Verallgemeinerungen des Satzes von Stone-Weierstraf™

von Klaus-Dieter Bierstedt

1. Vom Weierstrafischen Approximationssatz zum Satz von
Stone-Weierstraf

Im Jahre 1885 bewies K. WeierstraB den folgenden fundamentalen Satz,
der heute als Weierstragscher Approximationssalz bezeichnet wird:

1. Satz: Jede stetige reellwertige Funktion auf einem kompakten Intervall
[a, b] der reellen Achse liit sich gleichmdfig durch Polynome approximie-
ren.

In der modernen Terminologie der Funktionalanalysis, die wir im weiteren
verwenden wollen, bezeichnet man mit C [a, b] die Banachalgebra (bzgl.
punktweise definierter algebraischer Operationen) aller stetigen reell- oder
komplexwertigen Funktionen auf dem Intervall [a, b] CR, versehen mit
der sup-Nomm I f = sup b | (x)}. Wenn dann P= PJa, b} die Unter-
x<la,b]
algebra von C [a, b] der Polynome (oder exakter: der Restriktionen von
Polynomen auf das Intervall [a, b]) bezeichnet, so besagt 1. nichts anderes
als: Pliegt dicht in C[a, b}, d.h. P=Cla, b]. [DaB 1. auch fir komplexwerti-
ge Funktionen gilt, ist einfach zu sehen; man muf dann bei den Polynomen
natiirlich nur auch komplexe Koeffizienten zulassen. ]

Nunmehr sind es fast 90 Jahre, seitdem der Weierstrafische Approximations-
satz bewiesen wurde. Und wie weit dieser Satz in das , Allgemeingut® der
Mathematiker iibergegangen ist, zeigt am besten die Tatsache, da ein Be-
weis dieses Satzes heute schon in vielen Analysis-Grundvorlesungen gegeben
wird. Dazu eine Episode am Rande: In einem Analysis-Skriptum der Uni-

versitiit Mainz wurde Satz 1 so frilhzeitig bewiesen, daf man nach dem Be-

weis der Existenz des Riemann-Integrals fir Polynome das Integral fiir be-
rafschen Approximations-

liebige stetige Funktionen mit Hilfe des Weierst

Satzes einfiihren konnte . . .
Daf der WeierstraBsche Approximationssatz so Zum allgemeinen Gedan-

kengut der Mathematiker geworden ist, liegt daran, dak er ungeheure theore-

mns der Antrittsvorlesung des Autors anlifllich seiner Habilitation am Fach-
bereich Mathematik der Universitit Kaiserslautern am 14.5.1974.
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tische und praktische Bedeutung hat. Deswegen ist es nicht verwunderlich,
daf viele Verschirfungen, Prizisierungen numerischer Art und eine grofle
Menge von Verallgemeinerungen gefunden wurden. Wir erwihnen Sitze vom
Typ Miintz-Szasz: Die AbschlieBung der linearen Hiille der Funktionen
{aM}2 ) mit0=29 <Ay <Ay <... ist dicht in C[0,1] genau dann,

[¢0]

wenn Z Xl— divergiert, vgl. etwa Rudin [13], 15.25; Sitze vom Typ
i=1""

Jackson-Bernstein: Charakterisierung gewisser Klassen stetiger Funkti?nen

durch die Schnelligkeit, mit der sie durch Polynome vom Grad <n be1.

= < approximiert werden kénnen, sowie Siitze iiber die Approximation

durch andere Funktionen als Polynome.

Wir werden im 2. Paragraphen auf zwei mit der konkreten Polynomappro-
ximation verkniipfte Gedankenkreise kurz eingehen: auf gleichmafige
Approximation durch Polynome auf kompakten Teilmengen der komF’le’fen
Ebene (Satz von Mergelyan) und auf andere als gleichmifige Approximation
auf ganz R bzw. R (Bernsteinsches A pproximationsproblem).

Es ist nun das Verdienst von M.H. Stone gewesen (s. [14]), viele der Verall-
gemeinerungen des Weierstraischen Approximationssatzes auf einen allge-
meinen abstrakten Satz und damit auf eine gemeinsame Beweismethode

zurickzufithren. Dieser Satz wird heute als Sarz von Stone- Weierstrafl be-
zeichnet,

2. Satz: Sei K ein kompakter (separierter) topologischer Raum. C(K) be-
zeichne die Banachalgebra aller stetigen komplexwertigen Funktionen auf
K, versehen mit der sup-Norm der gleichmdBigen Konvergenz auf K. Dann
liegt eine Unteralgebra A in C(K) dicht, wenn gilt:

(1) A enthdlt die Konstanten (d.h., etwa die Funktion, die auf K iden-
tisch 1 ist),

(2) A trennt die Punkte von K (dh,, firx;, x, €K, X # X, gibt es
FEA, derart daB f(x;) # f(x,)), _

(3 Ais selbstadjungiert (d.h., aus fEAfolgt fe A, wobei f die kon-

Jugiert-komplexe Funktion von f angibt).

In Satz 2 haben wir gleich komplexwertige Funktionen beriicksichtigt. Fir
reelle Fupktionen kann man (3) natiirlich streichen. Es soll noch erwihnt
werden, daf auch eine verbandstheoretische Version des Theorems existiert
(bei der also max und min von reellen Funktionen eine Rolle spielen). Wir
werden aber im gesamten Artikel mur auf die algebrentheoretischen Aspek--
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te der Approximation eingehen und verweisen fiir die andere Version und
fiir ihre Konsequenzen auf die Literatur.

M.H. Stone hat spiter selbst eine ausgezeichnete Darstellung vieler Varian-
ten und Anwendungen von 2. gegeben, vgl. den Nachdruck in [14]. Es han-
delt sich dabei um Approximationssitze fiir Funktionen, die auf abgeschlos-
senen Teilmengen eines Kompaktums verschwinden, oder fiir Funktionen
auf lokalkompakten Riumen usw. Die Anwendungen beziehen sich auf die
Charakterisierung abgeschlossener Ideale in C(K), auf den Lebesgue-
Urysohnschen Ausdehnungssatz, auf trigonometrische Approximation und
Approximation mittels Laguerre- bzw. Hermite-Funktionen, um nur einige
Beispiele zu nennen. Wir empfehlen jedem, der sich fir diesen Gedanken-
kreis interessiert, den Artikel [14] zu lesen.

Ich méchte nur auf eine Anwendung des Satzes von Stone-WeierstraB ganz
kurz zuriickkommen: Im gleichen Jahr 1937, als Stone seinen , verallge-
meinerten Weierstraschen ApproximationssatZ“ publizierte, hatte Dieudonne
folgendes bewiesen:

3. Satz: Seien K bzw. K' kompakte Hausdorffriume und bezeichne KXK'
ihr topologisches Produkt. Dann liegt in C(KX K "} die Unteralgebra

C(K) ® C(K") aller endlichen Summen von Produkten von Funktionen
aus C(K) und C(K") dicht. Das bedeutet: Jedes [ € C(K X K') kann gleich-
maRig auf K X K' durch Funktionen der Form

,5) > D (O @ x)= 2, i)
i=1 i=1

(nEN, f;€ C(K), f] € C(K')) approximiert werden.

Aber offenbar erfiillt C(K) ® C(K') C C(KX K "), wie sich u_nmitftelbar
ergibt, alle Voraussetzungen von 2., und es folgt, da Satz 3 eine einfache
Folgerung aus dem Satz von Stone-Weierstra® darstellt.

Seit 1937 sind auch wieder 37 Jahre vergangen, und entsprechend der

schnelleren Weiterentwicklung vieler Gebiete der Mathematik ging es mit

dem Satz von Stone-Weierstra dhnlich wie vorher mit dem Weierstrafi-
ihn in viele

schen Approximationssatz: Er wurde verschirft, und man hat
Richtungen verallgemeinert.

