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INTRODUCTION

After Grothendieck [21], a locally convex (£.c.) space E is
said to have the approximation property (for short, a.p.) if and only
if the identity idE of E can be approximated uniformly on every
precompact subset of E by continuous linear operators from E into
E of finite rank (i.e. with finite dimensional range).Many "concrete"
L.c. spaces are known to have the a.p., but a counterexample 0f Enflo
(1972), with subsequent refinements due to Figiel,Davie, and Szankowski,
shows that there are even closed subspace of £ without a. p. for
each p > 1, p # 2.

In connection with the a.p., a criterion due to L. Schwartz

[26) is very useful: Schwartz introduces for two £.c.spaces E and F

their e-product by

EcgF := £e(Fé,E).

where F! is the dual of F with the topology of uniform convergence
c

on precompact subsets of F and where the subscript e on the space
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£(Fé,E) of all continuous linear operators from IFé into E indicates

the topoleogy of uniform convergence on the equicontinuous subsets of

F'.

If E and F are quasi-complete, one can easily show EeF=F¢E,

and the e-product EeF of two complete spaces E and F is camplete

(cf. [26]). Moreover, the c-fenson product E ®. F of Grothendieck
[21] is a topological subspace of E eF. We can now formulate Schwatitz's

erdtenion fon the a.p. ([261, Proposition 11, cf. also [3], 1, 3.9,
and [8] ):

THEOREM (L. Schwartz): The quasdi-complete £,c. dpace E has the a.p.

“§ and only <§f E @ F (s dense in €F  for each (quasi-) complete

£.c. space F {ox, equivalently, fon each Banach space F). S¢ 44 E

and F are complete £.c. dpaces such that E orn F has the a.p., we

v
get: EcF =g ®. F, the completion 0f the e-~tenson product E & F

(which we wiff arso catl, fon shont, complete e-tenson product) .

In fact, the applications of this theorenm, say, in the case of

function spaces E derive from the remark that the "abstract" operator

Space EcF c¢an usually be identifiegd with a "concrete” space of

F-valued functions "of type E". and E ® F is the space of T"cor-
responding” functions with finite dimensional ranges in F,

proof of the a.p}

Hence a

of E is then equivalent to the approximation of
certain F-

sional subspaces of F for every {quasi-) complete f.c. Space F or
only for €very Banach space F, a result which is of interest in both
directions.

5 theorem to function Spaces

more general
than,

but essentially simijar to the well-known uniform algebras H(K)
and A({K) on compact subsets g of ¢l

B e i
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either are uniformly approximable by functions belonging, on open
sets U containing K, to a given subsheay F of the sheaf C of all
continuous functions or have restrictions belonging to F on the in-
terior % of K.

The general situaticn is the subject of sections 1 and 2. In
section 1, the vector-valued case is considered, while section 2deals
with "slice product" - results (on product sets). Finally, in section
3, we look at some of the motivating examplfes and survey the known
results (and their relations) in this case.

So, in a sense, this paper is based on a generalization of the
author's old article [2] and motivated, among other things, by the
more recent article [27] of N. Sibony: We show the connection of some
of Sibony's results with topological tensor product theory and with
the a.p. of the spaces of scalar functions in question. The results
of this paper will be combined with the techﬁique of "localization"
of the a.p. for subspaces of weighted Nachbin spaces (cf.[5] and [10])
in a subsequent paper to yield new examples of function spaces "of
mixed type" with a.p. and to demonstrate applications of the local —

ization procedure in some concrete cases.
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1. THE GENERAL VECTOR-VALUED CASE

Let X be a completely regular (Hausdorff) topological space
and F a closed tocally convex (£.c.) Aubsheaf of the sheaf Cy of all

continuous (real or complex valued) functions on X, i.e., for each

open subset U of X, F(U) is a closed topological linear subspace of

C(U) with the compact - open topeclogy co. In fact, it would be suf-

ficient to require F to be a presheay only, and we prefer to use

pPresheaf notation throughout thisg paper. (For some of our notation

compare [9 ] and [10]. A sheaf f as above was: called "shead of F-morphic

functions™ in [9 ].)

Let E always denote a quasi-complete locally convex (Hausdorff)

space (over R or C). We will always assume that X is a k]R~5pace,

i.e. that any function r X > R (or, equivalently, any function

if the restriction of f to each compact subset of X ig continuous.

(Each locally compact or metrizable space, and, more denerally, each

X-space is also a kIR—space.) Then each open Ucx is again a

KIR—space, cf. Blasco [12]1, ang hence the sheaves CX and F are com-

r€ete, i.e. the Spaces (C(U),co) and F(U) are complete for each open

uc x.

