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PREFACE

Locally convex inductive Fimits arise in great profusion through-
out many fields of functional analysis and its applications; e.q., in
distribution theory, partial differential equations and convolution
equations, Fourjer analysis, complex analysis in one and several (or
an infinite number of) variables, spectral theory and the holomorphic
functional calculus, measure theory on topological spaces, as well as
(of course) the structure theory of abstract locally convex topological
vector spaces. All the general texts on topological Tinear spaces
contain the basic definitions and the "standard" theory, at least for
strict inductive limits. (We recommend the books of Bourbaki [13],
Edwards [22], Floret and Wioka [28], Horvath (35], Jarchow [36],

Kothe [38], Pérez Carreras and Bonet [46], Schaefer [52] and
Valdivia [59].)

The locally convex structure of

general inductive limits easily
becomes very intricate,

and even specialists may have a hard time

studying certain more complicated inductive limits. However, most of

good knowledge of the special properties
of the classes of (LF)- ang (LB}-spaces, usually suffice for many

practical purposes. The fact that a large part of this general theory
appears to remain not as well-known as it should deserve may derive

from a certain lack of good introductony texts which "advertise”, say,
the powerful methods for (weakly) comp i

spaces (and illustrate them in g
examples) instead of "hiding"
details on special, complicated classes of
spaces. (See, however Floret-Wioka [28].)
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But functional analytic applications of "reasonable” locally
convex inductive limits have also sometimes been restricted by a wide-
spread belief that, even in good cases, inductive 1limit topologies and
their continuous seminorms were very complicated and not easy to handle
and that it was not possible to describe an inductive limit topology
and a basis for the continuous seminorms in settings which are general
enough to include a substantial part of the applications while at the
same time, and above all, being "useful” for providing convergence
results and direct estimates in terms of the seminorms. A short glance
at various books provides some justification for the belief since most
texts neglect this latter aspect, and it often occurs, for example,
that p{Q) and CC(X) are defined, but the well-known natural bases
of the continuous seminorms for their inductive limit topologies are
not exhibited. (The exceptions include Horvéth [35] and Pérez Carreras
- Bonet [46].) However, part of the nclassical™ work on the inductive
limits which arise in distribution theory and convolution equations, as
well as more recent work on spaces of germs of holomorphic functions
and weighted inductive Timits, demonstrates that, working just a little

bit harder, it is indeed possible to deal with inductive limit topolo-

gies in many important and quite general settings and that it is actually

often not even too difficult to derive natural, sufficiently general and
useful characterizations of the continuous seminorms for inductive Timit

topologies.

This introduction presents both the general theory on special
jts and important results
inuous seminorms of induc-
to provide a good
We will now

classes of "good" locally convex inductive 1im
on descriptions of concrete bases for the cont
tive Timit topologies. In the presentation, we hope
balance between abstract theory and interesting examples.
briefly sketch the content of these notes.

The main results on the important special types of inductive limits
are given in the first three sections. Section 1. concentrates on
(countable) strict inductive limits, Section 2. on (countable) weakly
compact, compact and nuclear inductive limits while Section 3. deals

with (LF)- and (LB)-spaces.



The discussion starts with the "usual" arrangement of first
stating the basic definitions, then the theorems and finally some
"illustrative examples". We have actually worked out some of the
examples in more detail than usual - p(R) and CC(X) for strict
inductive limits and H(K)} for (compact or even) nuclear inductive

limits, including references to related work which deserves further
study.

Beginning with the end of Section 2., we gradually switch to a
different arrangement of the material. These notes mainly are not
intended for specialists in the field (although we have reason to hope
that even these would find novelty in our selection of some topics and
in some of the details), but for interested analysts who might want to
apply some of the results and methods to specific examples which come
up in a different context. Hence we look at (
Spaces and weighted inductive Timits as genera
objects" with natural inductive limit tg

echelon and) co-echelon
1 classes of “important

pologies which are interesting
for their own sake, and we then search for "appropriate” the

methods which would help us in our study of the "given"

orems and

necessary background., (By now, it should be apparent why we do not
start with this material, but with the inductive Timits.) 1In the
Appendix to Section 3., the topic of strong regularity conditions is

treated for possible yse in more subtle applications (and here, as in
Section 4., we also report on Very recent wo

0f course, the selection of the material has been strongly
influenced by the author's own interests, but we haye also Tearned

mch from the surveys (28] and [27] of k. Floret and the corresponding



part of the forthcoming monograph {46] of J. Bonet and P. Pérez
Carreras. We state most of the results without proofs (or with at
most sketches of proofs), but we try to make the material transparent
by explaining some of the main ideas and various connections.

At the ICPAM Autumn School on Functional Analysis at Nice,
France, the course of five lectures (of 45 minutes) which I gave
during the week of September 8- 12, 1986 essentially covered (or at
Teast touched) most of the contents of the present four sections, but
it was much more "streamlined”, leaving out many details and cutting
the background material very short. (As a completely new feature,
the Appendix to Section 3. appears in these notes; it was already
prepared at Nice, but was not presented there because of lack of time.)

Part of the notes may serve as a (very) first introduction to the
subject, and I would then recommend omitting (roughly speaking) Numbers
1.4, 1.8, 1.10-1.12 and 1.14; 2.1, 2.6.(a) and 2.10; 3.5, 3.15-3.18,
as well as the Appendix to Section 3.; 4.8-4.11 and 4.14-4.16. On
the other hand, part of the discussion of CC(X) in Section 1., the
short survey on H{K) in infinite dimensional holomorphy, some "back-
ground" results on special locally convex spaces, the Appendix to
Section 3., and the report on the author's very recent joint work with
J. Bonet at the end of Section 4. would be appropriate topics for a more

detailed study in advanced seminars.

"Historical" note. During the Spring Semester of 1978, the author
?ave a series of talks on locally convex inductive limits, weighted
inductive limits and topological tensor products at the University of
Maryland, College Park, USA. For the purposes of another series of
lectures at the Universidade Federal do Rio de Jameiro, Brazil, August -
September 1980, the author adapted, rearranged and expanded his notes
on the subject to informal "Lecture Notes on Locally Convex Inductive
Limits* (subtitled: "A prejudiced account of part of the general theory

and of some examples and applications from weighted spaces and holomor-
") which were never completed, but of which a

The present introductory notes, while
are actually quite different.

phy in infinite dimensions
few copies were distributed.
based on some of the former text,



(E.g., the treatment of the general theory was much shorter in
1980, and some of the results included here were only obtained in the
last years. On the other hand, the Rio notes of 1980 contained much
material from (3], [5], and from what was later to become (7], with
full proofs. At that time, according to the author's previous interests
in topological tensor products, the setting of "weighted inductive
Timits" was presented in greater generality, including vector-valued
functions and decreasing sequences of systems of weights, and we also

treated e-tensor products and e-products of inductive 1imits in some
detail.)

Acknowledgements. I am especiaily indebted to Klaus Floret for
several helpful conversations relating to the selection of the material
for these notes and other details, as well as to José Bonet and Jorge
Mujica for some correspondence in connection with this article. I
would also like to thank the audiences of my series of lectures at

College Park, Rio de Janeiro and Nice for their interest and stimulat-
ing questions.

The final version of the notes was written at the University of
Arkansas at Fayetteville, USA during (late) September/October of 1986.
The visits to College Park and Fayetteville were made possible by
(sabbatical) leaves from the University of Paderborn and some financial
support from the host institutions; the visit to Rio de Janeiro in 1980
took place under the GMD/CNPq-program between W. Germany and Brazil. I
gratefully acknowledge all this support (as well as the support of ICPAM
during the Autumn School) and the hospitality of many colleagues,
especially D. Gulick, J. Horvath, L. Nachbin, G. Zapata and W.H. Summers.

Note on references and general notation.
I found it next to impossible to give the name(s) of the original
author(s) of each "classical® theorem, or the names of all those math-
ematicians that contributed to major, but nowadays "well-known" resylts

and methods in thig area. However, reasonable efforts have been made to
mention most of the names (at least once). Also, with the references

already containing more than 6Q numbers, not each important paper on the
subject could be listed here, and we sometimes cannot quote the original

In preparing these notes,
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article in which some "classical" theorem was first proved, but rather
refer to some other source where it is stated, surveyed or just

mentioned.

By N, we will always denote the set of all natural numbers,
and we put N0:=]Nu{0}. Finally, R, is the set {xeR; X >0}.

0. Notation; some preliminary remarks

By the term locally convex space (abbreviated as "l.c. space"),
we will denote a Hausdorff (real or complex) topological vector space
whose topotogy can be defined by a system of seminorms (in the canonical
way). When we deal with 1.c. inductive systems (also called 1.c. induc-
tive nets or spectra) and their limits, we always assume the following

situation:

A denotes a directed
a family of 1.c.

E is a (real or complex) linear space,

index set (under an order <), (EsT)yen
spaces Ea (all real or all complex) with topologies T, linear

subspaces of E with F= U E_, and if a<B, E s a linear
aeh © a

such that the canonical inclusion mapping iaB:

is continuous; i.e., the topology T of the
which is weaker than

subspace of EB
(EQ’TG) > (EB,TB)
larger space Eg induces a topology on E.
the initial topology T, of the smaller space. (Here, 1, is

of course the identity mapping of Ea.) Then (Ea"‘a)aeA is
called an injective inductive system of 1.c. spaces.
The space E 1is now endowed with the strongest 1.c. topology T

(equivalently, this is the strongest topology on E given by a system

of seminorms) which makes all the natural injections i : (Ea,ra) +E
continuous, and (E,r) is termed the 1.c. inductive 1imit of the system

(Epsty)y e We write (E,'r)=Aiar‘ig+(Ea,Ta).

Moreover, in all that follows, we will tacitly assume that the
1.c. inductive limit topology T oOn E s again Hausdorff.
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A few remarks are in order at this point. In the literature,
the terms 1.c. inductive system and 1.c. inductive limit are often
used in a broader sense; viz., for directed systems (Ea’TG)QEEA of
1.c. spaces and general, not necessarily injective, continuous linear
"linking maps" iaB: (Ea’Ta) -+ (EB,TB), a<B, between these spaces.
The inductive 1imit space E and the mappings

i (EG’TG) +E are
then “constructed" in a certain way.

To simplify our discussion, to
avoid some more complicated terminology and to help the intuition, we
restrict our attention to the situation described above. It is usually
enough to study only injective 1.c. inductive systems. From now on, we
will drop the word "injective" from our terminology. Furthermore, we
often assume that the topology T, Oof the T.c. space (Ea’Ta) is fixed,

and thus we my suppress T, 3 well as the inductive limit topology T.

E.q., we consequently write, for short, (Ea)a and E=ind E.

a >
Even though we suppose that each of the 1.c. spaces Ea in an

inductive system carries 3 Hausdorff
inductive limit topology * of

embedding of al] Ea into a fixed
(E.q., inductive limits E=1ind £ of

Séquence or function spaces on
all the spaces Ea

to take care of non-Hausdorff

» then this introduces many difficul-
ties which we woyld rather like to avoid in the present notes. That is

the main reason why we will not discuss non-separated 1.c. inductive
limits in the sequel,

By definition of the 1.c. inductive 1imit topology, an absolutely
convex set U in E-= ind E

ind E, is a nefghborhood of 0 if and only if
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un Ecx is a neighborhood of 0 in Ea for each a€A, and a basis
of neighborhoods of 0 for E is given by the system of all sets of
the form

U=T( U U s
(aeA 0‘)

where each U, is a neighborhood of 0 in E_ and where we let T
denote the absolutely convex hull. Similarly, a seminorm p on

E=1ind E, 1s continuous if and only if each restriction Ple is
o > °
continuous on Ea' However, this last equivalence is trivial and does

not yield a useful description of the continuous seminorms for the
inductive timit topology. When dealing with concrete inductive limits
and their topologies, it is often essential for direct estimates and
computations to derive a nontrivial characterization (if possible, in
terms of a formula) for a basis of the continuous seminorms. Until
quite recently, this aspect has often been neglected, but it is one of
the aims of these notes to demonstrate that, in many important cases
arising in the applications, it is indeed possible to write down bases
for the continuous seminorms of 1.c. inductive limit topologies
explicitly.

If the index set A of a 1.c. inductive system or limit is N
with its natural ordering <, then we will speak of a 1.c. inductive
sequence (E ) and a countable 1.c. inductive limit E=ind E .

n-—>
can be

Sometimes a given uncountable 1.c. inductive system (Fa)a
that is,

replaced by an "equivalent" 1.c. inductive sequence (En)n;

4 sequence for which

ind F =ind E algebraically and topologically.
a+ * - "

Right from the start, we should point oul that countability of a
1.c. inductive limit makes a big difference. Nearly all positive
results in these lecture notes will only arise in the case of countable
inductive limits, and, indeed, it is practically impossible to develop
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any deep and widely applicable general theory for uncountable 1.c.

inductive Timits. (Some of the counterexamples are mentioned as we go
along.)

1. Definition. A countable 1.c. inductive 1imit E=ind En of Fréchet

n -+
(resp., Banach) spaces En is called (LF)- (resp., (LB)-) space.

(In some of the older Titerature, these terms are used in a more
restricted sense, but, at that time, inductive limits were often not
treated in the present generality anyway.)

Some of the most important examples of 1.c. inductive limits

belong to one of the classes introduced in Definition 1. When dealing

with (LF)- or even (LB)-spaces, we will already know that certain
general facts are always true, but some "

pathologies” may still occur.
Most of our discussions will take place i

n the setting of (LB)-spaces.

At the end of this preliminary section, we must return to the
very definition of 1.c. inductive Timits (E,t)=ind (Ea’Ta)' We remem-

o =
s defined as the finest

o (Ea,Ta) + E continuous.
the category in which projec-
E.g., for a projective system

the projective Jimit topology T of
F= proj Fi always is the weakest 1.c. topology, but also the weakest
« 3

ber that the 1.c. inductive limit topology t wa
1.c. topology making all the injections
Now, it is known (and easy to verify) that
tive limits are taken is not important:
(Fi)ie 1 of l.c. spaces Fis

vector space topology or even the weakest topology which makes all the
canonical mappings n.: F - Fi

i continuous. In other words, the weakest
topology making all Ty continuous is again locally convex, together
with all the topologies of the Fi' But the situation is completely
different for inductive Vimits: In general, the “topological vector
Space inductive 1imit topology"
spaces; i.e.

injections ia: Ea »> E continuous, need not

"inductive topology” of an inductive system

>

1.e., the finest topology making all 1a
Tinear topology. The Iast_pathology is no

be locally convex, and the
(E,), of 1.c. spaces;
continuous, need not be a

t even remedied (in general)
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if we restrict our attention to countable 1.c. inductive limits, and it

accounts for part of the trouble. (If E=ind E  does carry the
n -
finest topology making all in: En + E continuous, then a set C in

E is closed if and only if C 0l En is closed in En for each n € N,
and the topology of E 1is necessarily Hausdorff along with all the
topologies of the spaces En.) But at least the first pathology cannot
occur for countable 1.c. inductive limits (cf. Bourbaki [13]).

2. Proposition. Any countable 1.c. inductive limit E= ind E (of
n >

1.c. spaces En) also carries the finest vector space topology which
makes all the canonical mappings i : E > E continuous.

In spite of the differences mentioned above, let us agree from
now on to simply speak of inductive systems (Ea)a’ sequences (E )
and limits E (of 1.c. spaces E,  resp. En) whenever we actually
mean 1.c. inductive systems, sequences and limits. Since we are only
interested in such inductive limits, no confusion will arise.

1. Strict inductive limits

Historically speaking, inductive limits of 1.c. spaces appeared
in the theory of topological vector spaces for the first time when some
of the common spaces of distribution theory were topologized in the
natural way, and the corresponding spaces p(a), o™() and CC(X) were
strict inductive limits. The main positive results on countable strict
inductive limits (subsumed in our Theorem 3. below) are due to Dieudonné-

Schwartz and Kithe (cf. Horvath [35] or Kothe [38]).

1. Definition. An inductive system (Ea’Ta)uGA of 1.c. spaces or
its limit (E,7)=ind (Ej,7,) is said to be
o ->

(a) strict if, for each a<B, TBIE;TG; i.e., 1.
topological isomorphism into,
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(b) hyperstrict if, for each a€h, TIE =T, i.e., ia: Ea-rE is a
topological isomorphism into. ¢

Note that hyperstrict = strict and that a hyperstrict inductive
limit clearly has a Hausdorff topology. But Y. Komura [40] gave examples
of {uncountable) strict 1.c. inductive systems with (a) a non-separated

Timit topology and (b) a Hausdorff inductive 1imit which fails to be
hyperstrict,

We now introduce the notion of regularity for an inductive system

since this allows us to formulate Theorem 3. in a more convenient way.

This notion is quite important and will be studied in more detail later
on.

niti i i .C. spaces or
2. Definition. An inductive system (Ea’Ta)uf=A of 1.c. sp

its limit (E,t)=1ind (EQ’TQ) is called regular if, for each bounded

a"+
set B in (E,1), there exists a=a{B)e A such that Bc:Ea and B
is ra-bounded.

We remark that a set B which is contained and bounded in some
(EQ’TQ) clearly is bounded in (E,7) as well. Regularity of the
inductive system means that all bounded subsets of (E,t) arise in

this way. It is 3 desirable Property of inductive systems. E.qg., a

regular inductive limit (E,1) = ind (Ea,ra) always carries a Hausdorff
—_— o >

topolegy: The closure {0} of {0} in (£,7) is 4 bounded Tinear

subspace of (E,7), hence Contained and bounded in some (E »Ty) by

regularity. But each (Ea,ra) s Hausdorff, and thys {07 = {0}.

Here is the main result on countable strict inductive limits.

3. Theorem. (a) The inductive limit of a

(En)neli of 1.c. spaces (i.e., of a
with 1

strict inductive sequence
n inductive sequence (En,rn)

neN
m1|E " Tn TOr each neN) is even hyperstrict.
n

(b) 1If, in (a), each En is closed in (E

n+l’Tn+1)’ then E,
is also closed ip (E,1) for pn= 1,2

s«-. In this situation, the
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inductive sequence (En)n is always regular, and (E,7) fis (quasi-)
complete if and only if all the spaces (En,rn) are (quasi-) complete.

In particular, a countable strict inductive limit E=1ind En of
n -~

complete 1.c. spaces is always hyperstrict, regular and complete.

