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d hence is
Hence T (tQ) is the intersection of weakly closed sets an
m

K E such that
weakly closed, Now suppose Q(v) = 0. Let Qv ¢ PDse( )

we have [QV*QJ(P)(")=

B(e,)la(z _.P)] =
TV 0, Since

Hence Q*Q = 0 and then B(QV)B(Q) = U

and a?;:), éfaj € H(E*) we have

is one to one,

+19) Corollary,

E(Qv) =V, For each x €E and p € Pba(E)

= Lo (2_)1(0) = Lo (e(z_p))) (o) -
= V[Q(z-xp)] =0,
Q£o0

t
5?3;) =V = 0, Hence 0

ts of
If E has a countabile basis for the elemen

E for the boundeds sets and Q € PD

vi 0] then
SQ(E) with Q # ’

Proof, 1In the conditions of Stated we have that

Fe o(E) ise
Fréchet space,

hat
By the Dieudonne—Schwartz theorem, to show t

QL0 g onto is suffices to sho

eak
w Im(tQ) is closed for the W

. e have
topology on 3 Pbg(E)' defined by g Pbe(E)_ But this fact w
Proved,
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INTRODUCTTION

Pprox e eo 1ic o 1 €
imatio I o}
The method of an a th et localization of th

i d function
for weighte
locally convex approximation property (a.p.)

Paces 1 d in [4], 1Its usefulnes
iT i [:]-
Spac ( r rather modules) was first explained i
o

a then d . . -
1 i of 11 in connection with
trated in the ast section [ ]
s emons )
Westi t f mixed dependence on sub-
. i i n spaces of functions o "
gations o

) the r ent author "COI“PUbed"
es
A was written p
t the time when 11

o ot idea how far
a better 1
concrete examples in order to &
Tumber of t

t+ and
i ion theorem wen
the applications of the fundamental localizatio

i had direct
les which
"iere it had its limitations. Only the examp

i 11].
included in [
fonnections with product sheaves could be

o e remaining p ’ ) oG on
5‘11 we came back t th nin examples and based

the b of 1 struct some
f + n able to con
1t r paper | 7 we have hen bee
esu 83 o ou. I

z orem
at he localization the
ooked once more

en we 1 k. t a

) Wh +

. \4 -V roximation theory by
) : ork in ector alued app:
ght of recent w

B‘chado-p 1 J aper 25] 9 it
Tol with Pro lat's pap [

la [ 22 and in connectio
O n

leteness
e the comp
turneq out that it was now possible to remov

o
That no chang
letely.

assunpti°ns: which were needed in [11], comp
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hd !
of the general method was actually necessary, but that the researc ;

i i i elf-
Machado-Prol1a on Nachbin spaces of vector fibrations in the non s

adjoint case, appropriately reinterpreted and used,

enabled us to ge-
neralize our former results consider

ably,
author's attention.

i js
Came as some surprise to th

i ith
It demonstrates that the method of dealing wi

Schwartz's

i in
€ ~Product is noet really limited to complete spaces, but applies

i i f the
full generality, So we have decided to give the main idea o

ral
approximation—theoretic localization of the a,p. and the gene

i ; art of
version of the fundamentay localization theorem in the first p

this articje (sections 1, and 2.) while the examples and applicatio®
form the secong Part (sections 3. and 4.),

Let us now review the contents briefly:
Present the two methods how one ¢an apply approximation-theoretic

results tg Proofs of the a

. ‘e
In section 1, V¥

. " one
*P. of a function space: a "direct

. . ators
which sets out to interpret the space of continuous linear oper

obable that the method applies im
too, Section 1 does ngt €0 into details and ma¥y .
Serve as an introduction.

The firasg part
"ingredients"

16

all
°f section 2 collects all the notation and

undam el
FYOOT of the fundamentay localization TheoXZ-
\

for Subspaceg of weighted spaces of

for the
of Schuartzvs a.p.
cvo(x) (1.0,

k-]
E
o
£
=2
"
2]
=2
:
]
"]
[N
o
o
o
L]
=
A

95

that
N1LUOL i : Here we show

hout the former completeness assumptions

to do withou

e s f on wea ntinuous F-valued functions which
( y kly co a1 )
th pace o

3 N bin space
X F 4is still a Nach
i e g¢-product CV ( ) €
corresponds with the g-p o

ay) [22].
v of cross-sections in the sense of (s y)
"o

In fact, whenever

t-open
han the compac
f the function space is stronger t o
— i f the function
vy hyp inuity o
t 1 it is enough to assume only hypoconti -
s o o i uch a situation
i n suc
h d the localization theorem also applies i
ere, an e
(as we point out in Theorem 18). i
3 is devoted to (more) examples for th
Section is

bsets
i dence" on su
ighted spaces with "mixed depen

of the a.p, among weig

A

E ’ 1 ( )
: products, In 11 we had dealt with a rather simple case

larity
for the "regu
2lready; now we construct concrete examples

r

" are
i lized spaces
A hich are needed if the '"loca
assumptions® on Wl

e nterested in the two
t SUbSpao f s N

lear spaces, We are mainly i
5 O nuc

last
t. In the

n or compac
of A are ope

cases where the "slices" At veresting new exampies
inter
‘ase we make use of the results of [7] to get i I
ity
. and 34) "densi

include (in 33

(see e.g., 29 and 30); we also inc
nd 4,12,

fompletely analogous to {11], 4.11 a

nera se ing for
the section, we look a the ge
At the end of t 1 tt

Xamp] that ve a natural
3 the ha Pl
all e Ples in section and point out a Y

e 1 that
etat - tions et us note

1 r sSs5-5eCctlo: - (

L X ion as '\]achbin spaces of cro

\I'k -

11 18 a i umber ]
nd ion 3 V¥ eld a n
4 ’ the remarks at the end of sectio

f

ich
tions whic
f cross-sec
hWeresting new examples of Nachbin spaces o oy mave
i which appar
irise quite naturally in the applications and

far.)
10t been mentioned in the literature so (a -

les

. . other exam

Section 4 cencludes the article with ctor-valued
ications to ve

Kind of myyxeq dependence") and some applic

i 26 of Prolla-
ation theor T T ith the paper [ ]
a Toxim t1i . ection wit

dieck
and Grothen
ani-Stone,

Machad, we consider Wejierstrass-Stone, Kakut

to
d of [13]
ralize Blatter's metho

subsp&ces of cVo(x’F) and gene

velghteq Spaces.
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Prolla for some

. siom
- [26] which we nad at this occa
1. THE GENERy;, IDEA

(ued
Let E pe an arbitrary (always Hausdorff) 1locally convex
Space over K - c (or R).

. from
The following definition is taken
Grothendieck [ 16] (resp.

Schwarty [29] }:
1 Definition. E
S—=="Xlation

o)
is sajq to have the approximation property (a
(resp.

1dg

Precompact (resp.

Schwartzg 8.P.) if the identj ¢y

can be approXi”
mated unif‘ormly on every

of E
vex
every absolutely cofl

by continugys

E
linear operators from
inte E ¢ Tinite rany (i.e. witn finite dimensjonal range).
acé
For twe l.c. spaces E  ang F, 1let £(E,F) denote the SP

of a1y continugyg 14,

(&) .= I(®,£),

Near OPeratorsg from g into

F, and put

is endoweq With the topology of unifor®

(resp, absolutely comvex compact) suP”
(resp. xcc(E'F));

cc(E’E)’

Y We write :c(E,F)
£ec(®)  denoyy £ (5,E),

Ratural idmtificntion » th

so SC(E) and
and ¢

rators
® Space of all ¢ontinuous linear ope
of finite ANk fron in

ct
to » Correspongg with the tensor prodi

e
der
respectively, As, un !

{
i
i
i

97

E/® F, we get easily: lsh-l65). N
osition 35, Pe.
i dieck [ 16}, Prop
position (Grothen
2 Proposi
i lent:
following assertions are equivale
hwartz's a.p.),
(1) E has the a.p. (resp. Schw CC(E)
i n’ E ]
(2) id, € E@E °© {(resp. id, € ®
1
in £ (E) (resp. £CC(E)),
(3) E‘@ E is dense in o ey (oo
‘ is dense in SC ’

() h 1,c, space F, E'® F is

4 for eac eCo
s (E F)) i E (resp.
. ' F F'® E is dense in £C(F, )

(5) for each 1l.c. space ,
L (FLE)).,

finements
i bsequent re

ample of Enflo (1972), with su

A counterexam

ven
there are e
i hows that

( h ) Davie and Szankowski, sho

due to (among others

1P without a.p.

g Y)
. rec WS 3 ved (surprlsln
1y Szanko ki (o] prove

en

4 p % 2 And t 1

for each p,
spaces
tlosed subspaces of the sequence sp

an

i operators on
f all continuous linear op
that the ¢*_algebra £ (H) o

s nonical
under its ca
. space H (
Infinite dimensional (separable) Hilbert sp
a.Pe
°Perator norm) does not have the

man n es a ic Q. ePe
ions ©

any 1 ter ting PP

s 1n view of the 1 at f the a

f. Grothendieck [16]),
cf.
for "concrete"

roducts (
in the theory of topological tensor P ish the a.p.
stablis
it is Teasonable to ask for methods to e

of 1l.c.
neral class

d which applies to a _generaz C-Z-2 .
e gne such metho a proof of the a.p.

. spach, L
- Usually, .
functi on Spaces is discussed here. Lts on (the approxi-
. eful resu
i N 1 implies us
8 function space immediately i

f)
. ducts" o
"slice pro

Bation of) vector-valued functions and on (

o =

41), but our
. 2] [3]1 C
Puncts gng of several variables (cf. e.8 21,

the
theorems on

1 known

g®neral idea here is, conversely, to apply

of spaces
ve the a.p.

ijons to pro

IFIOX1mat1°n of vector-valued

°f scajar functions,

i an
functions,
f scalar
Remark. The a P. of a complete space F ©
. e a,.p,

of
3 § F of a space Fp
t-tensoy Product representation ¥Fp = €
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F-valued functions, ang the known facy (cf. Schwartz [ 29, mmp“ﬁw‘

Pe. 1&8) that the € :

o C°r°1laire 2 ~tensor product of two complete

l.c. spaces with a,p, 8gain has the a.p. together imply that %‘Ms
the a,p, for each Complete 1,c, Space F with a,p., too, =- Hence s

mAY restrict our at . ) here witio
tention to Spaces of scalar functions

any real }oss of generalj ¢y (for most purposes).

.
modules)} JF = F(X) of cont

. li-
gical space X, 1like gener?2
Zations of the Stone-Weierstrass theor

on
em or of Bishop's theorenm
\mifom algebras

; o
s Yield a Covering x - U x of X by (palrwﬁ
Q
sets x QcA
[}

digsieag -
isjoint closed) such that approximation can be "localize

to the i »
sets in a natura] ¥ay. Correspondingly, one may
"localized" to the Sets
%€ a4, 3| ’

ong
concrete examples (say, am

mixeq dependencen
S resujt on the a
*Ce spaceg with a.p,

t5
on subsets of product®

1ete
t *P. of ¢-tensor products of comP

Be
can only be 4 ) T

PPlied on full product sets.
in Some Sense,

theorem is .

. o
ti an lnteresting and very useful appro¥i
9Netheop, -
etic "%n of the a.p. in spaces of conti®
Qous functions. .

HOVEVQI- + the d

Te clm. L] (“Tl:i ch, a n]ysi’
1y s » S a careful an
vy !‘.Iﬂt.d

md, in faet. eqnivalent) to overcome i

o
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i a Hausdorff’
F_) } is a "vector fibration" over

difficulty. - If (X, ( X x€X if L = LV is a

i " F_ (x€X) and i o
topological space X with "fibers x
opolog '

i low) with
"Nachbin space of cross-sections" (see be )

L(X) ‘= [i(x), felL = F for each x € X such that L is a module

= continuous
elfadjoin and separating subalgebr o
) a s t a £ CB(X

and 25 ifying a previous
311 modlf ing
bounded scalar functions on X) s Prolla [ - (

es F
1 hown t a.p. of all spac <
idea of G, Gi erz) has recently sho hat the p

un L In his
1 jes a,p. of .
i implies the
e o (V(X))VEV) bin space of cross-
achbin
proof he represents the space £(L) as a Nac

ies the solution
n applies t
sections over X with fibers S(L'FX) and the f cross-
hbin spaces o
of the "weighted approximation problem" (for Nac

sectj ded case., - The
ons n rati adjoint boun . —_
i ) in the separating and selfadjoi

Let, for each

(3,() 1= £(x)

i i i as follows:
forresponding representation is given

i ation at x
*€X, §. :LavF be the point evalu
RS x

d
«T belongs to £(L,F ), an
frall rewr), For Te £(L), 8,

£(L) as a Nachbin space of cross-
RiT 4 7 .2 (8 °T)

represents
x

xeX
fections over X with fibers £(L,F).

ur ral a £ X can similarly
case, it is clear that (3 ( ))
In o gene , t

be r d i values in
€pres X with val
ent i s ' on
ed as a space of function

intwise con-=
i nger than poi
s{xy is strong

+ 1f the topology of F(X)

h
ions, any suc
ists of continuous functi ,

Vergence on X, As 3(X) consis

into
i from X in
function ’f‘; X + (f - Tf(x)) is continuous

iz § (E(X)’K)
3(x)’ o (3(x), 3(X))] and continuous into F(x)g c

ecompact
! K)) 4if and only if, for each pr

r . 7 . X

SP AL, = £ (3(X),

image
K in 3(x), the
(resp,

et
absolutely convex and compact) s cainty holds for
ich cer
T(x) Wder T 4is equicontinuous on X (whic .
absolutely co
ch 1 ¢ £(#3(Xx)) 4if each precompact [resp. | e vome
X)e -
3 n 108y
Compac 4] subset of F(X) is equicontinuous o
t
i i by the se
is given
LX) [resp. £ (300N

bsolutely
ct (resp. a

{ i 3(x), K precompa

qK,p‘ P continuous seminorm on

(1) = sup p(Tf) for all
Sonvex Sompact) in #F(X)} of seminorms dg , fex
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Ted
€ £(3(X)). For a large class of function spaces ®(X), it tumms

out i
that this topology corresponds with a (it is enough:

£(3(x))

(resp., 3(X);C) in the sense that vector-

topology |

weaker than a) "naturain

topology on the space of all

functions P X = E(X)'
c
valued a i :
Pproximation theorems apply to approximation of the "evaluatin
P X408
5(x) x 3(x)’ ® 3(X)

functions on x .
with values in finite dimensjional subspaces of a(x)
obviously),

mapping" jd

by elements from (which are

In general, j
» if there are Vector-valued approximation theoreds

"only"

for Spaces s
of continuous functions, then this fact clearly

restricts the class of sSpaces

( 3(x)
Com i
Pare the fquivalent condjtion for

(resp, a(x)'cc]

to which our method applies.