Under these assumptions,

sheag FE o pw namely,

there exists (cf. [10], 1.5) the "E-valfued

for any Open U in X,

FE (u)

1]

E e F(Uu)

the space of all continuousg E-valueq functions f on U

which satisfy e'of € F(U) for each e € E', endowed
with the topology Co of uniform Convergence on campact
subsets of (cf. [ 3] and [5])

E are just the

B A e
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ordinary restrictions of functions. FC is a closed subsheaf of the
sheaf Ci of all continuous E-valued functions on X.

Inour definition and in some of our results below, it may be
helpful to keep the following motivating examples of sheaves F of

F-morphic functions in mind {(cf. also [9 ] and [10] for more examples) :

l. EXAMPLES: (i) X = complex monifold or just N (N > 1), F=0=sheaf
of holomorphic functions on X,

(ii) X open in R" (n>1), L = P(x,D) a (linear) hypoelliptic
differential operator with ¢ -coefficients,and F=NL=sheaf
of null solutions of L, i.e. N (U) ={f € c"(U); (L| HE=0)
for any any open U in X. (The closed graph theorem for
Fréchet spaces implies that, on NL(U) r the topologies in-
duced by c”(U) and by co coincide and hence that NL(U)

is a closed topolecgical linear subspace of (C(U), co).)

Especially, the sheaf X of harmonic functions on R" satisfies
all assumptions of 1. (ii) above, and also the "harmonic sheaves" of
abstract potential theory are sheaves of F-morphic functions. All

the sheaves of example 1. are (FN)-sheaves.

2. DEFINITION: For a compact subset K of X, we define:

(i) C{K,E) := the space of all continuous E -valued functions

on K with the topology of uniform convergence on K,

E.O
(i1) Ap(K,E) := {f € C(X,E); £ IﬁEF (K},
0
i.e. e'of |y € F(K) for each e'€ E'}, and
K
(iii) Hf(K,E) := the closure in C(X,E) of

{f € C(K,E); there exists an open neighbourhood U of K
E .
(depending on f) and a function g € FO(U) [i.e. g: U—E

continuous and e'o g€ F(U) for any e'€ E'] such that g {K =f}.




42 BIERSTEDT

HF(K,E) C AF(K,E) holds, and both are closed subspaces of C(K,E) which
we endow with the topology of uniform convergence on K (induced by

C(K,E)). If E = IR or €, we write C(K), AF(K), and HF(K)' respec —
tively.

Now, of course, if E jig complete, all the spaces C{K,E), AF(K,E).
and H: (K,E) are complete, too. The equation C(X,E) = E e C(K) for

quasi-complete E js well-known (cf. [31), and, once this equation is

well-understood, the proof of the first part of the following result

is clear (see €.9. [3] or [5} for a description of EeF, F an

arbitrary subspace of C(K), from which Our result below is easily

derived, too) ;

3. THEOREM: (1) AF(K,E) = R EAF(K).

(2) Hence A (x,E) = g 8, Ap(R) hotds fon alt complete ¢.c.

(on, equivalently, §or all Banach) dpaces E A and only

44 Apr(K) has the a.p.

For the second part of 3, Schwartz's Criterion for the a.p. (in

the introduction) is needed. 1In other words, AF(K) has the a.p. 1if
and only if, for arbitrary Banach Space E, each function f € c(k,E)
with e' o f ‘ﬁ € F(g) for any e' € g may be dpproximated, uniformly
on K,

X with values in finite dimen-

sional subspaces of & that satisfy ¢ °og | o € F(ﬁ), too, and hence
K
have the form

i (%) for all x e K;

r and 95 € AF(K)' i=1,...,n.
(Remark that such an approximation with

9; only e C(K) is alwayA
POssible by the a.p.

of C(X) and by the equation  C(g,g) =g 8, C(K)
for Complete ¢, ¢, E.)
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As to the a.p. of the corresponding space HF(K),the situation

there is, in some sense, just the opposite:

4. THEOREM: We asdume that, fon some basis U of neighbourhoods 04
K, F(U) has the a.p. fon each U € U . [For (1) below, we could also
assume Ainstead that E has the a.p.]