4N Exgmple. For a fixed nonnegative integer m and @ open in
m
R%, p"(2) denotes the space of all those continuous functions f on
Q whose partial derivatives a*f exist and are continuous on & for
each multi-i = N =
index a (al,...,aN) e N, of order |af=ay+...+ay<m

and whose support

supp f = {x € 93 f(x)7# 0}
is a compact subset of Q. p°(q) is just the space of all continuous
functions on @ with compact supports.
denote the subspace of

Now fix a compact set Kc@Q and let Dﬁ
On DE, the uniform

m
D™Q) of all the functions f with supp fcK.
topology of order m; i.e., the topology of uniform convergence on Q
of the functions and of all their partial derivatives of order < m,

and the compact-open topology of order m; i.e. the topology of uniform
§ q for functions and partial deriva-

convergence on compact subsets 0
into a Banach space with

tives up to order m, coincide and turn Dz
the norm

[1£]1, =  sup sup |a%F(x)]
0<lalsm xef

By definition, we have ™M)= U D?; where k=K(Q) denotes the
Kek

system of all compact subsets of & (directe
sion). It is natural to topologize p™(q) as the 1.c.

of the spaces D7, K€X.

d with respect to inclu-
inductive limit



We have pointed out in Section 0. that it is important to know if
there is an equivalent countable inductive system. Putting

Ki= {xeR' [Ixl| <n and d(x, Rha) 21}, n=1,2,...,

where ||« || denotes the Euclidean norm and d the Euclidean distance,

we see that Kn is contained in the interior Enﬂ of Kn+1 for each

neN and Q= Kn= u En Hence each compact subset K of @
nelN neN

is contained in some K,» and (Kn)ne]N is a countable basis for K.
It is now clear that

™Q) = ind D'l'('
n-> n

i.e., D™Q) is an (LB)-space. But Dm(Q) clearly is also a strict
inductive 1imit, and so Theorem 3. tells us that o™(q)
{which could easily have been seen directly)

particular, the regularity, together with the hyperstrictness, implies

that a sequence (Fodnen 10 D™@Q) converges to 0 if and only if
there exists a compact set Kcg with U supp f,CK and Bafn -+ 0

neN
(Note that uniform convergence

is hyperstrict
» regular and complete. In

uniformly on X for arbitrary lal < m.

3% > 0 for arbitrary [« <m s only sufficient to imply f, >0 in
p™Q) if the union of the supports of all fn

is contained in a fixed
compact set KcQ.)

One can explicitly determine a basis for the continuous seminorms
of the inductive limit topology on 2™(q),

is completely analogous,
p(Q) and cc(x) below.

but, since the development
we will only note this in the "}Jimi ting cases"

5. Example. With Q as in Example 4., D(Q) denotes the space of
all C”-functions on Q with compact supports; i.e., D(R)= n D™q).
meN

0



N .
D(RY) will be abbreviated as D. To topologize p(Q), we put, as
before

Dy = {feDn(@); supp fC K}

for arbitrary compact Kc@; that is, D,= N Dm, and D, is
K K K
meNo

endowed with the corresponding projective topology, defined by the
sequence (|| - ”m)meN of norms. This is the restriction of both the
0

"uniform topology of order «“ and the "compact-open topology of order
Taking D(Q) to be the inductive

u.,il . ~
» and Dy is a Fréchet space.
for a fundamen-

Timit  ind D> k=K(Q), or, equivalently, ind Dy
KaK » n+ N
tal sequence of compact subsets of & (cf. Example 4.}, it is easily

verified that D(Q) always is a countable strict inductive limit,

hence hyperstrict, regular, and a complete (LF)-space in view of

Theorem 3. T. Shirai [56] showed that p() does not carry the finest
topology which makes all the injections DKn »> p{Q) continuous (cf. our
discussion at the end of Section 0.).

on of the continucus semi-

In order to give an explicit descripti
ing definition from general

norms for »(Q), we first recall the follow
topology: A family 4 of subsets of a topological space X is called
locally finite if for every xeX, there is a neighborhood V of X

such that VnA=@ except for finitely many Ae€4. 1¢ 4 is locally
finite, then each compact subset of X meets only finitely many A€A.

Next, consider a family V={v ) N of nonnegative continuous
o’ o€ Ny

functions v, on @ such that (supp va)a is locally finite. Then

Py(f): = sup ~ sup va(x)la“f(x)l for fen(n)

€qQ :
aeN: X

denotes a well-defined (continuous) seminorm on p{Q).
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6. Proposition. The system (pv)W of seminorms, where V¥  runs
through all possible families W::(Va)aeﬂNg of nonnegative continuous

functions on Q with (supp Va)a locally finite, induces the (induc-
tive limit) topology of D(Q).

The proof yses an argument involving Cm-partitions of unity and
can be found in Horvath's book [35]

Even though the treatment of Dm(Q) (meNo) and D(Q) is quite
similar, there are some essential differences between these spaces —

mainly reflected in the Structural fact that 2™(Q) s an (LB)-, but
o(2) "only" an (LF)-space,

D==D(RN) is the famous "test function space" of Laurent Schwartz;
Tts dual is exactly the space of all distributions. Thus, D is one of
the most prominent spaces in analysis!

We finally turn to the treatment of 5 "
2°(a).

more general version" of
Example. Let X denote a locally compact space and C.(X) the
space of all real or complex-valued functions f on X with supp f =
xeX; f(x)#0} compact. The definition of the inductive limit topo-
logy on CC(X) follows the "usyal” pattern: For any compact KcX,

CK: = {fe CC(X); Supp fc Kl is endowed with the topology of uniform
convergence on X (or K) sg that ¢
CC(X) s topologized as ind C
KaK~»

- Again, it is obvious that cc(x) induces

k the canonical topology of that Space, and hence the induc-
tive Timit g always hyperstrict. However,

a countable inductive limit if and only if X
for X which, since X
G-Compactness (or "counts
union of compact sets,

K becomes a Banach space, and

k» Where X =%x(X) denotes the system
of all compact sets in X
on each ¢

CC(X) is (equivalent to)
has a countable basis

s assumed to be locally Compact, amounts to

bility at infinity"); i.e., X is a countable

If X is not o-compact (and not even paracompact), then various
kinds of "pathologies“ may occur: For any uncountable discrete space
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X, the topology of CC(X) is strictly weaker than the finest Tinear
topology making all injections Cy, > C.(X) continuous (see Kéhn [37]).
And the following delicate results were obtained by A. Douady [19] Tong
ago:

8. Proposition. (a) Let Y denote a non-compact g-compact locally
compact space and RY its Stone-Cech compactification. If w belongs
to BY\Y and X:=gY\{w}, then the inductive Timit topology of
CC(X) coincides with the topology of uniform convergence on X.

(b) There is a o-compact locally compact space Y such that, if
X is defined as in (a) for a suitable point we€gY\Y, then there
exists (even) a convex compact subset A of CC(X) which is not con-
tained in any space Cy» Kek. Hence regularity fails badly for this

S
pace C_(X).

(c) On the other hand, if X is a separable locally compact

space, then each convex compact subset of CC(X) is contained in some

CK' Similarly, if X 1is any locally compact space, then each convex
compact subset of CC(X) which only contains nonnegative functions
must be contained in some CK'

(d) Now take Y:=N and construct X as in (a). Then the first

part of (c) tells us that each convex compact subset of c.(X)
But there exist compact

is con-

tained in C, for some compact set K in X.
sets A with Agc, for each compact subset K of X. Hence the
closed convex hull of any such A cannot be compact which implies that

CC(X) is not quasicomplete. (In fact, one can prove that CC(X) is

not even sequentially complete.)

Theorem 3. applies if X is o-compact. But, using this result

and the characterization of paracompact locally compact spaces as the
direct topological sums of o-compact locally compact spaces (e.g., see

Dugundji [20]), it is easy to show the following.

9 Proposition. Whenever the locally compact space X is para-

Compact, C.(X) is complete and a regular inductive limit.



We now turn to the task of explicitly describing a basis for the
continuous seminorms on CC(X), at least for g-compact X. Sincte this
prepares our discussion of “projective descriptions for weighted induc-
tive Timits" later on, we will go into some more detail here. For the

next part, et X denote an arbitrary completely regular Hausdorff
space.

10.  Definition. C(X) denotes the space of all continuous real- or
complex-valued functions on X, and C+(X) describes the subset of
all feC(X) with f>0 which, for the present purpose, we will
abbreviate by V. wWe put

CV(X): = {fecC(X); for each v ey, pv(f): =

= sup v(x)|f(x)] < =}
X €X

endowed with the (“weighted") complete 1.c. topology given by the
system (p, )

j and
vivev of seminorms,

CVO(X): = {f € C{X); for each v eV, vf vanishes at infinity
(on X); i.e. for each €>0, there is a compact
KCX with v(x)|f(x)] < ¢ for a1l X € X \ K},

a closed linear subspace of CV(X), equipped with the induced weighted
topology.

It is easy to see that, for any locally compact space X, CC(X)
is continuousiy embedded and dense in cvo(x).

11.  Proposition. Algebraicaﬂy,

all those feC{X) for which
(i.e., each g€C(X)

CV(X) equals the space Cp(X) of

supp f 1is a bounding subset of X
s bounded on supp f).

It follows from a theorem of
Buchwalter [15]) that, for fecC(X)
if it is Pseudocompact; i.e.

Hager and Johnson (e.g., see
s Supp f is bounding if and only
» €ven each ge€C(supp f) must be bounded.
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Proposition 11., as well as some of the material below, is taken
from Summers [57]; also see [2]. Using this result, Summers deduced
part (a) of the following:

12.  Proposition. (a) If wepN\N and X=pgN\{w}, then X is a
non-compact extremally disconnected pseudocompact locally compact space
for which CC(X) is a proper subspace of CVO(X)= CO(X).

On the other hand, if X is locally compact and if every o-compact
subset of X is contained in an open and closed o-compact subset of X
(in particular, if X is locally compact and paracompact), then CC(X)

algebraically equals CV (X).

(b) The algebraic equality cc(x)=cwx) holds if and only if,
for arbitrary feC(X), supp f pseudocompact already implies supp f
compact. Completely regular spaces with this property were labelled
"¥-compact"” by Mandelker [40], and, in particular, each paracompact space

is ¥-compact.

Also note that, trivially, CVO(X) is a proper subspace of CV(X)
for each non-compact pseudocompact X.

Returning to the inductive Timit topology of CC(X), Summers
showed that, for an uncountable discrete space X, CC(X)==CV0(X)= cv(X)
holds algebraically, but the inductive limit topology is strictly
stronger than the weighted topology, and the two topologies even yield
different duals. Thus X locally compact and paracompact does not

imply CC(X)= CVO(X) as topological spaces.

On the other hand, let X denote a non-compact locally compact
Then CV(X) resp. CVO(X) is just the Banach

and pseudocompact space.
orm convergence on X

space C(X) resp. co(x) with the topology.of unif
(and CVO(XHCV(X)). Hence, in this situation, CC(X)=CV°(X) holds
algebraically and topologically if and only if (i) . (X)=Co(X) as

sets and (i) the inductive limit topology coincides with the topology

of uniform convergence on X.

By another result of Summers, (1)
the space of all ordinals less than the first uncounta
There are actually cases where (ii) holds,

and (ii) are true e.g. for X=
ble ordinal (with

the order topology). but (1)
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fails: E.g., if we BN\N and X = 8N\ {w}, we can apply both 8.{a)
and 12.(a).

It remains open to find necessary and sufficient conditions for
the topological vector space equality CC(X)==CV0(X) (or for the
property that CC(X) s a topological subspace of CVO(X)). But
using a similar partition of unity argument (originally due to L.
Schwartz [54]) as in the proof of 6. (e.g., see [2]), one can prove:

3

18,  Proposition. If X 1s Tocally compact and g-compact, then
CC(X) = CVO(X) = CV{(X) algebraically and topologically;

in particular, the tnductive limit topology of ¢

system (pv)ve ct(x) ©f weighted sup-seminorms.

C(X) is given by the

At this point, and in view of what was said in Section 0., we
feel that it would be a pity not to include the f

ollowing nice proof,
due to G. A. Edgar [21], of:

4. Proposition. The 1.c. inductive limit t
strictly weaker than the finest topology <°
C[-n,n] -+ Cc(ll) continuous, n=1,2,...

opology T of cc(nz) is
which makes all injections

Proof. A set Fc:CC(R) is t'-closed if and only if Fn(

is
-n, ]
uniformly closed for each neN. Wewill exhibit a get F with the

last property which cannot be t-closed.

To do this, let fn,meCC(R)

(nsm=2,3,...) denote the piece-
wise linear function with

supp f, = [0.n] whose graph contains

11 1
G and (1, m)» and put PRI m=2,3,...}cC[ as

oo

well as F:= | f .
n=2 "

-n,n]

fn n Jn.n

al-

1
n

W]

L 4

-
-

2

-
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To show that F(WC[ n n]'- U F s closed 1in C[-n,n] for each

n, it obviously suffices to prove that F is uniformly closed in
C[-n,n]’ n=2,3,... If not, we could find a sequence (91)1614 of
pairwise distinct elements in F_ which converges uniformly on [-n,n].
By the Arzeld - Ascoli theorem, (gi)i would then be equicontinuous on

[-n,n]. But we have (g,); = (fn,mi)i for a sequence (m.); . oOf
pairwise distinct natural numbers, and such a sequence certainly fails

to be equicontinuous at 0.

It remains to prove that F 1is not t-closed, and, in fact, we
will verify 0eF'. Let U denote an arbitrary t-neighborhood of 0;
since 1 1is locally convex, it contains a convex 1-neighborhood V of
0. Now, by definition of the inductive 1imit topoloay, VuwC[_n’n} is
a neighborhood of 0 in C[-n,n] for each neN, and hence we can
find m{n)eN, m(n) 22, such that

Vi feC ;. sup |f(x)] <
n C['n!n] > { [-n,n] x|epR| | m(n }
We fix my: = m{1).
Finally, we let g  _€C. (R) denote the piecewise linear function
with supp 9 > = [0,1] whose graph contains the point (m i)

n,m=2,3,... Then obviously

C
gml,m(ml) evn [-1,1]

as well as

1

sup |f - gml’m(ml)l < ;EEIY

x € R my »m(m, )

and hence

2('le,m(ml) - gml’m(ml)) evn C[ U EL ] ]
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By convexity of V, we can conclude fml’m(ml)e FAVcFNU, as desired.

(Incidental]y, the characterization of the continuous seminorms for the
inductive limit topology of C.(R) given in Proposition 13. provides
another, very easy method of verifying that 0ef'...),

We remark that the importance of the space cc(x) derives from
the fact that Radon measures on the locally compact space X are defined

as the continuous Tinear functionals on ¢ (X) (see N. Bourbaki [14]);

¢
any information on CC(X) (and its topology) immediately also provides

information on the Radon measures on X.

If X s only a completely regular Hausdorff space, but not local-
ly compact, it can happen that CC(X) s reduced to {0}. Hence, if
one wants to define measures on such a space X as continuo
functionals on a Space of continuous fun
must be considered:; viz., the space CB(
functions on X,

on X, but strong

us Tinear
ctions on X, then a larger space
X) of all bounded continuous
endowed with topologies weaker than uniform convergence
er than the compact-open topology co. 1In topological
measure theory (e.g., see Fremlin-Garling-Haydon [29], Sentilles [55] or
R. F. Wheeler [60]), various such "strict" topologies (BO’B’Bl’Be) are
introduced which yield different types of measures (tight, t-additive,
o-additive) on X. These Strict topologies can also be defined as 1.c.
inductive limit topologies, but of a mich more complicated nature. For
the topological vector space properties of strict topologies (and, above
all, the (gDF)-property), we also refer to Ryess [51].

Unfortunately,
discuss the stprict in
takes "an expert"

several textbooks on topological vector spaces only
ductive limits explicitly.

to find out that certain other
Timits are alsp treated (

In some cases, it really

types of inductive
but rather implicitly) among the usual "wealth"
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2. Weakly compact, compact and nuclear inductive limits

Before we start defining the special types of 1.c. inductive
spectra mentioned in the title of this section, we shortly review some
basic facts on the duality of inductive and projective limits; e.g.,
see Floret-Wloka [28] or Kdothe [38].

For any inductive system (Ea)aeA of 1.c. spaces, (Ea)or.eA

is a projective system, and we have

(ind E_ )" = proj E' algebraically.
o> © «q O

The corresponding duality on the side of projective limits requires to
pass to reduced projective spectra: A projective system (Ei)i e With

canonical mappings (”i)i’ or its limit E=proj E;, is called reduced
+ i

if “i(E) is dense in E; for each iel. In this case, all the
transposed mappings tﬂi: Ex~E' are injective, and (E1!)1.E I is a?
injective inductive system. If (Ei)ie I denotes a reduced projective

spectrum, we obtain

(proj Ei)' = ind E! algebraically.

+ i i

Considering topological dualities, the situation (say, for the strong
topologies) is more complicated (see the discussion of Kithe [38] and
part of our discussion in Section 3.), but we do get the following:

1. Proposition. If (Ea)aeA is a regular inductive system of 1.c.

spaces, then

(ind E )} = proj (E )/

a s b 7, . C b
holds algebraically and topologically.

We will now see that the topological dualities of inductive and
projective limits work fine for the corresponding strong topologies
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whenever we are dealing with countable inductive 1imits that are at
least weakly compact.

2, Definition. A 1.c. inductive system (Ea)aeA or its limit
E=1ind E

o > a
if, for each a€h, there exists B>a such that the canonical injec-

tion i _,: Ea—>EB is a weakly compact, compact or nuclear operator,

s called weakly compact, compact or nuclear, respectively,

af
respectively.

At this point, factorizations of linear mappings enter the picture
for the first time: If £, F denote 1.c. spaces and T: E>F 1is a
(weakly) compact 1inear mapping (i.e., there is some neighborhood U of

0 in E which T maps onto a relatively (weakly) compact subset of
E), then there exists a Banach space E, TEc:Ec:F,
injection J: E-f continuous, such that T
follows:

with canonical
factors through E as

E > F

T continuous J injective (weakly) compact.

me

(In fact, it suffices to choose an absolutely convex (

subset B of F containing the ima
neighborhood U of g

weakly) compact
ge of some (absolutely convex)

in E and to take E: = FB = the Tinear span
of B in F, endowed with the Minkowski- (or gauge) functional of B.)

It follows that, for any (weakly) compact (injective) inductive
system (EahxeA’ there always exists an equivalent (weakly) compact

(injective) Sys tem (Ea)aeA of Banach spaces; i.e.

ind Ea = ind E

a - a-+ o

(also note that (Ea)a is indexed by the same set as (Ea)a)'



Hence, from now on, we will suppose without loss of generality
that

(*) a1l the spaces E_ in any (weakly) compact or nuclear inductive

system (Ea)a are Banach.