-~ 1
continuity of T: X 4 5(X)c

whi .
ch we have mentioned above; in the applications

this usua
11y amounts to a completeness type ass

i n x).)
In Prollarg case, dmption o 3(

howe .
opa . ver, we realigze that the notion of Nachbin
ce o Cross-se .
ctions (ana the Ccorresponding generalization of the

Stone-Weje
rstrass
theorem) jg already flexible enough to conclude

without any restrij ction

in our fuyng = Thus we can avoid completeness assumptio®
undamen ta

tal theorem below, ¢n the other hand, such an
8ssumption is quj ’
quite

natural, ang mMost of the function spaces which

occur in the a . .
PPlicationg 8re complete 5 X 4 10ss ¢
generality * So there is no grea

«8. in dealin . .
€ ma : ;
paper, tly with Schwartzts a.p. throughout i

equivale; « Schwartz [28]) that the
nce (2) o (5) or Proposition 2

representation of £({( implies’ after a simiiar
for arbites F,a(x)) 88 a space of F’ cvalued functions on

Ty l.c F, ¢
*» that the a . . -
ation Bapping i PProximation of the (single) evall

b
¥(x) Y elements of F(x)'g in the spac®

s in
~valued f‘mctim a certain space S(F'z(x)) of

8 on x (
unde of
T 8 suitable topology) by olement?

o o £ S
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(which are functions on X with values in finite dimen-

F') for arbitrary l.c. spaces

leads us immediately to the other method to allow appl

Fe 3(x)
- i ark
sional subspaces of F. This wemar

jcation of

vector-valued approximation theorems to a proof of the a.p. for

i d
spaces of scalar functions. This (in some sense less direct) metho

. i he
vhich takes into account the generality of the problem right from t

start was already presented in [ 4] and [11] and relies on a useful

equivalence of the a.p. due to Schwartz [29] (cf. also (2] ana [8]):

initi te the
JDefinition, For a l.,c. space F, let F::c = £CC(F,K) denote
dual of F with the topology of uniform convergence on all absolute-
ly convex compact subsets of F. Schwartz's ¢-product of E and F

is defined by g£eF := £ (F’ ,1), where the subscript e indicates
e cc

. . of
the topology of uniform convergence on the equicontinuous subsets

F,
{(originally, Schwartz's g-product was defined in [29] in a
different way, but [29], Proposition 4, Corollaire 2, p.34 shows that
T definition is equivalent up to topological isomorphism,) - Then
" = Fer holds, and the €-product of two complete spaces is complete,
EQ® F with the ¢-topology of

y
Yore
over, the tensor product

. i jfied with
A+ Grothendieck {16], i.e. E ®, F» is (canonically identifie )
. A 11 (even
2 tupologlcal subspace of EeF, namely just the space of a (
Let

= (gt . i EeF.,

(F 'F)‘) continuous linear operators of finite rank in €

R i comple-
8! F denote the ¢-tensor product of E and F, i.e. the P

e a,p. (with some

t .
ton of Then Schwartz's criterion for th

E
®e F.

refy
€ ‘Nements) can be formulated as follows:

5 - . The following
% (Schwartz { 29], Proposition 11, P- 46-47). The

asg s .
€rtiong for a l,c, space E are equlvalentz

(1) E has Schwartz's a.Psry
’

(2 —  _Ee¢BE

) idE € EgE’ Cc:

(3) E® E' is dense in E ¢ Elcc’
(l‘) for each l.c. space F, E®F is dense in Ee F,
(5) E® F is dense in E ¢ F.

for each Banach space F,
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Ir, additionally, g 44 complete, the a.p. of E

above) is alsg equivalent to;

(i.e. (1)-(5)

(6) for each complete 1

«cs (or each Banach) space F
E v
@t F

’

=E¢ F hoids,

hwartz

Here the proof of (2) » (1) follows from the fact (Se
. spaces

[29]' Proposition 5, Corollaire, P. 36-37) that, for two l.c

E ang F, r’cc(E’F)

i ace of
1s alvays a topological linear subspac

’
Fg E_ ..

Space tiond
‘ i us func
, i of continuo

F(x)
F
e
on X the € -product F€3(X) for any (say) complete l.c. spac
| 5.}
1s known to e {(up to the topological isomorphism u + (x =+ u( x

th&w F-valued functions of type F(X)",
e s

. ich take
Corresponds With the Subspace of all functions whic

d
Nothing by » >

Feisx)

F In view of this,

to 2
“Valued approximation theorems
Proof of {pe a

“Pe of g(x)

£
(in the form of equivalence (5) 0
+ (Ang,

-valued
conversely. the approximation of vector-va

acesj
functiong {by functiong Yith values 4n finite dimensional subsp
nter-
Which is implied by ¢he 8+P. of a funcgtion space is also more 1
esting than we may have been

ance
tempted o think after a short gl
first method.)
t we
Furthemore, €Quivalence (2) or Theorem 5 shows then the
have to dea ) ‘ 9
1 with the approx1mat10n of the sing]_e 3(x)£_c-val

his
only (if we prefer). T

functjon (evaiyag ion

Mapping) - bx
remark links the fiyg

i5
E,F)
t metheg with thjg one, and, since ;cc( R

nat
8lvays g topological linear Subspace of F ¢ g’ '
cc

both Methods ar, essentiajyy Squivalen (except
Undonbtodly, the £y,

is more direct, but,

, it turns out

tailsh
for technical d"v
3t

in each cases
on g topological isomorphism of

X))

x
°f 3(X)!-valued functions o |

E
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d
f the secon
antage o

1" topology, whereas one adv

under a "natura

ther
needed for o

the tact that known results (

nmethod comes from

i 1
i it is usefu
1so, while i
) be used in a natural way. Also,
: . e
applications) can

ffices in equivalence (%)
su

= Ef
to know that the "test space" F cc

i th Banach
k only wit
sier to wor
i i times much ea
of Theorem 5, it is some

topolo-
because the

i ivalences (5) and (6) above,

spaces F as in equi

yeqlecopllae eve
tor space structure of E ma b uit m cated even

| ”S n dan W terest in l1.Ce function spaces
Thu -
ce ith our in
s 1 accor

10t in Nac a, s £ - + where similar resu ts
o cross-=sections,

t N . ce

( hbin sSp 1 1

old e W d h detail from now
) L 1 .
m od in more
1y iscuss he second e
? il on t t

m for the
ization theore

t above, to derive a localiz

. - As pointed ou .

ed
thod, we ne
second me

5. (in the sense described before) by the

+De (4

F d
=3F(X) an
ions E(X)e

L f lts: g¢-product representation

Lo es_of resu : -

local]zat tion in k3 ( ) by
th - ued a roximati F X

i i eorems for (vector val ) PP

lon

me of the known results
o

w list s
tlements of ¥(X) @ F. So let us no

in thig direction:

( ) =} ¢ mp.e | tation of E(X)CF
| t sen
) lete l.c. space, a repre
i quasi o .
( of F-valued functions on can be 10
f F- X be found
an

natural space 3F(X) f ctions) 3(X) = CVO(X)
ntinuous fun A

1% weighted Nachbin spaces {of eo cvP(x,F) if X is a

eSP. CV(X)  (with Ip(X) = CV (X,F) wesp. (4], for "weighted

v in [ 2], II, Theorem 4 or [4],

'R™SPace [see below] ) in ’

Baumgar ten
i 1] of B.

i thesis [

*Paces of differentiable functions" in the

for
W ts [14]),
3 i lde-Schme
(et also L. Schwartz [28] and Garnir-de Wi - ,

- ipschitz con ns an
fPaces or functions satisfying general Lips

ditions
i H8lder con

jable functions with

Spaceg of continuously differenti

d
results an
From these

In W, Raba1ig [18], 3 and &4 or [19], 3a). e eoproduct

. , .
inductive mi od
oduct of in
‘ome €eneral theorems on the ¢-pr

ts of
tive limi
tain induc
l‘mr'sﬂn‘l:ai::'u:,ns can also be derived for cer

he 4 hted spaces
pac 1imits of weig! pac
men f r .
‘ d before. For inductive
s tione ) .
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t ms here

©+&., this was done in a1, (Recently some of the open problel
have been solved;

see R, Hollstein [ 6] and
. i E17], the author's paper [6]
[123 ’

i i inductive
where it is shown that, in many interesting cases, i

i i d s awSJ
limits of weighted Spaces are again [ topologically] weighted sp

riously
~ At this point, it should be remarked that the € -product obvi

t repre-
"preserves topological linear subspaces", and hence g-produc

ical
sentations as above lead to analogous theorems for all topolag

SubspaCQS, too,

i are
In fact, most of the spaces mentioned above
~produt
already known to have the a.p. (this usually follows from the €
i tor-
representation theorenm and results on the approximation of vec

: the
valued functions, too), but not many results are available on

of topological subspaces,

apply.

might
8P, and here localization theorems

~called
(In the case of inductive 1imits, we sti1l have the so

"subspace problemgn

whether Subspaces @
E:

of inductive limits
;:d E, inmherit tne natural inductive limit topology :3d(gn %L
but in Some a8pplicationg this can pe deduced from a lemma of

A, Baernstein, cf, [9], 1 Satz ).

Localization theorems fop vector-valued approximation:

Loc!lization theorems for ap

(x1)

W
s

Proximation by elements of module
weighted Nachbip Spaces

: ons
ction
of continuous F-valued fun
were

olla
tase by Nachbin-Machado-Pr

d
For modules gver on selfadjoint algebras, vector-value
localization was obtaineq in the com

case
plex (restricted) bounded
of the Weighteq (Bernstein

-Nachbin) approximation problem by
G. Kleinstficy {21] (genera

.21 112}
lizing g Previous results of J.B. Pro

(n> 1) ang Yieldji. as corollaries,
analytic Criterig.

uasi®
the analytic and 4 :
? 2%¢ also proyig.

g for ‘
8 book [24], Chapter 5, §2-7 :

8
or course, for the space
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hold
i ts can only

v (X,F), localization resul

ovP(X,F) instead of C o (%,

ights v € V,
i £ in CcVP(X,F) and the weig
vhen, for the functions

V! 1] i function o ompact-
f s t as n a ¢ P
ns ica ex en51on)
i idered (by "canonical'
1§ co

Lo -~ V4 . . .
v - compactification
( even on BX, the Stone Cech
ifi i or
ification X of X

of X 1= X . N
n o [e? and approxi 10
p priate finer topol gy) »
i under a: ap mat 241
) .
i lized to certain subsets of X or BX 1ather~ Such

ization theorems fo a X! ation from modules
r pproxim 1

(C mplex) ounde case y » 1 ) ’

ere proved in the fe) LN d " by G Kle nstiick 2 2

approxi-
{ ; heorems for

a4 11 No (general) localization t

Theorems 9 an P

tions or spaces
d fferentiable functio

i in spaces of continuo i

mation i usly 1

- mentioned
the above
of Lipschitz functions are known. (But, by

ach space-
i case of Banac
th £ [6] sp. [12] that, at least in the
eorem o resp,

may again be
un v m weighted spaces ma
valued functions, inductive limits of weight

L

s are also
jzation theorem
veighted spaces [ topologically], localiz

"
v ighted spaces'.
inductively welg
available f t of the interesting "i cti
1lable for mos

s e with an
function spac
= In general, for a proof of the a,p. of a
’

i the
restrict
hat one may
Inductive limit topology, it is important t

f Theorem 5.
; nce (5) o
tention to Banach "test spaces" in equivale

o

uasi=c omple te
n th ¥ ited say, under q
€ other hand the a P is inheri ’

nd, +Ps

d hence,
i mi £, [8], an
fompactly regular" inductive limits, C

follows from the a.pP.

in many
“ for all
. ind E
umeresting cases, the a,p., of a a

the spaceg E, already.)

P
M FOR THE a
?+ THE FUNDAMENTAI, LOCALIZATTON THEORE

u m oof) of the fun amental
) t fund

t to the statement (and pr

s now tu

which
ighted function spaces,
of weil

d (II) at the end of
an

localization theorem for the a.p.

isted in (I)
follows from some known results liste

n tlons)
ber of defini
Sechon 1 on (and a numbe
1 . First we need some nota i

1

letely
te a comp

1ways deno
let X a

-negativ
Tegulay Ha £F ace, A non-ne
usdor: sp s amily V # o

€ v and any
2

ctim
From mow on semicontinuous fun
e upper

of weights on
Yo" X 4g called a weight (on X).

v
that for all Vj»
¥ owhien is directed in the sense
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L2o0 there 5
exists v .
€V with Avl’ AV, s v

82id to be a Na

chbin family
that for each point x € X

Vs o ) (on X). We will always assume that
» l.e,
there is v ¢ V with

v(x) > o,

L
et F bpe an arbitrary l.c,

Spaces of conti

N . tnous F-valued functions on X with respect to the
achbin family v (on x) P
P

CVi(x,F)

Space, Two weighted (Nachbin)

are introduced as follows:

={f: x conti
*F tinuous; (v£)(x) := v(x)f(x); x € X}

Precompact jip
F for each
vevy,
= {f: X o F
infinity on

c .
ontinuous; vr. X - v(x)f(x) vanishes at

or each + - m P
f . on F
continuous semi-no

c
e ompact subset g of X with p((vf)(x))((
\K) for each v ¢ v}
1]

both engde
wed with ¢y
e l.c, topology generated by the system

{b 3 v V
v,p » € ’ p Continuous semi
1

n
“horm on  F}  of semi-norms

bvvp(f)

for a1l

= ,s(IEl)P(' V(X)P(f(x)) fe CVP(X,F)-

¥e put cv(yy ,_ ovP(x,k) - {r

continuous; vf bounded on ¥

and ¢y X) ..
o(X) == eV (X,K). - Since a1l « ¢ v are

imatjon problem). For more
P
cv (X,F) and CVO(X,F) and some
The .
f°ll‘“"1n€ is a sufficient con”

ted
SPaces ([ 4] s Proposition 22, pﬁ

F
or g €iven Nachbig

famj 1y V>0 on x, 1et x v

-
R (or, equivalently, f:

x“ YI
f] Space) ig continuous if (and

(pointwise on X} is |

i
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always only if) £ is continuous for each v € V.
{xex; v(x)=1}

Then ¢VP(X,F) and cv_(X,F) are complete for each complete l.c.
space F,

As usual, a space X is called a kp-space, if a function

f: X 4 R is continuous if (and only if) fIK is continuous for each

(All locally compact or metrizable spaces, and
if

compact set K < X,

more generally the k-spaces of Kelley, are kR—SPaceso) Then,

Vegv holds, i,e, if for each compact subset K of X we can find
8 weight v ¢ V with inf v(x) > 0 (which implies that the topology
x€X

of CVp(X,F) resp, CVO(X,F) is stronger than uniform convergence
X is a fortiori a

n compact subsets of X), then any kp-space

VR-Space .

resentation theonf‘en

In our proof below, we need an €-product rep
(see (21, Ir, 2.1, (4) and 3.1.{(1) resp. [4], Theorem 24, p.39) which
Tequires the following definition:
%. CVG"C(X,F) := (£f: X » F [o(F,F’ )] continuous;

:((Vf)(x)) {:= absolutely convex hull of (v£)(x)] relatively

fompact in F for each v €V},

. :
Cvo’C(X:F) t= {f ¢ cv9 °(x,F); vf vanishes at infinity (as a functim

f

TOm X into F) for each v € V};

o thege spaces, the semi-norms b as in 6 are still well-defined,

V,yP

A h

*d we equip the spaces with the corresponding l.c. topology (suc

tha p T topologically).
t oy (X,F) CVU’C(X,F)and CVO(X’F)CCVO, (x,F) topologic )

. f F
Since on a relatively compact subset of F the topology ©

y to see (cf.[4], Prop.23, p.39) that
a . i if X
ny function in CVG’C(X,F) is already M from X into F i
»°(x,F) = cVP(x,F) and

Coincj .
incides with o(F,F'), it is eas

is ay < o
. R~SPace, and hence we obtain CV

Cv sC i-complete.
o (X,F) < CV_(X,F) if X is a Vg-space and T quast ?