(1) Then E 8. HF(K) 46 a dense topofogical fLinearn subspace

o4 HF(K,E), and hence
HF(K'E) = B ®€ HF(K)

holds whenever E 4s& complete.
(2) Consequently HF(K) has the a.p. 4§ and only L§, fon each

complete £.c. [on each Banach) space E,

HF(K,E) = {f € C(K,E); f4or each e' € E' and each € > 0
thene exists an open nedlghbournhood U = U(e',e) of Kand

a function g = gle',e) € F(U) Such that

sup | (e' 0 f) (x) - g(x)| < eh
x€K

PROOF: As E ® C(K) is a topological linear subspace of C(X,E) and
3
as the ¢ -tensor product preserves topological linear subspaces, only

density of E ® HF(K) in HF(K’E) must be verified for the first as-

sertion. So let p be a continuous seminorm on E, g > 0 and

fe Hp(K,E). By definition, there exists an open set U 2> K and a

[ .
function g € FE(U) such that sup p(f(x) - g(x)) < . But, again by

definition, FE(U) = Ee F(U) (with the topology of uniform convergence

on compact subsets of (). Without loss of generality, we may assume

U€ i, and hence the a.p. of F(U) or of E and one direction of

Schwartz's theorem from the introduction imply that E @ F(U) is dense
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5
Now h]K € E® HF(K) holds and igg P(E(X) - h(x)) <e, which proves

[
in F¥(U). Therefore we can find h €E® F(U) with sup P(g(x)- h(x) < 3
X

the required density of E ® HF(K) in HF(K,E).

(2) is then clear from Schwartz's criterion because the space
on the right hand side of the equation is nothing but E eHF(K) - as
a close look will immediately reveal. O

In other words, it is always true (under the assumption of 4)

that a function f € C(K,E) which can be approximated uniformly on K

by functions extending to elements of FE on open neighbourhoods of

K may also be approximated uniformly on K by functions of the form

h(x) =
i

[ o =]

N eihi(x) for all x e K;

ne€ N finite (depending on h), e, € E, and 9; € HF(k),i =1,...,n.

But the a.p. of HF(K) is equivalent to the fact that, for arbitrary

Banach space E, each function f e C(K,E) with the property that,

given any e' € E', e'"of may be approximated uniformly on K by

(scalar) functions belonging to F on open sets containing K is al-

ready an element of HF(K,E), i.e. can be approximated uniformly on
K by E-valued functions belonging to FE On copen setsg containing K.

Or, to put it this way, HF(K) has the a.p.

if and only if, given any
Banach space E and an arbitrary function f e C(K,E) as above, there
exists for any ¢ >0, unigormly for all e' in the unit ball E! of

1
E', an o i
, pen set U > K and a function 9 U, * E continuous with

L}
e og, € F(uo) for each o' e Ei Such that

i(e' of) (x) - (e® ogo) (X)I <e for all X €KX and all e! € E!
1

-

REMARK: fThe description of Es:HF(K) as the right side of the equa-
tion in 4.(2) ig of course andepe

ndent of the hypothesis on F in 4

’
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and so is the inclusion HF(K,E) C E eHF(K) which follows from this
description. Hence, as obviously E ®e HF(K) is afways a topological

linear subspace of HF(K,E), we have
v
C
E @E H,r.(K) c HF(K,E) E EHF(K)

whenever E is complete. So, by Schwartz's theorem, the a.p. of HFGQ

clearly impfies the equality

v
HF(K,E) = B ®€ HF(K)

for complete £.c. spaces E, even without the hypothesis of 4.
Let E be complete and let the assumption of 4.(l) be satisfied
lor let HF(K) have the a.p.]. Then the preceding two theorems imply:

H_.(K,E) CE EHF(K) C E EAF(K)

] |

E @E HF(K) CE 88 AF(K) C AF(K,E).

F

So we obtain from Schwartz's theorem:

5. COROLLARY: Let us agadin assume that, fon some basdis U of neigh-
bournhoods of K, F{U) has the a.p. for each U € uLamiﬂetl¥(K)=HFGO
be vatid.

Then Ap(K) = Hp(K) has the a.p. 4§ and onty & AL(KE) =Hg(K,E) {
holds fon atk complete £.c. lon, equivalently, for all Banach) spaces E.

If, in concrete examples, one examines the methods that lead
to a proof of AF(K) = HF(K}, it turns out very aften  that  these
methods also prove AF(K,E) = HF(K,E) for, at least, arbitrary Banach
Spaces E. Corollary 5 shows that it suffices to prove the equality

A (K,E) = H. (K,E) for all Banach spaces E to obtain both the a.p. of

A 4 I S+ e £ 3  44  yree e r t rt oana
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Ap(K) = He (K) and AL (K,E) = He(K,E) even for arbitrary complete £.c.

Spaces E. On the other hand, sometimes the methods used in proving

Ar(K) = Hp(K) may also be adapted to yield a direot proof of the a.p.

of this space, ang then AF(K,E) = H.(K,E) holds for all conplete fL.c.

Spaces by Corollary 5, too. In fact, Corollary 5 demonstrates that

the two approaches which we have just outlined are equivalent,

REMARK ; Similarly, if ® g a complete Lc. space ang if Ap(K) =H(K),

then the a.p. of E or of AF(K) = HF(K) also implies AF(K,E) =HF(K,E)

L genenat,

2. APPROXIMATION ON PRODUCT SETS

—product resp. com-

Plete e-tengor Product of tyo (or more) Spaces of type AF(K) resp. HF(K) .