So wie der WeierstraBsche Approximationssatz am Beginn der fdp{:'mxima-
tionstheorie steht, so ist auch der Satz von Stone-Weierstra fiir die Ent-
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wicklung bzw. Weiterentwicklung ganzer Teilgebiete der Analysis funda-
mental gewesen. Beim Ausbau der Funktionalanalysis, insbesondere in der
Theorie der Banachalgebren oder der sog. uniformen Algebren, benutzt
man diesen Satz so hiufig, daf etwa R.B. Burckel in seinem Buch [4] bei

der Herleitung des Satzes aus einem allgemeineren Theorem von Bishop
bemerkt (sinngemiif}):

»Alle zum Beweis des Satzes von Bishop benutzten Hilfsmittel aus der
Funktionalanalysis kénnen tatsichlich ohne Verwendung des Satzes von
Stone-Weierstraf hergeleitet werden. Aus der Art heraus, wie der Satz von
Stone-Weierstra die Analysis durchdringt, scheint die Furcht, da8 es nicht
S0 sein kénnte, auf ersten Anhieb durchaus begriindet.*

Im 3. Paragraphen des Artikels werde ich den Beweis des Satzes von Bishop
skizzieren und als Anwendung eine gemeinsame Verallgemeinerung des
WeierstraBischen Approximationssatzes und des Satzes von Mergelyan her-
leiten, die Rudin [12] zuerst bewiesen hat (vgl. auch Paragraph 2).

Der abschlieBende 4. Paragraph beschiftigt sich dann mit dem von L. Nachbin
eingefiihrten sog. gewichteten Approximationsproblem. Wir geben dort

einen Uberblick iiber neuere Ergebnisse vor allem von J B. Prolla und W.H.
Summers zu diesem Problem, womit Resultate iiber das Bemsteinsche
Approximationsproblem verallgemeinert werden. Die betreffenden Sitze

gehen auch erheblich iiber das Theorem von Bishop hinaus, das sie als Spe-
zialfall enthalten?).

2. Zur Polynomapproximation

Es ist leicht zu sehen, dal der Weierstrafsche Approximationssatz auch fir
kompakte Teilmengen des R™ (n> 1) richtig bleibt. Dies war auch Weier-

stra selbst bereits bekannt. Dagegen ist folgende Frage wesentlich schwie-
riger zu beantworten:

Sei fiir eine kompakte Menge K des ¢" (n>1) P(K) die Abschliefung der

Algebra der (Restriktionen auf K der) Polynome in C(K). Welche Funktionen
gehoren dann zu P(K)?

DEs konnte bei weitem nicht deg Sinn dieses Artikels sein, alle Resultate, Probleme
und Vermutungen aus dem Problemkreis um den Satz von Stone-WeierstraB und seine
Veraligemeinerungen auch nur zy streifen. Deshalb habe ich mich hier auf das be-
schrinkt, was ich personlich fiir besonders wichtig oder interessant ansah. Vieles an-

dere mute nur deshalb weggelassen werden, weil es den vorliegenden Rahmen ge-
sprengt hiitte.
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Eine notwendige Bedingung findet man sofort: Jede Funktion aus P(K)
muf natiirlich auf K , dem Innem von K, holomorph sein. Denn jedes Po-
lynom ist eine ganze Funktion, und Grenzwerte von holomorphen Funk-
tionen (bei gleichmiRiger Konvergenz auf kompakten Teilmengen einer
offenen Menge) sind wieder holomorph. Ist A(K) die abgeschlossene Unter-
algebra von C(K) aller auf K holomorphen Funktionen, so haben wir dem-
entsprechend P(K) C A(K). Eine teilweise Losung unserer Frage resultiert
dann aus einer Losung des folgenden Problems:

Fir welche K kompakt in C* (n> 1) gilt P(K)= A(K)?

Nun ist dieses Problem, ebenso wie unsere vorher gestellte Frage, im Falle
n> 1 keineswegs geldst. Es gibt einige Gegenbeispiele fiir zunichst plausible
Vermutungen und eine Reihe von hinreichenden Bedingungen der verschie-
densten Arten (vgl. etwa [1], [20], [21]). Wir werden nicht in aller Ausfiihr-
lichkeit darauf eingehen. Fiir n = | dagegen wurde unser Problem von S.N.
Mergelyan 1952 vollstindig gelost. Wir geben jetzt den Satz von Mergelyan

an (siehe unter anderem Rudin [13], 20.5 sowie Biicher iiber Funktionen-
algebren, z.B. Stout [15]):

4. Satz: Fiir K kompakt in der komplexen Ebene gilt P(K) = A(K) genau
dann, wenn C\K zusammenhdngend ist. Dann kann also jede auf K stetige

und im Innern von K holomorphe Funktion gleichmiBig auf K durch
Polynome approximiert werden,

Ubrigens ist leicht zu sehen, warum fiir unzusammenhingendes €\ K, d.h.
fir kompakte K C C »mit Lochern*, der Satz nicht mehr stimmt. Man muf
nur auf der beschrinkten Komponente des Komplementes von K das Maxi-

mumprinzip fiir holomorphe Funktionen geeignet anwenden, siehe z.B.
Rudin [13], 13.8.

Mergelyans Beweis von Satz 4 wurde ohne Funktionalanalysis durchgefiihrt
(vel. etwa die vereinfachte F assung dieses Beweises bei Rudin [13]). Spiter
entwickelte man dann in der Theorie der uniformen Algebren einen (nicht

konstruktiven) Existenzbeweis mit funktionalanalytischen Mitteln, der
ebenfalls sehr interessant jst

Insbesondere folgt aus 4. natiirlich C(K) = P(K), sofer nur die kompakte
Menge K C € leeres Inneres hat und €\ K zusammenhiingend ist.

J. Wermer bewies, da8 fiir analytische Kurven K C € (n=>1) stets
P(K) = C(K). Bishop und Stolzenberg haben die Voraussetzungen abge-
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schwicht und das Ergebnis fiir differenzierbare Kurven hergeleitet (vgl.
Wermer [21], 13.).

Eine andere Verallgemeinerung von Satz 4 erschien plausibel: Die Bedingung
€\ K zusammenhingend entspricht fiir n> 1 der Bedingung K polynom-
konvex (d.h., K ist homdomorph zum Gelfandschen Darstellungsraum der
Algebra P(K), s. Stout [15]). Man konnte denken, dafl vielleicht P(K)=

= A(K) allgemein fiir polynomkonvexe K richtig wire. Tatsdchlich lafit

sich auch nach einem Safz von Oka (der den Rungeschen Approximations-
satz von n = 1 auf beliebige n € N verallgemeinert) jede in einer Umgebung
eines kompakten polynomkonvexen K C €™ holomorphe Funktion gleich-
miRig auf K durch Polynome approximieren (vgl. z.B. Stout [15], 29. 1.).
Aber selbst fiir , fette polynomkonvexe kompakte K C €" (n>2), d.h.

fir solche K mit K= K (K ist also die AbschlieBung seines Inneren),

gilt i.a. nicht P(K) = A(K), wie E. Kallin [9] gezeigt hat.

Andererseits liefern neue Ergebnisse von Lieb, Kerzman u.a. (vgl. [20]) im-
merhin, da etwa fiir polynomkonvexe kompakte K = G C C” (n> 1), wo-
bei G strikt pseudokonvexes Gebiet mit C*-Rand, wieder AK)=PK)
richtig ist.

Allgemein konnen jedoch noch viele weitere abgeschlossene Unteralgebren
zwischen P(K) und A(K) liegen: Wenn zB. K=K; X K5 C C? mit
Ki.Kce kompakt, so findet man leicht folgende abgeschlossene Unter-
algebra A, zwischen P(K) und A(K):

A = {feC(K X K2); f( ., %) EA(K; ) und
Flxy, .)€ A(Ky) fiir alle (xy, x2) €K1 X K3}

Und i.a., nimtich z.B. falls K oder K; isolierte Punkte enthilt (so dafl aber
durchaus €\ K; bzw. €\ K, zusammenhangend sein kann), wird A, nicht
mit A(K) zusammenfallen.

Sind aber K| und K in der vorhergehenden Uberlegung beide fett, sg)muB
A, = A(K) richtig sein, wie leicht zu verifizieren ist. Auf diese Weise kann
man mit Tensorproduktmethoden tatsichlich Teil (1) des folgenden.Satzes
beweisen (siche [1]). 5.(2) stammt aus Weinstock [20], p- 812, wo die Re-
sultate von Lieb auf Produktgebiete verallgemeinert sind.