Llheorem. (1) recv(x) = ov(x)eF = v’ °(X,F) and

Fec anonical
Vo) = cv (x)er = cvIr°(x,F) (up to the following ©

to resp
Pologicay isomorphismss u + (x » u(8,)) of recv(x) [ ’
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’ If
FeCv_(x)] onto CV"'C(X,F) [resp. Cvg’c(X,F)] and £ a4 (f'+ 1)

of CVc !

(2) Hence cV(X)eF = ovP(x,r)

is a VR—space and F quasi-complete,

(3) Moreover, for any topological linear subspace E of CV(X)

CVO(X), we obtain:

BeF =-{£ ¢ cv?r¢(x,F)
to

E  for each e F'} (with the induced topology),

which under the conditions of (2) becomes (more simply)s
’
Eer = [r ¢ evP(x,r) (resp, CVANF)); t'af ¢ E for each f£'¢

Since we must make use of the solution of the weighted

“(X,F) [resp. Ve (X,F)]  onto cV(X)eF [ resp. cv, (0)erl).

and  CV_(X)eF = eV (X,F) hold if X
reshs

1omgs ¢
(resp. V0 °(X,7)); £/ure x 4 £ (£(x)) beld !

F'}.

(BemStein‘NaChbifl) APproximation problem for Nachhin spaces of

Cross.

sections later on,

Prove an important lemma next,

10 Definitions (cf, [ 227, (23]1).

A vector fibration over X is @
pair (x’(Fx)xEX)' where each Fy is a vector space over the fiell
e A cross-section 1s then any element of 1T ¢, i.e.,
r= (f(x))xer A Twetght" v oon x4, flfrelftion v om X such
that v(x) ;4 4 Semi-norm op Fx Tor each x ¢ X, A Nachbin sp3¢
LVO is a Vector space of cross ing

~Sections f such that the mapp

*# vix) (£(x)]

is upper Semicontinuous on X
infinity for each

and vanishes at
"weight" vevw,
defined by tpe family g

of Course,

CVO(X,F) is certainly a Nachbin space LV,
Crosse i
Sectiong ¢ _ (f(x))xsx With Tespect to the vector fibra
(x'(Fx)xEX)' where §

x *=F for each x ¢ X,
v

and to the set
= {;V,p; v e v' P

continygus Seli-norm on F)
s defineq by

of "weights
X

$=
Yv,p(x)el := v{x)p(e) for each x ¢ x )
Howevor, Ve observe:

sy d
we recall the necessary definitions an

olog¥
€quipped with the l.c. toP

.
. . .. v(x)Ef(")"‘ ;
‘lv}VEV of semi-norms ”f”v : :s(IGIle :

of

tio?

n on
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. F and
i us semi-norm on ’
v p a continuo
11 Lemma. (1) Let v € V,

. x)p(f(x)
function vpef: x  v(
teoV'°(X,F) be arbitrary. Then the

: X R X
is upper semicontinuous on .

o,c .
X,F) is
(2) described above for CVO(X,F), v, (x,

2} In the same way as

ions.
i J of cross-sectia
also a Nachbin space LV

; X.
. itrary point x €

. and fix an arbitr

Proof, (1): Let ¢ > O

£ d put
< and p
. Let 0 < & £ 1 satisfy 5p(f(x)) 5

Hirst case: v(x) # 0. Le

u==ﬂv%+rl>1.

utely con-
Since ¢ :e ar((vf)(x)) is relatively compact (a:dFaEi:icides ith
vex) in F, the (uniform structure resp.) tOpOlt?gY ° on C with respect
:(F,F’) on this set, and so p is uniformly continuous N
loc(F,F'). Hence there exists a balanced neighbourho()) (e )I Le
T(F,F’) such that eyse, € C and e -e, € V imply lp(el ple, 2
is v

1

i us,
F’ ] continuo
is upper semicontinuous and f: X » F [0(F, 1)1 that v(y) <
in S suc
¥e can find g neighbourhood U(x) of x i

v € U(X)- Then
< vlx) 4 g

1 for all
and f(y) - f£(x) Emv

for any syen ¥y € U(x) we have:

N ¢ and
PO - e € il ve v owmm v0)e0) Ec(vfii;s the
v(}’)f(x) = % vi(x)f(x) ¢ ac((vf£) (X)) c € (where € It follows
balanced hul1), pence lp(v(y)E(y)) - p(v(x)f(x))] <)2 .£<p(v(x)f(x)+¢,
p(v(y)f(y))<p (v(y)f(x)) . %5 p(v(x)f(x)) + bp(£(x) 2

that is,

. N s at X.
vPef is upper semicontinuou

< ishes at
%: v(x) = 0. since vf ~vanis

t subset

from ¥ into F), there exists a compac [o(F F’})J is
R «+ X F o LA
p(‘»(y)f(y)) < ¢ for all y € X\K. Since f: 2

ded in F;
o (F,F’ )=compact and hence boum
*

tion
infinity (as a fune

K of X such that

let
continuous » T(K)

is . er semi-
¥ ¢ K, Since Vv is upp
My g satisfy p(f(Y)) < M for all ¥ hood U{x) of x
i ghbour
Cont s xists a neig
tinuous apg v(x) = 0, there e rhen for amy such
n oy

Such that v(y) < ;& for any ¥ € Utx;; s ¢, since v €K
Te Ux) e have p(v(y)f(y)) <e = p(v(x)flx ) < 'ﬁ!ﬁ. plth)) <e

*ertainyy implies p(v(y)r(y)) < € while p(v(y)£(¥)

. -] gain upper semicontinuous t x.
{ v f P
) ! K So Ppo i agai a
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g,c .
With f e oV *°(X,F) vanishes at infinity, and by (1) this function

is also upper semicontinuous on X (for arbitrary v € V and p=

continuous semi-norm on F). Also, the topology of CVC;,C(X,F) is

€iven by the directed fami 1y [” ’“"' } of Semie-norms
v Vyb
Vy,p
lely = sup 3 _ g
Vop e T p()e(®)] = sup v(x) p(£(x)

x€X

The fOllOWing are the definitions and results we need from

8PProximation theory (ef, [23])

12 Definitions
——————AOns ,

functions on X), 1

Let

4 be a subalgebra of c(x) (= continuous scald

ot LV~ be a Nachbin space of cross-sections
over X and 1et

Z denote a vecfor subspace of LV0 which is a8

A i {
module (W]_th respec to pointwise multi
Z =

and
plication, i.e., @ € A

xex € Z imply

az = (a(X)Z(x))xEX € %, too), In th¥
context, the

weighted Bernstein-Nachbj_n approximation problem asks

tion of the closure of

for a descrip

Le Z din LV .
t X be a
\ covering of y by pairwise disjoint closed subsetsi z
S said tg pe X-locals o
- lizable in L . . 7
=——=228ble in Lv to
i (and always only i o T f €LV, belongs
v 1f)’ given any X ¢ L any v ¢ V, and any
¢ >0, there ig )
some z ¢ gz such th for all
at v(x)[f(x)-z(x)] < ¢
x €K, (x)[£(x)-2(x)
X

A Udenotes the systen of al]

. X:
maximal A- i i bsets of
A subget K antisymmetric su

of x ; .
vay is calleq A-antisymmotric if ¢ ¢ 4, f]K real
Ued always imply £ ]

l constant t 15

+ Each A-antisymmetric S¢
. i
to inclusion) maximal A-antdisymmetT?

. f
XA of all such sets is a covering

'qn:lvaloncg Telation

fpx- 211 a¢ A,

ot
(]
o
-1
@

"6Te0 to say thay g 4

der ’
o 1 2 gawieg localizable undef
. A-local:lzlblg in Lv
. Q

in v

S EMMCENL L ) e
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al-
Sufficient conditions for an A-module Z < LV0 to be loc

were derived by Machado-Prolla {22],

izable under A in LVO
i " i the
(Remark that "2 sharply localizable under A in LV, in
X . W oin
terminology of [ 22] implies "Z localizable under A in v " i

= - duce
our notation,) In Theorem 14 resp. 15 of [ 22], Machado-Prolla re

- i i .l the
the search for sufficient conditions for localizability to
-dime i oximation problem
n-dimensional resp., one-dimensional Bernstein appr P

izi revious
{on fundamental weights on R® resp. R), generalizing p

. i oi se., As

results of Nachbin-Machado-Prolla [ 23] in the selfadjoint ca
i alytic

corollaries (Theorems 16, 17, 18 of [ 22] ), they derive the an

- s 14 izabilit
Tesp. guasi-analytic criterion of localizability and localizabi Y

i : i i oblem,
in the so-called "bounded case" of the weighted approximation pr

d so we
= It would take us too far to state all these results here, an

ts "bounded
fonfine ourselves to a specialization of Machado-Prolla's o

w
Case! the examples Wwe

(whiCh, however, is essentially enough for all

haVe in mind)_

L Definjtion,

the

in
Let Z e LV  be an A-module, We say ithat we are
o

. . 4 if
bounded case (of the weighted approximation problem for ) ,
bounded case

21 5 a is bounded
enany v e v, ac¢ A, and z € Z, the function

This is certainly true if,

% the support of voz: x » vix)[z(x)].

gven any €V and a¢ A, a is bounded on

o s tion holds, we say
Supp v 4o {x € X; v(x) £ 0}. when the latter conditio ’

hat we are in the restricted bounded case.

S . i the functims
%0 the Testricted bounded case occurs for instance, if all

€A are bounded or if each v ¢ V has compact support.

%

is

bounded case,
(Machado-Prolla [ 22], Theorem 18), Inm the bo

always localizable under A in LV .
hows, it is
In fact, as Machado-Prolla [22], Theorem 18 s ’

sufficient that

(‘) a is bounded

supp (ve )
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ators" for
for all vcv, ac¢ Ay and =z ¢ G(2), a "set of gener
in 1
is dense in
Z, that is, the A-module of Z generated by G(Z) is dense A
. a e
{mi ss of functions
for the topology of LVO. Similarly, the class

condition 3 must be tested a b tricted to G(A)v
( ) may e restri

8 so-called "strong set of generators"

for A, (If A has a set

of A gene-
G(A) of real-valued functions such that the subalgebra
rea’-valued

i form conver-
rated by G(A) s dense in A for the topology of uni

t of
5 strong set 0

gence on the compact subsets of Xy then G(A) is a
generators; and the whole algebra itself is

always such a SetJ

ed
. even assun
On the other hand, Kleinstfick's previous result in [ 21]

the restricted bounded case,
~==irlcted

In fhe Proof o E
our fundament r v me that
f) ental theorem, we assu

is a topological vector subspace of

V (X W for
ule
C ( ) hich is an A-mod
o

8 subalgebra A o c(x)
Solutions of the weighted a

U,c ~
CVO’ (X!F) = LVO

d F
an: ap f space H
ply, or arbitrary leCe P

in
:=E@®F 1
PProximation problem to Z :

to0s
(ef. 11 (2)),

-module,
Now z is clearly an A-mo

and jif G(E)
G(E)g F

Cv?)’c(va)

then
is a set of generators for | (in CVO(X))’
o,c because
is a set of generators for gz 4n cv >’ (X,F),
. the
(or, equivalengly, CV,(X,F)) always induces

t—topolog’y on the tengor Product

v (x)e F
EQ@F = z),

{and hence also o ‘on
- gt
ef. Theorem 9 (1) above (ana the remarks after Defif bi-
“e - Moreover, 8Ny "reasonabjer sufficient condition for locallza'r
in

1ity applies to Z-rg (and the set of generators G(E) ® F)

= g,c . .
LV = VO (X, F)  gp it applies to g

tors
(and the set of genera

ns
) . TheoT?
G(E)) in OVo(X). This i true e.g. for the conditions of
4 ang 15 of [22] (reduction to th

i ional
B. € n - resp, one-dimensio
ernstein

d
16 2t
(say, in ine form of [22], Theorems
17). Again, ye State oniy,
sef
1> Remark. 1p the A-modyje Ec CVo(X) satisfies (e.g. for @
of 88nerators

&(£))

o
N sttic
the conditions of the bounded [resp- 53——"”
=Lzauceaq
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t GE)RF of ge-
satisCies (for the se

un. then the A-module Z = EQF trtetod boanded] case
e e ditions of the bounded [resp. res

nerators) the conditic

in oVl C(x,F) = v, (F

N space). tate the funda-
inally s
11 these preparations, we can fin
After a

in weighted
f modules in
lization theorem for the a,p. o
mental localiz

- ce and
: r Hausdorff spa
b CVO( ) X be a completely regula
16 Theorem, Let
= lhleorem

£ c{X)
lgebra o

X Let A denote a subalg

i ily on .

V>0 a Nachbin fami

i is an A-module,
) X which is
ical linear subspace of CVO( )
ad E a topologic

X be a cove f X s d nt ¢ d bsets
isjoi lose su
by paiI‘Wi e 15J01
ring o

such that f ] dule 1= EQF
F 0! 1 ) Z
an a ace the A-m
rbitrary l.c. spac 2 (
s or

AS VG’C(X F) [E.g. let X =¥,
v = C ’ .
iSM-localizable in the space L ° °

and T i LV .]
3 de A in o
that E ® F is localizable un
assume

f
i inear subspace 0
E} as a topological line

Then, if EIK = {flK; fe ,

O, x),

Schwarty1g a.,p., too,.

E has
the space

tz's a,p., for each K € X,

has Schwartz's a.p.

h
irst paragrap
i the firs

if der the assumptions of

For instance, if un

Nne=

r i to the
iti f reduction

ot E atisfies the condition o

he theorem s

©: aq hl 3 blem eorems
ona ximation Tro ([ ’
Bernstein approxi 1 P
ne—d'mensi 11 22 Th

. si-analytic cri
14 and alytic or gua

' ) condition in the an Y

nd 15 or the

15 (and
ks before

the remar

wriml([zzj, Theorems 16 and 17), then by

F is
13) E®

ioned before

the resuis of Machado-Prolla [ 22] mentio

ially:
i Especia
Se
3 d 16 applie
2lvayg localizable under A in Lv,, an

6 Assume
i heorem 16.

A and E be as in T

L lorollary, et X, V, A,

N i problem
. roximation
n el case of the weighted app
that we are in the boundel ca

ace
logical linear subsp

i EI (as a topo

for g in CVO(X). Then, if X

i etric
imal A-antisymm
ts a.p. for each maxima the
* c(le) (X)) has Schwartz's a. s ap. {and heace
) has Schwartz an
hset g of X, the space E

BPe, ir g is quasi-complete).

of
i satz 4.5
i eneralizes
¥ tricted bounded case, this & \ R .
or the restric - )

; v_~s5pace v hd

{lu, vhere a completeness assumption (X R ) ( o ) 0 e
1 se
e thod of proof of Theorem ow h
Ssary, . The metho
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same as for gup .
Previous result, but instead of using Kleinstlck's

solution of tp s
¢ welghted approximation problem for vector-valued ca-

tinuous fun
ctions i .
8 in the restricted bounded case, we have preferrsl

here to form
ul .
ate the result in full generality and to apply the

Trecent approximatj

. ion theorems or Machado-Prolla for Nachbin spaces of
ross=sections . .

This not only allows to relax the approximation-

theoretic c .
onditji .
ions in the theorem, but, as we have already seen il

section 1 th
) € use .
of Nachbln spaces of cross—sections (inspired by

makes the Erevioui

the results
of
Proliatg Paper [25]) in this context

comgleteness assumgtlons SUEe_‘\IfluOHS-

Proof of Theorem 16

an arbitrary 1.¢

B
Y Theorem 5 (4), it a enousgh to show that, for

Space F,

f Cyc
{fe Vel (x,F),

E® F is dense in E¢F. Since

EQF =
s
ve have T € E for a1z £'¢ ¥’} by Theoren 9 (3
O Pprove;
eacn , ) Each function f ¢ CVO,C(X F) with f/eT €F for
f'e¢ F belongs to the « o ’

Valentl g,c
y) CVO’ (X,F).