Such a description follows easily from

pProduct theonem»

the (well-known) general'sdlice
for subspaces of, S8Yr C(K; x K,). (This slice prod-

uct theorem was first stated inp Eifler [17), but he points out that

the result jg already implicitly contained in Grothendieck [2] . For

More general sijce product theorems, for Some ideas connected  with
the underlying method, and for Mmore applicationg Compare [4 ] and[5].)
So let X, and X, be two completely regular (Hausdorff) spaces
such that Xl x X

2 44 a kIR-Apace. Then both Xl
k

R ~SPaces, and, on the other hand, x

and X2 must be

1% X, is kg’ if both X, and
least one of the Spaces
Pact (or if both Xl and X

x2 are and if a¢ xl ’ X2 is even locally cam

5 are hem&compact k]R

~spaces). let Fy
resp. F2 denote Closed 2.c.

Subsheaves of Cx. resp. ¢, . Then we
Xy X5

IR “Property of open sub-
c£.[12), insteag of Arhangel'skiY 's

[10], 1.10) that the “product

sets of Completely regular km—spaces,

Proposition op K-spaceg in the proof of

sheaf Fl £ Fz "
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Fl er is undiquely determined by the following requirements:

For all open subsets u; ¢ X, (1=1,2), (Fjef,) (ty xU,) = Fl(ul) € FZ(UZ) ,
and, for all open Ui > Vi on Xi (i=1,2),

Fl €F2 Fl

r
Up xly,vy xv, = TV 2V,

where rgv denotes the canonical restriction mapping F(Uy - F(v)
with respect to the sheaf F and where the e-product of continuous
linear mappings is defined in, say, [71] .

Let us now introduce the fellowing notaticon: T is the canoni-
cal projection of X.‘L x X2 onto Xi (i=1,2), and, for arbitrary

open subsets U of x1 x X2 '

X -
Ut = {x € X,i(t,x) € Ur(t Xp), 07 :={t € Xi(t,x) € Ul{x € X,) .
Then we get a general description of Fie F2 on open sets {C X x X,

as follows:

(Fl €F2)(U) :={f € c(u); f(t,-) € Fz‘“t) for each t € my(U)  and

£(-,x) € Fl(ux) for each x € 7,(W)},

endowed with the topology co of uniform convergence on compact sub-
sets of U, and the canonical restriction mappings of the sheaf Fler
are just the ordinary restrictions of functions. Fl € F2 is a cfosed
£.c. subsheaf of Cxlxxz = cxlecxz . Nuclearity of Fl and F, is

inherited by F €F2 ([10], 1.2 c ).

1

6. THEOREM: Let K, be a compact subset of X; (1=1,2). Ther we

have:
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: : d
(L ap (&) ©Rp, (Ry) = {f € C(k) xk,); f(t, ) € Ap, Ky an

£(-,x) € AFl(Kl) forn all (t,x) € Ky x Kz}

¢]
o]
= {f € C(lexz); f(t,')‘ﬁ €F (K, and £(-,x) |, € F (K

2 ‘1
for all (t,x) e Ky xK,1,

with the sup - noam o4 C(leKz)'

_ . : d
(2) By (K)) “Hp,(Kp) = {f € ck) xK); £(t,.) e T (Kp) an

f(+,x) € HFl(Kl) for all (t,x) e K, *K,}

= {f € C(Kl xKZ); E(t,*) may be approximated undigormly  on
Ky by functions betonging to F2 On open sets containing
Ky, and f£(-,x) may be approximated unigormly on K

1
by functions belonging to F

1 On open sets containing
K) for each (t,x) e Ky *K, ),

again with the

Aup - nonwm o4 C(K1 *K,), and:

(3) H(K)éH(K)CH (KXK)CH(K)EH(K)
Foiil e F, 2 Fref,'m1 "%y Fiil F,""2

C A K A C

PROOF: Partg {1) ang (2) follow imm

ediately from the slice
theorem for Subspaces of (K

product

1 X Kz) quoted aboye. To prove

He (R,) @ H C
fll e Bp Ky cmp Ky xky),
it suffices tq v £
Crily Hg (Kl) ® HF2(K2) < HFI e F, (Kl *K,), which is
immediate, too

lowsramﬁly from the Previoy

2 and
from the description of the

+ cf, (2).
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Q
T

Finally AFl(Kl) EAFZ (KZ) C AFl e F2(Kl XKZ) , because Kl x}{z =I%l ><K2

and hence (by the description of Fl EF2):

0 o 0 0
AFlEFZ(Kl xK,) ={f € C(Ky xKy); f‘ﬁ 2 E(FlEEHKlXK2)=FlGH)EFE(KZ)}
1772

8] 6]
= Feck xky; f(t,) o SR ad £0.W o SFK) (only)  for alLl
2 1

o] 0
(t,x) €K, x K_.}.