Indeed, most (weakly) compact inductive Timits have a natural
"representation" of this type right from the start. Furthermore, we
remark that each (weakly) compact inductive 1limit must be ultraborno-
logical (that is, an inductive limit of Banach spaces), and a countable
(weakly) compact inductive limit is even an (LB)-space (which was not
true in the case of strict inductive limits).

Next, it is well-known that weakly compact linear mappings always
factor through reflexive Banach spaces, compact operators through
separable reflexive Banach spaces, and nuclear ones even through separa-
ble Hilbert spaces. Thus, we could as well assume much more than (*)
without loss of generality. However, in many interesting applications,
compact or nuclear sequences of non-reflexive Banach spaces arise, and
it may not be trivial to find a "natural" equivalent sequence of
reflexive Banach or separable Hilbert spaces. Hence we prefer to take
(*) as our only general assumption and not to restrict the generality

any further.

Factorization theorems for continuous linear mappings between
Banach spaces apply to the study of inductive 1imits in many other
ways, and the theory of operator ideals has interesting consequences
for inductive and projective limits. We only mention one such result
which will be needed in the discussion of an example below (cf. Pietsch

[47]):

Since each nuclear map is absolutely summing while the composition
of two absolutely summing operators is nuclear, an inductive system
(E,), of Banach spaces is nuclear if and only if, for each a€A,
there exists B>o such that iaB: Eaa-EB is absolutely summing.

(We recall that a ofE',E)-compact subset M of the dual unit

ball Ei of a normed space E is said to be norm-determining (or

essential) if




HxHE= sup  |x'(x)] for every xeE.
X'eM

E.g., if C(K) denotes the Banach space of all scalar continuous func-

tions on some compact space K, and, for each x€K, 8§  denotes point

X
evaluation at x, then M= {Gx; xeK} is norm-determining for any
normed subspace of C(K).

A Tinear mapping T from E into another normed space F is
called absolutely summing if and only if there exists a positive Radon
measure u on (M, o(E',E)) such that

x|l e < JM [x"(x)] du(x*) for a1l xeE.

E.g., a Tinear operator T on a normed sy
a normed space F g absolutely summin
tive Radon measure H on K with

bspace E of some C(K) into
g if and only if there is a posi-

Tl < JK I£(x)] du(x) for all functions fekE.)

able inductive limits, Indeed, as Theogrem 3. shows, uncountable (weakly)

imits are nearly useless at ali! The
and many people (e.9., Raikov, Hogbe-Nlend,
weaker forms of the result. M. Valdivia
present strong version.

compact or nuclear inductive 1
theorem has a long history,
Jarchow) haye contributed tq
(cf. [27]) finally proved the
3. Proposition, |et F denote an arbitrary ultrabornological space

ce which is just the limit of some inductive spectrum
of Banach spaces).

(a) There exists a nucleap inductive system

Hilbert Spaces with E=ing E .
o> @

1
(Ea)a of (separable)
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(b) More generally, if F 1is any separable infinite dimen-
sional Banach space, there also exists a nuclear net (Ea)a such that

E=ind E and all the spaces E_ are isometric to F.
a-> ¢ Q

Valdivia also gave rather general conditions on 1.c. spaces F
which imply that each Banach space E can be represented as the limit
of an inductive spectrum (Ea)a of spaces Ea which are all topolog-
ically isomorphic to F. E.g., F can here be taken to be an arbitrary
Fréchet-Schwartz space with a continuous norm (Tike DK) or a strong
dual of such a space.

However, again just as in the case of strict inductive limits,
countability of the inductive system changes the picture completely,
and the good properties of (weakly) compact and nuclear inductive
sequences justify Definition 2.

Motivated by applications to spaces of holomorphic functions and
analytic functionals, Sebastido e Silva was the first to introduce com-
pact inductive sequences; they were then studied systematically by Raikov
and some other Russian mathematicians. Later on, Makarov and Komatsu
[39] noticed that the targer class of weakly compact inductive sequences
stil) shares several of the good properties of compact inductive
sequences. (Some of the material was already implicit in Grothendieck's
work.) For a good survey and complete proofs, we refer to Floret [24].

While we concentrate on inductive 1imits in this report, it should

be pointed out that (weakly) compact and nuclear projective sequences
are equally important. In fact, the proof of Theorem 4. below makes use
of the dual projective sequences as well. Note that a linear mapping T
between Banach spaces E and F 1is (weakly) compact if and only if its
transpose T enjoys the same property {(and that the transpose of a
nuclear operator is nuclear as well); moreover, if T: E+F is weakly

compact, then tT(E")CF.

4. Theorem. (a) A weakly compact (injective) inductive sequence

(E)pep s regular, and its limit E=:"ng E, is a complete reflexive
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(LB)-space. The dual projective sequence ((En)s)n is again weakly
Compact, its 1imit is a reflexive Fréchet space, and we have the duality

Ey = (ind E )} = proj (E.)!;
b na Db -

E is the strong dual of this reflexive Fréchet space.
(b) In addition to the properties of {a), a countable compact
(injective) inductive limit E=1ind E

n -
(and hence Montel); all bounded subsets of E are metrizable. The
strong dual E/

b 1s a Fréchet-Schwartz space (abbreviated: "(FS)-space"),
and £ is the strong dual of this (FS)-space.

0 is a separable Schwartz space

Moreover, in this case,

E does actually carry the finest topology
which makes all injections

n’ En>E continuous, and hence a subset
ACE 1is closed if and only if Aern is closed in En for each ne N.

(c) A countable nuclear (injective)

inductive limit E is a
nuclear (and even s-nuclear)

space, the strong dual of the nuclear
Fréchet space (abbreviated: "(FN)-space") Ep.

For obvious reasons, countable compact inductive limits are termed

(DFS)-spaces, (LS)-spaces or Silva_spaces; the limits of Theorem 4.(c)

are called (DFN)- or (LN)-sgaces. Similarly, one finds the terms (DFS*)
or (LSN) for countable weakly compa

Note that Theorem 4.(a) applies tg arbitrary (injective) inductive
sequences of reflexive Banach spaces.

And while there is some overlap
between 4. (a)
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5N Example. In the sequel, we fix a non-void compact subset K of
t' (N21). By H(K) we denote the space of all “germs of holomorphic

functions” on K.

To describe this space, we first consider all complex-valued
functions f which are defined and holomorphic on some open set U= Uf
containing K (i.e., the domain depends on the function f). Next, we
identify any two such functions f and g 1if they coincide on some
open set containing K. Hence germs of holomorphic functions on K
are equivalence classes of functions “around K" (modulo the equi-
valence relation which we just described). And H(K) 1is the linear
space — it is even an algebra! — of all those equivalence classes under

the canonically defined algebraic operations.

(One gets used to treat holomorphic germs as if they were holo-
morphic functions "around the compact set. If K 1is “big enough" so0
that any holomorphic function which "lives" on a "reasonably small" open
set U>>K and vanishes on K must be jdentically 0 on all of U
[by the identity theorem for holomorphic functions], we may even think
of the elements of H(K) just as functions on K. But if K is e.g.
reduced to a single point, it is impossible to consider holomorphic
germs as being defined on K alone. In that case, oOne must take open
sets U2> K into account; that is why we speak of functions "around
K".)

After making the (by now) canonical identifications, we certainly

obtain

H(K) = U HU)= U H(U) = U AU),
Uo>oK Uo>okK ook

U containing K or,
ets U for which

where the union is taken over all open sets

which is certainly enough, only over all those open s
K, and where H{U) denotes the space

each connected component meets
) the space of all the bounded

of a1l holomorphic functions on U, H™(U
holomorphic functions on U and




A(U): = {feC(U); fIU s holomorphic}.

From now on, we will only consider open sets U such that each '
connected component V of U satisfies VnK#p. Then, by the defini-
tion of H(K) and by the identi ty theorem for holomorphic functions,
the canonical mappings H(U) +H(K) are all one to one.

Each H(U) s canonically endowed with the compact-open topology
co, and H(U) as well as A(U)

s a Banach space under the sup-norm
over U resp. U. Since we have

A(U) > H(U) + (H(U),co)

(so that the restriction mapping
(H(U),co) > A(V) s well-defined and continuous), the inductive spectra

(H(V),co),y, (H°°(u))U and  (A(U)); are equivalent, and we define the
natural topology of H(K) by putting

H(K): = ind (H(U),co) = ind H™(U) = ind A(U).
U~ U U~

Moreover, K has a countable decreasing basisg

(Un)neN of open
neighborhoods (satisfying U, oo n+1 for each n), and hence

H(K): = ind (H(Un),co) = ind Hm(Un) = ind A(U )
n - n-> n -

is a countable injective inductive limit of Banach spaces.

Finally, fix ne N.

Then Montel's theorem clearly implies that
even the identity mapping

Hm(Un)'*(H(Un),co) is compact. But we can
actually do better: Since Y230 11 an easy estimate (say, involving
only the Cauchy integral formula for polydisks) yields
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fﬁr a;ﬁitrany fe A(Un), where uy denotes Lebesgue measure oOn
¢"=R"" and C >0 isa constant (depending only on the relative size

of U, in U,). Hence the restriction mapping A(Un)—>A(Un+1) is
absolutely summing.

always is a countable nuclear
the strong dual of the nuclear

Theorem 4.).

At this point, we know that H(K)
inductive limit; that is, a (DFN)-space,
Fréchet space H(K)E (in the terminology introduced after

(For N=1, the so-called "Kothe duality" explicitly describes

the strong dual H(K)é of H(K) as the space HO(Q) of all those
) complement & of K in the Riemann

endowed with the compact-open
interpretation, see Kithe [38].

holomorphic functions on the (open
sphere which vanish at the point =,
topology. This duality has a natural
We note that things are much more complicated for N>1.)

For general compact set KcnIN, an explicit description of a
basis for the continuous seminorms of the inductive 1imit topology on
H(K) was achieved only quite recently by J. Mujica [43], and it is
rather involved.

In order to state Mujica's theorem, W€ introduce the following
notation: If f s holomorphic on an open set ucit" and xeV, let
Pnf(x) denote the n-th homogeneous polynomial in the Taylor expansion
of f at x. (Then p"F(x) is a mapping from ¢V into €.) For

XcU and ACCN, we let

1]l p: = sup sup (PO
: aeh xelX _
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6. Proposition. (a) The inductive limit topology of H(K) s
generated jointly by the seminorms of the following types (*) and (**):

(*) p(f) = (e IP" Il s F e H(K),

=
Il B~ 8
o

where L varjes among all compact subsets of EN and (En)neN varies

among all sequences of nonnegative numbers decreasing to 0;

ik n n m
(**) q(f) = sup - sup 2" 7 p f(xk)(ak)
ke N lsnsnk m=0

n
- mgo PE(y, (b ), £ e H(K),

where ("k)kew varies among all sequences of positive integers,

(xk)keﬂo and (yk)keﬂo vary among all sequences in K, and
(ak)keN as well as (b
0

k)keN vary among all nul] sequences in CN
(o
such that X, +a

k=yk+bk for every k.

For locally connected compact sets K,

Paper) also derjyed a characterization of the
tionals on H(K) (e.g., cf. [6]).

Mujica (in a previous
continuous 1inear func-
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and ind H (U) define different topologies T, and T, On H(K).

Kcecl »
If E 1is metrizable, then we are back to the case of countable inductive

limits, and this case has been treated most of the time. E.g., Mujica's
theorem 6. also holds for compact subsets K of (Riemann domains over)
a complex Fréchet space E, and in the same paper [43], Mujica proves
To™ T, ON H(K) for each compact subset K of (a Riemann domain over)
a Fréchet-Schwartz space E. (The setting of locally connected compact
sets K 1in a metrizable Schwartz space E also is the one in which
Mujica's above mentioned characterization of "amalytic functionals®;

i.e., continuous linear functionals on H(K), was originally stated.)

Actually, the attention had first been focused on T and on a
study of topological vector space properties of (H(K),Tw) in dependence
on properties of the “underlying" space E; e.g., see [6] for a survey
of the main results obtained by 1978. In his 1973 thesis, Mujica had
shown that, for compact subsets K of complex metrizable 1.c. spaces
E, (H(k), T, ) is always regular, and it took much longer until Dineen
proved that this space is even complete. (A more recent, much easier
proof of the latter fact is again due to Mujica, see [42] and Section 3.
below.) Among other results, the author and R. Meise showed that, for a
non-void compact set K in a metrizable 1.c. space E, (H(K),T, ) s
a (DFS)-space (resp., a (DFN)-space) if and only if E is Schwartz
(resp., nuclear). We again refer to [6] and [17] for more details on

this interesting area.

The rest of the section is devoted to a study of Kothe's echelon
and co-echelon spaces of arbitrary order p (Lsp<e or p=0). This
setting will serve as an example of the wide applicability of the duality
between countable weakly compact projective and inductive limits, and
many results will directly follow from Theorem 4. But we will also see
that the "general theory" (as it has been developed so far) does not

allow to treat the interesting classical “limiting" cases p=0, p= 1

and p=w, and several more delicate questions will arise along the

way.




The partial failure of the general theory of 1.c. inductive
limits is a quite common phenomenon if one i interested in concrete
examples and applications, even if they are only "sTightly UnUSUaI":
In many cases, the subsequent different treatment of special inductive

limit spaces has Ted to new results which give rise to an enlargement
of the "general theory",

NOW can also serve as a
sections.

~ Part of what we are going to report on right
first motivation for the developments in Tlater

7 Definition. Let A= {a ) denote a Kithe matrix on a general
' n‘neN
index set I; i.e

.5 an increasing sequence of strictly positive func-

tions 4, on I, and let l<p<w. Then the echelon space Ap= lp(A)
of order p g defined as follows:

Ap(A): = {x = ("ﬁ))iele Rl or el for each neN,
(an(i)x(i))iel is p-absolutely symmable on I;
1/
hatis, qu a0 = (T (a(5)(x(4)])P) Pewl.
p,n . n
1e]
We alsg put
A(A): = {x = (x(i))iel; for each neN, q (x): =
55U a (1) x(i)| <o} ang
i€l
Ag(A): = {x = (x(”)iel; for each neN, (an(i)x(i))iel

tends to 0 4p I;
finite subset - J(e
for all ieI\y],

i.e., for each €>0, there is a
) of 1 with a (i)x(i)]<e

Endowed with the sequence 9, n)neN 0F norms, where we take
G ' = 9,,n> each Yy 1S a Fréchet SPace, 1lspge or p=o.
To restate the defi

Nition in ; different form, which will be
useful to us ip the seque

1, let lp(an) denote the corresponding "a -
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diagonal transform" of the Banach space Ip=1 (I) of all p-absolutely
summable sequences on I, 1<p<w, and lo(an) =co(an) the an—diagonal
transform of ¢ = co(I) (for p=0), n=12,.... That is, formally

]p(an) = Kp(Cn) for the constant Kithe matrix C on I consisting of
the single function a. Then we have Ap=lp(A)=proj 1p(an) alge-
«n

braically and topologically.

8. Definition. Llet V= (vn)n denote a decreasing sequence of
strictly positive functions n on an index set I and lgpge or
p=0. In the notation introduced above, we put

ko= k (V): =i
p = kpt¥) ;"glp(vp)

{where again 1 (v )=co(vn) for arbitrary neN). k_ will here be

o''n
called the co-echelon space of order p (with its natural inductive

limit topology).

Now fix a Kothe matrix A= (an)nEN on some index set I and
on 1 to be the one defined by

take the decreasing sequence V= (Vn)n
p with lgp<e

V=g s n=1,2,.... For the moment, we will also fix
N

or p=0. Then A =A (A) is dense in each 1.(a;), nen,

the projective limit Ap= proj 1p(an) is reduced. By the duality of
“n
projective and inductive limits (as recalled at

section), we thus get algebraically

and hence

the beginning of this

=1 and q=1 for p=0.

et

H

o>
o
-]
Sy

1l
~
o
-
g
1l
»

w
O |
+
£

Similarly, for lgp<e or p=0, the duality of inductive and projec-

tive limits yields the canonical algebraic isomorphism
k' =k (V)" =A (A) =X.» _1-+l=1 and q=1 for p=0.
P P q ¢ P q

1p(vn) are all reflexive

If l<p<w, the spaces 1p(an) and
and the inductive sequence

so that the projective sequence (]p(an))ﬂ
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implies
4. then clearly imp
be weakl compact. Theorem
(]p(vn))n must be y
the fo]lowing.

1 V=(V )n
Othe matrix and n
9. Proposition. Let A- (an)n denote any Kot

. Set
any decreasing Séquence of strictly positive functions
I also iy 1<p<o,

=k (V) s
(a) 2 =Ap(A) Is a reflexive Fréchet space, and kp P
2 (regular) complete reflexive (LB)-space.

1.1
(b) with pta=1,

the f ' r space
e following topological vector s
dualitieg hold:

1 and
(AD(A))E = kq(V), where Vv = (Vn)n for v, a

.1
(kp(V))6 = Aq(A), where A = (a )} for a v

In the "limiting

_ nqenera]
Cases p=90, P=1 and p==, our "g
thegry

(unless A or y is of a special form), :};S
which can also be used to prove the asserf
» 1t follows that some of the results of 9. — otua”Y
* apart from reflexivity! T remain true while others may ac

. jeck-Kothe
i1, see [8] (ang “Sthe's [38] for the famouc "Grothendieck
counterexamp]eu i

M part (b)),

of PrOPOSition 9.)
Course

r)
(regula
0. Propossyion. (@) k=, (v) ang ko= ko (V) are awaj.lsms hold:
Complete (LB)-spaces, nd the following topological isomorphis

(XO(A))B = ki (V) fop V = (vn)

v Z—L,n=1,21-'°’
n* n an

ko) = MIA)  ang (kg (V) = 2 (a)

. o1 )
A (a ), an~;’~1-, n=1,2,...

for

ined by
(®) If A= (an)n denotes the Kithe matrix on N x N defi

J, 1 <n

a,(i,4) = }
| 1.; i 2 ﬂ'l'l
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_ 1 !
and V= (v ), vn=§,n=1,2,..., then (x;(A)' =k, (V) clearly

holds algebraically, but) the strong topology of (AI(A))B is strictly
weaker than the inductive limit topology of k_(V). Moreover, for the
same decreasing sequence V= (vn)n, the inductive sequence (Co(vn))n
is not regular, and ko(v)= ;ng co(vn) is incompliete.