Cross-sectiong (c£. 13

in (E¢F or, e

AS R v of
is a Nachbin space LV,

2 ; R e

x'1°°alizable . (2)) 1n which (by assumption) Z :=E@&F
y 1t sufey

ices ¢o Verify that: Given any K € K, flK

°(xr)g

G, c
x € oV’ (X’F)IK
Satisfjes

. d
(as any x ¢ y is clos®

for
each f’e ¥ ,

= {eec(le)a,c

(K,r); o
£ 'F); ¢ .
0llows again frop . (whic

for each f’'¢ F’}

we get fl]( € (E,K)gF. BY

< c(v])
X (k) )
Theorem K'o has Schwargg: moTe
:c\(vgzxi”“‘n” f| e E\(Ei;):rs aﬁ!é(ﬁd)gﬁ)cgﬁ?;;
rlxﬁ le o ’F”K K IKQ F < z K’'o or

] Vhich is
Just what we had left to verifys

mk.- It is not cle

&r whethe
_that 1-’ Vhether g ra

ConversQ £
T———2X3e of 16 holds in
ch; “‘r, tz'c .-P.

for B ais0 implies Schwartz's *¥'

g eneralr

1
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for the topological subspaces EIK of C(V|K)0(K), K € ¥. - In our
tcheme, this question is of course related to the problem whether,

for 1.c. (or only Banach) spaces F, (EcF)]K = (E|K)GF holds

algebrajcal 1y.

the topologies agree., - Remark also that

(The inclusion (EcF)lKC (ElK)cF is obvious, and
(E@F)]K = (E]K) ® F is

tertainly always true; hence (EIK)eF c (EeF)IK holds whenever both

(EIK) ® F is demnse in (E]K)cF and (ECF)|K is a closed subspace.)

the

In fact, if (EcF)]K = (EIK)QF holds for all Banach spaces F,

F¢F) vyields density of

(E¢F)|K such that E|, has the

&p. of E (by density of E @ F in

(E|K) 8F = (Eg F)IK in  (E|g)eF =

3. by 5 (5),

It the situation of 16 and for Banach spaces F, we are thus led to

sk (and this may be of independent interest): Does a function

f ¢ . - .
: C(VIK)%'C(KyF) which "extends to E weakly", i.e. satisfies

tef g E|K for each #£'¢ F/, extend to an element g € E¢F, i.e.

satj o] 7
Y f < gy for some g ¢ CV.’°(X,F) such that fleg € E for

cf.

ea ’
hof'e Frog L Here the methods of Gramsch [15] (above all,

.5 ] .
7+=248.) can be applied and yield (at least) an idea how one might

pr . .
Cceed: piy g € ¥ and a Banach space F, Let E_  be the (by
Vs 0
) closed linear subspace {e ¢ Ej; e‘K = 0} of E. Then any
fe (g X A ~ ’ a
(LIK)'F induces a canonical linear mapping f: F = E/Eo (say,

Y}

{rry o

= "extension" of modulo Eo) which, as

flof ¢ E|K to E,
One . . ‘.

can immediately verify, is closed for the weak topologies o(F* JF)
ang s(E/Eo,

2any cases,

(E/Eo)') [ and hence for all stronger topologies]. In
f i E/E
f must then already be continuous from Fy into E/E

ems
Sometimes directly from (general) closed graph theorems.

carries (it is enough:

™is follows

Furgp
®Tmore, it may also turn out that BE/Ej

At
Po tem (X )
logy weaker than) the projective topology of a syste ( [-17%

of B
Anach SPaces with respect to linear mappings Tg? E/Eo - Xu
that s + it is
all the compositions 5_ef are closed linear mappingss

ot
classical closed graph theorem to &
clasol =

the,
. surflcient to apply the e
Satig ~ £ s FL 4

uity of ‘nu.f for all @ and hence cmt@uity o b (] o

such
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(crf. Gramsch [15] » 2.13). of course, we would like to prove contin

uity of ¥, F;c -+ E/EO rather and then to get a continuous linear

~

"lifting" Fipr L g s 3
cec

b3 N
fEmel Rolds). 1In this case (after the canonical identification

~N
of f with an ele

ment of cVz'C(X,F)) i.es

N
clearly f K = f,

(For the existence of liftings in concrete cases see
®+8. Kaballo [18] - L20].)

Naturally ,

T ¢ (Eer) IK‘

from the point or view of applications, a converse of 16

is of secondag imgortance anyways

It is much more interesting to
derive the a.p.

of the complicatedn

E from the a,p. of th¢
"simpleypn spaces EI

sSpace
k ‘than conversely, - In fact, the smaller the

sets K
€ X the simpler the spaces FIK will becomé.

ter that the a

+P. Oof all EIK is already
known and thay 16 can pe applied to pr

1ar
£ tarted with weighted spaces E of sca
unctjiong )
on X gof which only the restrictions to certain "chars
taristicn s
Ubsets of are continugus: For a given completely
regular
Pace x, 4 Nachbin family v o 0 on X and a l.c. 5Pac
F let, ag i
n [4] .
Foot= {x¢ ( % ¥y denote the system of all sets
v X; vix >
£ ) 1}, ~ € V, ang RVO(X,F) s= [£: X o Fj
contj
S huous for each g 3 in Fand
v vanigh v (Vf)(x) precompact in
es g s P .
L t 1nf‘1n1ty for each ve vy, equipped with the natur?
*Ce topole .
" &Y given by the system {v 1 of semi-norms as defined
in 6. Again PUt RV (x) V,p
o

i= RV X
vhenever p . o(X,K), RV (X,F) is complete

o . o8
OB now op that u_ Then each functi

. P )
the restrictio?

(i.e., for the quotient map m: E"F./tg!

agmprede —0e " NN

%
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e s vi.
is continuous and vf +vanishes at infinity for each Vv ¢ 3

e e! 4 W i - et F
From E L|'] Theorem 27 s Po o] y wWe kno that for quasi compl e
’

RVO(X)cF = RVO(X,F)

X we get
holds, and so for topological linear subspaces E of RVO( )

e F'}.
ain: BeF = {f € RV _(X,F); £'ef ¢ B for all € F}

that for
Similarly as in Lemma 11 above, let us now prove

f: X+ F hypo-

i i F and
arbitrary v € V, p continuous semi-norm on

infind tion
fontinuous with vf vanishing at infinity the functi

X2

¥Peft x 9 v(x) p(f(x)) is still upper semicontinuous on

i i shes at
To do $0, take ¢ > O and fix x € X. Since vf vani

ch that
mfinity ihere exists a compact subset K of X su

rf x ¢ K, X\K is
P0)E(Y)) < p(v(x)F(x)) + € for all y € X\K. T ¢ K,

. _ +
i1 open neighbourhood U(x) of x in X such tha

let x € K.
PO)E(y)) < p(v(x)P(x)) + ¢ for all y € U(x). Now le
< . e v
e £ hypocontinuous, f|, is continuous, and so (
: i d U(x) of
veing UPPer semicontinuocus) there exists a neighbourhoo (
A . _——i—-——) and
X such that, with & := min(l, S(p(r(x))+1

: y € U(x) and

= mi £ all
% min . BTWCYW)’ v(y) < v(x) + & for

Mfyq_f(x)) < g y € U(x) n K. Then we get again
i this is true
M2y < p(v(x)£(x)) + ¢ for all y € U(x) since this

¥y € X\K ~ -
+8v(x) + b8
TIRE) < (v(x)48) (p(2(x))+F) = v(R)p(£(x)) + 8R(£(x))+E¥ ()

—

for all

Eel .
“Cneverp while for 7y € U(X) n K:

< vi{x)p(£(x)) + % + % + % = v(x)p(f(x)) + €.

i5 .
fois upper semicontinuous at X.

i ' of
is a Nachbin space LV0

It foliows that even RVO(X,F)

- { An inspection
‘mss-sectim"S in the same way as before (ef. 11 (2)): )
‘ ; da of 5 (4)) now
5 the Proof of 316 (and use of, say, 5 (5) instea
showg,

bspaces E
%' If Wg vV then 16 and 17 hold also for subsp

1]

Ry X Py te or Banach, as
uasi-comple
0( ) (alld LV = RV (X,F) , F 9
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well as R(VIK)O(K)’ K¢ x)

and C(VIK)O(K)' Teéspectively]. - Remark that &

2.p. whenever it is

v °(x,8),
instead of v _(x), LV_ = cv)'°(x)
[¢] ]
closed in RV_(X).
Finally, let

ined in
us note that our method of proof (as outli

section 1) can alse

Ec ov(x)

of EgF

. es
be applied, mutatis mutandis, to A-modules

ntation
(insteaq of cvo(x)): Here the g-product represe
d functi®
(F an arbitrary 1,c, space) as a space of F-value
19 for
ot X (in fact, a topological linear subspace of CVP(X,F)

VR-spaces X

tot:
and quasji-c omplete

F) is contained in Theorem 9,

and, say, Theorenm 9 (resp.

i i p in the
nlocallzatlonn of approximation from A-modules in CV (X,F)

"boundeqd (X-) casenr
of [21], p.11),

ceq0n ()
(restricted) satisfies conditio

ol

(it cv(x)
i work
Since Kleinstlick tg approximation theorems

s umptis:
in spaces of Continuoug functions, the (completeness type) ass
\

i . involve
X Ve-space is Needed, Moreover, the results necessarily i
ificati X - 2 the
COmpBCtlflCatlonS X of x (and extensions (vf£)" to X of
f“IN:tions

vl for arbitrary - eV
(vf)“= v‘fA

Suppose ip this Case that

no
and f ¢ cvP(x,F)). As
"Splittingn

: N ather
1S possible in general, we must T

h)
Banac
» for arbitrary complete 1.c. {or

PR
Space F and arbitrary vey, (vf) wi

the Fevalued functions
f ¢ EgF

€an be #PProximateq,
u -
Subsetg KA of XV’

of assuming Schwargy

ic
j symme t73
Wiformly on maximal Ay -antisy!

d
N insted
by functjons (vz)" with = €EQ®F ¢ 2
to maxist
S a.p. for restrictionsg EIK of E
A—antisymmetric Subsetg X

nding
as in 17), - The correspo

technically involved, and as ¥
want tgo Tepeat the Rotatjigpy a

we
nd the definitions of [ 21] here,

o do 1%

leave j 3
® its exact formulayj o to the interested reader. Because
the technical difficulties,

17
as
this proposition is not as useful

but Kleinstﬂck {213 » Section 3,

§11
Th ha stil
@orem 5 and Korollar 6, 8

X
-gpaces
on VR 14

then even has ihit ;

ieldst
11) of section 2 of Kleinstlick [21] ¥
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TED SPACES
AMONG WEIGH

ON OF THE a.p.

HE LOCALIZATI

3. EXAMPLES FOR T

A PRODUCT
VITH MIXED DEPENDENCE ON SUBSETS OF

i f the
calization o
nmber of examples for the lo
We turn to a n

the applica-
i illustrate

foll from Corollary 17 and which il

a,p, which follow

tion of th T .
c i 1@orem |6 to one concrete si-
amental localization T -y
i e fund I

”"
. ixed dependence
tywith mixe
the case of weighted spaces
tuation, namely to e ¢

r. L11]).
N subsets of a topological product (c

ows: Let

1 i a foll
'h f es 15 s

e genera settjng (o] these examp

A S OxX

a topo~
£f) spaces,
ad X be completely regular (Hausdorff)

and Y a topolo-

X mily on [
logical subspace, V » O a Nachbin fa ical projection 0xX =0
¢v_(n). The canonica el
fical linear subspace of o . := [xeX; (t,x)e
we identify A, ¢
is denoted by mw..
1

- 1= Y
dingly, we identify Yt : |{t}xAt
<ith the "slice" {t}xAt. Correspondl with 8 Nachbin

For t € ﬂl(A)

; 1=V A
and V_ 3 |{t}x t
*th a function space on At c X t

of
{cal linear subspace
24

. a topolo
family on Ay too. Y is then

) ().

t

ﬂl(A)

c(n)
i A of
ubalgebra

L2 Proposi ¢4 Let Y be a module over a S

Osi 101, e

ima-
jghted approXxi
f the weig
ded case O 4 for
4 assume that we are in the boun be bounde
let aISuPP v
i . e 8. te
o probien for Yo e e that, for an approprid )
Ve suppos {e)xa .
; pem (U
v e Thu (e} PEMNL

z1s) a.p. for each

fach € A and each v ¢ V).

of nw (A), ¥, = {{tixpys

Then if the completion ¥
ter

Subth T

Schwart
& of Y, nas (

0.
* Y has Schwartz's a.p., to
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's a,p. for eah
Froof. We have only to check that YIK has Schwartz's a.p

is the
; KekK, ist
K€ X, and may then 2pply Corollary 17. But in case A

ivially has the
one point set {p}, p e 4 \ (U {t}xl\t), YIK trivially
teT = Y
2.p., whereas for each t € T, Schwartz's a.p. for Y‘{t}x/\t t
a PR Schwartz -
follows from the a.p. of the completion Y, (cf. Séminaire

{271, Exposé ne 15, Théoréme 7). [

: we con-
To demonstrate the rdle of the set T c TTl(/\) in 19,

sider just one simple example:

20 Example. Let x = (N (y, 1)

f
bspace ¢
Plete dual-nuclear locally convex space]. Let A be a su

is opett
Qx X anda T 4 Closed subset of n](l\) © Q such that Ay

denotes
in X for each tET (e.g. Ao oxx open), C@T(A)CQ

the space of all continuous functions f on A such that f(t")
is holomorphic [i.e. continuous and G-analytic] on Ay for each
t €T, endowed with the topology of uniform convergence on all ¢
Pact subsets of A.

Then €6.(A) has Schwartz's a.p.

Proof. v ;= Co. (1)

cB{t)
is a module over the algebra A := {f €
(i.e.

continuous ang bounded on A);

h
fl constant for eac
{t3 XAy
te Ty,

i appro”
We are in the restricted bounded case of the weighted 2P
Ximation probjen for €6.(A) in v _(A), where
V=w={AxK; A>o0, g

sgtit
teris
compact in X} (ana Xg 3= charac
Tunction of K).

ith the
Since A ;g4 selfad joint, K, coincides ¥
System of maxima] subsets of A

in A are
on which all functions in

(8

constant, pNo (rea1

R m
~Valued) boundeq continuous functions on M
Separate Points

» and by constant "extension"

. 1ows
along X it fol
K ¢ X,

(n-
that each get is containeq in a slice feixhy, ¢ €M

» €ach slice

Since 7 is cloged

early
{t.} x Ay with t_ ¢ T cl
"splits up" °

in one poing sets. (There exists a [real-valued]
® € CB(n (A)) witn o(t)) =3
LX) e[A: A= (¢

m|T = 0; then the functions
*X) + o(t)g(x),

4
{0
ng
4 [real-valued] c CB(X): belo

fecome
a quasl
{or, more generally,
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; t €T}
= {{tIxNts
) Ay ») Henmce ¥,
and separate points of {to} X ts i For each t ¢ T,
AN (U [t} x At)}' and 19 applies:
Jiir}; p € holomor-
e st £ (8(h,),c0), the space of
Ty is a topological subspace o ¢ f uniform conver-
[o]
ith the topology
phic functions on Ay, endowed wi

is nuclear
i 8(A,),c0) s
gence on all compact subsets of A.. Since (olhe nt theorem
ece
N 1lows from a T
. - . ; e, this fo
in the infinite dimensional cas R _ Loar
) . - is nuc s
b xl, Y, (and, a fortiori, Y,)
of Boland and Waelbroeck] , £

t0o, and hence has the a.p.. O -
. nger be in-
For all other examples from now on, we will r.loll:sjume -
terested in this (full) gemerality of 19, thus we W11Th]‘_s is certain-
TrmM), e ¥, = {{6}xA,s t € m,(A)}, holds.