1 2

As 6.(1) (together with the description of AFl €F2(Kl XK2) at the

end of the preceding proof) shows, AFl(Kl) EAFz(KZ) will in general

be strictly contained in AFl EFZ(Kl *K,}, and it is easy to construct

¢xamples for this phenomenon. However, a simple topological assump-

tion forces equality here, as part (2) of our next result demonstrates.

7. THEOREM: (1) Let, {or some basis LEl 04 nedghbouthoods o4 Kl’Fl“ﬁ)

have the a.p. forn each ul € Ly o Let, forn some basis w2

04 nedghbounhoods of Ky, FyU,) have the a.p. for  each

U2 € Lﬂz. [ Instead of this, we could also require HFl(Kl)

ch H_ (K.,) to have the a.p. ] . Then
F2 2

K. xK = H. (K,) é H,. (K.,) holds.
HFler(l 2) F, ) 8 B, (5o

o
(2) 14 Ky and K, are "gat", L.e. satdsfy K, =K. (i

we get:

=1,2),

K = A (K, x K.).
AFl (Kl) EAFZ( 2) Fl € F2 1 2

PROOF: (1) The remark in brackets is obvious from 6. (3) and Schwartz's

theorem. For the proof of (1) under the assumption on Fl resp. Fz,
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it suffices to show density of HF (K;) @ HF (K,) in HF € FZ(K xK,) .

So let f € HF EIF (K x K ) and ¢ > 0 be given and find an open

set U containing Kl x K2 and a function g € (Fl an) (U) such that

A

sup (E(x) = g{x) |
XGKl XK2

£
> -

Without loss of generality we may assume U

Il
fany

1 X U with Ui Elﬁi
(i =1,2), and hence

v
(Fi st)(U) = Fl(Ul) €F2(U2) =F1(Ul) ® F2(U2)

by Schwartz'sg theorem, because Fl(ul) or F2(U2) has the a.p. Then

there exists h € Fl(ul) ® FZ(UZ) such that

sup l9(x) - hix)| < %
XE€K, %K
1
Now h| € Hp (X)) @ H, (K.) ang sup [f(x) ~h(x)| <¢
Ky K, Fll Fp 2 X €Ky xK,

(2) Notice that, by the identity C(K xK )-C(Kl,C(K2))=C(K2,C(Kl))r

for arbitrary f ¢ AFl E;:2(K XK,), I, 0t » f(t,-) resp. I, : x > f(+,x)
Yield continuoug linear mappings of K resp. K2 into C(Kz)rESp-CKKl)-

The characterlzatlon of AFI EF (K b

6 implies I (K ) C AF (K 5)

o = H

2} at the end of the proof of

and IZ(KZ) C AFl(Kl) and hence also

So, for fat sets Kl and K2

8- COROLLARY: (1) I'§ AF (K;) = HF (Ki) (1=1,2) hopds and £f one of

these spaces haa the a.p, » then we obtain

H (K x K =
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So we get even H (Ky XK,) = A
Fief, 1 2 Fler
sels K, and K,.

(2) H (Kl xK,) has the a.p. whenevex badzHFlﬂ%) amiHF(Kz)

Fl €F2 )

have the a.p.
(3) 14 K, and K, are fat and if both AFl(Kl) and AFz(Kz)

have the a.p., A e F (Kl xK2) has the a.p., too.

1 2

PROOF: (1) is clear from Schwartz's theorem, 6.(3), and 7.(2). (2)
and (3) follow from 7 by aid of the result (Schwartz [26], Proposition
11, Corollaire 2) that the e-product of two compete L.c. spaces with

a.p. also enjoys the a.p. o

Induction on 7 and 8.(1) wusing, among other (obvious) things,
that finite e-products are associative and that e-products of camplete

Spaces with a.p. are again spaces with a.p. yields now:

9. COROLLARY: Llet Xypeoor Xy be completely negulan (Hausdorgg) spaces

with X, x ... x X, a kp-4pace, Let Fl,...,Fn be closed L.c. sub-

1
sheaves o¢f Cxl,...,cxn , and Kl""’Kn compact subsels 04 xl,...,xn,
hespectively.

(1) Let, forn some basis wi' 04 neighbournheods ¢4 K, Fi(ui)

have the a.p. fon each U € U, (i=1,....n except  for
i=1,...,n)

at moat one i) on Let alf but one HF.(Ki) (i
1
have the a.p. Then

(Ky x... xKn) xHFl(Kl) @E e ®€ HFn(Kn)

is tnue, and if atl Hp (K;) (i=1,...,n) have thea.p., the
1

same hotds for HFl N EFn(Kl X w.. X Kn).

