F, E) aller §te-
tigen linearen Operatoren endlichen Ranges, sO daB auch fiir die Abschlie-

ung #(F, E) bzgl. der Operatornorm gilt:

FF.E)C ¢(F,E)C 4(F,E).

4 Uberblicke Mathematik 76
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Banach stellte nun bereits die Frage, ob hier sogar stets 9" (F.E)=¢ (1_1‘1 E)
richtig ist, d_h. ob sich kompakte Operatoren immer in einem starken Sinne
durch solche endlichen Ranges approximieren lassen, genauer gesagt:

Problem der kompakten Operatoren: Lapt sich jede kompakte lineare Ab-
bildung zwischen beliebigen Banachriumen in der Operatornorm durch
Stetige lineare Abbildungen endlichen Ranges approximieren?

Fiir die Ldsung dieses Problems hatte Banach als Preis eine lebende Gans
ausgesetzt. Grothendieck [11] bewies nun sofort eine sehr interessante
Aquivalenz:
6. Satz: Fiir einen Ban
(DEhat die A.E

(2) Fiir beliebigen Banachraum F und beliebigen kompakten Operator

T:F>Eist Tin der Operatornorm Limes von stetigen linearen Abbildun-
gen endlichen Ranges, d . e gt F(F E)=¢g (F,E).

Beweisskizze. Die Richtung yon (1) nach

achraum E sind folgende Aussagen dquivalent:

(2) ist (fast) trivial- Ist namlich

» SO existiert nach (1) zu der kompakten Menge TF) in E
¢in Operator S : £+ E von, endlichem Rang mit || x — Sy g < € fiir alle

X€TF,. Die Zusammensetzung So T'liefert einen stetigen linearen Ope-
fator von F'in E von endlichem Rang, derart daf fiir alle y € F 1 gilt:
1Ty (S0 T) Ylg=1ITy —S(Ty) g < €. Das besagt

T8, T".‘Z’(F,E) Seaso Te —m

ur die Ky noch kompakt im Banachraum Ey ist. .Da-
linearen Unterraum von g , der von K erzeugt wird

tkonvexitit Ep = (J nK), versehen mit dem
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li—TlgE, B < %— geniigt. Um den Beweis zu beenden, nutzt man jetzt

die Kompaktheit von Ky in Eg dazu aus, mit etwas Dualitatstheorie (und
einem Dichtheitsargument) zu T eine stetige lineare Abbildung S: E—~>E

von endlichem Rang zu bestimmen, die | Sx — Tx g < S— fir alle x € Ky

erfiillt. Insgesamt folgt dann mit der Dreiecksungleichung sofort
lx —Sx g < e fiir alle x € K. O

Satz 6. hat zur Folge, daf das Problem der kompakten Operatoren nur eine
operatortheoretische Version des Approximationsproblems ist: Gibt es
einen Banachraum E ohne A .E., so gibt es auch einen weiteren Banachraum
Fund einen kompakten Operator T': F— E, der nicht durch Abbildungen
endlichen Ranges approximiert werden kann. Umgekehrt folgt aus der
Existenz von Banachriumen E und F und eines Operators
Te4(F,E)\#(F,E), daB E die A.E. nicht besitzt. Fiir seine negative
Losung des Approximationsproblems stand Enflo also ,,die* lebende Gans
(von Banach) zu, und er konnte ,,sie* dann auch 1973 in Polen in Empfang
nehmen (und dort — wegen der Exportbestimmungen — gleich an Ort und
Stelle verzehren).

Zum besseren Verstindnis wollen wir an Satz 6. noch einige weitere Bemer-
kungen anschliefen. Grothendieck [11] bewies auch folgendes:

7. Satz: Fiir einen Banachraum E sind dquivalent:

(1) Der Dualraum E ' von E hat die A.E.

(2) Fiir beliebigen Banachraum F und beliebigen kompakten Operator

T E - Fist T in der Operatornorm Limes von stetigen linearen Abbildun-
gen endlichen Ranges, d.h. es gilt Z (E,F) = € (E, F).

Und die A.E. von E ' impliziert die A.E. von E.

Die Umkehrung der letzten Aussage von 7. ist falsch, wie man nach (Enflos
Gegenbeispiel und) einer Uberlegung von Lindenstrauss (siehe [15])‘we11’$:
Es gibt sogar einen Banachraum E mit Basis, dessen starkes Dual (wieder

separabel ist, aber) nicht die A.E. hat.
Ubrigens scheint es ein offenes Problem zu sein, ob aus & (E,E)=%(E.E)
bereits die A E. des Banachraumes E folgt. Doch zeigt man, dab fiir Banach-

riume E und F mit € (F,E)# F(F,E) (und solche existieren nach Enﬂo)
der Raum X = E @ F die Eigenschaft € (X, X) # F (X, X) hat. (Fir wer-

tere Information hierzu siehe Bachelis [1].)

Kommen wir nun zu einer anderen interessanten (doch moglicherweise et-
was weniger bekannten) Aquivalenz des Approximationsproblems, die man

4*
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als (recht konkreten) Funktionenraum-Aspekt dieses Problems bezeichnen
konnte.