¥ the most interesting case,
—~= most j

ill always
5 int: & wi
Let us introduce some notation at this po

f continuous
f of the sheaf Cy o©
denote 4 (topological) sub-(pre-)shea

of X, S(U) de-

U
n subset
funetions on X, that is, for each ope

f
the space ©
U),co)
lotes g (topological) linear subspace of (C( B ’

with the compact-
&1 Continucug (scalar) functions on U (endowed rt subsets of U}
°Pen topology co of uniform convergence on a1l comp me sense similar
“The ripgy case in which we are interested is im 50 with the pro-
e
tg Example 20 and requires A & JxX to be a subspac

Then we can
PTLY that At

n £ T (A).
is open i X or each t € 1( )
iefil’le;

( ) € 3(p,) for each
- n s f(t,* t
4 DerinitiO « C¥(A):={f continuous on Aj; s

ence on
iform converg

e co of uni
TN, endowed with the topology

. the topo-
v _(r) with

aly Compact Subsets of As Csvo(l\) 1= CS(A) n cC 0( (A)

tem :
Logy induceq by ¢v _(A), and, similarly, for : topotogy from

° ighte

Hy ith the weigl
(t)o(At) := 3(At) n C(vt)o(At) (wi

th,
¢ Nachpip family Vi)

follow=-
2 ume that one of the

2 ass

“Positton. per y se c3v (n) and

A):
A ach t € TTl(
ing °°ndition's (a) or (b) is satisfied for e
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(a) 3(Vy) (1,) is nuclear,

() Y  is de i
t nse in 3(Vt)o(At)' and s(vt)o(/\t) has Schwartz's

a.p. Th |
en 03‘/0(/\) has Schwartz's a.p., too. i
Proof. Tak A i = %
Proof e as in Example 20 ("with T = 'rrl(/\)), so KA = [[tl":‘F
t € m (A h Arai mod
1 )} olds. gain Y is quite obviously a module over this
algebra,

Then f
or each ¢t ¢ nl(A)

Schwartz'!'s a.p. for Y’ *!
.p. thxt, T
follows from our conditions: { } t

In case (a), Y, is a subspace-of

t

RMuclear space J(v
( t)o(l\t) and hence nuclear, too, while in case (v},

Y  inh
t erits Schwartztg
a.p. ) . . i
P. from 3(Vt)o(/\t) of which it is a den ’

topologica) linear subspace O

Theorem 19 and

See
%, for some ¢O"

Crete exam
Ples f :
ollowing fprom 22 and for applications to vector-

Valued funcig
tiong N
®nd "density theorems" (which we will not repedt

here) A
* = %9 and 4
Logy +10 of {11] considered only the compact-open t0F°
» and 4,30 (3 »,
(2) is the on1y example for an application of case
in Prop pplicati

Tre
Promised jp [in] ned there, (More examples We
?

and we
are now ready to keep this promisen)

The densit R
TT———==X¥ condition in 23 (b) leads to a "regularity”

Assumpti
~==2TRtion on the 4
et A, as we shall see in a moment (cf. 2150

tll] 2)
, ¥ We will
state a Sufficient condition which implies the

require n y n u X .
ensjt 3 our e re
d q n t mark

. 3¢

- For the rest of our discys®
ot

is an open subset off

tisfie N s
d in the most interesting examples pased

of thig firgt case
24

o we will assume that
S is cer‘tainly sa

22,

to €1 (n).
B ag follOHs:
Ve Suppose that there

L
ot 3t0" denote the set of all

i

is an
Oopen Reighbourhood Uvc TTl(A) of

wi de 3
1th ‘”(to) #0, but p= 0 outs}

the O .
Pen topological subspace U & of ¥
teu  t :
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Then g ¢ E(AU), and the function cpg ¢ ¢3(pn), defined by
o(t)e(x), t e U and x € Ay
wg(t,X) = )
0] 5 elsewhere on A

satisfies the weight conditions induced,

belongs to CEVO(A) (i.e.

then density of

woV). oIf g, VlA is dense in 3(\’t )O(Ato)’
‘o t o
o] . .

' i required in 22 o).
i, (for ¥ = c3v (A)) din F(vy ) (Ag ) holds, as wed
el i initi f F. V.
Proof, Let U, ¢ and g be arbitrary as in the definition o to
Let (txx) € A satisfy t ¢ T\U. Since A is open, there exist

i i hat
leighbourhoods Ul of t din 0O and U2 of x in X such tha

: o i : . Then
[1XU2C A. Because of t € U we can find t; € o, n U

t is now clear
(tl’x) € UXU, = A, and hence x € Atl < Ay holds. It 3

A and so belongs to

et %, 1is well-defineiand continuous on

C3(r).

; n
After this remark, it suffices to point out that for any

ee 3t°V obviously
1 . ¥
= o (t ") € Yy
gl/\to cpitoi g ©° [+

h

°lds and that therefore density of 3tov|At
1 o
Y

obviously impl ies

tg < J(Vto)o(/\t ) dense. O
o

i involves two
¥e note that the definition of J¥g V 17 23 i 1wo
4 of 3(vto)o(1\to)):

=ferent restrictions (as compared with elements

on
The functions 4 belong to the sheaf ¥

g € Et V are defined an
o

which may be strictly larger than
y a suitable

) and their
‘e open get Ay Ato’

¢ . "esut-of f”
Ostang "extensions" along (I, multiplied b
£ . . . ; v on
“tien §, must satisry the weight conditions given BY

J introduced here in
tey (¢} x A, < A. The cutting-off process was *

)

ord . - v ) (A
et ich we ap o o
er to 3 the elements by whic proximate in (Vg ottt
(and not on all of

bey
"8 to the shear @ only on some Ay
growth con-

] of the
te"1(1\)“':) and, on the other hand, to take care

di
Hong "in Q-direction”.

be
(rr Q is 1ocally compact, U may
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chosen relatively compact, then ® has compact support in (.) -

The regularity assumption on A which we have mentioned

before 23 comes - even if weight conditions do not exist, cf. (ul,
4,10 (2) - from the approximation in ZF(Vt )o(At ) by functions
o o

extending to elements of F on some open set AUD At .
o
Wwe will put much stronger regularity

In our next corollary,

conditions on A +thap an application of 23 would really require.

. e
We will also restrict our attention to the case that 3 = 0, th

sheaf of holomorphic functions N

on ¢

(N> 1) here. ;

24 Corollary. pLet x =cN
of 0 x Xx.

bset
(N2 1), and 1et A be an open su

e
Then €6V _(A) has Schwartz's a,p. if for each t € 1(

the following conditions hold:
(1) s(vy) ()

(ii) for €ach polynomiaj p

Q  leads,

has Schwartz's a «P.,

i ont along
(on CN); constant "extension

after multiplication by a suitable cut-off function
. . he
With @ (t) # 0, to a function in C@VO(A) (i.e. t

p* defined as ip 23,
given by ),

® € CB(Q)

func i tions
unction g satisfies the weight conditio

(iii) (restrictions of‘) Polynomials are dense in G(Vt)o([\t).

Y= oov (1))
with (iii),

is denge in

RN
o(vy) (At)! However, as on the question when (iif)

: . ary
satisfieq Much information can be found in the ljiterature, coroll
24 makes ¢ v

- Roughly Spoken,

gasy to construct Oncrete examples.
conditjion (ii),

: pjons i
vV may impose rather arbitrary growth conditiof
Qedirection (above ajj if -

R ™
is locally compact), but V (ox
the Nachbin familjegq

1y~
Ve on A, ror ¢ € m,(1)) must allow polt

Itosm: ) set?
481 growth in X-direction, (This is indeeq fulfilled if the *°

T

i t weights in
! are relatively compact and if all the

s i3 - N
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v, vanish at

infinity on A t')

e
gen he a.p. of the spaces @VO( )
Not too many general results on the a.
o

ire
results requir
ts G Y are known, however. All these .
i open sets  remiries .
- 5 Nachbin
ial form of G and / or very special
a4 Very specia [ohy
let us mention the followings: s
if V con
r the a.p. 1
. . 6v (D) has
(1) on the open unit disk Dc C, 0( and

continuous,

. r is positive,
of "normal* weights v only (1.e. v is P h that for all
< 1 suc
fadial, and there exist O < € < k aud 1, is follows
x(r) ana ks =), - T
3 -2 N
XT. as roa 1 (1-r)s (1-r)

/e have also
2, where we
from a theorem of Shields-Williams, see (8], §2,

for (certain)
G) follows
Pointed out that then the a.p. of 6V _(G)

“Amglr Connected regions G in

tir vy

N
i [C=4"
¢ and some product regilons

is of a special form).

general domaing
{2)

ver to more
Kaballo carried the methods of (1) ©

e analogues of the

GVO(G)

L

v
(and developed new methods) to pro

for
) a,p., Say,
hlelds-Wi1liams theorem, and to get the P

f= G(Vv) (G) with VV = {Avs b > 0})

G) < c¥ ir the weight v

T on the unit ball G (or a polydisc

N 3,12) y OT
ty ([ 9],

s o s an normali

“tsfies only a weaker condition th c®-boundary
. G with -
© °% a bounded strictly pseudoconvex Tegion

20], 2.7)'

if

. sense ([
the weight is normal in a restricted

§ G
on a bounded region

- Moreover, 6V _(G) also has the a.p.
o

. countable
A w 3f V is a
¥hich g "approximable from the exterior" 1 o a certain
» ich satisfies >
Sachbin family of vadmissible" weights which

'Qmpactne " i tion 18], 6.6)-
ss" condition ([ ’ - c*(c) (= 211 mon-
i he case V = %o
(3 Some work has also been done in & inity on G), when
. t infini
Regatiye continuous functions which vanish a

e_of all bounded holomor Ehlc functions

6
Yole) « (#°(c),8) is the spac o established the 8.P.
w

21 n (2] and [31,

\th the strict topology 8%
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i G c € and for
of this space for arbitrary simply connected regions

a 6.9) provel
preducts of such regions. Recently Kaballo ([18], 6.6 an

\
the a.p. of (HQ(G)rB) also for strictly pseudoconvex regions GCI
with Ch'bouﬂdar}’ and for bounded regions which are approximable fros
the exterior,

Normal weights clearly vanish at infinity. Remark also +that
(say, by the results of Shields
6v_(p)

disk,

e in
-Williams) polynomials are dense

it
. open uni
for Nachbin families V of normal weights on the op

and of
Hence we can ®asily construct examples of sets A

Nachbin families V, such that each Vt

by
2ts a.pe ¥’
t (£ €m(4)), and such that C6V_(A) has Schwartz

reights
consists of normal welg
on A

24 (and the preceding remarks )

10
his type
We leave the formulation of a_general theorem of thi

-
. " situatlo i
the reader and note only the following (somewhat "curious") situdtx

Even on Product sets, say, on

exhibit Nachbin families

- to
A= (0,1) x D, it is possible

n-
. v col
V  of continuous functions, with t

sisting only of normal weights on

t € (011)7 suc
COVO(I\)

h
but suc
(is Recessarily complete and) has the a,p. by 24,

D for each

that no g¢-tensor product "decomposition

jch
" oof QoY (A) holds (wh1
o
would allow an easjer Proof of the a,p.)!

If the Nachbin family v

(¥ith Nachbin families V) on 0 ang vV, on Xx),
"slice Product theorems"

(cr, [3]) wiiz usually give

Cx(levz)o(ﬂxx) = C(Vl)o(n) é‘ 3(V2)o(x)’
and then the g

ct (Scbh“c
«P. of C:WO(QXX) may also follow from the fa
£29], p.48) that E¢F

s .coP”
in pasi-¢
inherits Schwartz'g a.p. from the (a
—=grits

Plete) spaces E and p,

inter”
(Because of this, we had only beel
ested in Subsets of Products ang not in product sets in [11] )
Let us finish the first case with anot

s is
her example which
- Dased on the results recalleq in

(3) above:

h that :

V. o:
v ] vk
is of the very special form ¥ {

vl
a4,

ene :

however, B&—
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0 x
P e be oca Yy compac and A
25 Example, Let X=C 3 let Q 1 11 t c %

. tinuous weights
; bin family of continuous
hat V 4is a Nach
open, We asssume t

om | such that for each t € ﬂl(A):

° —
; =7, and C \ A
is a bounded region in C with A = A, +

) 1, ¢

tonnected,

- "
(ii) v, = c;(At) (up to "equivalence"),

Y = C6V (A))‘
(111) each polynomial belongs to Y (for o

t
Then C@VO(A) has the a.p.

. i ghts and (ii)
. { ity of the weigl
Iroof. Local compactness of A, continuity

P its closed subspace CGVO(/\)
tombine to yield CVO(A) complete; then

Since A =‘}\'t holds,
* mplete, too. - Now fix t¢ 7 (A). Si t

_ . hence
by (i) and
A S the closure of the connected set € \ A,
t '-)
Clearly (ii

. . . ted.
itself connected so that A is simply connec

by (3) above.
i S hi then has the a.p.
Bives s(Vt)o(l\t) = (H (“t)nﬂ) which €

1l on
rem of Farre
Yoreover, (i) allows to apply the well-known theo

ity of
mials to get densi
: Sntwise bounded"® approximation by polyno =

.« rinished by 2. 0O
= £ is finishe
2lynomials in (d (At)sﬂ). Hence the proof i

- i)
e ich imply 25 (ii
Several different sufficient conditions whic

jal cases of
. : sible specia
ére CDHceivable, but instead of discussing pos

1 to the second - :
of weighted spaces it 1Xe€
’ general class with m d

localization
hpendence in which we are interested and where the
**thod cap be applied to prove the a.p.

nota-
; f. [7]) some
Ve start by introducing (resp. recalling, ¢ s
i 4 agraph,
Hous g 8nd X are like at the beginning of this parag

We
; ions) on X
*gain denotes 4 (pre-) sheaf {(of continuous functio

L
Sumg Tow that the to
that
At

ty
the proper
pological subspace A C  x X has

s term (A)~ Let V be a
X *° tempact in X for each * L that the weighted
Achbin family on A {suc

which satisfies W< V

ct
on compa
than uniform convergence

is stronger

A is a
te whenever
and hence CVO(A) is comple
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kp-space, see 7 above),
of v _(4)

Then for any topological linear subspace T

s the space Y

t is obviously (topologically isomorphic

to) a normed subspace of C(At) (= Banach space of all continuous

functions on Ay under its canonical sup-norm) for each t € "1(‘”’

. . ts
because upper semicontinuous functions are bounded on compact subset

(

. !
S0 there are no weight conditions whatsoever in X-direction here!)

Hence a condition like the one in 22(a) is of no use in this case,

but under the assumptions of 19 the space Y thas Schwartz's a.p. if

|

for each ¢ ¢ 1 (here again = m(h) for simplicity) the closure
of Y, in C(At) has the a.p.