(2) Lex aff the sets Kl""’Kn be 4at. Then

e X Kn) =AF (Kl) € vun eAFn(Kn)

K, x
AFl € +e-s E Fn( 1 1

A i i R 3 2 s e e+ o+ s s
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nolds thue, and Lf alk AF (K ) (i=1,...,n) have the a.p.,

the same hofds fonr AFl cul e F (Kl X ... xKn).
(3) Lez, gorn each i =1,...,n, Ki be fat and AF G() = F (K)

T§ then atf these dpaces (except fon at most one) haue the a p.,

A

r EFn(Kl X ... XKn) = H

lE.

ce. XK )
Fl £ ees £ Fn(Kl * n

44 valid, too.

complete {£.c. Space E (gee section 1), we get e.q.:

10. CcoroLLARY: (1) Let Ky, -+ K be fat., Then

s = «-+ €A (K )
AFlE... EFn(KlX XKn,E) EEAFl(Kl) £ € Fn n

L8 trye.

(2) Let E pe cemplete and Let, fon some basis

W, of neigh-
bourhoods 04 K

: Fi(ui) have the a.p, gon each u, & u,
(i =1,...,m). Than

Hp

v v
lE...EFn(le"'XKn'E) =E ®€ HFl(Kl) ®€ E

v
cee B Hy (Kn)
n
L3 valid,

(3) Let E p, complete, fot K

be fat and AF (R;) = Hi, (K;) for
Then if agg the spaces

(i:l,-..,n),

each i =1, .. n, AFi(Ki) =HFi(Ki)
have the a.p.

AFIE"' an(le... xKn,E) = H

Fl £ ... an(Kl SRR xKn’E)

hozda, too.

PROOF: (1) is a consequence of 3

- (1) ang 9.(2)
under the hypothesis of (2),

- Let ys remark that,

(F1 €.vu g Fn) (U) (as €=product of coplete
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Spaces with a.p.) satisfies the a.p. for each U in the basis

P _ . i =
ur ;= {Ul X ... X Un ; Ui € lﬂi (i=1,...,n)}
of neighbourhoods of Kl X ... XKn .+ Hence (2) follows from 4. (1) and
9.(1). Finally (3) is implied by 9.(2), (3) and by the remark at the

very end of section 1. GO

3. DISCUSSION OF THE MOTIVATING EXAMPLES

In this final section, we will look at some of the known results
in the case of our motivating examples of sheaves F (cf. 1 above) and
will point out that, between some theorems in the literature, strong
relations follow from our previous discussion. It is not intended
here to survey aff the relevant articles, but we will rather illus-
trate some of the ideas which might play a rdle, when one tries to

apply the results of sections 1 and 2, by specific examples.

Perhaps the case most people have been interested in is F =0,
the nuclean Fréchet sheaf of holomorphic functions on a complex mani-
fold x. ror simplicity, however, we will only deal with holomorphic
functions on X = CN (N > 1) here. It is clear that finite e-products
of sheaves 0 are nothing but the correspending sheaf ( on the prod-
uct and that, for any quasi-complete f.c. space E, 0 is just  the
sheaf of E-valued holomorphic functions. When F =0, we will write,

for short, A(k,E), H(K,E) instead of A (K,E), H¢(K,E), respectively.

For F =0, some of the results in sections 1 and 2 are appar-
€ntly part of the "folklore® of the subject, but usually not easily
Accessible in the literature: We have already pointed out in the in-
troduction that this paper is based on a generalization of the "old"
article {2]. Later on (in [1], section 1), O. B. Bekken looked at

closeqd subspaces of C{(K), K compact, with the so-called "slice propenty”
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and showed that this property implies the a.p. After the proper change
of notation and some identifications (using the fact that each Banach
space is a closed subspace of C(K') for some compact K') his results

there are quite similar to our theorem 3 (for Banach spaces E). In

section 3 of [1 ] » (making use of the nuclearity of () Bekken obtains

a proposition related to (but somewhat weaker than) our theorem 4.
For a detailed account of the relation of the slice property with the

4.p. and the consequences of a theorem of Milne in this connection,

see also (6],

As usual with Spaces of holomorphic functions, we must now

split up our discussion for the cases N =1 and N>2, If N=1 i.e.

K is a compact subset of the complex plane, the problem is completely

solved: A(K) and H(K) have then always the a.p. (whereas it remains

an open problem whether even the Banach algebra Hm(D) of all bounded

holomorphic functions on the open unit disk » enjoys the a.p. Remark
that the 4.p. of the disk algebra A(B)

ial ).