We will explain in the next section why k, =k, (V) is always
(regular and) complete. The following problems which naturally arise
from 10.(b) will also be answered later on:

Question 1. What is a necessary and sufficient condition (in terms of

V=(v )} ) for k (V) to be {reguiar or) complete?
Question 2. What is a necessary and sufficient condition (in terms of
A=(a,),) for the topological equality (A (A =k, (V), V= (vy) with
v =§L.?

n

n

(A) and k_(V) are the nmost classical" Kothe echelon
is particularly important, but its
tly (and it is quite compli-

Since A
and co-echelon spaces, Question 2.
solution has only been obtained very recen
cated),

We next turn to the problem of expticitly describing the conti-

nuous seminorms for the inductive limit topology of kp, at least if

l<p<w. To state a precise form of this description (as given in [8]),

we start with:

11.  Definition. Fix a decreasing sequence V= (v,), onan index set

. 1 - 7=y
I and let A= (an)n be defined by an:=V;" n=1,2,.... By V=V(V),

we denote the system

AJ(R), = {v=(v(i)) ¢ © (IR+)I . for each ne N,

sup a_ (i)v(i) = sup Lo < ).
iepl "( ) iel Vnh)
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Next, if lgp<w, put

Ko = KoM= {x = (x(i)), . ;e RY or €1 for each ¥ e ¥,
)= LT (V) [x()NP)MP < o
as well as
Ko = KalV): = {x = (x(i));; for each ¥ e ¥,
Fo,it = SUP V(i)|x(i)| < =} and

iel
K, = KO(V): = {x = (x(i))i; for each ve Vv,

(\7(1’)::((1‘))1.eI tends to 0 on 1j.

Endowed with the system (r'p V)\‘IGV of seminorms, where we take

. = = v 1 .C. ].S <@ pr p=0.
To.i Mo,y ? Kp Kp(V) 1S a complete 1.c. space for p

We note that, even though we assume that all
positive, there are cases where V does not contain any strictly

positive function on I. But at least if 1 is countable, there always

are strictly positive VeV, ang then we can actually restrict our
attention to such functions ¥.

v, are strictly

It is quite easy to verify that k = (v)
into Ky = Kp(V), V=V(v),
for l<p<w,

continuously embeds

for arbitrary p, but much more can be said

12.  Proposition. For l¢pcw

» We actually have kp(V) = Kp(V)
algebraically and topologicaﬂy.

In Particular, the inductive 1

imit topology of kp= kp(V) is
given by the system (y-p ‘7);

e V=V(V), of seminorms.

For the proof of Proposition 12,
the completeness of k1= k
from 12. (but it also foll

» we refer to [8]. — Incidentally,
1V} (mentioned in 10.(a)) can be deduced

ows from the duality (AO(A))!')= ky(V)).
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Since K = KO(V) always is complete, 10.(b) provides us with an
example of a sequence V= (Vn)n for which the topological vector space
equality k (V)= KO(V), V=V(v), cannot hold. To see that, similarly,
k_(V)=K (V) 1is not true in general, we consider the following proposi-

tion (which is again taken from {8]).

13.  Proposition. For V= A (R),, we have ()\l(A))I’)= Km(V) alge-
braically and topologically.

In view of 13. and of the algebraic equality (Al(A))' =k_{V),

V= (31—) we realize that k_(V}= Km(\-l), V=V(V), always holds alge-

n’

n
braically, but, for the Kothe matrix A= (am)n {on Nx N) in the
KSthe-Grothendieck counterexample 10.(b), the topology of k. (V),
v= (L oo Must be strictly finer than the "weighted" topology of
n
s V=V(V).

By the way, Proposition 9.(b), the duality (AO(A))6= kl(V),
V=_(v ) with vn=§1— , of 10.(a) and Proposition 12. combine to

yield n

(*) (?\p(A))t‘, = Kq(\_l) algebraically and topologically,

V= 2,(A),,

l+-1—=1, where we take g=1 for p=0.

for 1<p<= or p=0 and
1so possible and this,

(On the other hand, a direct proof of (¥} is 2
taken together with 9.(b) and 10.(a), conversely implies 12.)

Returning to Proposition 12., the failure of this result for

p=0 and p=« naturally leads to the following problem.

Question 3. What is the exact relationship between the spaces ko(V)

and K (V) as well as k(V) and K (V), V=V(V)?

Of course, Question 3. is closely related to the previous
Questions 1. and 2. E.g., in view of Proposition 13., Question 2.
actually asks for a necessary and sufficient condition Ein_tems of
V=(v),) for the topological equality k,(V)=Kky(V)s V=V(V).
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Similarly, since it will turn out that ko(v) always is a dense
topological subspace of KO(V), Question 1.

is equivalent to asking
for a necessary and sufficient condition for

the algebraic equality

ko(V)==K0(§). Hence a "“good form" of Question 3, is even more compre-
hensive than Questions 1. and 2. together.

In one of the next sections, we wil]

give a complete answer to
Question 3., and we wil] even treat (

and solve) the corresponding
problems in the more general context of "weighted inductive 1imits".

To finish this section, we return to applications of Theorem 4.
to echelon and co-echelon Spaces.

While, for 1<p<e and a Kthe
matrix A==(an)n

On some index set I op a decreasing sequence

V= (vn)n on I, the projective sequence (]p(an))nelﬂ as well as

the inductive sequence (1 (Vn))neIN always are weakly compact, the
situation is different for p=0,1 or o Each weakly compact subset
of 1, (over an arbitrary index set I} s compact, and hence a

weakly compact projective sequence (11(an))n or a weakly compact
inductive sequence ”1("n))n must already be compact. By duality,

it turns out that, similarly, any of the sequences (co(an))n, (Co(Vn))n’
(lm(an))n or (1m(vn))n can only be weakly compact if it is already
compact. The following easily established classical result completely

clarifies under which conditions A;(A) s an (FS)- and kp(V) a
(DFS)-space {for arbitrary p),

4. Proposition, et A= (an)

denote a Kithe matrix on some index
set I and y-= Ll-)
an

n the corresponding decreasing sequence of strictly

Positive functions on I. Then, for l<psw or p= 0, the following
assertions are equivalent:

(1)  For each neN,

. a v
there ijs m>n such that N = ;ﬂ tends to O
n

on I, “
(2) Ap = Ap(A) is an (FS)-space,
(3) kp = kp(V) is a (DFS)-space,
(4) k_ =«

o = X, holds algebraical1y,

(5) kg = k (V) s (semi-)reflexive or a (semi-) Montel space.
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If condition 14.(1) holds, then clearly (AI(A))5= k (V)
topologically, but it will turn out that a much weaker hypothesis
already suffices. Also note that each of the assertions:

(i) A

0

(1) KO(V) = K (V) algebraically,

(ii) k, = k (V) fis (semi-)reflexive or a (semi-)Montel space,

=}

A, algebraically,

(iv) K, = K (V) or K = K_(V) is (semi-)reflexive

characterizes the Fréchet-Montel spaces Ap and the (semi-)Montel

spaces Ky, lgpge or p=0, and hence does not suffice for the

conclusions of 14.

We finally list the well-known classification of the nuclear
projective Timits A_ and the nuclear inductive 1limits kp; i.e., of
the echelon and co-echelon spaces to which Theorem 4.(c) applies. (See

[32].)

15.  Proposition. For A and y as in 14. and l<pg<® or p=0,

the following assertions are equivalent:

a, V.
(1)  For each neN, there exists m>n such that Er;ldvn— 15
(absolutely) summable on I,
(2) lp = Ap(A) is an (FN)-space,
(3) kp = kp(V) is a (DFN)-space.
If 15.(1) holds, then, in fact, all spaces An= AP(A) (as well
as all spaces k_.=k_(V)), coincide algebraically and topologically

for arbitrary orders p, lsps® OF p=0. (And, conversely, the
algebraic identity k,=kg alone obviously is already sufficient to

imply condition (1) of Proposition 15.)

3. (LF)- and (LB)-spaces

we state Grothendieck's

At the beginning of this section,
bably are the most useful

Theorems A. and B. (from [32]); they PrO
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general results on (LF)-spaces. Next, we discuss the regularity of

(LF)- and (LB)-spaces and then turn to completeness questions, mainly
concentrating on the case of (LB)-spaces.

The first result is Grothendieck's closed graph and open mapping
theorem for (LF)-spaces.

1. Theorem. (a} Every linear mapping T: F+E of an ultraborno-

logical space F into an (LF)-space E which has (sequentially) closed
graph must already be continugus.

(b) Every continucus linear mapping of an (LF)-space onto an

ultrabornological space is open; i.e., a topological homomorphism.

This theorem was extended by de Wilde {e.q., see Kothe [38,11]);
he was able to replace the class of the (LF)

of all "webbed" spaces in Theorem 1.
tion theorem"

-spaces by the larger class
Grothendieck's famous "factoriza-

» which we will state next, was generalized by de Wilde in
a similar, but more technical way.

2. Theorem.

Let T denote a continuous linear mapping of a Fréchet
space F

into an (LF)-space E-= ind En

n -+
E= U En and that the topology of E
neN

exists nOeN such that TFcEn and T

(where we again assume that
is Hausdorff). Then there

is continuous as an operator
from F into En .

Hence T factors continuously as follows:
0

F—T .
n
¢ 0

n0

We note that weaker hy

potheses would already suffice in 2.: Let
E denote a 1.c, space, E

n* b Fréchet spaces, in: En-*E
continuous lineap mappings and T:

closed graph and TFcy in(En).
n
such that T factors continuous]

injective
F+E a Vinear map with sequentially
Then there exists an index n,eN

¥ through E"o and i

0



A nice application of this aeneral form of Theorem 2. to holo-
Torph1c continuations (and domains of holomorphy) was given by Edwards
22].

Returning to the form of the factorization theorem stated as
Theorem 2. above, we remark that this result also holds under different

hypotheses: The assumptions "F Fréchet" and "E=ind E, separated
n -

(LF)-space" can be replaced by "F metrizable 1.c. space" and

e 2

E=ind £ countable regular 1.c. inductive limit" (cf. Floret [25]).
n -

But the consequences of 2. for the regularity of (LF)-spaces are

particularly interesting in our context.

3. Definition. f(a) An absolutely convex bounded set B in a l.c.

space E s called completing (or a Banach ball or Banach disk) if the
canonically associated normed space Eg (= 1inear span of B, endowed
with the Minkowski functional of B as norm) is complete (and hence a

Banach space).

(b) A 1.c. space E is said to be Mackey-complete (or “"borno-

logically complete") if each bounded subset of E s contained in a
Banach ball.

It is well-known (e.g., see Kthe [38]) that 2 sequentially
complete closed absolutely convex bounded set in an arbitrary locally
convex space always is completing, and hence every sequentially complete

t.c. space is Mackey-complete. (In the last section, when we sketched

the proof of the result that each weakly compact linear mapping between
we implicitly used that also

1.c. spaces factors through a Banach space,
each weakly compact set in any 1.c. space 1S completing.)

4. Corollary. Each Banach ball in an (LF)-space E=ind E (as in
-»>

bounded and completing in one O
)-spaces, the

Theorem 2.) is already contained, f the

generating Fréchet spaces E . In particular, for {LF
following implications hold:

complete = quasi-complete = sequentially complete

- Mackey-complete regular.
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A proof of the first part of 4. follows quite simply by applying
2. to the embedding Ex>E. Hence Mackey-completeness of an (LF)-space
implies regularity, and the converse of this is obvious.

The implications stated at the end of Corollary 4. are all that

is known for general (LF)-spaces; the following problem of Grothendieck
is still open.

Problem 1. Does the regularity of an (LF)

-space already imply its
completeness?

The situation is a little bit better for (LB)-spaces: Namely, the
general theory of (DF)-spaces, due to Grothendieck [31], in particular
applies to (LB)-spaces, and hence an (LB)-space is complete if and only
if it is quasi-complete. Byt it also remains open whether each regular
(LB)-space is complete, and this is the author's favorite problem!

We are now going to shortl
dieck's theory of (DF)
the sequel.

y summarize some facts from Grothen-
~Spaces which are relevant to our discussion in

5. Definition. A 1.c. Space E s said to be a

(OF)-space if
(i)

it has a fundamenta) Sequence of bounded sets, and

(i1) it is g9-quasibarrelled in the sense that,

for each sequence (Un)neli of closed absolutely convex 0-neighborhoods

in E such that y:-= n U, absorbs every bounded set, this inter-
neN

section U must again be a 0-neighborhood in E.

The strong dual of any metrizabl
normed space alsg enjoys the (DF )-prop
(DF)-space is Fréchet.

e 1.c. space is a (DF)-space; each
erty. The strong dual of every

6. Proposition.

(a) A (DF)-space is complete if and only if it is
quasi-complete.

(b) A countabie inductive limit ¢

= ind En of (DF)-spaces E,
is again a (DF)-space. n-
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Moreover, if B is a bounded subset of such a countable inductive
limit E, then there exist an index n= n(B)eN and a bounded set
B,=8,(B) in E_ such that

—E .
BC B, (where the closure is taken in the inductive limit

topology of E).

The first part of (b) implies that each (LB)-space is (DF), and
hence, by (a), in particular each (LB)-space is complete if and only if
it is quasi-complete (as we had asserted before). Also, in view of
part (i) in Definition 5., any (LB)-space does have a fundamental
sequence of bounded sets, but since we have seen that there exist non-
regular (LB)-spaces (cf. 2.10.(b)}, it is possible that no sequence
which only consists of multiples of the unit balls of the generating
Banach spaces will form a basis for the bounded subsets of the (LB)-
space. On the other hand, the second part of 6.(b) asserts that any

countable inductive 1imit E=ind E of (DF)-spaces is "almost regular”
. n -+
N a very precise sense. (Non-regularity can only come from the fact

that there exists a bounded subset Bh of some En whose closure in

the inductive limit topology is [bounded in E=ind E, but] not a
_).

bounded subset of Em for each mzn). "

We will return to 6.(b) in a moment, but first would tike to
finish our summary of some relevant properties of (DF)-spaces by point-
ing out that the topology of a (DF)-space E with a fundamental sequence

(B.)  of closed absolutely convex bounded subsets B is localized to

n'n
this sequence (Bn)n in the sense that an absolutely convex set U n
is a 0-neighborhood in

E is a 0-neighborhood if and only if UnB,
Keeping the fundamental

Bn (with the induced topology) for each neNN.
sequence of bounded sets and this localization property, various people

extended the class of (DF)-spaces to what js now called “(gDF)~spaces”
(for: “generalized (DF)-spaces"). (gDF)-spaces share many of the impor-
tant properties of (DF)-spaces, and the strict topologies of Buck,
Fremlin-Garling-Haydon, Sentilles and Wheeler (cf. the end of Section
1.) yield important examples of (gDF)-spaces which are not already (DF).
(See Jarchow's book [36] and the survey [51] of Ruess. )



(Of course, this extension of the class of the (DF)-spaces is
closely related to another generalization: One can generalize 1.c.
inductive Timits by introducing “generalized inductive limits" as
Garling [30] did [also see the book [46] of Bonet - Pérez Carreras], and,

S8y, much of the theory of strict inductive limits carries over to the
more general context.

In this exposition where oyr [main] aim is not "generality", but
where we intend tg give an introduction to various aspects of 1.c.
inductive limits relevant in view of the applications and the examples,
we naturally have to stick to the classical setting. Also, we have only
treated (DF)-spaces [very shortly] here since, at this moment, we are

interested in theip applications to (LB)-spaces, and the latter really
are (DF)-spaces in Grothendieck's classical sense. )

Returning to 6.(b), it is now easy to prove the following useful
criterion for regularity of {LB)-spaces.

7. Corollary. 1f E=ind E, is some (Hausdorff) {LB}-space (or just
n -

the separated countable inductive Timit of normed spaces En)’ let B,
denote the closed unit ball of E, for n=1,2,... . If each B, s

even closed in the inductive limit topology (a fortiori, if it is closed

in any weaker Hausdorff topology), then - ind En is regular.
n->

Proof. For an arbitrary bounded set BcE,

and a number >0 with Bc:XE;E.

A§E==ABH; hence the assertion.

6.(b) yields an index Ene N
But our assumption implies AB "=

At this point, we are able to

understand why the co-echelon spaces
K= k(V) = ind 1_(v_)
n - n

are regular for each decreasing sequence

V= (Vn)neN of strictly positive functions and why this is not true
for ko=k0(v)=ind co(vn)

in general: The unit ball B, of ]m(vn)
n->

is completely described by the Tnequality syp v (i) |x(i)f <1, and
iel

hence it is even closed under the topology

of pointwise convergence on
I (which is clearly weaker than the induct

ive limit topology of k,)s
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while the unit ball Cn of co(vn) will obviously not be closed under

pointwise convergence in general!

We would now like to define the "weighted inductive limits" ve(X)
and v C(X) ([5]), which generalize k, and k;, and will deduce the
regularity of VC(X) in exactly the same way as before.

8. Definition. Let X denote a completely regular Hausdorff space

and V= (v ) .y @ decreasing sequence of strictly positive upper semi-

continuous functions ("weights") on X. For each neN, we put:

Cv,(X): = {f e C(X); [Iffl,: = sup v, (x)|f(x)] <=} and
x€X

C(Vn)o(X): = {f € C(X); v,f vanishes at infinity on X; i.e.,
for each ¢ > 0, there is a compact KC X with
vn(x)lf(x)[ <e for all x €& X \ K}.

Cv,(X) is normed by || - ||, and Clv ) (X) s a closed linear sub-
Space of Cv (X) which will be equipped with the induced norm.

We define

vC(X): = ind Cv (X) and v,C{X): = ind Clv, ), (X)s
n-> n->

these are the weighted inductive limits of spaces of continuous functions

(which we will study in more detail later on).

If X is some index set I with the discrete topology, then all
functions on X are continuous, and hence each strictly positive v on
X is a weight. In this case, yc(X) is nothing but the co-echelon
Space k_=k_(v), and VOC(X) reduces to k0==k0(v).

the normed spaces Cvn(X), and

In any case, the topologies of all
are

hence also the inductive 1imit topologies of VC(X) and Vo C{X),
Stronger than pointwise convergence on X. Since, moreover, the unit

batl Bn of each Cvn(x) is closed in C(X) with respect to the topo-
logy of pointwise convergence on X, we can conclude from 7. that vC(X)

always is a regular inductive limit.



For later purposes, we note that Cvn(X) carries a topology
which is even finer than the compact-even topology co whenever,

(*) for each compact KcCX, we have inf v (x)>0

x €K
(which certainly holds for continuous functions vn). It is easy to

see that, in the presence of (*), Cvn(X) is complete (and hence Cvn(X)
and C(vn)o(x) are Banach spaces) if

(**) X s a kR-sgace; i.e., any function f: X+ R whose restric-
tion to each compact subset of X is continuous must already
belong to C(X).