[Die letzte Aussage von 5.(1) zeigt zusammen mit Liebs urspriinglichem Re-
sultat (bzw. einer leichten Verfeinerung davon) praktisch auch bereits 5.(2),
wenn man noch ein Ergebnis iiber die Approximationseigenschaft von

—_—

2
)Verwendung des sog. Slice-ProduKkres.

8*
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A(K) beachtet, das in der (unveroffentlichten) Dissertation von O.B.Bekken
(Univ. of California, Los Angeles 1972) enthalten ist. Umgekehrt folgt
5.(1) fast ebenso aus 5.(2).]

3. Satz: P(K) = A(K) gilt fiir eine kompakte Menge K C €™ (n> 1), falls
K eine Darstellung wie folgt hat:

(1) K=K X...x K, mit K; = IE—C@ kompakt und C\ K; zusammen-
hingend (i=1, . . . n).

Allgemeiner bekommt man:
r
Gilt A(K;) = P(K;) fiir kompakteKj ca (G=1,...,r; Z nj = n),
j=1

die alle fett sind, und haben simtliche A(Kj) (bis auf moglicherweise eines)
die sog. Grothendiecksche Approximationseigenschaft (als Banachriume,
vgl. etwa [2]), so ergibt sich mit K = Ky X ... X K, auch A(K) = P(K).

r

Q) K=K\ X.. XKmtKcc(j=1,. . r Z n;j = n) kompakt,
derart dag =1

i) K polynomkonvex,

(i) K die sog. Segment-Eigenschaft hat: Es gibt eine offene Uberdeckung
{U;} von 8K und Punkte {w;},s0dag z + tw; €K firo<t<1,
ZEKN U,

(iii) und fiir jedesj=1, . . . T

entweder n; = |1, dann K; = I%J und C\ K zusammenhingend, oder
nj 22, dann K; = Gj und G; strikt pseudokonvexes Gebiet

[Ubrigens ist (ii) jedenfalls erfiillt, wenn zu (iii) alle K; C*.Rinder haben.]

Um den Gedankengang, der mit der gleichmiRigen Polynomapproximation
verbunden ist, abzuschliefen, sollten wir noch einen Satz von Rudin [12]

erwihnen, der den WeierstraBschen Approximationssatz und den Satz von
Mergelyan gemeinsam verallgemeinert.

6. Satz: Sei K eine kompakte T, eilmenge von € X R™ (n> 1). Fiir jedes
E=(, ..., t)) ER gelte: Die Mernge Ky = {zE€C; (2, t) € K } hat zu-
sammenhdingendes K omplement in€. Dann kann iede Funktion f€ C(K)
it der Eigenschaft, da f( ., t) holomorph auf ¢ fiir beliebiges t ER",
Bleichmagig auf K durch Polynome (inz,t,, ..., t,) approximiert werden.
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R" A
K
t+ = T Ex{t}
K_/i
l\ 7 —
v C
K,

Wir kommen auf diesen Satz im nachsten Paragraphen noch einmal zuriick
und werden einen besonders einfachen Beweis von 6. mit Hilfe des bereits
erwihnten Satzes von Bishop (und natiirlich unter Benutzung von 1. und
4.) notieren. Mit Hilfe von Satz 5 wird sich dabei sogar noch eine Verallge-
meinerung von 6. in gleicher Weise ergeben.

Wenden wir uns jetzt einer anderen Fragestellung zu.

Der Weierstraische Approximationssatz besagt, wenn marn ihn leicht um-
formuliert: Die Algebra P der (komplexen) Polynome liegt dicht in

C(R) (= stetige (komplexwertige) Funktionen auf R), versehen mit der To-
pologie co der gleichmifigen Konvergenz auf kompakten Teilmengen von R
Natiirlich erhebt sich dann sofort die Frage: Wie steht es mit anderen Riu-
men stetiger Funktionen auf R oder auf R (n=>1)? Besonders interessant
werden gewisse Funktionenriume sein, die mittels Gewichtsbedingungen
eingefithrt sind. Dies fithrt uns zu dem sog. Bemnsteinschen Approximations-
problem, dessen Formulierung wir hier noch angeben wollen.

7. Bernsteinsches Approximationsproblem: Sei v eine nichtnegative, von
oben halbstetige Funktion auf R". (v ist insbesondere auf jedem Kompak-
tum K C R™ beschriinkt.) Es gelte fiir beliebiges Polynom p auf R", daf
Up im Unendlichen verschwindet (d.h., fiir jedes € >0 gibt es eine k@pﬁ-
te Teiimenge K von R" mit | v(x)p(x)| < ¢ fir alle x€ X\ K, woraus ins-
besondere sup | v(x)p(x)| < « folgt).

xeER®

Man sagt dann, die Gewichtsfunktion v sei (im Unendlichen) schnell fallend.
Gesucht werden notwendige und hinreichende Bedingungen dafiir, daff v
fundamental ist, d.h., daf die Algebra Pdicht liegt im ,.gewichteten” Raum
Cyy(R™ = {f€ C (R™); vf verschwindet im Unendlichen },
versehen mit der Halbnorm bu(f) = sg[;{ o)l f)l, FE Cro(®).

. 4
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Es ist eine einfache Folgerung aus dem Weierstrafischen Approximations-
satz, wie wir ihn vor 7. umformuliert hatten, daB jede nichtnegative, von
oben halbstetige Funktion v auf R" mit kompaktem Triger fundamental
ist. Notwendige und hinreichende Kriterien der in 7. gewiinschten Art dafiir,
da8 eine Gewichtsfunktion v ohne Nullstellen fundamental ist, wurden im
Falle n = 1 von verschiedenen Autoren angegeben, z.B. von Pollard, Carleson
und Mergelyan. Auf R (n>2) kennt man keine notwendigen und hinrei-
chenden Bedingungen, aber eine Reihe interessanter hinreichender Kriterien
wie das sog. analytische bzw. quasianalytische Kriterium. Fiir eine Darstel-
lung der bekannten klassischen Resultate verweisen wir auf den Beginn von
Ferrier {7], wo auch entsprechende Literaturhinweise zu finden sind. Ver-
gleiche auBerdem Nachbin [10]. Im weiteren Verlauf der Ausarbeitung [7]
leitet Ferrier auch Resultate ber , ,gewichtete* Approximation auf Teil-
mengen der komplexen Ebene bzw . entsprechende Resultate bei differen-
Zierbaren (statt stetigen) Funktionen her. (Beziiglich des Bernsteinschen
Approximationsproblems fur differenzierbare Funktionen siehe aber insbe-
sondere G. Zapata [22].) Wir wollen darauf nicht weiter eingehen.

Das Bernsteinsche Approximationsproblem haben wir hier nur deshalb er-
wihnt, weil das im letzten Teil dieses Artikels betrachtete sog. gewichtete
Approximationsproblem vop L. Nachbin das Bernsteinsche Approxima-
tionsproblem #hnlich verallgemeinert, wie der Satz von Stone-Weierstrad
bzw. der Satz von Bishop den Weierstrafischen Approximationssatz verall-
gemeinert: Der Grundraum, auf dem dje Funktionen definiert sind, ist dort
(anstelle von R R C, C") ein abstrakter vollstindig regulirer topologi-
scher Raum, und man approximiert (statt mit Polynomen) mit gewissen

bliloduln iber Unteralgebren der Algebra aller stetigen Funktionen auf dem
aum,

3. Antisymmetrische Mengen und der Satz von Bishop

der Funktionalanalysis die Sitze von Hahn-Banach, Banach-Alaoglu und

arstellungssatz iiber das Dual von
der Form, wie wir sie spiter benotr



Der Satz von Stone-Weierstrafi 119

Theorem A. (Rieszscher Darstellungssatz): Sei K kompakter Hausdorffraum
und C(K) die Banachalgebra der stetigen (komplexwertigen) Funktionen
auf K mit der sup-Norm. Dann entspricht jedem Element ® €C '(K) genau
ein (komplexes) Radon-Maf (= regulires Borel-Maf) u auf K mit &( H=

= {{f d fiir alle f € C(K). Mehr noch, die Zuordnung ® — i, wie sie hier-

mit gegeben wird, ist ein Normisomorphismus des (Banach- JDuals C'(K)
auf den Banachraum M(K) aller (komplexen) Radon-Mage auf K, versehen
mit der totalen Variation | u | (K) von p € M(K) iiber K als Norm.