= H(D) is really quite triv-
This interesting result is due to the Joint effort of several

people (and also, unfortunately, not easily accessible in the litera-

ture in its fy1] generality): Eifler [17], Gamelin-Garnett [19], section

6 for H(K), and pavie [15] for A(K) (they all use wvecton - valued

results). More generally, Gamelin [18], section 12 has pointed out
that the constructive techniques (ang the approximation scheme) of
Mergelyan ang Vitushkin shoy that the So-called "T-{nvaniant” algebras
have the a.P- As to A(R) = H(K) in the case of one variable, a neces-
dary and sufficiont condition (involving confinuous analytic capacity)

was given by Vitushkin, see €.g9. [19] ang [29].

For N>2, there are only paxtiag results. Remark first that,

by an example of Diederich ang Fornaess, there exists a relatively
compact domain ¢ of holomorphy in ¥ w

ith C"-boundary such that
AK) # H(K) for g =

G. PFor a survey of some related recent work on
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the question when A(K) = H(K) in several complex variables, we refer
to Birtel [11], and for results in "findite S. Ps. (. mandfolds” to
Rossi-Taylor [25].

It is known now that A(K) (or H(K)) has the a.p. for the fol-
lowing types of compact sets K C CN:

{1) K is the closure of a staictly pseudoconvex region with

sufficiently smooth (say, c3 -) boundary, or:

(ii) K 1is the closure of a negular Wedil polyeder,

Both conditions imply K fact (trivially), and A(K) =H(K) (in
€ase (i), this approximation theorem is due to Henkin-Lieb - Kerzman,
in case (ii), it is a result of Petrosjan). (i) was proved e.q. in
Bekken [1], section 2, applying a vector-valued version of Henkin's
Séparation of singularities result. It also follows from Sibony [27]},
Proposition 4 (in view of our Corollary 5). Sibony [27], p. 173 has
also remarked that Petrosjan's arguments may be modified to vyield
A(X,E) = H(K,E) for each Fréchet space E if K is the closure of a
regular Weil polyeder, and hence (ii) follows again from our Corollary

5.

REMARK: The method of "focalization of the a.p.” for certain fune-

tion spaces (cf. [5] and [10]) may be used to show that A(K') has

the a.p. for compact sets K' that are "sufficiently well" di{4jfoint
Unions of sets K as above and that some related function spaces have

the a.p., too (cf. [5], Corollary 15), but we will not go into de-

tails here.

Let us now explicitly state what we get from the preceding re~

Sults by applying our Corollaries 9 and 10:

= K1 Xx.,.xK with Ki

14. THEOREM: (1) H(K) has the a.p. if K n.

1=1,...,n) either
(1)  any compact subset of € ox
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(11)  the closure of a Atndetly pseudoconvex reglon with Asuf-

ficdently smooth boundary on of a regulan Weilf polyedex.

(2)  A(R) has the a.p. undex the same conditions 4§ one nequines

in (1) {d), additionatlly, K, o be gat. And A(K) =

l) ®E . 8& A(Kn) 45 then true.
(3} H(K) = A(K) holds fon K =K, x.., “K wLUzKi (1=1,..
(<) a fat compact set in € with H(Ki) = A(Ki) on

as in [ 1)(4i4) above.

.,n)

eithen

let then E be an arbitrany complete £.c. space.

(4) Unden the assumpiions of (7)

b

v

A(K,E) = E & A(K)) @ ... ®, A(Kn) holds .

{5) Unden the assumptions of (3), we have A{K,E) = H{(K ,E),
oo,

11.(3)

p. 812, where,

¥ in 11.(1) (ii), he needs
only the so-called "segment Property” of x. (Weinstock's methods are
quite different, however.) at this point,

a few remarks on Sibony's

Proposition 1 of [27] is,

in some Sense, easy, if not trivial,

as our theorenm 4.(1)

(and its simple Proof) demonstrates: Tt is noft

necessary to invoke G

= known
nuclearity (or

eéven the a.p.) of ¢ ang simple tensor product argu —
ments suffice!

Corollaire 3 of [27) Corresponds with 7.(1) and 10.(2)
in this paper.

however, Sibony's
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though they are based on theorems and methods which are just true in
his given special situation, it turns out from our discussion above
that what is really needed is only a proof of the a.p. of A(K) (=H(K))

to make everything work, even in many o¢ther cases.

We turn to sheaves F of harmonic functions or, more generally,
of null-solutions of hypoelliptic differential operators with C -coef-
ficients now. These are again nuclear Fréchet sheaves, and hence our
assumption that F has the a.p. is certainly satisfied. For nuclearity
of the sheaves in axiomatic potential theory, cf. Constantinescu~
Cornea [14], §11.