(Note that (C(X),co) is complete if and only if X is a kp-space. )
Clearly, each locally compact space X and each metrizable X is a
kR—space.

By what we have just said, if (*) holds for each neNN and if
(**) X is a KR-space, then all spaces Cvn(X) and all spaces

C(vn)o(x) are complete, and hence VC(X) as wel] as Vbc(x) are
(LB)-spaces.

Turning from regularity to completeness, Corollary 4. clearly
suggests that proving the regularity of an (
for an (LB)-space) can be considered as a
of the completeness.

LF)-space (and even more so
"first step" towards a proof

Hence we would now like to sketch the ideas which
are involved in showing the completeness of the co-echelon spaces

ko= Ko(V), and we want to state a usefy] criterion for completeness
of (LB)-spaces patterned along the lines of Corollary 7. But this first

requires to Took at two natural inductive limit constructions which
arise with any given 1.c, space E.

We have already mentioned how an absolutely convex bounded set B
ina l.c. space E Tleads to the construction of a normed space E,,
continuously embedded in E. I[f B=B(E) denotes the system of all
absolutely convex bounded subsets of the fixed space E, then (EB)BG.B’
together with the canonical injections iBC: EB'*EC for BcC, 1is an

injective inductive net of normed spaces. Its limit ind Eg equals E
BaB~»



algebraically, but the inductive limit topology o~ may be strictly
stronger than the initial topology t of E.

We note that the inductive Timit (E,TX)= ind EB is countable
B -

(i.e., may be reduced to a countable "sublimit" ind Eg ) if and only
n-+ n

if E has a fundamental sequence of bounded subsets.

The following are well-known facts on % (e.qg., see Kothe [38]):

; X : .
(i) 1t* 4s the finest 1.c. topology on E which has the same bounded
sets as 1. The system of all those absolutely convex subsets U of L

w:ich absorb all t-bounded sets yields a neighborhood base of 0 for
™. The dual of (E,t%) 1is just the set of all "Jocally bounded" linear
forms on E (i.e., the space of all those linear functionals which are

bounded on each bounded subset of E).

(i) (E,TX) is bornological (as an inductive limit of normed spaces),

and (E,7) is bornological if and only if 1= .

Hence (E,7*) is called the bornological space associated with
(E,7).

We would like to add that, obviously, the inductive limit (£,7°) =

ind EB is always regular. Moreover, by (ii) above, a 1.c. space is
-3

bornological if and only if it is an inductive 1imit of normed spaces.

Similarly, one can check that a 1.c. space is a countable inductive

limit of normed spaces if and only if it is a bornological (DF)-space.

u,;1trabornological®™ to denote 1.c. spaces
Now, clearly, each Mackey-
Let us men-

We have used the term
which are inductive limits of Banach spaces.
complete bornological space must even be ultrabornological.
tion in passing (again, see Kdthe [38,1I]) that one can similarly give a
construction of "the ultrabornological space (E,ru) associated with
any 1.c. space (E,t)" as inductive Timit

where B=B{E) denotes the system of all Banach balls

.ind E
BaB -+

in E,

B!
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or, equivalently, as

Fal

ind E ., where X=R(E) is the system of all absolutely convex
RaK -

compact sets in E.

More interesting in our context is a similar method of construc-
tion for a 1.c. inductive limit topology on the dual E' of an arbitrary
1.c. space E: For any neighborhood U of 0 in E, the (absolute)
polar U° s an absolutely convex weak*-compact (equicontinuous, and

hence B(E',E)-bounded) set in E'; E\. denotes the associated Banach
space (which is continuously embedded in EB). Let U=U(E) denote the

system of all (absolutely convex closed) neighborhoods of 0 in E.

Then (Eﬁ°)Uell is an injective inductive net of Banach spaces (with

respect to reversing inclusions of sets Uevu and taking canonical

injections of subspaces of E'), and its inductive 1imit ind Eﬁu coin-
U >

cides with ' algebraically; the inductive limit topology is stronger
than the strong topology B(E',E).

9. Definition. For any 1.c. space E, E% denotes E', endowed
with the inductive limit topology of ind Ebo.
U -+

Note that ind Eﬁo is countable (that is,

Uu-»
“sublimit" ind Ejo) if and only if E has a countable basis of 0-
n-+ °n

neighborhoods, and hence precisely if F

reduces to a countable

is metrizable. The topology

of E; must be strictly stronger than B(E',E) if Eé is not (ultra-)
bornological.

If £ s a quasibarrelled 1.c. space, then each bounded subset of
Es» being a fortiori bounded in Eps s equicontinuous and thus con-
tained in U° for some UeU; in this case ind Ejo obviously is
-
regular. In fact, for 3 quasibarrelied

Space E, it is now clear that
Ep and Ei have the same bounded sets; viz., the equicontinuous subsets
of E'; hence E% is exactly the bornological (or even the ultraborno-

lTogical) space associated with Eg. and a quasibarrelled space E

satisfies Ep = E topologically if ang only if E, s bornological.
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Locally convex spaces E with EB==E% were called "reinforced
regular" by Berezanskii, and a closer inspection (e.qg., see Floret [26])

shows that even all g-quasibarrelled spaces E with Eg bornological,
and hence all (DF)-spaces E, must satisfy EB==E%.

If a Fréchet space E is represented as the reduced projective

limit proj E, of a decreasing projective sequence (E ) of Banach
“n n‘neN
spaces, then the limit of the dual (injective) inductive sequence

((E))p), fis exactly Ei. (A simple argument shows this; in fact, a
similar statement holds, say, for reduced filtrating projective nets of
normed spaces. But the restricted case above is especially interesting
in view of our discussion in Section 2., and it already explains why
the topological duality even of countable reduced projective-]imfts and
of their dual inductive limits is rather complicated for the strong

topologies. )

In particular, the inductive dual (AI(A))% of an arbitrary
echelon space xl(A)= proj 11(an) is precisely the co-echelon space
«n
km(V)==;n3 1m(vn), V= (vn)n, vn==éi-, n=1,2,.... Now we see that there
actually exist Fréchet spaces E for which EB# E;, and hence E6 is

not bornological; e.g., one can take the Grothendieck-Kothe counter-

example A,(A) from Proposition 2.10.{b)!

Grothendieck [31] (also, see Horvath's book [35]) showed that the

strong dual of a metrizable 1.c. space is bornological if and only if
space E s said to be distinguished if

s rephrased in a different,

it is barrelled. Since a 1.c.
EE is barrelled (sometimes this definition i

but equivalent form), we arrive at:

10.  Proposition. A metrizable 1.c. space E s distinguished if and

only if El=E..

Using Proposition 10.,
Section 2. also exactly amounts to asking for a necessary a
condition (in terms of A==(an)n) for distinguishedness of the echelon

Space 1, (A).
Here is another result of Grothendieck [31] which is o
interest for our study of completeness in (LB)-spaces.

it becomes obvious that our Question 2. of
nd sufficient

f immediate
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11.  Proposition. The inductive dual E; of any metrizable 1.c. space
E is complete.

Grothendieck proved this result by showing that E:s as the
bornological space associated with E', has a basis of 0-neighborhoods
which are B(E',E)-closed. Since EB is complete, the closed neighbor-
hood condition implies completeness of E:. (Moreover, the proof also
shows that the inductive topology of E; exactly equals B(E',E").) —
A different proof is possible: It is implicit in Grothendieck's article
that the bornological and barrelled topologies associated with the
Strong dual EB of an arbitrary metrizable 1.c. space always coincide.
But a barrelled topology associated with a complete 1.c. space is known

to be itself complete. (E.g., see Schmets [53].)

Of course, by Proposition 11., K=k, (V)= (AI(A))% must always
be complete, a fact which had been stated in Proposition 2.10.{b)} and
which we had promised to explain at that time.

For echelon and co-echelon spaces, there is a natural duality

which allows an application of 11, for a completeness proof of the

corresponding inductive limit spaces. In general, however, one finds

many cases where such a duality is not apparent, and then 11. cannot
be applied directly. But the following result, due to J. Mujica [42],

the hypotheses of which are stronger, but patterned along the lines of
the condition in Corollary 7., may help.

12.  Theorem. Let E denote the {injective)
increasing sequence of Banach Spaces En.

inductive limit of an

(a) If there exists a Hausdorff 1.c. topology tv on E such

that the closed unit ball B, of each En, n=1,2,..., 1is t-compact,

then there exists a Fréchet space Y with Y;=E algebraically and
topologically, and hence E is complete.

(In fact, one can take Y to be the Fréchet space of all those linear
forms on E whose restrictions to each Bn

are t-continuous, equipped
with the topology of uniform convergence on a

11 the sets Bn‘)
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(b} If, in addition, E has a basis of t-closed absolutely
convex 0-neighborhoods, then E actually is the strong dual of Y,
and Y {is a distinguished Fréchet space.

The hypothesis of (b) is satisfied, in particular, if, for each neigh-
borhood U of 0 in E, there exists a sequence of t-closed absolutely
convex 0-neighborhoods Vn in E with Vnranc:U for n=1,2,....

The main purpose of Mujica's Completeness Theorem 12. was to
provide an easier proof for the completeness of the space (H(K),Tw) of
germs of holomorphic functions on a compact set K 1ina complex metri-
zable 1.c. space E {cf. [42] and the discussion after Proposition 2.6),
but there are many other applications of 12., one of which we will now
present (see [10]).

13, Definition. For an arbitrary locally compact Hausdorff space X,
let A(X) denote a linear subspace of the space C(X) of all continuous
(reai- or complex-valued) functions on X with the following two pro-
perties:

(i) A(X) 4s closed in C(X) with respect to the compact-open topology

co, and

(1) (A(X),co) is a semi-Montel space (i.e., every bounded subset is
relatively compact).

(Note that, for any o-compact locally compact X, (C(X),co) is a

Fréchet space, and then property (ii) clearly implies (i).)

Next (cf. Definition 8.), Tet V={(v ) en be a decreasing
sequence of strictly positive continuous functions v, oOn X and put,

for every neN,

Av (X): = {f e A(X); [Ifll, = sup v, () F(x)] < =} and
xeX

Alv ) (X}: = {f e A(X); v,f vanishes at infinity on X}.

| Clearly, Avn(x)=Cvn(X)nA(X) and A(vn)O(X)=C(Vn)O(X)ﬂA(X)
With the induced norm, and since, under our present hypotheses, the
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topology induced by

s stronger than co, it follows from (i)
that Avn(X) (resp., A(Vn)o(x)) is closed in Cvn(X) (resp., C(Vn)o(x))
and hence a Banach space. We define

VA(X): = ;ng Avn(X) and VbA(X): = ;ng A(vn)o(x);

these are the weighted inductive limits of spaces of "A-functions". In
our setting, VA(X) and VbA(X) are always (LB)-spaces.

Of course, in 13., we may take X to be some index set I with
the discrete topology and A(X)=C(X); then, clearly, A(X)=k_(v) and
v A(X) = k, (V). But there are more interesting cases: E.g., if X is
an open subset of tN, N<1, we may let A(X)

denote the space of all
holomorphic functions on X.

N
Or, if X is an open subset of R, N>1,
the space of all harmonic functions on

X also enjoys properties (i)
and (ii).

There are various other possibilities 1ike spaces of solutions
of homogeneous hypoelliptic Tinear partial differential operators or

Systems, some spaces of harmonic functions in abstract potential theory
etc. (see [4]).

Up to this point, we have not made use of property (ii) in Defini-

tion 13., but this condition enters the proof of the following corollary
to 12. in a crucial way.

14. Corollary. Under our general hypotheses, the (LB)-spaces VA(X)

are always complete.
Froof. Letting 1 denote the compact-open topology co on X, it is
quite obvious that the unit ball B, of each space Av (X) 1s t-closed
(in A(X)). But since B, clearly is a bounded subset of (A(X},co0),
it must also be t-relatively compact by property (ii) in Definition 13.

Hence the assumptions of Mujica's Completeness Theorem 12. are satisfied,
and we can conclude. o

In his recent communication
idea of proof of 12. to relax
follows:

[44], Mujica used a refinement of his
the hypotheses of Theorem 12.(a) as
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15.  Theorem. Let E=ind En denote an arbitrary ("injective") (LB)-
n -
space; 1.e., E 1is not a priori supposed to be separated. We assume

that, for each neN, there exists a Hausdorff 1.c. topology T, on

En such that

(1)  the inclusion mapping (En,rn) > (En+1,Tn+1) is continuous, and

(i1) the closed unit ball B, of E  is t -compact, n= 1,2,....

Then, again, E= Y% holds algebraically and topologically for a suitable
Fréchet space Y, and hence E=ind En is Hausdorff, regular and
complete. n-

We note that 15. formally includes a completeness proof for

countable weakly compact inductive limits E=ind E (by taking
n -

T, = U(Em(n)’Eﬁ(n)) for a suitable increasing sequence (m(n))n of

indices m(n)2n).

And, as a corollary of 15., Mujica also deduced the following:

Let E=ind GA denote the inductive 1imit of a sequence of dual Banach
n -
Spaces such that the inclusion mappings Gﬁ-+65+1 are dual (i.e.,

transposed) mappings. Then E=Gi holds for G:=proj Gy, and hence
+ n

E is Hausdorff, regular and complete. — In particular, this directly

implies the completeness of all co-echelon spaces ky=k (V)= ;ng 1,(v,)

of order 1, another result stated in Proposition 2.10.(a).

Now, it appears that even Theorem 15. does not apply to (LB)-
spaces of type vC(X) (cf. Definition 8.) in general; that is, say,
whenever the general hypotheses of Definition 13. on X and V= (vn)ne]v
hold. (Note that (C(X),co) only "rarely” is a semi-Montel space, and
switching to the topology of pointwise convergence or to weak topologies
does not really seem to help.) Hence the following question is still

open,

Problem 2. Is it true that, for arbitrary locally compact Hausdorff
spaces X and arbitrary decreasing sequences V=(v ) . of strictly
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positive continuous functions vV, on X, the regular (LB)-spaces
¥C(X) are always complete?

We remark that, under relatively "mild" hypotheses on V= (vn)n,
completeness can indeed be proved, but we conjecture that the above

problem has a positive solution in full generality.

Finishing our discussion of completeness (which concentrated
mainly on the setting of (LB)-spaces), we mention in passing that Raikov
gave an interesting completeness theorem for inductive limits (cf.

Floret [24]) which (at least formally) does not require the inductive
limit to be an (LB)-space.

We finally turn to an interesting special case of the general
"subspace problem" for 1.c. inductive Timits.

After introducing the
weighted inductive Timits

vC(X) and V,C(X) of spaces of continuous
functions and the corresponding inductive 1imits VA(X) and v A(X) of
spaces of A-functions, it is natural to ask:

Problem 3, If X is a locally compact space, p= (vn neN 2 decreasing
séquence of strictly positive continuous functions on X and A(X) a

linear subspace of C(X) with the properties (i) and (ii) of Definition

13., must then vA(X) (resp., VbA(X)) be a topological subspace of
vC{X) (resp., VbC(X))?

In fact, it takes a closer look to realize that the latter

property really does not (direct]y) follow from the definition of the
inductive limit topologies! VA(X) (resp., VA(X)) carries the strongest
1.c. topology which makes all the injections Avn(x)-*VA(X) (resp.,
A(Vn)o(x)"*VGA(X)) continuous while the inductive Jimit topology of
Ve(X) (resp., v, C(X)) is ‘only” the finest 1.c. one which makes the
injections Cvn(X)~>VC(X) (resp., C(vn)o(x)->vbc(x)) (of much larger

spaces) continuous. That is, by definition we clearly have continuous
injections VA(X}>vC(X) and VbA(X)-+vbC(X), but a priori, there is
absolutely no need that these injections really were topological iso-
morphisms into!
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Looking at this type of problem from a more general point of

view, we fix an (LF)-space E=ind En' It is a bad and disturbing fact
n -
— which actually led to many errors in the literature — that a closed

linear subspace F of E need not be an (LF)-space in the induced
topology: That is, if F, denotes the closed linear subspace FiNnE,

of En with the induced topology, then ind Fr clearly eguals F
n -
algebraically, but, for the reasons detailed in the special case above,

the inductive 1imit topology may be strictly stronger than the topology
which E induces. Even worse, the two topologies can have different
duals, and all this can happen "in a very natural way"!

16.  Definition. Let (E,t)=ind (Ea,ra) be an injective 1.c. induc-
) o o > .
tive limit and F a linear subspace of E. We put F :=FnE with

the topology (induced by) Ty

(a) F is termed stepwise closed if Fa is closed in Eu for
each a.

(b) F is called a limit subspace if the inductive limit topology

T of E=ind (Ea,ra) induces the inductive limit topology T of
- a +
ind (FG’TG) on F.

(6 e
(¢) F is called well-located (in E} if the restriction of the
inductive limit topology © of E to F and the topology T of

ind (FG'TQ) yield the same dual of F; i.e., (F,t)" = (F,T)".
o -

Clearly, each closed linear subspace F of (E,t)=1ind (E .7 )
a+

is stepwise closed, and each limit subspace must be well-located. In
the other direction, the following are some general results. (Proposi-

tion 17.(c) is due to de Wilde, cf. [27].)

17.  Proposition. (a) In a countable weakly compact inductive Timit

E=ind En’ each stepwise closed linear subspace is closed and well-
n -
located.
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(b) In a countable compact inductive 1imit E=1ind E (where, by
n -
2.4.(b), the inductive limit topology is just the finest topology which

makes all injections in: En~+E continuous), each stepwise closed sub-
space must even be a (closed) limit subspace.

(c} In countable inductive limits of metrizable Schwartz spaces
(such as D(R)), well-Tocated subspaces are always limit subspaces.

But the work of Ehrenpreis, Hormander and Malgrange made it trans-

parent that the question of solving a linear partial differential equa-

tion (or a convolution equation), say, in the space D'(f) is closely
related to the well-Tlocatedness of the range of the transposed conti-
nuous linear operator (cf. Floret [27]). Due to this fact, there are

(actually a vast amount of) closed subspaces of D(n) which are not
well-Tocated!

In the literature, the problem of limit subspaces and well-located
subspaces has been treated quite thoroughly,
strict inductive Timits and many applications
on distribution Spaces.

with special emphasis on
to convolution operators

At this point, we only refer to Dostal (18],

to the Tast part of Floret's survey article [27], and to the (many)
references quoted there.