8. Definition: Seien K, K, kompakte Hausdorffriume mit (topologi-
schem) Produkt K; X Kj. Sei fiir kompaktes K C(K) die sup-Norm-

Banachalgebra der stetigen (sagen wir) komplexwertigen F unk'tlonen
auf K. Fiir abgeschlossene lineare Unterriume A; von C(K)) (i =_‘1 ,2)
definieren wir zwej (wie sich leicht zeigt, abgeschlossene) Unterrdume
von C(K; X K): ‘ e
(1) das sog. Slice-Produk: Al # Ay = {fECK, X Ky); d.1e Paft}e]
Funktion f( . | t2) 15> f(s, ty) auf Ky gehort zu A, und die partielle
Funktion f(t;,.): ¢ > f(t1, t) auf K, gehort zu A, fiir alle festen
(t1, 1) €K X K, }, _

(2) das vollstindige Tensorproduk: A1 ® A := AbschliefSung n
C(K; X K5) des Raumes 4; ® Aj aller Funktionen, die endliche Sum-

men von Produkten von Funktionen aus Ay und A, sind, also die Form
haben:

n
L t)> > fit)at) ; neNfiea, ged, =1, .0

i=1
" : : y . : en:
Zunichst bemerken Wir zur besseren Eingewthnung dieser Bezeichnung

9. Satz (Dieudonné 1937). CKy X Ky) = C(K;) # C(Ky) =
=C(K)® C(K>).
Beweis. Hier ist die erste
vial, wihrend dje Dichth
dem Satz yon Stone-

Gleichung nach Definition des Slice-Produktes tri-
eit von C(K;) ® C(K3) in C(Ky X K) direkt aus
Weierstrag folgt (vgl. etwa [3]). O

Im allgemeinen Fail yop A1 und A, wie in Definition 8. hat man stet_s
418 A CA; # A, weil die Inklusion fird; A, offensichtlich ist
und 4, # A, in C(K; X K5) abgeschlossen sein muf. Ein Problem, das
sich sofort stellt (und angeblich bereits Banach und Gelfand bekannt ge-
wesen sein soll), ist in der folgenden F rage angesprochen:

Slice-Produkt-Problem: Gilt fiir alle

- Ay, Ay wie in 8 immer

A1® Ay=4,» Ay?

Dies ist also ein reines Approximationsproplem fiir Funktionen in zwei {ab-
strakte
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enthaltene Information iiber die partiellen Funktionen f(t1, ) und
f(.,t), t; €Ky, ty € Ky, dabei nicht verlorengeht? Implizit wurde bei
Grothendieck [11] dazu dann folgendes gezeigt (fiir einen Beweis siehe
auch [21):

10. Satz: Fiir einen abgeschlossenen linearen Unterraum Ay von C(Ky),
Ky kompakt, sind folgende Aussagen dquivalent:

(1) Al hat die A.E.

(2) Fiir beliebigen kompakten Raum K, und beliebigen abgeschlossenen
linearen Unterraum A, von C(Ky) gilt Ay # Ay = A1 ® A,,dh. jede
Funktion aus Ay # Ay kann gleichmafig auf K1 X Kj durch Funktionen
aus dem Tensorprodukt Ay ® Ay approximiert werden.

Zu diesem Satz kénnen wir hier nur kurz die Beweisidee skizzieren: Wie
nach einiger Uberlegung zu sehen ist, kann man das Slice-Produkt Ay # A
mit einem Raum kompakter Operatoren yon Dualraum A,' von Aj nach
Ay identifizieren, wobei die sup-Norm auf K X K; der Operatornorm ent-
spricht. Und zwar sind die entsprechenden Abbildungen gerade diejenigen
kompakten, die noch schwach stetig sind, d.h. stetig von A, [0(47, A
nach A; [0(A;, A1)]. Das Tensorprodukt A; ® Aj entspricht bei dieser
Identifizierung genau dem Teilraum aller Abbildungen endlichen Ranges.

Aber ein 6. dhnlicher, etwas modifizierter Satz besagt nun, daf die A.E.
von A; dazu dquivalent ist, daf fur alle Banachriume F im Raum der
schwach stetigen kompakten Operatoren von F' nach A; die Operatoren
endlichen Ranges dicht liegen. Um Satz 10. einzusehen, braucht man also
nur noch zu uberlegen, wieso man sich bei der letzten Aussage auf die Ba-
nachriume F beschrinken kann, welche die Form A3 abgeschlossen in
einem C(K,), K, kompakt geeignet, besitzen. Dies ist aber einfach: Denn
jeder Banachraum F ist isometrisch isomorph einem abgeschlossenen linearen
Unterraum A, von C(K3), wo Ky gerade die abgeschlossene Einheitskugel
F| von F’, versehen mit der schwach*-Topologie o(F', F), ist. (Das ergibt
sich aus dem Satz von Hahn-Banach leicht; Ky ist nach dem Satz von Ba-

nach-Alaoglu-Bourbaki kompakt.) U

Als Folgerung aus Satz 10. bekommen wir jetzt, daf iiberraschenderweise
auch das Slice-Produkt-Problem (das doch mit relativ konkreten Raumen
arbeitet und a priori nichts mit irgendwelchen kompakten Teilmengen von
A oder A, oder mit kompakten Operatoren zU tun hatte) zum Approxi-
mationsproblem dquivalent ist! Dazu brauchen wir namlich nur das letzte
Argument aus der Beweisskizze von Satz 10. emeut zu iiberdenken: Gibt
es einen Banachraum E ohne A.E., so gibt €5 (da isometrisch isomorphe
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Raume immer gemeinsam die A E. haben bzw. nicht haben) ein Kompak-
tum K, (= E{ [o(E’, E)]) und einen abgeschlossenen linearen U'nterraum
Ai(=E)von C(K}) ohne A E. Zu diesem koénnen wir nach 10. ein kOfn-
paktes K5 und ein abgeschlossenes Aj in C(K3) finden, fiir das es gewisse
Funktionen fe 4, # A gibt, die sich nicht durch Funktionen aus

A1 ® Aj approximieren lassen. Umgekehrt impliziert fiir vorgegebeile K,
und K3, A; und Aj die Existenz von nur einemfEA; #» Ay \A; ® 4)
nach 10., dai A 1 €in Banachraum ohne A.E. ist.

Das Slice-ProduktProblem tauchte Ende der 60er Jahre in einer einge-

schrinkten Form in Arbeiten von Birtel, Eifler u.a. auf (s. dazu [2]). Wir
notieren:

11. Definition: Ist K kompakt, so heifit eine abgeschlossene Teilalgebra
A von C(K), die die Konstanten enthilt und die Punkte trennt (d.h. zu

Lot €K, t) #t,, gibt es FEAmit f(t)) +# f(t5)) uniforme Algebra
(auf K).