Dabei ist ein Borel-Maf u auf K eine abzihlbar additive skalare (=komplex-
wertige) Funktion y auf der o-Algebra & von Teilmengen von K, die von
den abgeschlossenen Teilmengen von K erzeugt wird, mit p(9) = 0. Die
totale Variation | u | von u wird fiir E € # definiert als

I E)=sp { > |uE;E= ) Ei Ei€# ENEj=BbeiiFjy.

i=1 i=1
1 heift regulir, falls fiir beliebiges E € %

|k I(E) = inf {| u ((U); Uoffen, EC U} = sup {| u|(F); Fxompakt, FCE }.
(Vergleiche Rudin [13].)

Theorem B. (Satz von Krein-Milman): Eine konvexe kompakte Menge Cin
einem lokalkonvexen topologischen Vektorraum ist die abgeschlossene kon-

vexe Hiille & [Ext (C)] der Menge Ext (C) der Extremalpunkte von C. Ins-
besondere mug also fiir C # @ auch Ext (C) stets nichtleer sein.

Hierbei heifit ein Punkt e einer konvexen Menge C in einem Vektorraum E
(iiber R oder €) Extremalpunkt von C, wenn aus € = a €1 +(1—a)e;
mitd<a<l, e, e €Cstetse=¢€) oder e = e, (also a = 0 oder 1) folgt.
Das heifit, e liegt nicht im Innern einer ganz in der konvexen Menge C ent-
haltenen ,,Strecke*

le1, e]= {e€Cie=ae; +(1—a) e, 0<a< 1@, e, €C).

Theorem C. (Satz von Hahn-Banach): Sei E ein beliebiger normierter Raum
und F ein linearer Unterraum von E , der mit der induzierten Norm verse-
hen wird,

(1) Dann kann jedes ' € F' normgleich zu einem e' EE' fortgesetzt

werden.
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(2) Ist Fabgeschlossen in E, so gehort e € E genau dann bereits zu F,
wenn fiir alle ' € E' mit e'(f) = 0 bei beliebigem f € F auch
e'(e) = 0gilr.

[(1) ist der iibliche Hahn-Banach-Satz fir normierte Riume, wihrend (2)
eine wohlbekannte Folgerung daraus darstellt. ]

Theorem D. (Banach-Alaoglu-Bourbaki): Fiir einen beliebigen normierten
Raum E ist die abgeschlossene Einheitskugel E{ des Duals E' kompakt in
der (sog. ,,weak*-*') Topologie o(E', E).

Wir kombinieren nun diese klassischen Sitze zu einem Resultat, das genau

das liefert, was wir beim Beweis des Satzes von Bishop eigentlich verwenden
werden,

Theorem E.: Sei A ein beliebiger abgeschlossener linearer Unterraum von
C(K), K kompakt, und

A= {ueME); lul<1 und{{gdy=0ﬁiralleg€A }.

Dann gehort eine Funktion f€ C(K) genau dann zu A, wenn fiir alle
M€ Ext (A]) nur £ f du = 0 richtig ist.

Beweis. Die eine Richtung dieses Satzes ist trivial. Wir beweisen die andere,
dh., aus f€ C(K), é f du = 0 fiir alle u € Ext (A;) folgt fEA.

Dazu beachten wir, daB es nach Theorem C. (2) langt zu beweisen, da
H(f)=Ofiiralle € C"'(K) mit | & I < 1 und ®(g) = 0 bei beliebigem
8€ A. Nach Theorem A. entspricht jedes solche ® einem n € M(K),

lp 1< 1, mit f&du=0firallege A, dh, einem y € AL Offenbar gilt

aber AL = gQA {nEME); lui<1und £&du=0}, dh., nach Defini

tion der Topologie o(M(K), C(K)) ist Ay als Durchschnitt abgeschlossener

Mengen abgeschlossen in M (K) (= abgeschlossene Einheitskugel von

M(K) = C'(K)) bzgl. der Topologie o(M(K), C(K)) = o(C'(K), C(K)).
o D. besagt jetat, da die (offensichtlich konvexe) Menge AL mit

M (K) [o(M(K), C(K))] eine kompakte Teilmenge von

M(X) [o(M¢K), C(KY)) darstellt, auf die wir Theorem B. anwenden konnen.

Auf solche Weise ist unmittelbar klar, daf wir die gewiinschte Aussage

‘!; [ du = 0 fiir alle € A] bekommen, wenn wir diese Aussage nur fur die
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u der dichten Teilmenge % [Ext (A7)} von Ai haben. Also ist es natiirlich
genug, wenn 12 f dy = 0 fiir beliebiges p € Ext (A7) richtig ist. Das hatten

wir jedoch gerade zeigen wollen. [

Damit kommen wir zu dem bereits mehrfach erwihnten Satz von Bishop”,
dessen Formulierung folgenden Begriff verwendet:

8. Definition: Sei A eine nichtleere Teilmenge von C (K), K kompakt. Dann
heit eine nichtleere Teilmenge E von K antisymmetrisch fiir A, wenn aus
fEA, f| reellwertig bereits | g konstant folgt.

Offenbar ist fiir jedes x € K und jedes A C C(K), A # @, die einpunktige
Menge E = { x } antisymmetrisch fiir A. BeiA = C(K) kann aufgrund der
Trennungseigenschaften der stetigen Funktionen auf kompakten Réumen
keine Menge E C K, die zwei oder mehr Punkte enthilt, antisymmetrisch
fiir A sein.

Als typisches Beispiel dafiir, daf eine antisymmetrische Menge mehr als
einen Punkt enthalten kann und sogar recht groft werden darf, erwihnen
wir die in Paragraph 2. definierte Algebra A(K) bei KC €" (n> 1) kom-
pakt: Jede Funktion f€ A(K) ist auf dem Innem'I% von K holomorph.
Und weil eine reellwertige holomorphe Funktion auf einer offenen zusam-
menhingenden Teilmenge des C" dort bereits konstant sein muf, siecht man
sofort ein, daB jede Zusammenhangskomponente von K eine antisymmetri-
sche Teilmenge von K fir A(K) bildet.

Der Begriff der antisymmetrischen Teilmenge von K fiir einen Unterraum

A C C(K) ist, wie sich so ergeben hat, besonders interessant, falls die
Restriktion von Funktionen aus A auf gewisse Teilmengen von K holomorphe
Funktionen liefert. Verwendung antisymmetrischer Mengen erlaubt es dem-
nach, das Phinomen der Holomorphie in einem gewissen Umfang mit zu
erfassen. (Das gilt in weiterem Sinne als vielleicht urspriinglich vermutet:

K braucht nicht unbedingt a priori eine Teilmenge von C" zu sein. Genaueres
dazu findet man in Biichern iiber uniforme Algebren. Wir begniigen uns hier

mit diesem Hinweis.)

9. Bemerkungen: Seien K und A wie in 8. '
(1)  Ist E antisymmetrische Teilmenge von K fir

Bung E.
374 unserem Beweis vgl. etwa Stout [15], Rudins Buch , Functional analysis™ 0der

G.M. Leibowitz, Lectures on complex function algebras, Scott, Foresman and Co.
(1970).

A, so auch die Abschlie-
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(2) Sind Ey, E, antisymmetrische Teilmengen von K fiir A und gilt .
Ey\ NEy +# @, so bildet auch E 1 Y E; eine antisymmetrische Teil-
menge von K fiir A .

(3) SeiEycK antisymmetrisch fiir A. Definiere

Ey= U {E;K>E> Ey, E antisymmerrisch fir A ).

Dann ist EO ebenfalls antisymmetrisch fiir A .

(4)  Jede antisymmetrische Teilmenge E von K fiir A ist in einer bzgl.
Inklusion maximalen solchen antisymmetrischen Menge E C K fiir A
enthalten, _

(5) Bezeichnew A das System aller maximalen antisymmetrischen Teil-

- mengen von K fiir A. Dann bildet K, eine Zerlegung von K in paar-
weise disjunkte abgeschlossene Mengen.