For g compact set

(with C(K,F) =

ine
K in X and a l.c, space T we defin

SPace of all continuous F-valued functions on £

X):
t= {f € C(K,F); flor

and
HZ(K'F) $= the closure in

o , ,
ﬁeﬁ(K) for each f’¢ ¥},

C(K,F) of
C(K.F); there exists an open neighbourhood U of K

(depending on f) ang a function g: U 4 F continuous with
1
o8 € 3(U) for Ay f'e ' such that gl = f}.
K
Ir i :
¥ is a closeq locally convex sub- (pre-) sheaf of Cy, i.e-

if for each gpen subset

U of X the topological linear subspace
3U) or (€(V),c0) s closeq Which we will aseume from mo¥ O~
Az(KvF) 1s @ Slozed subspace or C(K,F) and hence Hz(K,F) < AG(K,F)
holds, Both Spaces arg endowed with the topology induced by C(K,F).
If F =

K 4 N
» We omit thig symbol ang $0 have introduced the Banach
Spaces 4
3(K) ana n (x),

f(t,-) € AS(A

with the

CAa(A F) resp,

: tH

CHIF(A F)] :s {f: A9 F continuo??
F) [resp,

t P H:!(At

F)]

end""ed
topology Cco of wunifomm conver,

for each ¢ € ‘Hl(/\)}!

ts
gence on all compact subSe
of A;

CA,VO(A,F) 1= CA,J(A.F) n

cv_(A,F)

o
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CH:’_VO(A,F) := CHg (A,F) N ov (A ,F)s

- If
R b cV (A :F)'
both endowed with the weighted topology induced by °

i ase.
F=K, we again omit this symbol in each ca

(F closed and W< v),

Under our general assumptions ) _—
e
£ ¢v _(A,F) an
’ ed subspaces O °
CHEVO(IHF) c CA;FVO(A’F) are clos

in
complete. - The following

. d F
complete whenever [ is a kp-space an

4 i t case:
. for the firs
fropesition is for the present case what 22(b) was

Assume that
o

2 _Proposition.
for each ¢ ¢ nl(A)

Let Y := CA,JVO(A) [resp. CH:;VO(A)]'

iti ds
the following two conditions hol
AN
() ¥y is dense in A (n,) [resp. Hy(A)T

(v) Ag(At) [resp. H'J(At)] has the a.p.

it & is a kg-space).
Then vy has Schwartz's a.p. (and hence the a.p.

Y
bserve that

. have only to o

Proof. After our preceding remarks we I

bra A, defined as in
) o ,
s again quite obviously a module over the alg

Example 20 (with T =

m(A)).

as dense
Conditions (a) and (b) imply that

e has the 2.P.
t

so we may
ach t €T (A)'
‘space of a Banach space with a.p. for e 1

Wly 19, n

larity
R leads to regu
As before, the density assumption in 27 (a)

TS trictiong on f. In fact:

the following are
2B R

em
~=fhark, t, € nl([\).

. f Y
1 s density © t
™0 examp]es of sufficient conditions for de °
1

Fix wWith Y = CAgvo(A)'

in

S(Ato): as required in 27 (a):

lows?

t functions g as fol

(i) Let A % vy denote the set of all (A) with

k] £ t in "1
e sy, . i rhood U © °
PPOSe that there is a meighbou cunction € CB(T; (1))

. ) d a

AU = U relatively compact in X an

e d the
A (Ay), am
g € v U
_ £ U Then
s but @ = 0 of

r 3
et o ¢g € CAs(A), defined by:
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o(t)e(x), t €U and x¢h,
:pg(tgx) HE ,
o , elsewhere on A\

b
elongs to Cav (1)

(i.e. satisfies the weight conditions induced !

bY V). - Under these assumptions, our condition reads: 15‘:,',OVIA(7 i
dense in Ag("to)- ’
_ (ii) There is a neighbourhood U of t, in Trl(/\) such that
Ay = tléJU Ay is compact in X ang AN (Uxx) = UU{t} x h, compact
i te

n A and such that we have AF(A—U)‘At c AG(AtO) dense.

Eroor, e

Since any function g¢e A ( it is
F

U) is uniformly bounded,
easy to see that .
P (defined as above) is continuous on A and

hence belongs to CA’J(A)
t

as claimed, ) follo®

Then the proof of (i

(er. 23) from tp A v EiA
e :{‘a '
( ct that for any function g € 3 ’ l t € K
- For (ii remark tha ven by V 2
) t the welgh‘t COndltlQnS &1 ¢ =

: he
Hence we may apply the method of (1) even with !
fixed neighbourhood U

®). n

o
of t, alone (and arbitrary cut-off func

Similarly wi
ith y - -
condj 4 ’ = cHsvo(A)' the following is 2 ﬂw

on for densit t

Y of Yy : .
t in . o se in

H:,(l\ ) ts o HE(Yto) ) H? VIA det

t,? where g v t
3

o s¢
as follow
Ve Suppose that there i g

is the set of a1l functions

- d

S @ neighbourhood U of ¢ in ﬂl(l\) an
o

with cp(to) £0, but o= 0

Then g € 8%

off Ue Lef

] ted  *
defined as in 28(i), belongs to

CHv (1)

However .

(i.e. satisrie
S the weigny conditions induced by v).

L difion for
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Assume that [ is regular in the following sense:

29 Proposition.

For each t ¢ T,'l(/\) and arbitrary open neighbourhood N of Ato

in X, there exists a neighbourhood U of t_ = in m,(A) such that
IXU = J At is compact and contained in N and
1€t )
an(uxx) = U {t} x At compact in A. Then Yto (with Y = CH{;VQ(A))
tevu

for each t € ﬂl(/\), and hence CH‘,_T;VO(A) has

is dense in H:;(At)
o
tem(n).

Schwartz's a,p, whenever for each

Hg(At) has the a.p.

Proof. Fix f € Hg(At ) and g > 0., By definition there exists an
o

g € g(N) such that

open neighbourhood N of A and a function

W f(x)-g(x)] < ¢.
XEA

to
@ leighbourhood U of t,

to

By the assumed regularity of A,

we can find

h, i t ©N
in rrl(!\) such that Ay is compac

and p n (UXX) compact in f. The function Cbg, defined as in

+ s d clear-
(1), is continuous on A (since glA must be bounded) an
U

1Y belongs to CH3V (o) because it vanishes off the compact subset
o

m of A But since &g = : ® I , 3t tums
. lAto cp(tof g {to}XAto
out that g‘A € Yt , and as ¢ > O was arbitrary, f may be
t o i
2PProximated by elements of Yt , which proves our claim. ]

o

a_(X
We have treated the general problem of the a.P. for 3( )

and . in the cases
Hg(K) in 7], and surveyed the known theorems 1

- N and
s, the sheaf of holomorphic functions on c (v 2 1), ’
say . resp.
®) 3 =K, the sheaf of harmonic functions on R (v = 2) (
. i h
{some) Sheaves of harmonic functions in axiomatic potential theoryl,

i esults
it the last sections of that paper. we will not repeat the r

of {73 here, paces

f s
but shall now note some of the examples 0

CH hese results (and
3v°(1\) with a,p., which immediately follow from the

f
Tom 29 above):

. 29, Then
%. Assume that A is regular in the sense of 29

Y= following casest
c}’?vo(l\) has Schwartz's a.p. in each of the

@ x.¢, 4

(b) X acN

=83

mpact :
and for each t € nl(A) the coupa

N>1); 3 =6,
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set /\t = the closure of a strictly pseudoconvex region with sufficiet
3
1y smooth (say, ¢”-) boundary or the closure of a regular Weil polye

der; more generally:

N
(e) x =¢ a product
Aix...xAk

t* Where each compact set Ajcj (j=1,.k) is either a subset of ¢

(¥>1), ¥ = 6, and for each t € Trl(l\), Ay =

or i ’
the closure of a strictly pseudoconvex region with sufficiently

sm
00th boundary or the closure of a regular Weil polyeder;

d N
(d) x=r (N22) [or X the space of definition of a (suitable)

h . .
armonic sheaf of axiomatic potential theory], 3 = ¥ (and for each

t
€ nl(A) the compact set At = the closure of an open subset of ).

When 4. (1,) = H(Ay) holds for a11 t ¢ m (A), cugv (R) i s

to CAV
AE Q(A)l and hence 30. gives some information on the a.p. of
CA:’VO(A), too,

It is interesting, however, to presente some simple

conc
rete examples of spaces of type CA,;V (A) with a.p. which fortor
fr e
om the results mentioned in [ 7] and from 27
’

because we will not
Tequire A to be

Legular in the sense of 29 here, For simplicity let
us consider the case V = y o

—

(of the compact-open topology on 1)

tion to CA (1) (instead of Ca v, (n) for €
on A),

1 E
Xample, Jet Q be locally compact, X
of f1xX (with A

and so restrict our atten

neral Nachbin families v

t
=c", and A a closed subs°
t Sompact for each t € nl(/\))- CA&'(A) pas
in each of the following cases:

N =

.. Then Y =

(a) 1
+» 3 =08 or X and f i con”
Rected; (b) X oF each tEWl(/\)’ the set C(\A, %

N> = iall¥
1, F =8, ang for each tenl(/\), At is pol)’nomu\ll)
convex, hasg the
: So-called "segment Property" d i oduct
Al - Y" and is a produc:
t Xeus

t* Wwhere each Compact set

Ag (j.—.1,...,k) is either &

"fat" com a
Pact subset of € with ¢ J
\ Ay

ure of

8 strictl connected or the clos
Y Pseudo i

convex regijop with sufficiently smooth boundary:

We remayy th
at i
A s locally compact as a closed subset of

Q xt”, HOIQQVGI under the condit on o
’ iti 8 above
’

polynomials [resP:

Ag(n,) [resp. AK(A'B

Teal parts
of complex polynomials] are dense i
in

for each t € TTl(A)O

the Walsh-Lebesgue theorem, for (b) use e.s.
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this is Mergelyan's theorem respe

(In case (a),
[5], Theorem 5.2.)

Therefore the density assumption 27(

the a.p. of the spaces A;;:(At)’ t € Tfl(l\)a

a) is certainly satisfied. For

which is needed in 27(b),

we refer to [7]. O

_ d functons
Let us mow have a look at the spaces of vector-value

imilar to [ll] ?
introduced in 26 and derive a "density theorem" (Slmll

03(1\ sF))‘

#11 resp. 4,12 for CBV_(A,F) resp.

a _SEaCe-
2 Proposition. Let F be wﬂfﬁ- and A kﬁ

L _ v ¢F holds.
(1) Then CaLv (8,F) = CAg (M)

v is even
- 7 1 whenever F
(2) Hence we have €AV (A,F) =C Vo(A) ¢
o]

has the a.p.

Complete and CAgvo(A) (or F)

let now F  be complete (and A a kﬂ_space).

ons of topological linear

(3)

Then we have the follewing inclusi

Subspaces of CVO(A WF) s
F.
F) c CHEV (A)‘
cH.V (M) B, Fc cv (A, °
H:; 0( € {3 ° (/\)té F
= CH_V
(%) Hence we have cH.V, (1,F) = CHgvo(/\)eF T2V ¢
“'henever - has the a.Pe.-
57, (8)  (or F) Theoren
o resentation Z1€
220f. (1) follows directly from the G’W

the
[ Remark that foT each t € rrl(A)

Y (w
B = cav (M),
AE 0( Ag(At)‘F by our definition

: .
prce Aﬁ(At’F) is clearly nothing but

and Compare [ 7], 3(1).]
(2)

ts Theorem 5. - since

) ~hwartz
is then an obvious consequence of 5¢

is a(to pological 1inear)

Ne cap easily show that CH}VO(A) QC F

Mmspace of CH3V (A,F) and since CHsVO(A,F)
o
) followsSe.

under our

js gomplete

BSSW N i : (3 But
Ptions, the first inclusion ©

in be deduced from 9(3)-

(For each
CH
aVQ(I\,F) c CHKVO(A )¢F can aga

te”']_(I\) we have H‘J(At) §e Fe HJ(At’

Theoren 4 and the following remark.) O

cr. [71»
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The next propositions are again formulated for the caseé of the

compact- .
pact-open topology (1.9. vV = W) only although suitable analogues

hold in the general weighted case, too.

P s
33 Proposition. (1) If, for each + ¢ m(a), F(x)|,  is demse in
t
H:;(At)’ c(n) o 3(X)iA is dense in CH3(A)' (If we assume that
3(x) i , -
|At is even dense in AE(At) for each t ¢ nl(A)' this clearl] :

implies A:;(At) = H;;(/\t) for all ¢ and hence CA‘J(A) - CH:’(A) -
that then c(n) g 3(x)|,
(2) Lot A_ :=

is also dense in CAS(A).)

ten . (1) A, be gompact in X, If, for each *t€ n, (b
Hy () resp, |
3 Aﬂ ‘At {resp. AE(AQ)lh ] is dense in Hg(ht) [resp. Ag(At)]'

then c(n) g }LJ(AQ)lA [ resp.

¢ js dense in € (’N‘)
[resp. CAs(A)]. @) s AE‘(AQ)]A] dense s

P
roof. Apply (the scalar version of’)
Z:=c{n) e 3(X)|A (or z

)|
Z:i=c@)e GoIA
A:,()\n)‘AB) over the selfadjoint algebra
A 1= CB(n) & K|,=

14 to the module

i=c@) 9 (A

resp.

Lvo - (C(A),CO)):
to i(C(A),co)

CB(Q) ® {constants on X} IA (in the space

Since pelo

Ky = {{t}XAt; t ¢ Trl(A)}, £ e cn)

if and N s etich
| ‘ ( only if) for each + ¢ W1(,\) the restrict!
[t}XAt is an element of

Z C({tIxa,) ~
m t or, equivalently, if, for each tE‘Tl(‘U

c(AJ}_

_ R
clny) resp. Ay (o)1,

(or Hﬁ(Aﬂ)lAt

f € cny(r) resp, CAy(A) under ou

£(t,.) ¢ EW‘J(At)
t

But this j4 i
satisfjedq for -
Pective assumptions.

a

It is of ¢
ourse Possible
to combi
st ombin 2 to der:
ty of C(Q)OS(X)QF e 32 and 33 to

.c h (or cla)e
: (?) * Mg e ) in o (r.F) Bl e r|,
: hut the correspon, ding . Abdd

jve der”

respe
c®
resp., CAQ(A ,F) for a 1.¢° sp¥

re
BUlt can also be cbtained directil a8

et e s

e Vet torey : -
SRR e v"",'w Yersion of 14 to the module
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(or Z resp.

= c(Q) ® H’J(AQ) ® F‘A
A := cB(p) © uclA

£ of 33:

1:=c() @ 3(X) ® FlA
(in the

1:=c¢(R) ® A.J(AQ) ® F‘A) over the algebra

space Li'lo = (c(A,F),c0)), get similarly as in the proo

we

Let F be an arbitrary l.c. space.