(Fir reelle Skalare hitte der Satz von Stone- Weierstraf sofort zur Folge,_
daf eine uniforme Algebra iiber K wie in 1] bereits gleich ganz C(K) sein

miifite. Wir sind hjer aber iiber €, wo djes keineswegs der Fall ist!) — Die
Definition fiihrt zu:

Eingeschrinktes Slice-Produkt-Problem: (;ii; fiir beliebige uniforme Al

gebren Ay und A, (auf beliebigen kompakten Riumen K| und K,
Stets Ay # A, :Al ® Ay?

eingeschrinkte Slice-Produkt-

zum Approximarionsproblem ist und daher mit
diesem eine Negative Antwort hat,

pitel mjt €inigen weiteren Bemerkungen fiir inter
essierte Lesey:
1. Die Wwichtige & quivalen; I Satz 6. iiber dje A E von Banachriumen hat
bei all, .
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genau dann, wenn eine (und damit jede) der folgenden untereinander
dquivalenten Aussagen richtig ist:

(1) Fiir jeden Banachraum F ist die natiirliche Abbildung von E & F
in E® _F eineindeutig.

(2) Fiir jeden Banachraum F ist die kanonische Abbildung von F'® E
inZ(F, E) injektiv.

(3) Die kanonische Abbildung von E '® . Enach L(E, E) ist injektiv.

(4) Fiir jedes u€ E'®, E, fir das die (vgl. (3)) zugeordnete {,,nukleare*)
Abbildung von E nach E Null ist, muf§ auch die Spur von u Null
sein, d.h. die Spur ist auf dem Raum der nuklearen Operatoren auf
E wohldefiniert.

Die hier vorkommenden Begriffe sind in Biichern iiber topologische Ten-
sorprodukte (und auch in Schaefer [18]) erklirt. Die Aussagen j:,ind von
Bedeutung in der Theorie dieser Tensorprodukte, (4) hat auch in der

Operatortheorie erhebliches Interesse. — Ubrigens benutzt man die oben
erwihnte Aquivalenz dazu, einen Beweis der letzten Aussage in Satz 7.
zu geben (der also keineswegs einfach ist).
. Bei Grothendieck [11] wird das Approximationsproblem durch Zu}'lﬂfe-
nahme weiterer Theorie auf einige konkrete Fragestellungen reduziert.
So ergibt sich dort, daB die Aussage, jeder Banachraum habe die A.E.,
dquivalent ist zu jeder der folgenden Behauptungen:
[e.9]

() Ist A= (a,--)(?o. eine unendliche Matrix mit Z sup | ajj|l <o und

4 Ll =1 i=1 jEN

A? =0, dann gilt Spur A= 0. o

(i) Wenn £ eine stetige Funktion auf [0,1}X [0,1] ist mit

f(x, t) f(t, y)dt = O fiir alle x, y € [0,1], so mufl bereits

1
)
1
[ £t,0dt=0sein,

0

(Hier kann als Skalarenkdrper Roder €© zugelassen werden.)
Wie sich aus Enflos Gegenbeispiel auch konkrete Gegenbeispiele zu (i) und
(ii] ableiten lassen, wird in Davie [6] erklart.
. Wir haben bereits erwihnt, daf es separable Banachriume mit A.E., z.zber
ohne Basis gibt. Kiirzlich haben nun Mityagin und Zobin [17] auch ein
Beispiel eines nuklearen (F)-Raumes ohne Basis angegeben. (Nukleare

Riume haben stets die A.E.!)
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2. Beispiele zur Approximationseigenschaft; Entwicklung des
Approximationsproblems von Grothendieck bis heute

Es ist an der Zeit, einige Beispiele zur A E. zu betrachten. Man pflegte vor
Enflos Gegenbeispiel zu sagen, daB jeder ,,in den Anwendungen auftauchen-
de (konkrete) Raum* die A.E. besitze. (Natiirlich ist auch Enflos Gegen-
beispiel , konstruiert*, also nicht gerade , konkret®, doch hilft eine solche
sophistische Unterscheidung heute nicht mehr.) Tatsichlich stellte sich
namlich heraus, daf viele lokalkonvexe und viele (, klassische™) Banachrau-
me die A.E. haben. Dies liefert nach 1., 6., 7. und 10. sofort positive Ergeb-
nisse. (Wir haben die entsprechenden Sitze offensichtlich bewuft so for-
muliert, daft Gegenbeispiele zum Approximationsproblem nur gewisse Aus-
sagen fiir beliebige Riume ausschliefen. Die Gegenbeispiele besagen dann
in diesem Zusammenhang, grob gesprochen, dal man sich zum Beweis po-
sitiver Resultate hier wirklich ,,anstrengen* mufl — etwa beim Beweis der
A.E. einiger benutzter Riume — und sie nicht sowieso ,,geschenkt® be-
kommt!)

Von folgenden konkreten Riumen weifs man nun, daf sie die A.E. besitzen:

(1) gewisse Folgenriume, z.B.IP (1 < p < ) und o,

(2) viele (reelle oder komplexe) Funktionenriume wie LP(X,, u), X lokal-
kompakt und u positives MaB auf X, | Sp<; C(K), K kompakt,
CB(X) mit der sup-Norm, X vollstindig reguldr; C.(X) mit seiner ka-
nonischen induktiven Limes-Topologie, X lokalkompakt und im Un-
endlichen abzihlbar; die Diskalgebra und allgemeiner A(K) fiir belie-
bige kompakte K C € oder fiir gewisse , gutartige™ K C ct(n>1)
usw.,

(3) die meisten Distributionsréume und die entsprechenden Grundraume,
jedenfalls wenn geeignete Abschneide- und Regularisierungsoperatoren

existieren, s. etwa Schwartz [ 19]. Hierzu gehoren etwa die Raume
2,9, 8™, 4, Oy, 9, P 8., 0, 9p(0<m<,| < p <L ).
L