Beweis. (1) und (2) sind sofort klar. ~

Zu (3): Ey ist nichtleer nach Definition, also gilt dies genauso fiir Eg O EO_-
Seien zum Beweis von (3) f € A reellwertig auf Ey und x, x, € E beliebig.
Es geniigt zu zeigen F(x1) = f(x).

Nach Definition von EO findet man antisymmetrische T eilmengen Ey, E;
von K fiir A mit E, CEy, Ey;x) €Ey, x, €E).WegenE| NE, DEy# 2
bildet Ey U E, gemif (2) eine antisymmetrische Teilmenge von K fiir A, s0
da die auf dieser Menge reellwertige Funktion f€ A dort konstant sein
muf. Es folgt (wie gewinscht) f(x;) = f(x,). o~
Zu(4):BeiEy CK antisymmetrisch fiir 4 bildet, (3) entsprechend, Ey eine
Ej enthaltende antisymmetrische Teilmenge von K fiir 4, von der man
direkt sieht, daB sie maximal ist.

Zu (5): Da jede einpunktige Teilmenge von K antisymmetrisch fiir A ist,
berdecken wegen (4) die Mengen aus o ganz K. Aufgrund von (1) muB

jede maximale antisymmetrische Menge abgeschlossen sein. SchlieBlich be-
sagt (2), daB zwei verschied

von K fiir A stets disjunkt

10. Theorem (Satz von Bishop): Sei A eine abgeschlossene Teilalgebra von
CK)(K kompakt), die die

Konstanten enthdlt. Dann gilt:
A={fecK)f| ca |gfiralle Ec x4 3,

chv Xy wiein 9, (5] gebildet ist und wobei wir dje Bezeichnung

E™ {gIE;geA} benutzt haben,
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Theorem 10. gibt demnach einen Lokalisierungssatz fur die Zugehorigkeit
zu einer abgeschlossenen Unteralgebra von C(K): Eine Funktion fe C(K)
gehort bereits zu A, wenn f auf jeder maximalen antisymmetrischen Teil-
menge von K fiir A mit (der Restriktion) einer Funktion aus A iiberein-
stimmt, (Die Umkehrung ist trivial.)

Ubrigens kann man zeigen (vgl. etwa Stout {15], 12.1.(b)), daB8 fiir beliebi-
ges E€ o die Unteralgebra A |, von C(E) abgeschlossen in C(E) ist. Wir
bendtigen dies im folgenden aber nicht und werden deshalb nicht ndher
darauf eingehen.

Theorem 10. ist natiirlich nur dann interessant, wenn nicht schon K selbst
maximale antisymmetrische Menge ist (wie z.B. bei vielen A(K)).

Beweis von 10. Theorem E. liefert fiir abgeschlossenen linearen Unterraum

ACC(K):
A= {feCEK); i fdu = 0 fiir alle 4 € Ext (47) .

n wir zum weiteren Beweis

Um diese Aussage benutzen zu konnen, bendtige
. Diese ist im folgenden

eine Information iiber die Extremalpunkte von Ai
Lemma von de Branges enthalten:

11. Lemma: Fiir eine Unteralgebra A C C(K) mit 1 € A sei p € Ext (Ajl“).

Dann gilt fir den Triger supp u von u:

entweder supp u = @ [woraus sofort u = 0, also Ai = {0} und damit nach
Theorem C. (2) A = C(K) folgt],

oder supp u bildet eine antisymmetrische Teilmenge von K fir A.

Betrachten wir fiir den Augenblick das Lemma als bewiesen und zeigen wir

dann, wie der Beweis von 10. beendet wird.

Im 1. Fall (supp u = 9) haben wir A = A = C(K), d.h., es ist nichts Ir}ehr

zu beweisen. Im andern Fall ist supp p bei u € Ext (A}) stets eine antisym-
metrische Teilmenge von K fir A, und wir miissen zeigen, dafl aus u_nserer
Voraussetzung f | € A |p firalle EE ), bei festem f€ C(K) bereits

é f dp = 0 fiir beliebiges u € Ext (A7) folgt.
irkt ja supp p C E € Xy, somit

Dies ist aber sofort klar: u € Ext (A7) bew ;
f |E =8 l g fur geeignetes gEA, und gemad u GAi ergibt sich:

= — = = =0.0
‘l;fdu sup{wfdp_bgfdp i:gdu j‘ggd:u 0
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Es bleibt nur der Beweis von 11. nachzutragen.

Sei u € Ext (A}), supp u ¥ 9. Zu zeigen ist: Wenn f € A reellwertig auf
supp u, so ist fl| supp p bereits konstant.

Fiir die auf supp y reelle Funktion f, die dort nach oben und nach unten
beschrinkt ist, wollen wir 0.B.d.A. 0 < f< 1 annehmen. (Ansonsten kann
man namlich f durch f= af + b mit geeigneten a, b € R ersetzen und be-
achten, daB f genau dann auf supp p konstant ist, wenn dies fiir f gilt. Hier-
bei wird natiirlich 1 € A benutzt.) Wenn A eine Algebra ist, gehort mit
auch fu zu A, wobei fu mittels I{ gd(fw) = 11; fg du fiir alle g € C(K) de-

finiert ist.

Also gilt ebenso (1 —f)u=pu— fu€ A. Setze nun a = Il ful,
b=I(1~ f)ul. Man hat

a+b=£dlful+&d|(1—f)ﬂ|= [Ofldipl+ f 11—=fldlul=

suppu Suppu

= L fdlpl+ [ A=fdlpl= [ dipl=lpl=1
suppy suppy Supp

Dementsprechend stellt die Gleichung

_fe  A-fu  fu (1—Fu
H-—-aa +b"'——'—~b -—am'l-b (=Pl

# als konvexe Kombination von Elementen aus Aj dar, wobei a und b we-

gen der Annahme 0 < f< 1 auf supp u sowie Iy Il < 1 die Ungleichung
0<a, b< 1 erfillen.

Aus u € Ext (A)) folgt zB. u = ) ;p n dh., f= Il fu I fast iiberall bzgl. p-
u
Somit ist {x€ K;f(x)# 8 fu I} eine offene Menge vom | u {-Ma8 0, hat

also leeren Durchschnitt mit supp y. Es folgt f = | fu I konstant auf
supp p. O

h?mma 11, 1st der einzige Punkt beim Beweis des Satzes von Bishop, wo
wir von A die Algebrastruktur bendtigen. Tatsichlich geht es auch mit ge-
wissen abgeschwiichten Voraussetzungen (Modul iiber einer Algebra, Ideal . . )

:;;1: kann man nicht vollig auf gewisse multiplikative Bedingungen ver-
en.

Als unmittelbare Folgerung aus 10. notieren wir noch:
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12.. Korollar: Eine abgeschlossene Unteralgebra A von C(K) mit 1t EAund
mit der Eigenschaft A | E™ C(E) fiir alle E € X erfiillt bereits A = C(K).

Ist insbesondere jeder Punkt von K eine maximale antisymmetrische Teil-
menge von K fiir A und enthilt die abgeschlossene Unteralgebra A von
C(K) die Funktion identisch 1, so mu8 A = C(K) gelten. Die Bedingung
,Jeder Punkt von K ist maximale antisymmetrische Menge fiir A“ ist dqui-
valent dazu, da die reellen Funktionen in A die Punkte trennen. Letzteres
gilt aber wiederum nach einem einfachen Argument pestimmt, wenn A die
Punkte trennt und selbstadjungiert ist.

Somit haben wir Satz 2. von Stone-Weierstra$ als Folgerung aus dem Satz

von Bishop bekommen.

Der Unterschied der beiden Sitze wird besonders klar, wenn wir Algebren
von Funktionen auf einer Menge K C €", K kompakt, betrachten, fiir die
alle Funktionen auf gewissen offenen Teilmengen von K holomorph sind.
Hier L3t sich der Satz von Stone-Weierstraf nicht anwenden, weil fiir holo-
morphe nicht-konstante Funktionen f nie auch f holomorph sein kann.
Aber der Satz von Bishop liefert moglicherweise noch nichttriviale Aussa-
gen.