; 3 ALLE
(1) If, for each t € "1(A)’ g(x) ® FlAt is dense in HE( t )

that
@) ¥(x)  F|, is dense in CH,J(A,F)- (If we assume tha

for each 1t € "T]_(A)v this

¥x) 8 Fl[\ is even dense in As(At'F)
t

(A oF) = HE(At,F) for all t
(x) ® F\A is also dense

clearly implies AE and hence
%y(0,F) = cHy(A,F) such that then co) ® 3

In oA (A,F).)

h tem,(A),
{2) Let p_ s i1f, for each t& 1(

act in X.
Q At be comp

is dense in Hg(At’F) [ resp.

c@) & A () @ rl,]

U

tEnl(l\)
H;(AQ) ® Fll\t [ resp. A};(AQ) ®? Fl/\t]
AYi(ﬂt’F):l s then c(0) @ H!!(AQ) ® F\A { resp.

is dense in CHS(I\,F) { resp. CAE(AyF)]'

- - ix tem(h).
Let now F denote the completion of F and fix 1

Since A:i(At’F) is a topological linear subspace of
A 2 - . . g F is dense if
30F) = A (d )eF  (of. [7], 3.1) in which a5 (1)

get a fortiori density of

= AE(AO)‘/\t 8 F

is dense in Ag(’\t)

AE(At) or P has the a.p. (cf. 5)s We

.

) o Fl!\t = Z!(X)‘A ® F resp.] AQ(AQ) 8 F‘At
t

As(At’F) whenever t;;(x)“t resp.] A3(AQ)IAt

in

#d one of the spaces A or F has the a.p.
P A3 t

cal lineaT subspace of

HK(At’ﬁ)v and H\J(At,f‘) equals Hg(At) ét Foif }%(At)

pen neighbourhoods of Ags

Similarly Hs(At’F) is a topologi .
of F has

()

and the

L. op s
P. or if, for some basis G of ©

[7], Theorem 4 (1)

co) 1is always @ topolo-

and thus the

ha
S Schwartz's a,p, for each U € G. (See

fa X -
Noving remark, - Note also that (c(u,F),

8lcal 1jnear subspace of (C(U),co)cﬁ‘ vy 9 (1),

[7] is pot needed under

agy
etlon X . kg-space which was made in

ou e F
T Present definitions.) Hence density of ¥ (X) ‘A e
whenever ¥(X) lht

o8P

B:(A le respe
F s
0 lAt in B (A F) follow
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H:!(AQ)IAt is demse in Hg(h,) and (i) He(h,) or (ii) P has the

a.p. or (iii) F is a sheaf with Schwartz's a,p.

3(U) has

(i.e.

Schwartz's a.p.

for each open Uc X, e.g. 3J nuclear).

So we have proved:

4 Proposition.

(1) Suppose that:

Let F be an arbitrary 1l.c. space.

a ; .
(=) 3(x)lAt is dense in HE(At) for each | ¢ ﬁl(h)’ and:

(v) (i) F

has the a.p, or (ii) H:;(At) has the a.p. for each ;
tem, (4)

or (iii) g

Then c(n) @ 3(x) @ F|,

is a sheaf with Schwartz's a.pe.

is dense in CHs(A,F)-
(If We assume instead of ( A “[

a) that 3(X)|p is even dense in Ay

for each t ¢ ﬂl(A)’

then Ag(At) = Hﬁ(nt) for all + and hence
the a.p, of F

or the a.p., of As(At) for each +t ¢ Wl(A) implie
A =
3(AF) = He(ALoF) for a11 ¢

such that also cA,J(A,F) = 0113(‘\,% ‘,
wd o) 830 8 |, |

is then dense in CAg(A,F)-)

(2) Let p .. T ——

(a) ) téLl(A) A, be compact in X. Suppose that:

a (A)
A_(r H:"Q ll\t {resp. Ab'(AQ”At] is dense in H:;(At) [ resp
3 £)] for each

te “I(A), and
(®) (1) F tas the avp.
te Wl(]\) or

has the a.p.

or (1) W_(A,) has the a.p. for e
PN AN
(111) ¥ is a sheaf with Schwartz's a.p. L 7esPe (+
or i3
(i1) AK(At) has the a,p. for each t € ”l(An'
cin) o H3(AQ) 8 FI
A
CH,J(A,F)

Then

Creso. cla) e a (n) e r|] isdemt™

[ resp. CAZ!(A’F)] .

To finish .
et us point out that the abeiract setbing for &

the exam s
Ples in thj X
is section, as outlined before 19, allows also

examples of a
more .
.___E__——-—-———_——522252&—5&2& than we have considered so fars

Let
A be a topological su

(of
[
ompletely regulay Speaces

bspace of the product 0 ¥ X
Lo
1

) and 16t V>0 be a Nachbin family "

For each
t € WI(A) identify v

¥
on i in family f
At‘ Now tak, ‘{t}XAt with the Nachbin
K ® topologicay

. pted
linear subspace F, of the weig?
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i ith
d put topologlcally, wi
space C(Vt)o(At) for each t € ﬁl(A) and p (

the induced weighted topology)

. n temnm (M)},
Y i= {f € cVO(A); £{t,*) € Fy for eac 1

2 a4 lgebra
Then Y is clearly a module over the selfadjoint alg

l i tem, (M1
A= (f e CB(A); t(t,+) constant on i for arbitrary 1
i tion problem for
¥e are in the bounded case of the weighted approximati
1i-
. Hence by the loca
and ¥, = ({#}xngs ¢ € my(B)]

¥ in cv (A)
o r for each t € ﬂl(A)

wheneve

zation theorem Y has Schwartz's a.p.

jdentified with a space

the space §J is nuclear or Y, = Y‘{t}x/\t’

and J,

t

has schwartz's @+Pe--
of functions on A

£ is dense in i
the spaces 3t have been "of

A
- 3(v,) (p,) For By
the same type" for each t € ﬂl(A)r st 3( tio' f
(A,) Tesp. Hg(At) or
or ¥, = A0
X, 1In Example

In all our examples, except 20,
el

%en and a fixed sheaf ¥ on X

on
and again a rixed sheaf F

1t Compact,
20 w T
we took 3t = @(At) for all t €

W Vv
’ (with Ay

tem (ANT-

closed c T (M)

for each

2en for each such t), but F, = (C(At)’CO) where
t examples

Yore generally, it is of course possible to constTae tance

;s For ins ’

the "typen of the spaces 3, changes with € ﬂl(A)

1et Ay
let
Tl

ets of ﬂl([\)’

isioint subs
be two closed disjoin
t € Ti,

3, = 3i(At) for
t € ﬂl(A)\(TluTQ)

and T2

be open for all and take

L=1,2,

teT,UT, with two
- for all
e 3t B (C(At),CO) n, which is much more

44 ve
Ufferent sheaves 3 X. oxeven - F(h)
1 om act] and put ¥, = t

Tteresting, let w11 f, be open [respr SSEFER. . o0 on the pe
‘Tesp, A:l’t(At) or H{;t(At)] where s of hypoelliptic

Teneter ¢ m,(A) (e.g. sheaves of {null
P(X,D9t))’

and 32 on

the sheaves Iy
-] solution

etce.

Partia) diff i rators £
erential ope pat each space Y o

s t
i oint out
Flnally, we should perhaps ¥ n as & vector

. retatio
*alar functions as above has a natural intes gqr vector
" ctor-Value
2Pace of cross-sections with respect to the Ve

fibratson ) by taking =
% =% veVl

(f(t,-))t- The topo-
(TT 1(’\)’ (3t)t€ﬂ1([\) of nweights"

logy or y ;5 also given by the family
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all
v on ﬁl(A), defined by V(t)e] := sup v(t,x)]g(X)I for

XERN ‘
B v £V an
ge€d., te T, () and v ¢ v, Moreover, for arbitrary

is
f €Y the mapping s ta ¥(e)r(e,-)] = S;\lp v(t,x)|£(t,x)]
X€
t X )
upper sSemicontinuous on Trl(A) and vanishes at infinity:

ists a compac
To prove this, rix € > 0. Since r ¢ CV_(A), there exis

subset K of A

K) is
With v(A) [f(A)] < ¢ for al1l A€ MK, m(K)

a compact subset of

1
X)
J_(A), and for each point t ¢ ”1(/\) \ nl(

ve get  (t,x) ¢ X ang hence

[
v(t,x) [f(t,x)| < ¢ for all x t

f

. nishes at :
Vhich dmplies s(t) = gy v(6x) |r(e,x)] < ¢, i.e. s va
xeh

m.(A):
infinity, - Now we shoyw upper semicontinuity of s at o ( )l
£{
Lot S 1= 5(t ) = gup v(t_,x) I£(t ,x)|. since v|f|: rav(d)l
X€At°
is upper sem; Continuous on 4

. set
and vanishes at infinity, the
X =

¢ be the
Doers v 120y 5 s o 2} s compact. Let g
system or Closed neighbourhoods of

each
t, in rrl(A), and for
UVEG 1let ¥

i= U t A
v tEU{ b x

F,
hen

+ (=[x en; m,(A) € U}). The v

a closed subset

of A ang

N (FynK) = (n rF
Uea Ueg

K =6
W) 0K = ({tomto) n
is [completely] regular),

(n

By the finite intersection prop
Compact getg we get a (

in (8
Closed) heighbourhood U of t, 1in !

r

such that p . € for all tE

CNET 0 e vlen) Je(e,)] < s z )
§ oslt,

and x ¢ AL whicn impljes s(t) = sup v(t,x)|r(t,x)| s S + 3

for a13 t e vy, XEA

t

ion

. 'catlo

After what ye have just Proved, the canonical identifi
of Yy With g vector Space of

Cross-gec
Vector

the
tions [with respect to
fibration

(0, (3,)
8S such g Vector Spac

over CBr, (1)),

zation of the g

v,

. ce
yi Nachbin spac®
tE"l(A))] ields a
In fact,

. 1e
. modu
e of Cross-sections, Y is a

d the 10cali”
87d as we are in the selfadjoint case,

uoed
can also be ded

: ific?”
* = However, with this ident
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has
tions on A

i in Y as a space of func

{t} x A, vhereas considering

b4 ss1 e whenever Y is
he v . . .

e that a "finer" localization is po

ad antag tha bl

a modul a ebra than A above (Cf' 20,
v an "essentiall 1 g " 13
odule over y argex

iki xamples)-
but one can easily find more striking e

4 OTHER EXAMPLES

™ bvi e alization of the a.p.
i

( 'ous) case where the locali

Anothe o f

:f, already
i ndence" {(cf.
different kind of "mixed depe

applies involves a di

simple exa.mple)'
ot COK‘OllaI"y li, Pe. 13/1 . for
1

Nachbin
V>0 a

e ace

Let X be an arbitrary completely regular sp ’

€

ry X (with
i bspace of

fami). A an arbitra topological subsp

1ly on X,

e of
i inear subspac

i ) d 3 F(r) a topological 1i

closure I in X), an _

ith

; F(r)} wi

:= (£ € CV (X)s £, €

(C(A),CO). Now define CVO(X;:” = opon in X and &

et A Dbe

the induced weighted topology. (E.g. 1 in the preceding
. X as

2 [Pl‘e~] sheaf of continuous functions on

he algebra _
Section,) This space is a module over t 3 [{x}; x € X\ A}.
. = AU ’
Y12{f € 0B(X); £], constant] with ¥,

inly
. t certain
point se
i ; to each one
Since the restriction of CVO(X,E)

chwartz's a.p. of

s
. 17 reduces
has the 8.p., the localization Theorem

C\'O(X;a) to the question whether ) (7 fl ¢ (7))} (with the
N = C(Vis ! A
Yolx53) | C(V|5),(T:3) = (£ € c(V|7),

's a.Pe-
hwartz
Testricted vweighted topology) has Sc

C (X,‘J has chwartz! a whenever CV X-E has.
s . ( * )l,\
r - P
[o] ) 5 o

l.c. space,
gquasi-complete

6Rem k X i V., -space and L =

ark, If is a -

each
R F) f'quA € E(A) for
X H
? 03) yie1qs: v, (x33)eF = {f € oV (X, (X,F), and hence then
f CV , ’
e B with the weighted topology © ©°

v F hohs
X;3) ®
n e F'} = OV, (X33) B ,
{fe v (x F); flofl ¢ #(A) for eac ( F) has Schwartz's
ety A %)~ (or
VhenQVBr F is even complete and Cvo(xgs)IA

"‘-o

eplace
. like to replacl
in p ition 35 one would sometimes

ropositio

[ A - =
i1 1 8 efore this 8 poss -
im; Yy
iA)O( ’3) S a&r. a bef 4 ibl
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whenever density of cvo(x;z)h\ in is known, that is,

if the elements f ¢ C(V’K)

Cv|7),(R;3)
O(Kﬁ}‘) which extend to functions in CVON

form
a dense subset,

37 Remark. (a) (Even) CVO(X;'J),K =

C(VI/‘\)O(/-\;K) holds if we have
eV, (X) |5 2 C(V[z) (Rs53),

e.g. if (*) CVO(X) |K equals C(VI/'\)O(/\).
. N . .
(b) Condition (*) of (a) is satisfied for instance in the followits
Cases: |
(1) v =w (if suffices that each function v € V has compact
support which - i
tmplies oV (X) = c(x) algebraically) and A€ X I

lati

ively compact or ¥ Normal, or

(11) V = positive constants on X (hence cv (x) =¢ (x) and
c(vl) (X)) = R ’ ’

’A Q(A) CO(A)) and X locally compact or
(i1i) x ‘

locallz Ccompact and A < x

relatively compact (but V>

2rbitrary),

Incase (iii) or (),

to a function in

each function f ¢ ¢(f)

C(X) which hag compact support and thus satisfies

arbitrary

observe that s

weight A
conditiong, At this point we should perhaps also

if . e
X is a topological subspace of (the completely T

gular space X N
) o! ©.8. € or [RN’ " the closure of fec X with

respect to x L
o Teed ngt coincide with f o X in general, but 1o

the intersection of the Closure j
e in

38 Pxample. L4

X be 1oca11y compact
with w ¢ v, ,

X
V a Nachbin family o
an

(N

and A

Then cV,(X¥

E

*Bey ot x be
a8 loca
: 11y Compact Subspace of cN (N > 1) respe

clearly extend

141
& (N2 2) [or of the space of definition of a (suitable) harmonic
sheaf ¥ of axiomatic potential theory], W< V, JF =6 resp.X,
and ) an open subset of C resp. RY such that its closure A

o
is a compact subset of X with A = A.

has the a.p. provided F =K or & = 6 and

Ten oV, (X33(1))

¥=1 or 3 =6, N> 1, and A is (a strictly pseudoconvex region

. ; a
¥ith sufficiently smooth boundary or a regular Weil polyeder or)

where each open (relatively compact) set

froduct Al XeooX Ay
J i i i seudocon-
‘l'J (J=11'--»k) is either contained in € or a strictly p

YeX region with sufficiently smooth boundary or a regular Weil

Polyeder,

of
Hoof. Since x is locally compact and W < V, the topology
g . . is a closed
C\o(x) 1s complete and stronger than co. Since 3(/\) 1 —

i 3 closed
“Pological subspace of (c(1),c0), CV (X;3(1)) 1is clearly a

N t and
“hspace of CV, (X} and hence complete, too. AC X compac
o

i i 8 follows
= p imply C(VIK)O(K;:;) = Ag(ﬁ), Now the first part of 3

. of
from 35 and 36 (b) (iii) while the second part is 2 consequence

]

the resuts surveyed in the third section of [7].

t there
Let us now take X and V as before, but assume tha

s disjoint) topolo-
® 2 vwhole (finite or infinite) system (AO.)Q, of (disj

%

We look at the space

i = of
gicay Subspaces of X and a corresponding system = 3;;,(1\0.)

t .
°Pologicay linear subspaces of (C(Au):co)~

o (x. for each @} with the
0( '(30.)) t= [f ¢ cvo(x); f}l\ﬂ € 30.(/\0,) f'o
in
duced weighteq topology.
. X and (3 ) may
For instance, the sets hy may be open in %, 341
X. It is

4 . n
®lote different (pre-)sheaves of continuous functions o

830 quite s heaf 3 for all @
¢ Quite interesting to take 3, = the same s

angd
to let (Ac) denote the system of (co
a
%Pen go4 A

nnected) components of an

(The sets A

1 X a

=U Ag in a locally connected space
o

Spen, too,)
Clearly cvo(xg(ga)) is a module

% then

over the selfadjoint algebra
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A= {f¢ CB(X);f]A constant for each g],
-

and all the sets Ea are

contained in maximal A-antisymmetric sets, But, even for only two
———3ained

sets Al, AZ’ it may happen that /\1 n A2 = ¢, but that Ay Nk
is non-void; in this case /Tl U 7\,2 is a closed subset of X on

which a11 functions in A

{72
are constant, So in general the localiz

. i i ts of
tion of the a:p. of CVO(X;@Q)) to Ky i.e. to maximal se

constancy of A,

spaces :;a. In fact, for a space X on which the system (/\a‘)u

induces a kind of "swiss cheesen structure, it may be gquite compli-

: i tua-
cated to "computen }(A expliCitly, and a number of different si

N here
tions occur, - ye Will not deal with such a topological problem

.
Put mention onty S.Yery simple case in which the locall

tion theorem is useful (and

any more,

) in
vhich fornunately arises sometimes
concrete aPplications);

39 Progosition. Assume that the algebra

the
A (as above) separates
sets (Aa )a and points

in X\UK from Y A, i.e.
X, = {r . _Gc v if
A~ Q' } U t{xli X e x\ U AQ]- (This is certainly the ca

Q

* - _
(*) x is Hormal, the sets AO. are disjoint, and if U [P

c a.;‘ﬂo

glosed for each &,.)