Auch Riume stetiger Funktionen, deren Topologie mit Hilfe eines Systems
von Gewichtsfunktionen definiert wird, haben in fast allen wichtigen Fil-
len die A E. (siche [4]). Hier beruht ein Beweis (wie auch bei den Raumen
unter (2) mit Ausnahme derer des letzten Typs, wo man mehr Theorie be-
nétigt) oft auf der Existenz geeigneter Zerlegungen der Eins. — (1) ist na-
tiirlich fast immer eine einfache Folgung von Satz 4. Wir erwihnen noch,
daf die letzte Aussage von (2) mittels Satz 10. inzeressante Anwendungen
auf die Polynomapproximation im €" hat (vgl. dazu [2] und [3]).
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Dagegen scheint bisher be; folgenden konkreten Banachriumen nicht ge-
Kldrt zu sein, ob sie die A E. haben:

(i) CB™ (R™) = Raum aller m-mal stetig differenzierbaren Fpnktionen
auf dem R” (n > 1), die samt aller partiellen Ableitungen bis zur

Ordnung m einschlieflich auf R? ( gleichmifig) beschrankt sind, ver-
sehen mit der Norm

Ifl=sp  syp (D)) |, fiir 0< m< oo,
xER?

O0<ial€m

(i) H* D)= sup-Norm-Algebra der beschrinkten holomorphen Funk-
tionen auf dem offenen Einheitskreis D der komplexen Ebene,

(iif) g(lz, 12), also der Raum aller stetigen linearen Operatoren auf ,,dem
separablen Hilbertraum 12 mjt der Operatornorm.

Man sieht hieran, dag doch fij einige recht konkrete R4ume Probleme auf-
treten konnen, wenn man fragt, ob sie die A.E. haben!

Auer einzelnen Beispielen von Riumen mit A.E. 1aft sich zeigen, da ge-
wisse Raumklassen immer dieA.E. haben.

12. Satz: Die A.E. besitzen alle

(1) (separablen ) Banachriume mijr (Schauder-) Basis,
(2) Hilbertraume,

(3) komplexen kommutativen ¢ *-Algebren,
(4) nuklearen (lokalkonvexen ) Rdume,

: In der Distributionstheorie und
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sungsriumen gewisser partieller Differentialoperatoren treten nukleare
Riume auf. So liegt dem von L. Schwartz hergeleiteten wichtigen ,,Satz vom
Kern* der Begriff des nuklearen Raumes zugrunde; daher auch der Name.
Die Klasse der nuklearen Riume enthalt von den Banachraumen nur genau
die endlichdimensionalen; doch 18t sich mit ihr eine Theorie aufbauen, die
bedeutende Anwendungen hat und in gewisser Weise niher an der endlich-
dimensionalen Theorie liegt als die der Banachraume. In der modernen
Theorie topologischer Vektorraume spielen die nuklearen Riume eine fast
ebenso bedeutende Rolle wie die Banachraume.

Fiir die Praxis wire es schén, wenn man die in Satz 12. aufgefiihrten Raum-
klassen noch etwas vergrofiern oder weitere solche Raumklassen finden
konnte. So erhoben sich folgende Fragen:

(1)  Haben alle reflexiven Banachrdume die A.E.?
(1) Haben alle uniformen Algebren die AE?
(Il1) Haben alle Fréchet-Schwartz-Riume (bzw. die dazu dualen
sog. (LS)-Riume) die A.E.?
(I) bezieht sich natiirlich auf eine Verallgemeinerung von 12.(2), ebenso
wird (III) durch 12.(4) motiviert: Vollstindige lokalkonvexe Raume E sind
Schwartzriume genau dann, wenn in der Darstellung E = E-K{; v (zwar

nicht nukleare, aber doch) kompakte verbindende Abbildungen vorliegen.
In der Praxis treten unter den vollstandigen Schwartz-Riumen besonders
die metrisierbaren, sog. (FS) (= Fréchet-Schwartz)-Rdume, und ihre starken
Duale, die (LS)-Riume, auf; daher (I1I). Alle drei Fragen wurden negativ
beantwortet, so daf Satz 12. in gewisser Weise scharf ist: Per Enflos Gegen-
beispiel 1oste (I) negativ, wihrend sich Gegenbeispiele zu (II) und (1) aus
(Enflos Gegenbeispiel und) Satzen von Milne bzw. Hogbe-Nlend ergaben,
auf die im 3. Kapitel genauer eingegangen werden soll.

Wir kommen damit zu einem Uberblick iber die nistorische Entwicklung
des Approximationsproblems nach Grothendieck (1955). Am Ende seines
Buches [11] hatte Grothendieck folgende scheinbar plausiblen Vermutun-
gen ausgesprochen: Nicht jeder Banachraum hat die A.E., aber moglicher-
weise besitzt sie doch jeder reflexive Banachraum.

Es gab in den darauffolgenden Jahren wenig neue allgemeine Erkenntniss_e
zum Approximationsproblem. Man bewies von einzelnen Raumen, daf sie
die A E. besitzen, und hoffte wohl, unter konkreten, in der Praxis auftrfe-
tenden Riumen ein Gegenbeispiel zu finden. [Dieses Problem ist m gewis-
ser Weise heute noch ungeklirt, wie die Beispiele (i) - (iii) oben zexgen:]
Vor Enflo wurde kein Versuch bekannt, ein Gegenbeispiel zu konstruieren.
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Die Impulse, dje schlieflich zur tatsichlichen Losung des Problems gefiihrt
haben, entwickelten sich hauptsichlich aus zwei Richtungen: Die Theorie
der (Schauder-) Basen machte starke | ortschritte (vgl. [15] und Singers
Buch [21)), wihrend man andererseits die Theopje der , klassischen* Ba-
nachriume vorantrieb (R.C. James, Lindenstrauss, Pelczynski, Rosenthal
u.am., sisehe die Lecture Notes [14] von Lindenstrauss und Tzafriri). Dort

- Zp-Riume z.B. aych untersucht, wie die
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dieck geworden war, hatte vor allem auch grofe psychologische Konsequen-
zen: Von nun an wurde an der Losung des Approximationsproblems mit
Hochdruck gearbeitet.