Ein anderes typisches Anwendungsbeispiel fiir den Satz von Bishop (das
nicht schon mit dem Satz von Stone-Weierstrafl erledigt werden kann) wol-

len wir zum Abschluf des Paragraphen angeben.

13. Satz: Sei K< € X R® (N, n> 1) kompakt. Fiir festes t= (1, - - - n)
aus R™ betrachte K; = {2€C" (2, t) € K'}. Wenn dann bei beliebffgem

t € R stets A(Ky) = P(Ky) gilt, so kann jede Funktion fe C(Ifl) mit der
Eigenschaft, dag f( . , t) holomorph auf K, fiir beliebiges t ER ’g_IeI,Ch'
maBig auf K durch Polynome (in zy, . - - » 2N ty,...»tn) approximiert
werden.

Beweis? Seif€C(K) mit f(.,?) holomorph auf K, fiir beliebiges t € R”

und bezeichne P(K) die AbschlieBung der Polynome in 2y, - - - » 2N>
... . t, im Raum C(K). Zu beweisen ist € P(K).

Nun stellt P(K) eine abgeschlossene Unteralgebra von C(K) dar. Die reellen
Polynome (in ¢y, . . . , tn) trennen die Punkte des R". Deshalb muf jede

s, p. 116£, und vergleiche die kiirzeren,

n |
)Siehe Rudins Buch ,,Functional Analysi
{51 oder Stout {15], 25.8.

aber anders angelegten Beweise bei Chalice
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antisymmetrische Teilmenge von K fiir P(K) in einem K; X {t}=

= {z€ CN;(z, f)€ K} X {t} enthalten sein. Nach dem Satz lq. von
Bishop geniigt es jetzt zu beweisen: f( . , t) | K, € P(K) | K, fur beliebiges
t€R"”, d.h., wenn ty € R” fest vorgegeben ist, so gibt es ein g€ P(K),
8=8(z,1),2=(21,...,2N), mit f(.,tg) =8(., tg). (Vgl. die Zeichnung
nach 6.) Nach Voraussetzung ergibt sich aber f( . , t5) € A(Kfo) =P (Kto)s
so dafs man gemif einer einfachen Uberlegung Polynome P; = P;(2),

ze €V, finden kann, derart daf f(z, ty) = Z P;(2) gleichmifig in
=1

Z2€ Ky, wobei 0.B.d.A. sup | Py(2)! <1/2(i=1,2,...).
0 Z€£t0 g

AnschlieBend findet man auf elementare Weise ein Polynom @ = Q(% |
tE€R", auf R" mit folgenden Eigenschaften: Q(¢) = 1, aber | Q(9)!

fir alle ¢ + tp, derart daf} K;# 0.
Sei jetzt i > 1 fest und definiere ®,,, auf K durch ®,(2, t) =

=1P;2)| | Q)™ { &y, };n el bildet eine monoton fallende Folge steti-
ger Funktionen auf K mit

0, falls t # ¢ i
lim &,(z,t)= { o 0 }.Also lim ®pm(z,t)<1/2
m—»co | P;(2)l, wenn t = ¢ m—co
in jedem Punkt (2, ) € K.

Bei Ky = {(2, ) €K; ®,(2, 1) < 1/2} } bekommt man K::mLEJNKm’ und

¢in einfaches Kompaktheitsargument erlaubt daraus zu schlieRen, da eSE
2u jedem { € N ein m; € N geben mu mit &, (z, £) < 1/2" auf ganz K. Es

folgt, da die Reihe Z Pi(2)@™(t) gleichmifig auf K gegen eine Funk-
i=1

tion &= £(z, t) konvergiert, fiir die g € P(K) gilt und offenbar (fiir beliebige
2e Kt{))

8@ t)= > Pi@)Qt)= > Piz)= fz, ty).0

i=1 i=1
Z.B. kann Satz 13. nach 5
K; die in 5. (fiir das dortige K) angegebene Form besitzt. Direkt aus Satz 4.

von Mergelyan folgt mit 13. insbesondere Satz 6. von Rudin, wie wir €S
friiher versprochen hatten,

- angewandt werden, wenn fiir jedes t ER”
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4. Approximation auf vollstindig reguliren Hausdorffriumen: Das gewich-
tete Approximationsproblem und seine Losung im beschrinkten Fall

L. Nachbin gelangte zum sog. gewichteten Approximationsproblem, einer
gleichzeitigen Verallgemeinerung des Bernsteinschen Approximationspro-
blems und der Sitze von Stone-Weierstrafs bzw. von Bishop, durch eine
Kombination folgender Ideen:

1. Approximation von Funktionen auf allgemeinen topologischen Raumen
(statt auf Teilmengen von R™ bzw. C") {wie schon beim Ubergang vom
WeierstraBschen Approximationssatz zum Satz von Stone-Weierstra],

2. die approximierenden Funktionen gehoren einen gewissen algebraischen
Gebilde, hier einem Modul, an (statt wie friiher auf Polynome festgelegt Zu
sein oder, wie beim Satz von Stone-Weierstrafs, eine Algebra zu bilden)
{auch dies ist nur eine konsequente Weiterfithrung der Idee, die zum Satz
von Stone-Weierstraf fiihrtel],

3. Verwendung von vielen verschiedenen Topologien, bzgl. derer approxr
miert wird (alle diese Topologien werden durch Systeme von Gewichts-
funktionen gegeben) [hier wird der Einfluf des Bernsteinschen Approxi-

mationsproblems erkennbar].

Um noch verniinftige Resultate Zu bekommen, missen natiirlich gewisse
Voraussetzungen beibehalten werden, etwa bzgl. der Gewichtsfunktionen
oder bzgl. der Struktur der Menge der Funktionen, die zur Approximation
bereitstehen. Abgesehen von diesen moglichst schwachen Voraussetzungen
wihite Nachbin aber den allgemeinsten Rahmen, der sich anbietet. Wir ge-
ben jetzt die Definitionen, die benotigt werden, und filhren einige Bezeich-
nungen ein.

Dabei gehen wir nur auf skalare Funktione
mit Werten in topologischen Vektorraumen. Fiir diese
Verallgemeinerung des Satzes von Stone-Weierstraf bei
vergleiche z.B. [2] und Prolla[11].

n ein, nicht aber auf Funktionen
und Formen einer
Vektorfunktionen

14. Definition: Der Grundraum X, auf dem die Funktionen def‘miert.sind,
ist im folgenden immer ein vollstindig reguldrer (Hausdorff-)R_aum; eine.
nichtnegative von oben halbstetige Funktion auf XheiBe Gewichtsfunktion.

Wir betrachten dann ein System V+# gvon Gewichtsfunktionen U auf X,

von dem wir das folgende fordemn wollen: V ist nach oben gerichtet in
af ein v € Vgefun-

dem Sinne, da aus vy, V2 € Vund A = 0 stets folgt, d .
den werden kann mit Avy, A2 SU punktweise quf X. Ein System V dieser

Art wird (nach Summers) als Nachbin-Familie auf X bezeichnet.
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Da bei beliebigem System Vvon Gewichtsfunktionen mit jedem v€ Vauch
Av, X >0, und zu v}, v; € Vauch sup(v}, v) hinzugenommen werden
kann, ohne daf sich an den dadurch verlangten Gewichtsbedingungen etwas
andert, bedeutet die Bedingung, da} das System von Gewichtsfunktior_len,
welches wir betrachten wollen, eine Nachbin-Familie sein soll, keine Ein-
schrinkung der Allgemeinheit. Ahnliches gilt in etwas anderer Weise auch
fir die Forderung der vollstindigen Regularitit des Grundraumes.

Ubrigens ist nach Definition 14. zugelassen, daf} die Gewichtsfun?itionen-
unstetig sind und in gewissen Punkten des Grundraumes verschwm_den. Sie
missen aber auf kompakten Teilmengen von X stets beschriinkt sein. Etwa

charakteristische Funktionen abgeschlossener Mengen sind nach 14. als Ge-
wichtsfunktionen zugelassen.