We proceed to show that an open mapping lemma, due to A. Baern-
stein (1], yields a positive solution to Problem 3. under an additional,
but quite natural hypothesis on the sequence = (vn)n of weights. The

18.  Theorem. let F denote a 1.c. semi-Montel space and E a (DF)-
space. (In fact, it would suffice to assume that E6 is a Fréchet
space and that ail nulj sequences in Eé are equicontinuous). Suppose

that T: F>E is a continuous Tinear (but not necessarily surjective)
mapping such that

{(*} for each bounded subset B of E, T'I(B) is bounded in F.
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Then T'1 exists as a continuous linear mapping from TF onto F,
and hence T s open and even a topological isomorphism into.

Concerning the hypotheses on E given in parentheses, we point
out that part (ii) in the Definition 5. of a (DF)-space E (i.e., o-
quasibarrelledness) exactly means that every bounded subset of ES
which is the union of countably many equicontinuous sets must also be

equicontinuous. Next, we note that, by condition (*), clearly T'l(O)-
{0}, and hence T has to be injective.

Baernstein's original proof of his "Open Mapping Lemma" 18.
deduced the result by applying Ptak's Open Mapping Theorem to the

transposed map tr. E6—+FB (and using various "rather standard" results

from the duality theory of 1.c. spaces). Other proofs of 18. (which
only require that E is a (gDF)-space) are possible (and were given by

B. Ernst and W. Ruess).

9. Corollary. Llet E=ind E, denote a countable regular (injective)
. n-
Inductive 1imit of (DF)-spaces. For a linear subspace F of E, put

Foi = FAE  with the induced topology, n= 1,2,..., and equip F with

the inductive limit topology of ind F o
n -+

If F is a semi-Montel space (in particular, if (F ) isa
compact inductive sequence or if all the spaces F = are semi-Montel),

then F==;n3 F, is a topological linear subspace of E==;ng E, (e,

Fis a limit subspace).

Proof. let T: F=ind F_»E=1ind E_ denote the canonical (continuous
. n> " no-
linear) inclusion map. By our assumption, F

is a (DF)-space. (Note that the regular inductive limit of semi
Spaces certainly is semi-Montel, and that a countable inductive limit of
(DF)-spaces is again (DF) by 6.(b). Moreover, if (Ea)a is an arbitrary

is semi-Montel and E
-Montel

inductive net and if, for a linear subspace F of E=ind £, we take
Fa==Fera with the induced topology, then (Ea)a regular clearly implies
(F). regular.) Now fix a bounded subset B of E=ind E,. By regula-

o '
rity, there is neN with BCEﬂ bounded. Hence BnNF is bounded in
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F, whereby T'l(B) must be bounded in F==gn2 F,- We can then apply
Theorem 18. to obtain the assertion.g

We remark that, indeed, 19. yields a much sharper result than
Proposition 17.(b) since there the "large" inductive 1imit E=ind E

n -
was supposed to be compact {(in order to permit the conclusion that each

ctosed linear subspace F s a limit subspace).
necessary to suppose that the "large"
n -

regular (LB)-space (which holds for countable compact inductive limits
in view of 2.4) and that the "spa]1® inductive limit F=1ind (FNE.)

n -
s compact (which would be implied by the assumption of compactness for
E=1ind En’ too).

It turns out that this improvement of 17.(b) is
n-

In 19., it is only
inductive 1imit E=ind £ is a

essential for our application to  VA(X) cve(x)

since VA(X) may be a
compact inductive limit while VC(X)

"very rarely" is. (See [5].)

20.  Proposition. Let V= (vn)n denote a decreasing sequence of

unctions on a locally compact space X
and  A(X)} a linear Subspace of ((X) satisfying properties (i) and
(ii) of Definition 13, If
{S} for each ne N

» there existg Mm>n such that
infinity on X,

v .
M vanishes at
Vn

then the following assertions are true:

(a) ve(x)= V,C{X)  (as well ag VA{

X)=VA(X)) holds algebra-
ically and topo]ogical]y.

(b) If, given ne N, m>n s chosen as in condition (S), then

Cvm(x) and  (C(X),co) (and hence rc(x), too) induce the same topo-
Togy on each bounded subset of Cvn(x).

{c) With the same choice of p and m,

the injection Av, (X) >
is compact, and hence VA(X) = VA(X)

Av_(X) is a (DFS)-space.
Since 20.(a) is obvious, and sinc

e 20.(c) clearly follows from
part (b), only 20.(b) has to be checked

» and this is quite easy. (In
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fact, there is also the following converse of 20.(b): If v and
VSV, are continuous strictly positive functions on a Tocally compact
space X, and if Cvm(x) induces the compact-open topology co on

v
each bounded subset of Cvn(x), then VE- must necessarily vanish at
infinity on X.)

For the sequence space case of Proposition 20., see 2.14. — It
may also be useful to recall at this point that, by a lemma of Grothen-
dieck (e.g., see Horvdth's book [35]), two 1.c. topologies which coincide
on an absolutely convex subset actually induce the same uniform struc-

tures on this set, too.

We are now ready to present an affirmative solution to Problem 3.
in the case that the sequence V satisfies condition (S).

21 Corollary. Under the hypotheses of Proposition 20., VA(X) =7 A(X)
s indeed a topological subspace of VC(X)= Voc(x)'

Proof. By our remarks after Definition 8., the inductive 1imit ve(X)

is always regular, and by Proposition 20., yA(X) 1is a compact inductive

limit whenever condition (S) holds. Hence the assertion follows from

Corollary 19.

We note that condition (S) is very natural and that this condition
is satisfied in most applications for weighted inductive limits of A-
functions (such as holomorphic or harmonic functions). However, the

general case of Problem 3. remains open.

Appendix. Strong regularity conditions

In this Appendix to Section 3., we study several "strong regularity
conditions" for 1.c. inductive limits (which were introduced by various
authors, cf. [31], [25], [3]. (5], [6] and [45]) and the relations be-
tween them (listing interesting results of Neus [45] and — very recently
— Cascales-Orihuela [16]). At the end of the appendix, we shortly return
to the problem of 1imit subspaces and well-located subspaces, reporting
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on the work of Retakh [49], [50] which is closely related to some ideas
in our study of strong regularity

We start with the so-called "bounded retractivity” which appears
to be a very natural Property and which is suggested by Grothendieck's
“strict Mackey convergence condition". Only thic first part of the
Appendix will actually be needed in Section 4,

1. Definition. An (injective T.c.) inductive system (Ea,ra)

a€eh’
or its limit (E,T)==;ng (Ea.ra),

s said to be boundedly retractive

if, for every bounded subset B of (E,7),
such that

there exists o=o(B) €A

(1) B is contained (and bounded) in (E&’TG) and, moreover,

E=ind £ with E,
- n +

closed in B+ for each q are not only regyiar (by 1.3.(b)), but
even boundediy retractive.

And since the topology of each relatively
compact set coincides with any weaker Hausdorff topology, it is easily

Y retractive as well. Thus, the
Y retractive inductive limits provides
good" strict and all "good" compact

» in the setting of Proposition 3.20 (i.e.,

nce ¥V satisfieg condition (S)), part (b)
of this proposition implies that ve(X) = VOC(X)

tive inductiye Timit which,
general,

a joint geéneralization of a7 »
inductive 1ipits. Moreover
in Particular, if the Seque

is a boundedly retrac-

obviously, is neither strict nop compact in

On the other hand, b
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Furthermore, since also the uniform structure induced by the
inductive Timit topology T of a boundedly retractive inductive limit

(Ey1)=ind (E ,Ta) coincides on each bounded subset B of E with
(o M d
the uniform structure induced by some T, (see the note after 3.20),

the boundedly retractive inductive limits of quasi-complete 1.c. spaces
are quasi-complete as well. In particular, in view of 3.6, this implies
that the inductive 1imit of a boundedly retractive sequence of (quasi-)
complete (DF)-spaces must again be a complete (DF)-space. At this
point, it is obvious that Problem 2. of Section 3., asking for the
completeness of VC(X), does have an affirmative answer whenever the
decreasing sequence V satisfies condition (S) of Proposition 3.20
(but a much weaker condition would already suffice as we will see in
Section 4.).

The following remark of Mujica (which may be deduced from the last

part of 3.6.(b) in a rather straightforward way) shows that, in particu-
lar, for inductive sequences of Banach spaces, hypothesis (i1) in
Definition 1. already implies (i); i.e., in this case, regularity of

the inductive sequence actually follows from assumption (ii) on the

topologies.

Let E=ind Ej denote the (Hausdorff injective)

, n -
inductive 1imit of a sequence of complete (DF)-spaces. If, for each

neN, there exists mzn such that E and Eg induce the same topo-
logy on each bounded set B in E, then (En)n is regular (and hence

boundedly retractive).

2. Proposition.

For general 1.c. spaces, Grothendieck [31] introduced the follow-

ing:

3. Definition. A 1.c. space (E,7) satisfies the strict Mackey
if, for each pounded set A in E,

convergence condition (s.M.c.c.)
ely convex subset B of E

there exists a closed bounded and absolut
containing A such that E and EB induce the same topology on A.




Returning to our previous terminology and taking into account that,
.. X
On a set A as in Definition 3., the inductive limit topology 1" of

ind EB Ties between the topologies induced by EB and E, we see
B +

that the s.M.c.c. is stronger than requiring that the (always regular)

inductive 1imit 1ind EB is boundedly retractive and that it actually
B »
coincides with this requirement whenever F s bornological (so that

T= rx). Similarly, if is a quasibarrelled 7.c. Space, E%= ind E.

Uu-
is always regular, and the s.M.c.c. for EB is stronger than requiring

that ind E&o is bounded1y retractive and exactly coincides with this
U

statement whenever EB= E%.

As another connection between Definitions 1.
perhaps explicitly state that, obviously,

spaces is boundediy retractive if ang only
fies the s.M.c.c.

and 3., we should
an inductive Jimit of normed
if it s regular and satis-

The next definition S again due tg Grothendieck [31].

4. Definition. A, l.c. space ¢

every closed absolutely convex O-neighborhood U i E, there exists
2 O-neighborhood v in Such that, for each o>0, we can find a
bounded set B in E with VCal+B, or equivalently,

if, for €Very equicontinugys subset A of E',
borhood v of o in E such that EB
convergence on coincide on A,

is called quasinormable if, for

there exists a neigh-
and the topology of uniform

By duality, we Now obviousty obtain:

5. Proposition. A quasibarrelled 1.c.
and only if jts strong dual
condition,

space B is quasinormable if
6 satisfies the strict Mackey convergence
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quasinormable. A 1l.c. space E is a Schwartz space if and only if E
is quasinormable and each bounded subset of E s precompact. There
are Fréchet-Montel spaces E (even such spaces of type AI(A), see
Kéthe [38]) which are not Schwartz, and hence cannot be quasinormable.

If E 1is a metrizable 1.c. space, EB is of type (DF), and hence
the localization property mentioned after Proposition 3.6 holds. Thus,
if E additionally is quasinormable, then the s.M.c.c. for EB (see
Proposition 5. above), asserting (in particular} that the topologies of
EQ and E% agree on each bounded subset of E', implies the topolog-
ical equality EB= E%; j.e., in view of Proposition 3.10, it implies
that E is distinguished. In fact, due to Grothendieck [31], we even
have the following diagram of implications between various properties
of Fréchet spaces E (in which, as it also turns out, none of the

implications can be reversed):

Montel —3 reflexive

nuclear=>Schwartz §§§§§§§§u if distinguished.
§§ { the bounded sets in }6¢¢¢7

quasinormable=>
By

are metrizable

We now turn to the other strong regularity conditions for induc-
tive 1imits which we will study and start with a list of definitions.

Llet (E,7)=1ind (Ea,ra) denote a (Hausdorff injec-
o} ->
tive ‘I- L] . + . .
) 1.c. inductive Timit. The inductive spectrum (EG'TO‘.)GGA or

its 1imit (E,1) is called

6. Definition.

{a) strongly boundedly retractive if

(1} (E,T,), is regular and if,
(i) for each aeA, there exists B2a such that (E,T) and
(Egs7g) induce the same topology on each bounded subset B of

(EG’TG,) »
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(b)  Cauchy regular if, given a bounded set B in (E,1), there is
a=a(B) €A such that

(i) B is contained and bounded in (Ea'Ta)’ and

(i1) a net (xi)ie (¢ B is t-Cauchy if and only if it is Cauchy
in (Ea,ra);

(c)  (convex) compactly reqular if, for each (convex) compact subset

K of (E,t), there is a=a(K}eA such that K is contained and
compact in (Ea,Ta);

in

(d) sequentially retractive 1f, for each nyl] sequence
(E,1), there exists some a=gf(

tained and a ny1l sequence in (F

(Xm%neN
xm)m)e A such that (xm)m is con-

a’Ta)'

{In the references [45] resp. [16]

» One can also find the following
variants of (c) resp. (d):

(Ea’Ta)a or (E,t) s said to be

(e) sequentially compactly reqular if, given any sequentially compact

subset S of (E,1), there 1S a=ofS)eA such that S i contained

and sequentially compact in (Ea,ru);

(£} precompact retractive if, given any precompact subset P of

(E,T), there Is a=qa(P)ea such that p jg contained in (Eu,Ta)

and TfP:TO‘.’P')

A few (easy) remarks are in order at this point. Countable strict

inductive limjts E=ind E, with E. closed in E, for each neN

inductive limits are eve
retractive, as ig VC(X) = VOC(X)
(i.e.

N strongly boundedly

in the setting of Proposition 3.20

» 1f 7 satisfies condition (S)), And, concerning Definition
6.(a), Proposition 2. actually sh
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b?undedly retractive if and only if it is strongly boundedly retractive.
Similarly, boundedly retractive inductive limits must be Cauchy reguiar
(Te?a1] the note on uniform structures after 3.20), and an inductive
limit of quasi-complete spaces is Cauchy regular if and only if it is

boundedly retractive.

Next, boundedly retractive implies both reqular and compactly
re -
‘3u1ar. Moreover, since the topology of every compact set coincides
Wi
h any weaker Hausdorff topology, compact reqularity equals "compact
E=dind E_,
G.“*a
and the (weaker Hausdorff)

r LS | ]
retractivity" in the sense that, for each compact K in

there is aeA such that the topology of Ea

to L
pology of E coincide on K. Hence compactly regular inductive
For examples of {uncountable) hyper-

actly regular, resp.,

limits are sequentially retractive.
St?ict inductive limits which are not convex comp
which are convex compactly regular, but neither compactly regular nor
requiar, see 1.8.(b) and (d).

In the case of countable inductive 1imits, sequential retractivity

was i !
as introduced and studied by Floret [25]. He proved that sequentially
retractive inductive sequences are reguiar and that sequentially retrac-

tive (LF)-spaces are sequentially complete.

(We note that properties 6.(a) and (b) imply regularity, and hence

our initial hypothesis that the inductive 1imit topology is Hausdorff

iS not needed there. Similarly, by Floret's result which we have just
quoted, inductive sequences with the properties of 6.(c) and (d) always
have a separated inductive limit.)

inductive limits with the proper-

For some natural examples of 1.C.
plications of these

ties defined in 6.(a) through (d) and for some ap
notions, see [3], [5], [6] and [45]. — part of the preceding discussion
can be summed up as follows.

7 Proposition. For arbitrary inductive limits E= ind E of Banach
a -~

Spaces, the following conditions are equivalent:

bounded retractivity,

(1)  strong bounded retractivity, (2)
regularity plus the s.M.c.c.

(3)  Cauchy regularity, (4)
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And any of these conditions implies compact regularity, sequential
retractivity and regularity.

In the setting of countable inductive limits, Neus [45] found
some "less obvious" equivalences which we will now survey. — We refer
to the book [46] of Bonet-Pérez Carreras for a thorough discussion of

strong regularity conditions (including results of Neus) and full
proofs; also see Valdivia [59].

Up to this moment, all our regularity conditions actually involved

the inductive 1imit topology itself, but note that it may not be so easy
to get a hold of this topology!

8. Definition. An injective 1.c. inductive spectrum (Ea’Ta)aesA
(or its limit (EsT)) is termed

(a) boundedly stable if, for every set B which is bounded in one

of the generating spaces (Ea'Ta)’ there exists g= B(B) >a such
that, for every vy:g, (EB,TB) and (EY,TY)
on B;

induce the same topology

{b) strongly boundedly stable if, for each x€A, there exists B>«

such that, for every Y28, (EB,TB) and (Ey’Ty) induce the same
topology on each bounded subset of (Ea’Ta)‘

Ny non-regular hyperstrict inductive
strongly boundedly stable implies boundedly
otions are equivalent for inductive limits of

limit)., And, clearly,
stable, while the two n
normed spaces.

Next, (strongly) boundediy

retractive inductive 1imits are both
regular and {strongly) bounded1y

stable, and one can hope that, at least
for some "goog" regular inductive limits, the converse also holds. 1In

fact, say, if (En)neN s an (injective) inductive sequence and if,
for each neN, there i M2n such that, for all kam, (Em,Tm) and
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(E,»7,) induce the same topology on each bounded subset B of
(En,rn), then there might also exist N2n such that (EN,TN) (and
hence all (E,,t,) for kzam) and the inductive limit (E,T) induce
the same topology on each bounded set B 1in (£ ,7.). There is a
result of this type, due to Retakh [49] (and basgd gn the homological
theory of Palamodov), which (together with a lemma of Grothendieck and

a result of de Wilde) leads Neus [45] to:

9. Proposition. Let (E,t)=1ind (En,rn) denote a countable (injec-
. . n->
tive) inductive limit.

(a) (EnaTn)neN

is sequentially retractive if and only if it is
sequentially compactly regutar (in the sense of Definition 6.(e)).

)n is sequentially retrac-

(b) If the inductive sequence (E_,T,
there exists

tive, then, for each bounded subset B of (E,T),
n=n{B) e N such that

(i) B s contained (and bounded) in (E Ty and

(ii) (B,t) and (B,rn) have the same convergent sequences.

Hence, if, additionally, the bounded subsets of each space (En’Tn) are
metrizable, then Tn| = T holds for every mzn (and if we also

B
(E,T) are metrizable, then we can

a sequentially retractive
(regular and)

know that the bounded subsets of
?ven conclude Tnle TlB). In particular,
Tnductive sequence (En,Tn)n of metrizable spaces i
boundedly stable (and if the bounded subsets of the limit (E,7) are
metrizable as well, it must even be boundedly retractive.)