Man kann die reflexiven Riume X, iiber die sich kompakte Operatoren nach
13. faktorisieren lassen, sehr stark einschrinken und genauer charakterisie-
ren. Dies tat Johnson in seiner Arbeit [13], wobei er zu einem ,,komple-
mentiert universellen dualen Banachraum fiir separable Banachriume* ge-
langte. Das heifit, Johnson gab einen Banachraum C;’ an, so daf fiir jeden
beliebigen separablen Banachraum E der Dualraum E ' normisomorph
einem stetig projizierten Unterraum von C} ' ist. Man beachte nun, daB sich
die A.E. nach der letzten Aussage von 7. vom Dual E ' eines Banachraumes
E auf E selbst vererbt und daf sicher jeder stetig projizierte Unterraum eines
Raumes mit A E. wieder die A.E. besitzt. Damit bekommt man, dafl die
A.E. von C; ' bereits die A.E. jedes separablen Banachraumes und damit
eine positive Losung des Approximationsproblems nach sich ziehen wiirde!
Nun ist C;’ (bis auf eine Isometrie) gerade eine sog. I”-direkte Summe ge-
wisser endlichdimensionaler Riume G, (wachsender Dimension), also

Ci'= {(gnen:8:' €EGn' , 1@ Inlw= sup ign'lg, <o}
n

Es konnte damit auf den ersten Blick so aussehen, als ob dieses Ergebnis
von Johnson eine positive Losung des Approximationsproblems hitte er-
warten lassen. Doch war andererseits damit ein guter Kandidat fiir ein Ge-
genbeispiel gefunden. (Enflos Konstruktion verlief allerdings aus techni-
schen Griinden anders, doch wissen wir nach seinem Gegenbeispiel natiir-
lich, da auch Cy’ oben nicht die A.E. hat!)

Im Sommer 1972 ging innerhalb ganz kurzer Zeit die Nachricht unter den
Funktionalanalytikern um die Welt, da Enflo ein Gegenbeispiel zum
Approximationsproblem gefunden hatte. Verfolgen wir Enflos Entwick-
lung etwas genauer: Enflo hatte zunichst einen Banachraum mit Basiskon-
Stante > | konstruiert (siehe [7]), indem er einen Unterraum des Folgen-
raumes [/ aus gewissen endlichdimensionalen Raumen aufbaute. Es han-
delte sich dabei um eine Konstruktion, die sich im wesentlichen um zwei-
dimensionale Teilriume drehte. — Dies war allerdings, wie es zunéchst
schien, kein Weg zu einer negativen Losung des Approximationsproblems:
Lindenstrauss zeigte anschliefend sogar, daf man einen uniform konvexen
Banachraum mit Basiskonstante > 1 bekommen kann, der isomorph zu -
einem Hilbertraum ist, also mit diesem die A.E. hat. Die Basiskonsta-nte ist
ja auch ein Begriff der isometrischen Theorie, wihrend die A.E. zur iso-
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Identitit von Operatoren endlichen Ranges der Norm < 1 approximiert
werden mugf, Grothendieck [11] hatte aber gezeigt, daf reflexive Banafh'
raume mit 4 .F Sogar die metrische A E haben miissen. Tatsichlich Zel(liglo'
nete dies Enflog weiteren Weg vor- Fr konstruierte einen Teilraum von
ohne metrische A.E. und bem

erkte, daft man die angegebene Konstruktion
S0 modifizieren kénne, daf sie ej

entstandenen publizierten Verg;

sche A E, angegeben, der sep

2 -direkten Summe gewisser endlichdimensionaler Riume. Im G?gensatz
zum fritherepn Artike] [7] muiten hier héherdimensionale Unterr?ume be-
trachtet werden, und dje Konstruktion wurde erheblich komplizierter.

icht sehr einfaches kombinatorisches Lemma. —
Allerdings ist es auch eigentlich ey Methode zyr Erzeugung von Banach-

< ® hat der Folgenraum IP einen abge-
Nearen Unterrqum ohne A.E
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Davies Konstruktion in [S] ist die eleganteste und am leichtesten zugéingli-
che. (Sie wird auch bei Lindenstrauss, Tzafriri [14] skizziert.) Bei ihr gibt
man direkt einen Raum ohne A.E. an, statt einen Umweg iber (Aquivalen-
zen des Approximationsproblems oder iiber) tieferliegende Sitze von Gro-
thendieck zu nehmen. Wir skizzieren hier kurz fiir Interessenten den Aus-
gangspunkt der Konstruktion und verweisen fiir die technisch noch immer
recht komplizierte Durchfithrung auf die Originalarbeit.

Sei ¢ der Raum aller endlichen (reellen oder komplexen) Folgen, d.h. eine
Folge x = (xk)keN gehort zu ¢, wenn fiir alle k> kg = ko(x): xk=0 gilt.
Wit wollen { up, }pen C v finden, derart daft X = abgeschlossene lineare
Hillle von { u, },,en in cg oder IP, 2 < p <, einen Banachraum ohne

A E. bildet. Dazu gibt man mit den u,, gleichzeitig ein System

{¢n}tnen C v an, von dem man sich vorstellt, es liege im Dualraum des

Raumes, der { u, } enthlt — also in 19, 117 + é— = 1, falls X C [P, bzw. in

N falls X ¢ co. {Up. vn nen soll ein biorthogonales System bilden, d h.
man fordert ¢, (Uy,) = 6,m (= 1, fallsn=m, und O sonst) fiir alle

n, m& N, wobei klar ist, was ¢, (i) bedeutet. Nun konstruiert man die

Up und ¢, nicht per Induktion nach n, sondern in Blocken: Der k-te Block
besteht aus 2% Elementen (k=0,1,...),undin k-ten Schritt werden also
die u,, und y,, angegeben mit €Ay, : = {2k,2k +1,... ,2’Hl —1}CN.
Bei der Konstruktion und dem Beweis ist folgende Definition fundamental:

Fiir X wie oben und einen stetigen linearen Operator T von X in sich ist
die , mittlere Spur von T im k-ten Block " gegeben durch

Br(T) : = -;_k— Z on(T tip)-

nEAk
Der entscheidende Punkt im Beweis ist nun die Wahl der u, und n 50, dafd
fiir jedes T€.L(X, X) B(T) : = lim By(T) existiert und folgende Eigen-
k->CO

schaften hat: g ist stetiges lineares Funktional auf dem Raum ZL(X), d.h.
auf dem Raum £(X, X), versehen mit der Topologie der gleichmifigen
Konvergenz auf kompakten Teilmengen von X, und man bekommt =0
auf den Operatoren endlichen Ranges. Andererseits gilt Bp(idx) = 1 fur
alle k (da { Uy, vp tnen biorthogonal), also auch 8(idx) = 1. Der Satz von
Hahn-Banach fiir den lokalkonvexen Raum Z,(X) (oder ein direktes Argu-
ment) zeigt dann, daB X nicht die A.E. hat, weil idx nicht in Z,(X) durch
Operatoren endlichen Ranges approximiert werden kann. (1

Die Folgen der negativen Losung des Approximationsproblems sind be-

trichtlich, wie aus dem Bisherigen wohl klargeworden sein diirfte. Tatsich-
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lich zeigt sich immer mehr (vgl. auch Kapitel 3), daR es viele Raume ohne
A.E. geben muf. Eg wird in Zukunft sowohl in der Banachraum-Theorie
als auch in der Theorie der lokalkonvexen Riume darum gehen, mdglichslt
einfache Charakterisierungen der Riume mit A.E. anzugeben (und handli-
che Kriterien dafiir 7y finden, dap ein Raum die 4.E besitzt).

Vor allem, wenn man von vorgegebenen Riumen bei konkreten Untersu-
chungen die A E. benotigt, spielen die bisher bekannten Beispiele und,
darauf aufbauend, Uberlegungen mit Hilfe der Vererbungseigenschaften der
A.E. eine wesentliche Rolle. Diese Vererbungseigenschaften sind i.a. re({ht
schwach, doch kennt man einige, die in den Fillen, die man in der Praxis

trifft, helfen konnen. Wir stellen sje zum Schluf dieses Kapitels in einer
Tabelle zusammen:

15. Satz: Die AE. vererbt sich von

auf
(1) einem lokalkonvexen Raym dichte Unterriume, insbesondere
—— _Jalsor
(1) der Vervollstindigung £ E selbst
€ines Raumes £

(2) einem lokalkonvexen Raumm stetig projizierte Unterriume

(3) allen lokalkonvexen E,ocA, | E= proj E, , sofern die Projektion
“a

von E in jedes E,, dichtes Bild hat,
—_—— 3 insbesondere also:

(3)den Raumen £, e s 5
acA ]

a—s
mit quasivollstindigem Grenzraum.
sofem jedes kompakte K in E be-
reits in einem E, liegt und dort

bzgl. der Topologie von E, kompakt
ist (insbesondere also bei abzihlba-
Ten strikten oder kompakten Ein:
bettungsspektren vollstindiger Rau-

Ay ao—————— | me), als Spezigifall-
(4) den Riumen E, ihre direkte Summe @ E,

=r.} I
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(5) einem quasivollstindigen das Dual E; = E ', verschen mit der
tonnelierten oder bornologi- Topologie der gleichmifigen Kon-
schen Raum E vergenz auf kompakten Teilmengen

von E, als Spezialfall:

(5°) einem Montelraum das starke Dual Ej,

(6) dem Dual E, eines RaumesE | E (= (E¢ )¢ ) selbst
wie unter (5)

(7) dem starken Dual E (= Ep) E selbst
eines Banachraumes (oder
Montelraumes) E
(8) zwei vollstandigen lokalkon- das Tensorprodukt E &, F
vexen Riumen £ und F'
(9) zwei (F)- (oder zwei Montel- das Tensorprodukt £ &, F, insbe-
(DF)-) Réumen E und F sondere:

(8’?9’) einem Banachraum E und die Riume % (F, E_)biz“7 N (F, E) .
dem Dual F' eines Banach- | der kompakten bzw. nuklearen
raumes F Operatoren von Fnach E.

Hierbei sind (1) - (3) und (5) - (8) ,klassisch* und finden sich (evtl. impli-
zit oder in etwas stirkeren oder schwiicheren Fassungen) bei Grothendieck
[11], Schwartz [19] und [20] oder Schaefer [18]. (4) wurde etwa von Hogbe-
Nlend (siehe [12]) gezeigt, und (9) erhilt man durch Kombination einiger
anderer Vererbungseigenschaften mit einer Formel ber (E ®, F)e, die

auf Buchwalter zuriickgeht (vgl. [4]). O

Satz 15. ist in vielen Punkten scharf: Es ist trivial, daft sich die A.E. nicht
einmal bei Banachriumen auf abgeschlossene Unterraume [oder auf Quo-
tientenrdume) vererbt (denn jeder Banachraum ,,ist* abgeschlossener Un-
terraum eines C(K), und jeder separable Banachraum _ist* Quotient von
I1). Auerdem haben wir schon erwihnt, daf sich die A.E. bei Banachrdu-
men nicht auf das starke Dual vererbt; ebenso braucht auch das starke
Dual eines volistandigen nuklearen Raumes nicht die A.E. zu haben (denn
nach Hogbe-Nlend ,,ist* jeder Banachraum starkes Dual eines vollstindigen
nuklearen Raumes). Schlieflich kann man zeigen (Valdivia), daf jeder Ba-
nachraum sich als Limes eines induktiven Einbettungsspektrums von (sepa-
rablen) Hilbertriumen darstellen 1a8t, so daB auch bei (4) die angegebene
Voraussetzung iiber die kompakten Mengen nicht ersatzlos gestrichen wer-

den kann.