Die folgende Definition stammt aus Nachbin [10]:

15. Definition: Sei V eine Nachbin-Familie auf dem vollstindig reguliren
Raum X. Als gewichteten Raum (oder nach Prolla auch als Nachbin-Raum)
bezeichnet man den lokalkonvexen topologischen Vektorraum

CVo(X)= {feC(X)@dh. f stetig und komplexwertig auf X);
vf verschwindet im Unendlichen fiir jedesve V1,

versehen mit dem System von Halbnormen {bv;ve V}:
bu(f) = xsgg{ v(x) f(x)l fir alle fe C Vo(X).

Hierbei sagt man wieder, eine Funktion g : X - verschwindet im Unend-
lichen, wenn fiir jedes ¢ > 0 ein kompaktes K C X existiert mit
| 8(x)| <€, sofem nur x € X\ K. Und vf gibt die Funktion x - v(x)f(x)

das sup in der Definition von by,

Beispiele solcher Raume bekommt man einerseits, indem man fiir V die
Nachbin-Familie der positiven Vielfachen einer festen Gewichtsfunktion v
nimmt. Andererseits liefert fiir einen linearen Unterraum Uvon C (X) das
System U* der nichtnegativen Funktionen aus U ebenfalls immer eine
Nachbin-Familie ayf X. Wir

geben einige interessante und typische Bei-
spiele in der folgenden Tubelle-
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16. Beispiele: 1%

CVo(X)

(1) positive Konstanten auf X

Co(X), versehen mit der sup-Norm
(= im Unendlichen verschwindende
stetige Funktionen auf X')

(2) {Xxg; 1> 0, K C Xkompakt },
x g = charakteristische Funk-
tion von K

C(X), versehen mit der Topologie
co der gleichmifigen Konvergenz
auf kompakten Teilmengen von X

p——

(3) Cf (X) = (Co(X))*,
X lokalkompakt

CB(X) (= stetige beschrinkte Funk-
tionen auf X)) unter der sog. strikten
Topologie 8 von R.C. Buck [3]

(4) CT(X) = (Cc(X)*,
X lokalkompakt und im
Unendlichen abzihlbar

Ce(X) = {f€ C(X); f hat kompak-
ten Trager in X }, versehen mit der
induktiven Limes-Topologie i (vgl.
Bourbaki, Intégration, Summers {16]
sowie [2] fiir allgemeinere X))

Die strikte Topologie g ist dabei auf CB(X) besonderes interessant aus ver-
schiedenen Griinden, z.B. approximationstheoretischer und maftheoreti-
scher Natur. Fir sie gilt co < < sup-Norm-Topologie. f zu benutzen, hat
in manchen Problemen Vorteile gegeniiber einer Verwendung der iiblichen
sup-Norm. g ist ebenfalls vollstindig, aber etwa nur fiir kompakte X metri-
sierbar. Fiir eine Verallgemeinerung der strikten Topologie auf nicht lokal-
kompakte Grundriume siehe z.B. Collins [6]. Viele Ergebnisse iiber gewich-
tete Riume wurden, wie Collins in [6] erwéhnt, zunichst im Falle des Rau-

mes (CB(X), §) hergeleitet.

Wir gehen nicht auf die topologischen Vektorrau
Wwichteten Riume ein. Einiges dazu findet man in
[11], Summers [ 16] bzw. der dort zitierten Literatur.
die Topologie von C Vp(X) sicher separiert ist, wenn nur Zu

m-Eigenschaften der ge-
[2), Collins [6], Prolla

Wir erwihnen, daf
jedemx€ X

ein v € Vmit v(x) > 0 gefunden werden kann.

Wir wenden uns nun gleich dem sog. gewicht
2u, wie es L. Nachbin in [10], 25. formuliert

eten Approximationspmblem
hat (vgl. auch Collins [6],

Prolla {11}, Summers {16], [17], [18], [19D-
Eine wesentliche Rolle beim Satz von Stone-Weierstrafl bzw. beh.n Satz
von Bishop spielte stets die Algebrastruktur. Nun ist CVy(X), wie man
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sofort sieht, i.a. keine Algebra unter punktweiser Multiplllkatlon- Iﬁgfﬁerlli-
bildet CVy(X) immer einen CB(X)Modul, wenn man die Modul- g Vp( )
kation punktweise erklirt. Deshalb liegt es nahe, Untermoduln vc;xlll em{; ‘
zu betrachten und deren Abschliefung zu studieren. Noch. etwas allg i
ner, und auch auf die Méglichkeit einer Approximation mit Polynome

bzw. mit Funktionen, die auf Teilmengen des €™ holomorph sind, zuge-
schnitten, bekommt man jetzt:

17. Gewichtetes Approximationsproblem: Sei A eine vlo.rgggeben?“Urgeeir
algebra von C(X), die die Konstanten enthdlt, X vollstindig regé g;‘- )
fiir eine Nachbin-Familie Vauf X der lineare Unterraum W von ;)) e
ein Modul iiber A bzgl. punktweiser Multiplikation, d.h. AWC W. Das g

. - L n
Wichtete Approximationsproblem fragt dann, wie die Abschliefung vo
Win CVy(X) aussieht.

Wenn A z B. nur aus den konstanten Funktionen besteht, so kann “:’/“.gend
ein linearer Unterraum von ¢ Vo(X) sein, und die Bedingung, da® se:;lne-
A-Modul ist, hat keine Konsequenzen. Vergleiche mit dem Sat.Z von den

Weierstral bzw. dem Satz von Bishop zeigen, dafl dann keine tiefliegen

“ e nn
Resultate zu erwarten sind. Dagegen erhilt man interessante Sitze, we
A wesentlich grofer gewihlt werden kann.

Offenbar stellt das gewichtete Approximationsproblem in der Form Volf:sl;.'
eine Ve"ﬂ”gemeinemng des Bernsteinschen A pproximationsp.roblen‘.lsl? e
dar: Dort haben wir fiir X den R", Vist das System der positiven Vie ’ad
einer einzigen Gewichtsfunktion v, die schnell fallend angenommen wird.

. . 1
Gesucht werden dabej Bedingungen an v mit P= C Vo(R™) fiir die Algebr
P der Polynome.

Insbesondere suggeriert Bisho

erwihnte Ergebnisse) eine Lo
Approxhnationsproblem 17.

. . . e
Ps Satz (genauso wie einige frither von 'Slt:t,:ten
kalisierung der Approximation im gewic
Darunter versteht man das folgende:

18. Definition: Fiir eine ab
und eine Nachbin-Familie
der Funktionen ays V auf
A, W wiein 17, bildet W

geschlossene Menge K in X (vollstiindig.regum)
Vauf Xist die Menge V| der Restriktionen
K wieder eine Nachbin-Familie auf K. Und fiir

| i einen linearen Unterraum von C (V]g)o &)

sein muB. Sei jetzt #eine Uberdeckung von X durch
Paarweise disjunkte abgeschlossene Mengen. Man sagt, das gewichtete

—CVp(X) —C(V |
W ={f€CV0(X);f|K-e W\ K fiir jedes K€ X ).
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Nachbin war bei seiner Behandlung des Problems 17. (vom Bernsteinschen
Approximationsproblem herkommend) an selbstadjungierten Algebren A
interessiert und betrachtete entsprechend die folgende Lokalisierung:

x,y € X heifen dquivalent (x ~ y), falls a(x) = a(y) fir alle a € A. Die
Menge der Aquivalenzklassen bzgl. der Relation ~ bildet eine paarweise
disjunkte abgeschlossene Uberdeckung o von X, wie in 18. gefordert.
Gemi dem Satz von Bishop empfiehlt es sich, im allgemeinen Fall (A nicht
notwendig selbstadjungiert) eine andere Lokalisierung zu betrachten: Sei
Xy das System der maximalen antisymmetrischen Teilmengen von X fiir
die Algebra A. Diese konnen genau wie frither (vgl. 8., 9.) definiert werden,
und o bildet wieder eine Uberdeckung von X durch paarweise disjunkte
abgeschiossene Mengen. [Wir hatten in 8. bzw. 9. tatsichlich nirgends die
Kompaktheit des Grundraumes ausgenutzt.] Wenn A selbstadjungiert ist,

50 zeigt man leicht, daf 27 mit o/ wie oben zusammenfillt.