In this case, we will assume for the moment that the compact
Set K is the closure of some open subset U of X (and hence fat).
A very nice phenomenon may occur here which yields a completely trivi-
al solution to the question of the a.p. for AF(K): If we suppose that
U'is a negular set for the Dinichlet problem with respect to  the
sheaf F, i.e. for each g € C(ol) there exists a unique function
fe AF(U) with fiau = g, the continuous linear restriction mapping
L:f » f{au is bijective from Ap(K) onto C(3U) and hence yields a
topological isomorphism of these Banach spaces. (A maximum principle
for functions in Ap(K) will imply that L is even an {sometny.) Then
AF(K) certainly has the a.p. In fact, it would be enough for such a
Yresult that [ : f » f]K, is bijective from AF(K) onto a cfosed sub-
dpace with a.p. of C(K') for some closed subset K' of K (say, a
Closed set K' ¢ all) .
func-

Let for instance F be the sheaf I of (real) hanmondic

tions on R (n > 2). We refer e.g. to Ho-Van-Thi-Si [22], p. 617/8,
62172, 626, 637 for conditions concerning, say, the equalities
(1) A, (K) = Hy,(K), and
(ii) A;,C(K)[aK = C(3K) (or, equivalently, by the maximum prin-

ciple, L :AM(K) + C{3K) bijective and isometric).
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Let us only note that in general a suitable (outside) cone con-

dition implies both (i} and (ii) ang that, in the case n =2, (i)and

We also refer to Weinstock [ 31] for results on AF(K) = HF(K)

for sheaves Ff = NL {on ZRn) of null solutions of (linear) elliptic

partical differential operators 1, of order m with constant coeffi-

cients in this connection and tg Vincent-Smith [28] for AFUU =HFG0

in the setting of harmonic sheaves F of axiomatic potential theory.

S in this direction.

Another argument thep Yields the a.p. of AL (K) and HF(K)

eéven in a much more general Setting:

12. THEOREM:

(n > 2) and k

(1) Then both A, (K)  and Hy (K) always have the a.p.

(2) Hence A(k,E) = p O BelK)  holds fon each complete L.c.

dpace E, and, for such an

E, A (K) =Hp(K) always implies
AL (K,E) = Hy (K,E).

PROOF: ag Ho-Van—Thi-Si £22),

P+ 821, 634 shows, botn » - H. (K) and
A = AL (K) are dimpliciap Spaces

r i.e. the pul3 Measure is the only

maximaf Measure (or, equivalently,

measure concentrated in the
Choquet boundary of a)

+ This Mmeans (cf. Effros~-Kazdan
(161, p.

S

tions inp c(s). However,

A(S) has the A.p.:

it ig well~known that each Such simplex space

In fact, A(S)' jg an abstracy (L)

- 4pace. ( This
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argument can be found e.g. in the proof of Corollary 2.6, p- 477 of

Namioka-Phelps [23].) (2) follows from (1) and 3.(2), 5 above. o

For the connection between simplicial spaces and the solution
of "weak Dindichfet problems” see Effros-Kazdan [16] : A (K) (say) is
simplicial if and only if each continuous function defined on a com-
pact subset of the Chogquet boundary of A, (K) may be extended to an
element of AM(K) of the same norm.

But now we get the a.p. of AF(K) and HF(K) for many sheaves
F of axdomatic potential theory and alf sets K = closure of a rela —
tively compact open set U: In fact, under certain axioms on the
underlying harmondic space (X,F), it is known that Ap (K) resp. He (K)
is again simpliciaf, and then we may proceed as in the proof of the-
orem 12 to carry the corresponding results over to this (much more
general) setting. For the relevant axioms needed here ard the .

AF(K) resp. HF(K) is a simplicial space, we refer to Effros - Kazu.

{16], Cor. 4.3, p. 108 and Cor. 4.2, p. 112. {(For a necessary and
sufficient condition for AF(K) = Hp(K) in this setting see [16],the-
orem 4.4). In [16], the axioms still excluded genetal open sets U

for degenerate elliptic equations, but the corresponding problem was
solved affirmatively by Bliedtner-Hansen [13], and we refer to [13]

for the most general results on simplicial spaces AF(K)'

In concluding, we should point out that the e-product Kl € Kz
of two sheaves of harmonic functions in axiomatic potential theory

vields nothing but the (mulitiplfy resp.) separately harmonic functions

of Gowrisankaran [20] resp. Reay [24]. We leave it to the reader to

combine our preceding remark on the a.p. of AF(K) resp. HF(K) in
axiomatic potential theory with the results in section 2 above to
obtain, say, theorem 11 and lemma 23 of [24] without any effort. Of
course, we could also immediately state results for "mixed" (say)

holomorphic - harmonic sheaves 0 e¥X etc., but the preceding examples
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and applications may suffice.

K.-D.

K.-D.

- BIERSTEDT, Gewichtete RHume stetiger
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