(c) A countable strongly boundedly stable inductive limit of
(OF)- (or (gDF}-) spaces always satisfies property (ii) in Definition
6.(a) (of strong bounded retractivity). Hence each regular limit of
this type (and, in view of Mujica's Proposition 2., 1n particular each
strongly boundedly stable sequence of complete (DF)-spaces) is strongly

boundedly retractive.

(d) For countable inductive 1imits of normed spaces, the follow-

ing properties are equivalent:
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(1)  sequentially retractive,

(2) sequentially compactly regular,

(3) compactly regular,

(4}  regular plus (strongly) boundedly stable,
(5)  (strongly) boundedly retractive.

The article [45] of Neus also contains an example of a boundedly
retractive inductive limit of bornological (DF)-spaces which is not
strongly boundedly retractive.

't Is interesting to observe that, by 7. and 9., all the different
strong regularity assumptions for 1.c. inductive limits to which various
authors were led (following different approaches, and having different

examples and applications in mind) really yield the same notion for (LB)-

spaces. This notion of, say, bounded retractivity s strictly stronger

than regularity and implies completeness of the (LB)-space, but not
conversely:

In fact, there is another famous example of Kithe and Grothendieck
(again, see [38]); viz., a Fréchet-Montel space E (of type x;(A))
which is not Schwartz and hence not quasinormable. The strong dual

Ep (= K (V) of this space is complete, and it coincides with the

inductive dual E%==ind Eﬁo, where (U
n-+ “p

fundamental sequence of 0-neighborhoods for B (and Ei=k (v)). Now,

E% is a (regular and) complete (LB)-space, but since E is not quasi-

normable, E%= EB does not have the s.M.

"strong regularity" properties.

n)n e denotes a decreasing

C.c. and hence none of the

For a detailed study of the ditferences between (Fréchet-Montel
and (FS)-spaces as well ag between) strong duals of Fréchet-Montel and

(DFS)-spaces and some interesting related material, we again refer to
Bonet-Perez Carreras [46]

We turn to the work of Retakh

[50] on Timit and well-located
subspaces of 1.c.

inductive limits (see 3.16 for definitions). It will
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immediately become clear after the next definition that the ideas in
this approach are closely related to part of our preceding discussion.
10. Definition. A countable 1.c. inductive limit (E,T)=1nd (En,Tn)

of metrizable 1.c. spaces satisfies "

(2)  condition (M) if there exists an increasing sequence of absolutely
convex neighborhoods U~ of 0 in (€ »1,) such that, for each neN,
there is m>n with the property that, for every k2m, T and T

induce the same topology on Un;

(b) condition (Mol_if there exists an increasing sequence of absolute-

ly convex neighborhoods Un of 0 in (En,Tn) such that, for each
neN, there is mzn with the property that, for every kxm, for
gvery fe E& and for every e>0, there exists Q€ E& with

[f(x) - g(x)] < e forall xeU,.

As Neus [45] remarks, a result of de Wilde permits the following

equivalent reformulation of condition (Mj):

There exists an increasing sequence of absolutely convex
Un in (En,rn) such that, for each neN, there is m2n with the
property that, for every k>m, the weak topologies c(Em,E$) and

o(E,E}) coincide on U .
n

0-neighborhoods

pact inductive limits of metriz-

Countable strict and countable com
and any countable weakly

able 1.c. spaces clearly satisfy condition (M),
compact inductive limit of metrizable 1.c. Spaces satisfies (the second
version of) condition (Mo). It is not hard to verify that (M) dimplies
(Mo) (e.g., for the original version of (MO), this follows from a

¢ Grothendieck, cf. [35])-

unded stability, and for
the converse of this impli-

well-known approximation lemma o

Condition (M) also clearly implies bo
countable inductive limits of normed spaces,
Cation holds as well. Hence, in view of Proposition 9.(d), a countable

regular inductive 1imit of normed spaces satisfies condition (M) if and
only if it is (strongly) boundedly retractive. In a more general sett-
ing, Retakh [49] asserts (cf. proposition 9.{c); as valdivia [59] notes,
the metrizability of the spaces En is not needed here):
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11.  Proposition. Let (En,Tn)n“\l denote an (injective) inductive
sequence of metrizable 1.c. spaces and (E,T) dits limit. Then condi-

tion (M) implies (and is obviously always implied by) the following
condition (M'):

There exists an increasing sequence of absolutely convex 0-neighborhoods

U, in (En,'rn) such that, for each neN, there is mxn with the

property that Tn and the inductive 1imit topology t coincide on U, .
In particular, if E-= ind En

n-»>
limit of metrizable J.c, Spaces with condition (M)

strongly boundedty retractive.

s a countable regular inductive

» then it is already

From the point of view of finding a very strong property which is
shared by both countable strict and coun

of Fréchet (and not "jyst® Banach) spaces, condition (M) is better than
strong bounded stability, and condition (M') is better than part (ii)
of the definition of strong bounded retractivity since it takes into

account that compact Tinear operators between 1.c. spaces map suitable

0-neighborhoods (and not "just" all bounded sets) into compact sets. —

Retakh's results on the subspace and well-locatedness problems in (LF)-
spaces demonstrate the importance of the conditions (M), (M') and (Mo)'

Before stating Retakh's main theorem,

the definition, condition (M) resp. (MO) On a countable Y.c. inductive
limit E=ind En

always requires that all the spaces En
n-»>
abie, Moreover, Retakh states his pegy
F

1s a stepwise closed linear subspace
assumption here in order to ensy

table compact inductive limits

we remark that, as part of

are metriz-

Tt without the hypothesis that

of E; we have added this
re that atl the quotients E

n/F
Fa=FNE, are Hausdorff, n

»T,) denote a countable (injective)

Se closed linear subspace. We put,
with the induced topology, n=1,2,...

(a) If ind En/F satisfies condition (M) (resp., (M), then

n >
F is a limit Subspace of (resp., well-located in [).
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(b) Now assume that E=ind E  satisfies condition (M) (resp.,
n -
(Mo)), or that E=1ind En is strict and all the quotients En/F are
n -+ n
metrizable. If F is a limit subspace of E (resp., well-Tocated in

E), then, conversely, ind En/F must satisfy condition (M) (resp.,
(M )) n - n
0 ] tOO.

We remark that Theorem 12. completely solves the subspace and

well-Tocatedness problem in many important cases (say, if E=1ind En is
n -

an (LF)-space with condition (M) resp. (Mo)). But, as it sometimes
happens with full characterizations, 12. often remains a "theoretical”
solution in the sense that the hypothesis is formulated in terms of the

Quotients En/F , which may not be easily accessible, and therefore it
n
can be hard to verify condition (M) resp. (Mo) for these quotients in

Many concrete examples.

E.g., for various applications (as in Corollary 3.21), Corollary

3.19 to Baernstein's Lemma — which, of course, only yields a "nice"
sufficient condition for an affirmative solution of the subspace probiem,
but remains far from any characterization _ is much easier to handle than
Retakh's Theorem 12. (And, indeed, it is non-trivial to deduce some ver-
sion of Corollary 3.19 from 12.)

it remains to report on (very recent)

interesting work of Cascales-Orihuela (cf. [16]) on countable inductive
limits of metrizable (or more general) 1.c. spaces. — The following
definition is due to Fremlin (see Floret [62] for more information).

At the end of this appendix,

13.  Definition. A 1.c. space E is called angelic if, for every
relatively countably compact subset B of E,

(1) B must actually be relatively compact and,

(1) for each xeB, there exists a sequence in B which converges to

X.

< and Orihuela give an affirmative

[27] whether (LF)-spaces must be
n results.

Among other things, Cascale
answer to Question 7.6 in Floret
angelic. Here is a summary of (part of) their mai
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4. Proposition. (a) There is a class 6 of 1.c. spaces which
contains all metrizable and all dua] metric 1.c. spaces and which is
stable under arbitrary linear subspaces, separated quotients, compie-
tions as well as countable topological products and 1.c. direct sums,.
and hence also under countable projective and (Hausdorff) 1.c. inductive
limits (in particular, each countable injective Hausdorff inductive
Timit E=ind E, of metrizable 1.c. spaces E  belongs to this class

n -
6), such that:

(b) Every space E in the class 6 is angelic, and all the
precompact subsets of E are metrizable.

(c) Each space Eed is even weakly angelic; i.e., angelic with
respect to the topology o(E,E').

(d} If E=1ind En

n -
then the following properties of E are eguivalent:

is a countable (injective) inductive limit of
Spaces I-Zlr| €8,

(1) sequentially retractive,

(2) sequentially compactly regular,

(3) compactly regular,

(4) Precompactly retractive (cf. Definition 6.(F)).

And if, additiona]]y, all En

are complete, then these properties
are also equivalent to

"precompact regularity" in the sense that,

(5) for €very precompact subset p of E,
that p

there exists neN such
is contained and precompact in En'

(e) If E is an inductive Timit as in (d), then the following
conditions are equivalent:

(1) For évery null sequence
such that (xm)m

En;

N . € N
. (xmhneN in E, there is n .
1s contained and a o(En,EA)-nuI] sequence in

(2) for every Precompact set P in E, there is neN such

th i Yp = :
at P is contained in E, and ofE,E )IP = U(En.En)|p-
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(For a result similar to Proposition 1l., but concerning condition
(Mo) and weak topologies, and for some related results in the direction
of Proposition 14.{e), we again refer to Valdivia [59].)

4. Projective descriptions of weighted inductive limits

In Section 3., the weighted inductive limits ve(X), VOC(X) (resp.,
EA(X) and VbA(X)) of spaces of continuous functions (resp., spaces of
A-functions", such as holomorphic or harmonic functions) were intro-
duced. Following the program that was outlined in Section 0., we will
n?w set out to give an explicit characterization of a basis for the con-
tinuous seminorms of the corresponding inductive limit topologies. In
fact, we will study the general problem of "projective descriptions”
for weighted inductive limits in some detail and solve it in a number
of important cases. Then, restricting the results to the setting of
sequence spaces and using the duality theory available in this setting,
the promised complete solutions to Questions 1. through 3. of Section
2. will follow. (Actually, the solution to Question 2. involves the
:ain results in the author's (very recent) joint article [11] with José
onet. )

References on weighted inductive limits and their projective
descriptions are [3] - [5], [7], [9] and [10] (as well as Bonet [12],
and other articles of Bonet quoted in [10], for the case of vector-
valued functions); we especially recommend [5] and the survey [10].
Special attention is given to the sequence space setting in (8] - [11]
(as well as in Reiher [48], where the more general cases of "Dubinsky
echelon and co-echelon spaces" and nksthe function spaces” are treated,
using the same methods). We also refer to the book [46] of Bonet and
Pérez Carreras.
paces of continuous functions

In the general setting of weighted S
yc(X) = ind Cv (X)
n-o+

as outlined in Definition 3.8, a seminorm p on

resp. Voc(x)= ind C(Vn)o(X) js continuous if and only if its restric-
. n-> _ .
tion to each of the normed spaces Cvn(x) resp. C(vn)o(x) is continuous;
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1.e., if and only if, for each neN, there is a constant C,>0 such
that

P(F)<ColIfll =c¢ sup vy (x)[F(x)]|

for each fern(X) resp. C(vn)o(x).
In this way, we get an inequality

p(f)< inf syp Cnvn(x)lf(x)l,
neN xeX

but it would be much better if we could interchange inf and sup here
in order to obtain

P(f) < sup (inf Cva (X)) F(x)|
XeX neN

since inf cnvn can be considered as a new non-negative, upper semi-
continuous "weight” § op X, associated with the decreasing sequence
V= (Vn)neN of strictly positive upper semicontinuous functions v,

on X. Of course, the interchange of inf and sup remains doubtful,
but it certainly makes sense to define:

1. Definition., For a decreasing sequence V= (Vn)nel‘l of strictly
Positive weights Vo on X, put
V=V(r) = {¥: x» R, upper semicontinuous; for each neN,

In other words, ¥ collects all those weights v on X which yield

weight conditions weaker than all the weight conditions given by the
functions Ya» "=1.2,..., and each jeV is dominated by a function

of the form i:l‘f Cnvn’ where C, denotes a positive constant for each
ne N,



m

In general, V need not contain any strictly positive function
on X (for an example, see [8]), but if, say, X is locally compact
and o-compact and all the weights n in v are continuous, then one
can easily see (cf. [7]) that each VeV is even dominated by a strictly

positive and continuous function VeV.

We now introduce the weighted spaces canonically associated with
the "Nachbin family" V.

2. . el - = . . .
Definition. For the system V=V(V) associated with a decreasing

R . : e
equence V= (v ) as in Definition 1., we put

CV(X): = {feC(X); for each veV, pglf): = SUPX V(x)|F(x}] <!
X €

and

Cv (X): = {feC(X); for each 7eV, ¥f vanishes at infinity
on X}.

of seminorms, CV(X} is a l.c. space,

Endowed with the system (p\?)\‘/e\-l
will be equipped with the induced

and CV (X) 1s a closed subspace which
topoTogy.
inf vn(x)>0, n=1,2,..., then,

xeK
as we have pointed out after 3.8, the topologies of VC(X) and VOC(X)

are stronger than the compact-open topology co. In fact, since (*)
implies that the characteristic function of each compact subset of X
belongs to V, the weighted topology of CV(x) is again stronger than
€0, and hence CV(X) and CVO(X) are complete if X isa kg-space

(again, see after 3.8).

If (*) for each compact KcCX,

By the very definition of V and of the inductive limit topology,

we have continuous injections
ve(x) » CT(X) and v C(X) > CT, (XD,

but, hopefully, more than this trivial fact holds!
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General problem of projective descriptions for weighted inductive
limits of continuous functions. Describe the exact re]at1onsh1p
between VC(X) and CV(X) as well as between VbC(X) and CVO(X)-

An algebraic equality, say, VC(X)=CV(X) would at least tell us
that not too much is lost by our rather "simple-minded" direct appr?aCh'
But if (say) VOC(X) turned out to be 3 topological subspa?e of CVO(X)v
then we would actually obtain the desired explicit description of a

' - . - f
basis of the continuous seminorms for the inductive limit topology o

VOC(X) by means of "natural® weighted sup-seminorms.

Similarly, in the general setting of Definition 3.13 (with a
predetermined 1inear subspace A(X) of C(X)

satisfying conditions
(1) and (i1) of that definition), we put

AV(X): = CV(X)nA(X) and

AV (X): = cio(x) N A(X)

with the induced weighted topology. VA(X)
AV(X), as is VAX) in AV (x),
more might be trye.

is continuously injected in
but, again, there is some hope that

General problem of Projective descrj
of spaces of A-functions.
VA(X) and AV(X)

ptions for weighted inductive limits

Describe the exact relationship between
as well as V,A(X)  and AVO(X).

Not all caseg of these two ve

ry general problems are solved com-
pietely,

will be achieved below in the most

ications and/or considerations from
ces.

but ful1 characterizations
important settings arising from appl
the structure theory of sequence spa

From our approach above, usin
and weighted Spaces, the constructi
ciated weights appears to be quite
easier to understand than the corre
echelon spaces in Section 2.
that ¥ and the weighted spac

g ideas involving growth conditions
on of the system V=V(v) of asso-
natural, and this approach is probably
sponding developments for Kithe co-

It actually was in the present context

e OV, Cy(x), AT(x) and AT (X)
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were first introduced (in [5] and [7]). Only subsequently, a speciali-
zation to sequence spaces (in part of [7]) and an extension to KGthe
echelon and co-echelon spaces of arbitrary order (see [8]) led to the
setting of Definition 2.11 (and the results following it).

We now come to the "general solution” of the problem of projective
descriptions for weighted inductive lTimits of continuous functions.
Quite surprisingly, there is a clear dichotomy between the two different
cases; viz., those of o- and O-growth conditions.

3. Theorem. (a) If X is Tocally compact, then VOC(X) always is
a (dense) topological subspace of CVO(X); hence, the inductive Timit
topology of Vbc(x) is given by the system (pG)Ve v o°f weighted sup-
feminorms (where it suffices to consider only those Py for which

V= 12f Cv, with suitable positive constants Cn>'0)’ and, in particu-
lar, the injection Voc(x)-+vc(x) is a topological isomorphism into.

If, additionally, inf vn(x)>-0 holds for each compact KcCX

x €K
and each neN (e.g., if all v, are continuous), then, algebraically

and topologically,

- P
CVO(X) = VbC(X) = the completion of VOC(X).

However, it is possible that the inductive limit VOC(X) is incomplete,
and if this happens, VOC(X) is a proper (topological)
of cvo(x)_

1inear subspace

CV(Xx) algebraically, and the two spaces
as topological vector spaces,

(b) vC(X) always equals
even have the same bounded subsets; thus,

ve(X) = (CV(X))pgp = the borgoiogica] space associated
with CV({X).

In general, however, the inductive limit topology of vC(X}) may be

strictly stronger than the weighted topology of CV(X).

-

we first note that, by

Concerning the proof of Theorem 3.,
js the Kothe matrix

Proposition 2.10.(b) and Proposition 2.13, if A
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of the Grothendieck-Kdthe counterexample of a non-distinguished echelon
space X;(A) (A 1is explicitly stated in 2.10.(b)) and if V= (a )neN

denotes the associated decreasing sequence, then the space k =k, (V)
is incomplete, and k_=k V) has a strictly stronger topo1ogy than
K, = Kw(V) V=V(V). Hence counterexamples to the algebraic equality
7oC(X)=CV (X) and to the topological identity VC(X)=CV(X) already

arise in the sequence space setting (and, in fact, one counterexample
already serves both purposes).

To show the positive part of (b), it suffices to establish that,
for each bounded subset of CV(X), there exists neN such that B

is contained and bounded in the normed space Cv (X), and this can be

done by contradiction. It remains to prove the pos1t1ve part of (a),

which certainly is the most interesting result contained in Theorem 3.

Actually, since ¢ (X) is dense in both CV (X) and VbC(X), it is
enough to show the following (crucial).

4. Lemma. vbc(x) and CVO(X) induce the same topology on CC(X)'

Proof. Since the canonical injection of v C(X) into CV (X) s

continuous, we can fix an arbitrary ne1ghborhood U of 0 in 7, C(X)

and then have to prove that the intersection of C.(X) with some 0‘
neighborhood in Cy (X) is contained in U.