Um im folgenden die Ergebnisse von Nachbin, Prolla und Summers zum ge-

wichteten Approximationsproblem prignanter formulieren zu konnen,
fihren wir folgende Definition ein:

l?- Definition: Man sagt, der beschrinkte Fall des gewichteten Approxima-
tionsproblems liegt vor, wenn in 17. jedes a € A beschrinkt ist auf dem

Triger jeder Gewichtsfunktion vE V.

Dies ist insbesondere der Fall, wenn A C CB(X) oder wenn jede Gewichts-

funktion vE€ V kompakten Trager hat.
Im beschrinkten Fall sieht man, da CVp(X) selbst A-Modul ist. Dann

lautet das Ergebnis von Summers [17], [19]:

20. Theorem: Im beschrinkten Fall ist das gewichtete Approximations-
problem 17. stets lokalisierbar bzgl. X4, d.h.:

Sei X vollstindig reguldr, V eine Nachbin-Familie auf X und A eine Unter-
algebra von C(X). Es gelte a Isupp , beschrinkt fiir alle a € A und alle

VE V., Sei WC CVy(X) ein linearer Unterraum, der A-Modul bzgl. punkt-
weiser Multiplikation. Dann gilt

WV ST CV [Po®) fiir jede maximale

W = {feCVoX):flg €Vl

antisymmetrische Teilmenge Kvon Xbzgl A},

O
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— CVp(X) . . ’
so daf f€ CVy(X) genaudannzu W~ ° gehort, wenn fiir ]ede:st e>0
jedes VE Vund jedes K€ 2 ein we W gefunden werden kann mi
Sup V() f(x) — w(x)| <e.
xc K

Falls die Algebra A selbstadjungiert ist, stimmt ¢4 nach unserer fml'h‘:;e!;0
Ubeﬂegung mit ¢ iiberein. Wenn dann A noch die Punkte von X trae;;no ;nt-
sind die Elemente von A = o alle einpunktig. In diesem Falle ist *
weder W= C Vo(X), oder die Funktionen aus W sind gerade alle Fu

. : ¢ von
tionen aus C Vo(X), die auf einer gewissen abgeschlossenen Teilmeng
X verschwinden.

Das angegebene Resultat fiir selbstadjungierte Algebren A wurde bf:'r;tltlsl
von Nachbin (vgl, [10]) bewiesen. Es enthilt insbesondere als Spezia fatz
natiirtich wieder den Satz von Stone-Weierstra. Genauso bildet der Sa
von Bishop iibrigens eine einfache Folgerung aus 20.

Zur Problemgeschichte von 20. soflte vielleicht erwihnt werden, da Zr;i
nichst Glicksberg [8] den Satz von Bishop von kompaktem Gmndr'a_u ine
auf die Algebra (CB(X), 0, X lokalkompakt, iibertragen konnte. F urlle in-
Veraligemeinerung der strikten Topologie § auf CB(X) mit X nur volls
dig regulir gelang es spiter Summers (vgl. [16], [18]) zu zeigen,:daﬁ bei
¢inem Modul W C (CB(X), ) itber einer Algebra A C CB(X) die Ab-
schlieBung W in (CB(X), p) stets im obigen Sinne lokalisierbar bzgl. -ﬁx
Sein mus. Andererseits hat Prolla [11] Satz 20. bereits bewiesen, wenn

lokalkompakt ist und wenn zu jeder Gewichtsfunktion vE Vein
fec X Ymitp < f gefunden werden kann.

Glicksberg und Prolla benutzten deg in Paragraph 3. skizzierten Beweis S:is
Satzes von Bishop und Ubertrugen ihn auf den vorliegenden Fall. Die da
auftretenden Schwierigkeiten liegen nicht in den funktionalanalytischen
Hilfsmitteln wie in den Sitzen von Krein-Milman, Hahn-Banach oder
Alaoglu-Bourbaki, die in geeigneten F assungen auch fiir beliebige 1okal-. s
konvexe Riume richtig bleiben. Damit sich aber die Methode des Bew.else
zum Satz von Bishop wie vorher anwenden lift, muf man eine A”_R'esz-
schen Darstellungssar, fiir das Dygj (CVo(X)) von C Vo(X) mit Hilfe vor
MaBen auf X herleiten, um dang feststellen zu kénnen, da die Extrema!;
punkte von issen) Polaren von Nullumgebungen in CVp(X), ges.dml ]
ten mit dem Annihitat o von W, als Triger wieder eine antisymmetrische
Teih:}eggg von Xbzgl. A (oder die leere Menge) haben. Glicksberg hatte
- Mem Darsteltung des Duajs von (CB(X), f) als Raum der beschrink-

onmatie auf X zur Verfigung. Prolla konnte andererseits eine frithere
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Darstellung der gleichstetigen Mengen im Dual von C V(X)) durch Summers
ausnutzen, die aber X lokalkompakt und die Majorisierung der Gewichts-
funktionen v € V durch stetige nichtnegative Funktionen auf X erforder-
lich machte.

Fiir nicht lokalkompaktes X ergeben sich jedoch zusdtzliche Schwierigkei-
ten aus der Mafitheorie. Nach verschiedenen Schritten gelang es Summers
[17] dann doch, diese Schwierigkeiten durch Einfihrung eines geeigneten
» Trdgerbegriffes* fiir Elemente aus dem sup-Norm-Dual des Raumes
By(X) [ = beschrinkte komplexwertige Funktionen auf X, die im Unend-
lichen verschwinden] zu beheben. Summers hat seine Ergebnisse und die
Problemgeschichte sowie die Losung des Problems im beschrankten Fall
selbst in den Artikeln [16], [18] und [19] dargestellt. Wir empfehlen ihre
Lektiire jedem Interessierten.

Durch die hinreichenden sog. analytischen bzw. quasianalytischen Kriterien
des Bernsteinschen Approximationsproblems veranlafit, fiihrte Nachbin

in Verallgemeinerung des beschrinkten Falles den sog. analytischen bzw.
quasianalytischen Fall des gewichteten Approximationsproblems ein.
Nachbin (vgl. [10]) bewies dann auch, dag in diesen Fillen das gewichtete
Approximationsproblem fiir eine selbstadjungierte Algebra A lokalisierbar
bzgl. of wie oben ist, was die hinreichenden Kriterien des Bemsteinschen
Approximationsproblems im R” als einfache Spezialfille enthilt.

21. Definition: Der analytische Fall des gewichteten Approximationspro-
blems 17 liegt vor, wenn es Teilmengen G(4) C A, G(W) C W gidt, so dafl
firalleve vV, g€ G(A) und wE€ G(W) immer ¢y, €2 > 0 existieren mit

Ut wix)l < ¢y erc2| a )l fiir beliebiges x € X
und G(A) und G(W) folgende Eigenschaften besitzen:

()  Die von G(A) und der Funktion identisch 1 erzeugte Unteralgebra
von A liegt in A bzgl. der Topologie co der kompakten Konvergenz
dicht,

(i)  dervon G(W) erzeugte A-Teilmodul von W ist.dicht in W bzgl. der
von C V(X)) induzierten gewichteten Topologe.

[Es ist einfach zu sehen, da8 der beschrinkte Fall sich als Spezialfall aus
dem analytischen Fall ergibt.]

Collins [6], p. 39 erwihnt nun das folgende unveroffe
Summers, das den analytischen Fall des Problems 17.p

nﬂiéhie Resultat von
raktisch abschliefit:
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22. Satz: Auch im analytischen Fall ist das gewichtete Approximations-
problem 17. stets lokalisierbar bzgl. 4.

Wie Summers kiirzlich angekiindigt hat (vgl. [23]), gilt Satz 22. ebenfal{s im
quasianalytischen Fall, Damit wurden Nachbins Ergebnisse fiir selbstadjun-
gierte A auf allgemeine Algebren iibertragen. — Diese Resultate von Sum-
mers kann man als (bisher) weitreichendste Verallgemeinerung des Satzes
von Stone-Weierstrafy ansehen. Deshalb mochte ich hiermit schliefen.
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