5 Uberblicke Mathematik 76
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Wir erinnern daran, dafl wir die Vererbungseigenschaften 15.(1°) und (3)
bereits bei der Reduktion des Approximationsproblems von lokalkonvexen
auf Banachriume und weiter noch beim Beweis von 12.(4) bem{tZt hatten.
— Fiir Unterrdume vieler s0g. gewichteter Rdume stetiger Fu.nktl.oneﬂ kann
man zeigen, dak sich dije Approximationseigenschaft do.r 4 mil Hilfe ﬁiermei_
antisymmetrischen Mengen genauso lokalisieren last, wie eme_ Vera g;r bt
nerung des (Bishopschen) Stone-WeierstraR-Satzes (vgl. [3]) dies vorschreibt.
Eine solche Lokalisierung kann als (recht spezielle, doch sehr HUt.ZhChe) de
Vererbungseigenschaft der A.E. interpretiert werden. Fiir den (nicht gera
einfachen) Beweis und erste Anwendungen siche [4].

3. Zwei Siitze von Milne und Hogbe-Nlend zur A.E.

Der im Titel dieses Kapitels erwahnte Sazz von Milne [16] lautet:

16. Satz: Es existieren uniforme Algebren ohne A.F.

16. gibt also die friiher angekiindigte negative Anrwort auf Frage (II) aus
dem vorhergehenden Kapitel und zejgt daf$ auch die Algebrastruktur be{
der Frage nach der A.E. nicht unmittelpqr hilft. — Es wiire (da der Beweis
von 16. nur die Existenz liefert) schon, eine konkrete uniforme Algebra h
Zu kennen — etwa iiber einer kompakten Menge KC €" (n> 1) —, welche
die AE. nicht hat.

Satz 16. ist eine einfa

che Folgerung des ndchsten, leicht zu beweisenden
Satzes 17, in d

¢m die eigentliche Idee yon Milnes Artikel [16] liegt:

17. Satz: Jeder komplexe Banachraum E ist isometrisch isomorph
einem stetig pr,

ofizierten Unterraym einer geeigneten uniformen Alge-
bra A,

flos Gegenbeispiel aber sowoh!
D. Zum Beweis von 16, langt es also,

Beweis von 17. 7, dem komplexen Banachraum E wihlen wir uns als k.om-
Pakte Menge K » iber welcher die entsprechende Algebra A definiert sein
soll, K - = E{ [o(E’, E)), also die (abgeschlossene) Einheitskugel E; des
Dualraumes ', versehen mit der schwach*-Topologie o(E', E). E ist iso-
metrisch in C(K) eingebettet perS: E- C(K), definiert durch
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IS(e)|(¢') = €'(e) fiir alle € € E{'. (Wir schriinken also die Einbettung von
E in sein Bidual E"" auf E{ ein.) DaB K kompakt ist und S eine Isometrie,
folgt aus den Sdtzen von Banach-Alaoglu-Bourbaki und Hahn-Banach, wie
wir bereits im letzten Teil des Beweises von Satz 10. verwendet haben. Wir
wuften also schon, da S(E) isometrisch isomorph zu E ist, und man hat
nur folgendes zu beweisen:

S(E) ist komplementierter Unterraum einer uniformen Algebra Aauf K.

A wird wie folgt gewihlt: Sei R die von S(E) und den Konstanten erzeugte
Teilalgebra von C(K)und A : = R, die AbschlieBung von R in C(K). Es
ist leicht zu sehen, daf A eine uniforme Algebra iiber K bildet. Zu zeigen
bleibt aber die Existenz eines stetigen Projektors P von A auf S(E). Dazu
geniigt es offenbar, einen stetigen Projektor Pvon R auf S(E) anzugeben:
Denn dann kann P natiirlich stetig zu dem gewiinschten P auf A = R fort-
gesetzt werden.

Zur Definition des Projektors P verwenden wir folgende Terminologie:
Beie|,...,en€Eseige,, ... e, € R die durch g, en(e’) =
=é(e})....e\(ey) firalle e € E' oder E| definierte Funktion. Die Ele-
mente 1 (= konstante Funktion identisch 1), g, €€ E, und

8ey,....ep €1r-- -, enEE, nEN, n>2, spannen R auf. Wir definieren

P auf diesen Elementen so: P(1) = 0, P(g) = e, P(&e, ..., e,) =0(n=> 2).

Auf ganz R wird P dann durch lineare Fortsetzung erklirt. Man sieht leicht,
dafl P wohldefiniert, linear und ein Projektor von K auf S(E) ist. Es bleibt
die Stetigkeit von P zu beweisen, und wir wollen sogar IPler SE) =1
zeigen,

Wihle dazu g € R beliebig mit I gllg = 'sug, | g(¢')] < 1 und beweise:
ec iy

,,,,,

1 Pl gy = e, | (Py) (€) < 1. Wegen g€ R findet man ein komplexes
eby

n
Polynom @ in n Variablen, etwa: @) = ap + > j w; + Terme hoherer

i=1
Ordnung, bei w= (wy, ..., Wn) € €, derart dab:

- !

n -
g=ay 1+ > a;g, + Linearkombination von Produkten von Funktionen

z i

i=1

8e; € S(E),
dh. g¢') = Q((ey). . . . , €(ey)) fiir alle ¢ EE’. Offenbar ist damit:

S*
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n,
Pg= 2 alge’(eIEEa l: 1$ oo ,n)

i=1

Fixiere im folgenden ¢’ ¢ | 1 und zeige:

n
| (Pg)(e) = l z a; €'(e;) ’ <1l
i=1

Wir fiihren zur Hilfe dje Funktion & : € - € ein mittels:

7

D) =gk €)= a +(§a,-e’(ef)) A S

i=1

firalle { € €. wir benutzen jetzt, daR wir einen komplexen Banachraum
vor uns haben und schliefien die gewtinschte Abschitzung von
| (Pg) (¢)] so: & ist auf ganz © holomorph und

n
PO)= > giele) = (Pg (€.
i=1
Die Cauchysche Integraiformel liefert -
vy 1 P
PO =55 | gz,

| ¢l=1
so daf gilt:

EaEy=L | an

> K< sup |@@¢) = sup |gEeN<T
fel=1 & 1¢1=1

=1

© B wir komplexe Skalare bei E haben. Tatsichlich
w:‘ue auch, wie nach | 1. notiert, eine reelle uniforme Algebra iiber K be-
"elts gleich C(K). Somir wird auch die Aussage des Satzes 17 (oder 16./
Jalsch, wenp iy reelle Skalare betrachten: Aus sehr vielen Griinden kann
nicht jeder reelle B

(— Und sej €S nur, wejl

anachraum komplementiert in einem C(K) liegen.

U . Sonst nach 15(2) und Beispiel (2) zu Beginn von
apitel 2. jeder reejje Banachraum gje A.E. hitte!)
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zum Approximationsproblem nachweisen. Tatsichlich kann man zuniéchst
fiir uniforme Algebren Ay eine Verschdrfung von 10. wie folgt erreichen
(siehe [16]):

18. Satz: Fiir eine uniforme Algebra Ay (auf einem Kompaktum Ky)

sind dquivalent:

(1) Ay hat die A.E.

(2) Fiir beliebige uniforme Algebra A; (auf irgendeinem kompakten

Raum K, )gilt A; # A=A ® Ay,

Zum Beweis geht man genauso wie beim Beweis von 10. vor, mit folgender
Zusatziberlegung bei (2) = (1): Bei 10. war es offensichtlich, daf man,
statt eine gewisse Dichtheitsaussage fiir alle Banachraume F beweisen zu
miissen, sich auf F der Form ,,abgeschlossener linearer Unterraum A,
eines C(K5)* beschrinken konnte. Weifs man die Dichtheitsaussage, wie
bei (2) hier, , nur* fiir beliebige uniforme Algebren, so ist es leicht zu se-
hen, daf sie dann auch fiir alle komplementierten Unterraume solcher und
damit nach 17. wieder fiir alle (komplexen) Banachraume richtig bleiben
mufl, daher (1). O

Mit 18. wird die Aquivalenz von eingeschranktem Slice-Produkt-Problem
und Approximationsproblem offenbar; die bisher fehlende Richtung dabei
geht nimlich so: Die Existenz eines Banachraumes ohne A .E. implizierte
ja, daB es auch eine uniforme Algebra A, ohne A.E. gibt. Und zu dieser
existiert nach 18. dann eine weitere uniforme Algebra A2 mit

Al # Ay # A; ® Ay, was eine negative Antwort auf das eingeschrankte
Slice-Produkt-Problem darstellt.

Zum Schluf des Artikels kommen wir zum Satz von Hogbe-Nlend [12],
der Frage (1) aus Kapitel 2 negativ beantwortet und damit untermauert,
daf es viele Riume ohne A.E. geben mub.

19. Satz: Man kann (FS)- und (LS)-Rdume ohne A.E. finden.

Die in 19. angegebenen Klassen lokalkonvexer Riume liegen in der Klasse
der Montelriume, wie man weifs; von den Banachriumen enthalten sie wie-
der nur die endlichdimensionalen (die selbstverstindlich alle die A.E. ha-
ben). Deshalb kann man die von Enflo angegebenen Gegenbeispiele zum
Approximationsproblem nicht direkt zu einem Beweis von 19. benutzen,
sondern muf sich, ausgehend von einem Banachraum ohne A.E., neue Ge-
genbeispiele, d h. (FS)- und (LS)-Raume ohne A.E., konstruieren. Genau
das tat Hogbe-Nlend in {12].

Beweisskizze von 19. Sei fur das folgende ein
raum E fixiert. Fir eine absolutkonvexe komp

suniichst betiebiger) Banach-
akte Teilmenge K in E haben
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wir (beim Beweis von 6.) bereits die Bezeichnung Eg fiir den stetigin
eingebetteten Banachraum eingefiihrt, der sich ergibt, wenn man die lineare
Hiille von K in E mit dem Minkowski-Funktional von K als Norm versie}}t.
Sind Kund K’ zwei absolutkonvexe kompakte Mengen in E mit K C K,
dann bekommt man offenbar eine kanonische lineare Abbildung der Norm
<1 von Ex in Eg. Unter Beachtung dessen, was bereits im Beweis von 6.
gesagt wurde, kann man dag dort erwihnte Lemma auch so ausdriicken:
Zu jeder absolutkonyexen kompakten Menge K im Banachraum E gibt es
éine andere absolutkonyexe kompakte Menge K' O K, so daf die kanoni-

sche Abbildung Eg > Egr kompakt ist (K liegt sogar kompakt, nicht nur
relativkompaks, in Eg.)

Wi.i‘ konstruieren fiir ejne beliebige absolutkonvexe kompakte Menge K in
Ejetzt induktiv mit Hilfe des Lemmas eine Folge absolutkonvexer koml_’ak'
ter Mengen K,(n=0,1,. ) wie folgt: Ky: =K, und Eg —Eg,., st
kompakt fiir jedes 7, = 0,1,... Bilde den lokalkonvexen induktiven Limes
E(K) : = ind Eg ,d.h. den linearen Unterraum J £k, von E mit der
n- n
neN
starksten lokalkonvexen Topologie, die alle Injektionen EKn - U EKn
neN

(n=0,1,.

e ) stetig macht. E(K) ist (mit allen EK,,) stetig in K einge'?"“"t
und enthilt K a5 kompakte Teilmenge (denn djes gilt nach Definition ja

bereits fiir EKI)' {EKn }:;0 ist ein abzihlbares induktives Einbettungs-
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