Then oV, (x; (au )} has Schwartgzt
cv H
o065 3

S a.p. whenever all the spaces
have,

Here Cvo(x;(su))
={te C(le;)o(K;);
topology),

Iz V5o g 53,) =
fIAa €3,(8,)3

i that
1y as in 37 one can fing conditions such

jghted
(with the restricted weif
and similar
(even) ¢y (x5 s
o :3u))— =C(V~) i s . {nstance
A Ay33. ) holds: For in
l > IAQ o''g? (e

1s the case if, additionally to th

ave
© a@ssumption (*) of 39, we I
V=w o, X

compact,

40 Exampy,,
s

Let x
[+

*%+ subghgar

10564
be a cmpletaly regular space and ¥ & ©
—li of ¢ .

X
Let then g denote g compact subset of %4

that
& xa of (disjoint) compact sets K, such

ok p i fferent
will not leai to a complete "splitting" of the diffe ;
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tant for
- c(K); £ cons
k:ui’(u holds and the algebra A := {f ¢ C(K); K,

-4

if
P A_(K) has the a.p.
each @} separates the sets KC!.' Then 3(

h @a.
3 c A(K has the a.p. for eac
gx)h% 5 () |

h a in
= A_(XK ) for eac
froof, Take X = X, [\Q = KO.’ and 30.(/\&) 5 Wy
we get

3. Vith, say, V = positive constants on K g

. by

X h & which
e (X; (3 )) = {ftcc(x); £l ¢ G(KG) for eac }
o\ [+ Ko, 1s A (K). - Of course

f§=U ;(u and the sheaf property of F equals b

at a ver the
th A (K) is module ©
' se facts also to show

glgebra 4 above. m]

ivial examples of sets (Sa})
y o construc ( - a )
It is eas t t non-trivi

in order to get
£= UK as in 40 and even to arrange these examples

il ses density of A;;(K)|Ka
) = (K ) for each n € N. - In many cas ensity
v !Kn A3 n

Yy ices to replace by
‘ i d this already suffice
" Ali’( q) will hold anyway, an

is o course posslble to combine the two kinds of
!} ) 10 It £

Q (3,)) as 3, in the ge-
“Mixturesn ang to use spaces of type CVO(X, a tion. - Ve prefer,
i 5ec -
"eTal scheme given at the end of the preceding

i it
ocalization theore

i { the 1
h“ever, to conclude with applications of R
ighte
land o the ¢ -product) in the vector-valued weig

tioned

. ions were men

theo . jons. These applicatio

~—IY of continucus functions. they are

ation

£ (11];
' ; k 4.6 d) o
Tery briefly {and without proofs) in Remar

lize B
do and genera
OtNected with the paper [ 26] by Prolla-Macha

ghted spaces.
Blatgops

5 el
arbitrary w
S$ method from [13] s Theorem 1.10 to

recalling {cf. [26]) some

i i resp.
Let us start by introducing .+ Nechbin family

V>0
“°tation,

Let X be completely regular,
on X,F # {0}

1 G,
1neay Subspace or CVO(X,F). The set v

a topological

(x,7) € XxX

da Y = YF
a locally convex space, an

of all pairs
jtra
11 f € CVO(X,F), arbitrary
B“Ch : T a
that (witp as : £+ af(x) fo i
[+]

= 0
Tex and g ¢ K) either 5x|Y = ayly

t 8 ui alence relation on XO
Det £i ' Yy i ds an eq v o
13 xIY YIY # o] iel I I :
e Y Gy + K by X ) = 0 if 0= GI Y = 6)’ b ¢ a""d

X : Y g( 2y b

{ )

=t jif °?‘°le =t Ble'
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Similarly the subsets and

KSy 2= [ (x,7) € Gy; &(x,y) = 0}
¥y = [(xy) € 643 g(x,v) ¢ {0,113

Now consider a "symbol®

yield equivalence relations onk

4 € {G, KS, WS}. The closed {topological

linear) subspace

A(Y) :={f ¢ CVO(X,F); £(x) for all
(x,y) ¢ 8,15 Y or oV _(X,F)

Y

g(X:Y)f(Y)

. F).
is called the A-hull of Y in cvo(X,)

: - . is just the
1s said to be g A-subspace or CVO(X,F) if A(Y) ds jus
closure of y ip cvo(x,F).

(The letters G, ks, Wws stand for

Grothendieck, Kakutani-Stone, and Weierstrass-Stone, reSPeCtively')

f
4 Proposition, rLet Y (= Yi) bve a topological linear subspace ¢
cv_(x).

(a) Then WS(Y) has Schwartztg a.p.

(b) Let & =G or

KS. is constant

It A(a) == [f ¢ cB(Xx); *

on each equivalence class modul o

AY} separates the equivalence
classes mod 84y 2(Y) nas Schwartzts a,p.,
Proof. Let 4 =g, KS, or

WS. Since CVO(X) is a module over
CB(X), 8(Y) s & module over
A(a) = {fe CB(X); ¢

We are in the bounded

m for
ase of the Weighted approximation proble
A(x)

}
and A
alwaxs Separates the equiva

i . A(:
n 18 selfadjoint, - Let us prove that

=¥
A =
lence classeg mod Ay in the casg

(a racy which jis mentioneq

hg):
[ for real scalars] in [26], p. 248)
Take

X

(IR
. mod 2y"
1s constant on all equivalence classes i

1'*2 € X which belong to d

i.e, there eXists h ¢ y o ws(v) .

S(Y)
Such that h(x;) £ h(x,). ¥
Clearly selfadjoint,

such

hence ye Can find a real-valued 8 € ws(¥)

that ;
g(xl) < g(xz). But for real-valued functions g118p € ws{y)

also g ass
up(gl,gz) € VS(Y). So Without loss of generality we may

g2 0,

The function £
b
elongs to oV (x),

g £5°

(1)

inf (g,g(xz)) is continuous, by @

- . wSs
894 it is easiiy checked that then even f €

too, So ¢ nd **
° TSt be constant on the ©®quivalence classes mod WSy *
bave con

Structed 4 Tealevalnyed function f€A(ws) which separates %3
2.

d 5

. es 0o H

ifferent equivalence class :
—=llerent

For ¢ ~
he cases A =g Tesp. KS,  we assume in (b) this sep¥
assume

1 - .

. A
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atlon operty ve three cases that
i

i prop of A(A ) , and hence we ha in all

ration pr ! t

mod AY- By the

iv lasses
ki, 1is nothing but the system of equivalence ¢
A

1 a,p., if A(Y)lK
localization Theorem 17, A(Y) mnow has Schwartz's P

K modulo Ay.

. e class
Tas Schwartz's a.p. for each equivalenc

f € A(Y) are constant on

In the case A = WS all functions or K
fach equivalence class K mod Ay, that is WS(Y)lK ) {Oir G it is
shich clearly has the a.p.. In the other cases 4 = - (Y) on X
fsy to see that the values of an arbitrary function f.etA x € K,
ire completely determined by the value at one single poin o

. [}
A _dimensional.
and hence A(Y)lK is again at most one-di

t
- From 41 we ge
For the assumption in 41 (b) see [26], 3.15.

K5 or WS:

A

¥ density of A-subspaces Y in a(Y), =G
v lensity o -subsp

2

1S A.Pey
has Schwartz
ferollary. Bach WS-subspace Y& OV (X)

for which A(d)

cv_(X)
MM for o 2 op KS any A-subspace Y of ° '
d A, bas Schwartz's
s in g4y Separates the equivalence classes MmO Y

8Py tao,

the
here (up to
Let us now turn to the Yector-valued case ¥

ich fol=-
ov X) whic
%Py or arbitrary closed KS- and G-subspaces of D(

= positive cons-

. and V
“O%ed jp Blatter!'s case [X 1locally compact

TL Tau we Wil eneralize
SS) g

‘ S

2 _theorem of Linde t 11

X]

“eorem 1,19 of Blatter [ 13] below. .
;cal linear subspace of °
bet denote a topologica

with the weighted

Ty

- X
Jefxne YO = {flof; fI€ FI, f e YF} = CVO( )

“Pology, ¥We will always assume that

in Y.
) ined in lIgp
i+ is containe
) YOXF=={g®e;geYo’e€F}

is
and Y 1

X},
Then ... of oVl
en 0bV10usly Yo is a linear subspace ° (See [2] ’

n CV (X,F).
¢ s
Sesed in gy (x)

. sed i
whenever Yp is clo 11 as [26], Lemsa 1.1)
. e
1, 3.5 ang compare [ 13], Remark 1.15 (i) as w

and
Lema .

‘YP(‘J') =

n A = AY »
Let c {G, KS, Ws}. The Yy <]

A =By
gy (x,y) for alt (x,v) € Y, Y
o
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Proor, Using the Hahn

-Banach theorem this is easily checked, [

44 Proposition. {(2) For an arbitrary topological linear subspace

Y (= Y) of CV (X) we have

PNRE < g1 e vt (x,r), £(x) = 8y (x,7)2(y) for a1l (x,¥) € by
. ),
(b) Let Yp be a topological linear subspace of CVO(XvF) with {

Then we get

8(vg) = 4 (Y, )eF

whenever p is quasi-complete and X g V[R_space.

Proof.

(a) is immediate from 9 (3) and the Hahn-Banach theorem.

d

Under the assumptions of (b) we have CVG’C(X,F) = CVO(X,F)r an
o

hence (

b) follows from (a) and Lemma 43. 0O

Without any assumptiong on F

and X we get in case (v):

A(YF) = A(YO)QF n v (x,7).

) oV (X,F)
An arbitrary closeq linear subspace Y of

is a d~subspace if and only if vy

=—=2Race o

s 8

= {f'of; fIE F,, f € YF} 1

closed 8-subspace o Cv_(x)
o

satisfying v = Y eF N cVO(XvF)'
(The intersection of v

ir X
o8F  with CV (X,P) s not necessagy *
is a VR-Space ang F quasi-complete.)
Proof. . .
of . 1, Let Y, bea closed A-subspace of CVO(X)’ Lo
Y = . F
o =8(Y ). Then Tp i= Y ¢F q OVo(X,F) clearly contains Y XF'
and it jq immedjat ’ beine
late that [g °fy fle ', ¢ € Y} = Y, (F
£ {0}). Hence we may apply 44 to get
A(Y) <2 -
F) (YO)CF n CVO(X,F) = Y ¢F n Cvo(x’F) = Yp which prove
Y, is a
¥ closed 8-subspace of CVO(X,F).
- c‘n
2. Let Now YF be a Closed j .

-Subspace of cvo(x,p), Then ©
verify

dire
€tly that Y, := [£fars £/ pr ,

T € Y] satisfies
»Yo X Fco A(YF) =Yoo By 44 o get consequently:
Yr = a(Y,) = 0 )er CVolXF), ana 54 Temains to show A(T,) “
But for k¢ A(Yo) and ¢ ¢ F, oy 0, we have

b T h ;
iy ® e¢ A(Yu)x!‘ C‘A(Yo) & F C‘A(Yohr n CVO(X,F) = YF‘ chuﬂ‘w
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i ‘ef =he Y , i.e.
we finally obtain £ e °

e 1

with ' (e) = 1

d
e 1l,¢c, space, an
—==oro i ary be a V_ -space, F a complet .

i Corollary. Let X be a Vp

y or if A = G or KS
a - V F).
VF closed A subspace of Cc (X, )

If A = WS

mod AY (or if F

i lasses
aid A(A) in 41 separates the equivalence c

has the a.p,), we obtain:

= F.
YF = YO ®‘
. ) .0
Proof. Combine 41 and 45 )
i ! f closed A-subspaces F
The ¢ -product characterization 45 o -
f A-subspaces i
s the study o
of CV {X,F) (in some sense) reduce

iza-
~haracteriz
. For some ¢
functions. (
the vectorevalued case to scalar

' see [ 26].)
'ons for A-subspaces Y, < CVO(X) )
ad to new proo
that the above results le
B We illustrate

. N t
. tter insight.
of some propositions in [ 26] and yield be
.19):
IS With two examples (compare [26], 3.19) 2.9 of [26] can
heorem Z.
In vView of Lemma 2.2 and Remark 2.5 of [26] , T

Iephrased ag follows:

Let y

be

a og1 1 linea ubspace of CV such that Y
P X F)
r s 0( 1) o
F t30[701 gica

Then Ygp

: v _(X).
Fcx and is a WS-subspace of C o(
X F

iz a ¥S-subspace of CVO(XyF)-

fatisfie
s Yo

e
ns as follows: We hav

. sults ru
" 4 proor based on the preceding resu CVO(X,F)

¥

1 1
- = F which clearly
=Y 5 3 Y oY ®‘
F o ®‘ F and a fortiori: F o

cv (X,F)

. ¥ @ F
e T EFN CVO(X,F) since o
fOhtajing ?o 8. F and henc [}

by
1 a.Pe«
‘ ¢ = ws(Y.) has Schwartz's a.p
'S dense 45 TO‘F by 5 because Y = o

4 yields:
Proposition 41 {a). oOn the other hand 44 ¥y

= ¥ ¢F n OV (X,F),
WS(Yp) = ws(Y )eF n oV (X,F) = Y6 °
LG ° - i.e.
= US(Y )s
- . implies Yg = F
and j¢ follows that WS(YF) c YF which imp F
YF is a WS~subspace of CVO(X.F)'

4 of £26]
eorem 3.1
And iew of [ 26], Proposition 3.11, ™

in vi

rﬂﬂds T
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such that Y
Let YF be a topological linear subspace of CVO(X,F) 0
for
satisfies Y, x Fe Y, and is a A-subspace of CVO(X) o
. classes

4 =Ks or g, Assume that A(D) separates the equivalence

modulo 4 is a A-subspace of

Then Y cv_(X,F).
Y. F o
F . sition 41 (b)
= A proof can be given exactly as before, using Propo

(and Lemma 43) this time,
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