By the description of &
basis for the (-

ne1ghborhoods in an inductive Vimit (cf. Section 0.),

weé may assume without loss of generality that U 4s of the form

r{u B8 n)s where B, {feC(v IlfH _Dn}
neN
and Pn s positive for each neN. At this point, we put v:=
inf 2"

nelN p Vo eV and claim that {feC (x),p (f)<1}cU

It remains to establish this claim;
pylf) = sup vix)[f(x)] <1.
Xxe X

subset

we fix fe( (X) with
For each neN, 1let Fo denote the closed
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2n
X; — f > 1
{x e or vn(x)l (x)| > 1}

of X. We observe that, clearly, n Frl must be empty because,
n neN
for any xell F , ;2:._ vn(x)lf(x)l >1 holds for each n, whereby
n n

_ n
v{x)|f(x)] = inf %— vn(x)lf(x)l > 1, contradicting pv(f) < 1. Hence,
n *n

putting U : = X\ F for each neN, (Un)neN is an open covering

of X, and since supp f is compact, there exists meN so that

m

supp fc U U . Now let (‘pn)lr]n;lc CC(X) be a finite continuous parti-
n=1

tion of unity on supp f which is sybordinate to (Un ':=1 rE:'.e., we

have 0<g <1, supp v, €U, for n=1,...,m, as well as z o =1

n
on supp f and <1 on all of X). We then take g.: =2"¢nfecc(x)c
C(V, ) (X) for n=1,...,m and estimate

::px vn(x)|gn(x)| :lépx «pn(x) ZnVn(XHf(XH

1

n
sup ppe,(X) %—- vn(x)lf(x)l < ey
ern n

n
(because xc-:Un implies .g—vn(x)|f(x)|<1). Thus, each g, belongs

n
to Bn, n=1,...,m, and hence

is an element of F(g Bn) = U,

~3

1
v f = — 9
A WA

—h
1§
il t~13

n

which finishes the proof.o

If v=(v ), isa decreasing sequence of strictly positive

n , "
continuous functions on a locally compact space X for which condition

(S) of Proposition 3.20 holds, we have ve(X) = ¥, C(X) algebraically
and topologically, and this is a boundedly retractive (LB)-space and
hence complete (see the Appendix to section 3.). Then the two positive

assertions of Theorem 3. combine to yield
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5. Corollary. For any decreasing sequence V= (Vn)neN of strictly

positive continuous functions on a lTocally compact space X which
satisfies

v
(S) for each neN, there is m>n such that Vm vanishes at
infinity on X, n

we get algebraically and topologically

vC(X) = v,C(X) = cvo(x) = CV(X)

If, under the general conditions of 3.(a), A(X) denotes a
linear subspace of C(X) (with the properties (i) and (ii) of Defini-
tion 3.13), then Theorem 3.(a), together with any positive solution of

the subspace problem for VbA(X) in V,C(X), immediately leads to
the projective description result that

VbA(X) is a topological sub-
space of AVO(X),

as the following diagram illustrates:

Therefore, applying Corollary 3.21, we arrive at:

8. Corollary. If, under the conditions of Corollary 5., (A(X),co)

denotes a closed linear subspace of (C(X),co) with the semi-Montel
property, then we also obtain the algebraic and topological identity

VA(X) = VA(X) = AVO(X) = AV(X).

We remark that, from the

point of view of weighted inductive
limits of A-functions, our meth

od of proof of Corollary 6. certainly
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was quite indirect, first using a partition of unity argument which

only worked for the corresponding weighted inductive Timits of conti-
nuous functions {to establish Theorem 3.) and then, essentially, {through
Corollary 3.21) Baernstein's Open Mapping Lemma (to return to spaces of
A-functions). But this method and the resulting Corollary 6. are very

powerful and cover many important applications!

For spaces of entire functions, the first general theorem of the
type of our Corollary 6. was proved by B. A. Taylor [58], but his proof
(using Hormander's methods from several complex variables, and completely
remaining in the context of spaces of holomorphic functions) required
stronger hypotheses on -(vn)n and can certainly not be adapted to

work in the very general context of 6.

The main applications of 6. 1ie in what Ehrenpreis [23] calls

"Fourier Analysis in Several Complex variables"; i.e., in the study of
(and

convolution equations via duality and Fourier-Laplace transforms
the so-called "Fundamental Principle” of Ehrenpreis). There Corollary 6.
may serve as a handy tool to prove that many (LB}-spaces of test func-
tions and {ultra-) distributions are vanalytically uniform” (in the
sense of [23]); for concrete new applications of this type, see 0. v.

Grudzinski [33]. We cannot go into details at this point since that
) definitions and various (complicated)

would require several {long
examples, but we refer to [7] and a forthcoming joint article of the

author with R. Meise and B. A. Taylor (on "sufficient" and "weakly

sufficient" sets).
results collected in Theorem 3., twO

After stating the “general”
eighted inductive limits of continuous

interesting problems remain for W
functions; viz.:

s ¥, c(X) equal to CV (X) algebraically? or,

(1)  Exactly when i
ondition for the

equivalently, f1nd a necessary and suff1c1ent C
completeness of VbC(X).

topologically? Or, equi-
rnological.

(2)  wWhen do we actually get VC(X)= Ccv{Xx)
valently, give conditions for CV(X) being bo
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Note that, in the setting of sequence spaces, (1) and (2) essen-
tially reduce to the Questions 1. and 2. of Section 2, (Of course, one

could also ask the same type of questions for weighted inductive limits

of A-functions, but, in that setting, we cannot give any "reasonable"

answers in a more general context than the one of Corollary 6. Hence,

from this point on, we will not return t

o the spaces of A-functions any
more. )

We actually have j complete answer to (1).

nce of strictly positive continuous functions on X.

Then the following conditions are equivalent:

(1) v is "reqularly decreasing”; i.e

for each neN, there ig m2n such that, for every subset Y

of X,
ine oY) 0 impl —(_yvk(y) Nk
n RO > implies inf >0 for a > m.

(2)  For every neNl,

there exists Mmz2n so that, for every subset
Y of X with

v (y)
in m >

yefY Vily) 0, it is possible to find vev with v2 Vi

on Y.

(3)  ve(x) = ind G (X) s (strongly) boundedly retractive (and hence
n -+

complete).

(@) wem) = 1“3 Cv ) (X) s a (strongly) boundedly retractive
inductive 1imit.

(5) VoC(X) s complete.
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(6) v,C(X) CVO(X) holds algebraically (and topologically).

(7} v C(X) = ind Clv, ) (X) s a regular inductive limit (which, in
n -

this case, is also equivalent to the following weaker property:
For each bounded set B in VbC(X), there is neN with

BcuC(vn)O(X).).

(8) VOC(X) is a closed (topological) subspace of vC(X), and hence
the closure of CC(X) in vC(X). (Incidentally, this also turns
out to be equivalent to VbC(X) being stepwise closed in ve(x).)

We provide a rough sketch of proof of Theorem 7.: (1) = (2)
follows from a direct calculation. For a more explicit formulation of
(2) = (3), we note that one actually shows the following: If, given
neN, m>n is chosen as in condition (2), then Cv_(X) and cV(X)

(and hence VC(X), too) induce the same topology on each bounded sub-
set of Cv (X). (One should compare this with Proposition 3.20.(b).)

In order to show (3) = (4), it is clear that only the second part (ii)

of the strongly boundedly retractive property for vbc(x) has to be
proved since the regularity then follows from Proposition 2. in the
Appendix to Section 3. And this part can easily be checked using the
fact that vbc(x) always is a topological subspace of vC(X) by
Theorem 3.(a). Moreover, by this last fact, (5) = (8) becomes obvious,
too. Next, (4) = (5) and (4) = (7) are trivial while (5) « (6) holds

by Theorem 3.(a). (So far, all the implications remain true for arbi-
of strictly positive weights v ona locally
compact space X if only condition (*) after Definition 2. is satisfied;
i.e., the continuity of the weights is not needed in this direction.) —

The converse is based on a direct, but technically rather complicated
quite a bit in the case of sequence Spaces;

trary sequences V= (v ),

construction which simplifies
we refer to [7] and [8] for details.

dition (1) of Theorem 7. is certainly

The regqularly decreasing con
But it is much weaker than

implied by (S) in, say, Corollary 5. above.
that condition since, e.g., constant sequences of strictly positive

weights are regularly decreasing without satisfying (S).
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Concerning Question (2) above, we have the following partial {but
seemingly also quite technical) result:

8. Proposition. Llet V= (Vn)n denote a decreasing sequence of
strictly positive weights on a completely regular Hausdorff space X.

We assume that there exists an incréasing sequence J-= (Xm)mel\l of
subsets of X such that,

vk(X) >0

i ith inf

{(N,J) for every meN, there is n.ozm wi R )
m m

for all k > "m’ while

(M\J)  for each neMN and each subset Y of X with
Yn(XNX ) #8 forall meN, there exists n' = n'(n,Y) > n

. an(y)
such that inf
yeY vply)

Moreover, we must make the following technical assumption:

(i) X is normal, ang (+) for every meN, there is k,>m with

ch )(k » Or

m
(i1) an weights Vo are continuous, and (++) any function f: X-+R,
with f

[x_ Continuous for each meN must already belong to
c(x). ®

Under these conditions, we
hence CV(x) is bornological,
if, in case {1}, we also suppose

have VC(X)=CV(X) topologically, and
If, in addition, X is a kg-space and,

that inf v (x)>0 for all compact
xek "

KCX and 3]} neN, thep ve(X) s complete,

As a step towards a better yn
tions (N,J) and (M,9)
sequence J-= (xm)m
clearly satisfy X=

derstanding of the relevant condi-
in this result, we note that any increasing
of subsets of X with condition (M,J) must

UN %ps and condition (N,J) then implies that
me

there exists a strictly positive weight VeV. Also, since X=U X,
m
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(++) in the second case of our technical assumption certainly follows

from (+) of the first case.

Next, condition (N,J) just means that, for each meN, the
restrictions to Xm of all the weights v, for k Tlarge enough (viz.,
k2n ) induce the same weight condition. On the other hand, if we
consider any set Y which contains points in the complement of each
Xy» then condition (M,J) requires that, for each neN, there exists
n'>n such that the restriction to Y of the weight condition given by

Vyo 18 strictly weaker than the weight condition induced by v (in the

2
sense that inf ——— =0).
er Vn(.Y)

From this point of view, (M,J) and (N,J) are quite natural
conditions. In fact, besides covering another jnteresting case for the
topological equality VC(X)= CV(X) as well, Proposition 8. yields the
following important

9. Corollary. For any regularly decreasing sequence v=_(v,), of

strictly positive continuous functions v, ona completely regular

Hausdorff space X, the topological identity vC(X) = CV(X) holds.

It is now interesting to compare the the two Cases of o- and O-
growth conditions again, but from a different point of view: We fix a
decreasing sequence V= (vn)n of strictly positive continuous functions
on a locally compact space X and consider only the two equations for
yc(x)= CV(X) and v C(X)= CV,(X). Then,
in view of Theorem 7. and Corollary 9., V,C{X)= cio(x) actually implies
VC(X) = C¥(X)! Hence the “full" projective description of weighted induc-
tive limits of continuous functions holds for o-growth conditions under

weaker hypotheses than for o-growth conditions.

Actually, in the sequence space Cas€ (see below), it turns out
that the existence of an increasing sequence J= (Xm)men of subsets of
X satisfying conditions (M,J) and (N,J) is indeed equivalent to
vC(X) = CV(X) topologically. But the Appendix to Part II of [9] contains
an example of a decreasing sequence V of strictly positive continuous

topological vector spaces:
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functions on a completely regular Hausdorff space X such that

VC(X)} = CV(X) holds topologically while there does not exist a sequence
J with (M,Jd) and (N,d). Hence the analogy between the sequence and
function space cases stops at

this point, and it seems extremely hard
(if it is possible at a1l in a

satisfactory way) to obtain a full
characterization of the topological identity pC(X) = Cv{x)!

. : ion
We now Teave the function space setting. The rest of this sectio
will be devoted to 3 study of sequence Spaces, and we will use the

terminology introduced at the end of Section 2. (Note that we have the

. - n
following correspondences between the notation of echelon and co-echelo

. =1
spaces and the one useq in the function space case: I index set + X
With the discrete topology, v-= (vn)n++ta k, = kO(V)++ VOC(X), K, =

K (V) = 7e(X), V=T(v) o ¥=§(p), Ko =KoV €V (x), and Kk =K (7)<«
CV(x).)

Let us first "translate" Theorem 3. -

3 in view of some results of
Section 2., we state it in slightly “expanded" form.

10.  Theoren, (a) Algebraically and topologically, KO==KO(V)s
V=VIY), s exactly the completion ky of k =k (v}, and k_=k(V)-
GylA)i= 01 s the ¢

always complete) bornological space associated
With K =k (V)= (a

' -1
l)b’ where A-(V;)n.

s a topological isomorphism
may be incomplete, and the inductive limit
can be strictly stronger than the topology of Koo

(b) We have the dualities (k0)$:=(
((KO)B)B, and the following assertign

The canonica] injection Ko > ke,
into. But, in general, k0
topology of k.,

Kodp =2y and K_= ((k)p)p
S are equivalent:
(1) (A =k,

(2) k = k, topologicaily,
(3) K. is barre]]ed/borno]ogical,
(4)

L distinguished.
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Next, we note that the sequence space case of Corollary 5.
(involving condition (S)) was already treated in Proposition 2.14.
And, in view of the duality theory of echelon and co-echelon spaces of
arbitrary order, as well as Grothendieck's results on quasinormable
Fréchet spaces (see the Appendix to Section 3.), Theorem 7. can be
strengthened for sequence spaces as follows:

11.  Theorem. Let A='(an)n denote a Kothe matrix on some index set

L v=_v ) vn==éL-, the associated decreasing sequence and V=V(V).
n

Then, for 1<p<e, the following assertions are equivalent:

(1) V is regularly decreasing; i.e., for each ne N, there i?')
a_(i

. . n

mxn such that, for every subset I of I for which  inf a (i7"
0 ieIo At

Vil 1) a (i) v (1)

inf >0, wealso have inf n__ = inf k-

>0 for all

k>m.

(2) Ay = Ap(A) is quasinormable.

(3) K= Kp(ﬁ) satisfies the s.M.c.c.

(4) kp= kp(V) is a boundedly retractive inductive limit.

(5)  k, =k (V) fis reguiar.

(6) k, 1is complete.

(6') k, =K, holds algebraically.

(6") k, s closed (or, equivalently, stepwise closed) in k_.

We remark that part of Theorem 11. was proved independently by

M. Valdivia (e.g., see [59]) and that Reiher [48] extended it to the
setting of *Dubinsky echelon spaces” (and to the general framework of

Kéthe function spaces).



124

Now, Theorem 11. provides a full solution to Question 1. of
Section 2., and, together with Theorem 10.(a), it also completely ~“>01.V‘3s
the part of Question 3. concerning ko and Ko' In order to deal with
Question 2. (and the gther half of Question 3., for k, and K ), we
formally define (cf. the first part of Proposition 8.):

12. Definition. A Kthe matrix A= (a_)

on an index set I or the
' i 1 e oion
associated decreasing sequence V= (Vn)n’ VoS3, satisfies conditio
n

D) if there exists an increasing sequence - (Im)meN of subsets of

I such that .
a (i)
(N,J) for €very meN, there is p 2m with inf m' =
; m iel ak(T)
v .(3) m
inf = ___ 59 for all

- k>n while,
ielm Vnm(‘) m

(M,0)  for each NEN and each subset 1 of 1 with I,N(INL )#P
a (i)
for all npeN, there exists n“=n'(n,1 )an with inf (.)=
. 0 iel an. 1
an(") 0
mf — =g
ier v (i)

Condition (D) is weaker than, but closely related to a condition
considered by Grothendieck [32] (in connection with the quasinormability

of X)). The part (M,J) of (D) should also pe compared with the
following condition:
(M) For each neN and each infinite sybset I, of I, there is
a_(i) v (i)
m=m(n,I )>n sych that  jp¢ N_° _ inf 0.
0 el a,(i) j¢1 v (1)
Clearly, (m) s weaker than (S), and it jis exactly equivalent
to Alz)‘l(” being Monte) (or reflexive); €.9., see Kothe [38]. On
the othep

hand, noting that, in the presence of condition (M), the
Index set | can at most be Countable, angd taking J= “m)meN to be
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an increasing sequence of finite subsets of I with I=LlIm, it is
m

easy to see that (M) = (D). Similarly, one can deduce that any regu-
larly decreasing sequence V= (Vn)n satisfies condition (D). - For a
more detailed discussion of (D) {and related assumptions), we refer to

19].

Here, then, is the complete solution to Question 2. of Section 2.

13.  Theorem. For an echelon space A;~ AI(A), the following asser-

tions are equivalent:

(1) The KGthe matrix A satisfies condition (D).

(2)  Each bounded subset of k_=X (V)=(x;)] 1is metrizable.
(3) A, is distinguished.

(3') ()} =K, equals k, topologically.

Probably since condition (D) is the weakest of all conditions ;br
Kothe matrices A==(an)n (or associated decreasing sequences V= ng)n)

considered so far, the proof of Theorem 13. (see [9], [10] and [11])
turns out to be quite hard. - One direction is easier: Translating

conditions (N,J) and (M,J) into topological facts for K_=X (V),
In view of Grothendieck's result
we have

one soon arrives at (1) = (2).
mentioned after Proposition 5. in the Appendix to Chapter 3.,
(2) =1(3) while (3) » (3') was already mentioned in 10.(b).

The converse, however, is not so easily accomplished and requires

a characterization of the Fréchet spaces with the following property
{introduced by S. Heinrich [34]).

4.  Definitiom. For a 1.c. space E, Tlet u(E) denote the system
of all closed absolutely convex 0-neighborhoods in E and B(E) the
collection of all closed absolutely convex bounded subsets of E. Then
E s said to satisfy the density condition if, for each function A:
WH+&HMam&mvHMLtM%MﬂaWM“mMIIM

U(E) and some BeB(E) such that
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n MUcsB+y,
Ueu

Heinrich notes that every quasinormable (and hence every (DF)-) space .
satisfies the density condition, but it is possible to find examples 0
reflexive Fréchet Spaces without this property.

, iz~
Now, taking polars in Definition 14. and using that, for a metr1t
able 1.c. space E, Ey has the {DF)-property, one easily derives tha

The following theorem provides a complete characterization of t:e
metrizable 1.c. spaces with the density condition (and, as all the sub-

3 em,
S€quent results, is taken from [11]). - In the statement of this theor

1 i re
we use the vector-valyed sequences spaces 1,(E) and 1,(E{)  (which a
defined in the canonical way)

15, Theorem, For a metrizable 1.c.
are equivalent:

(1) E

Space E, the following assertions

satisfies the density condition,

(2)  each bounded subset of EQ 1s metrizable,

(3) 11(E) is distinguished,
(39 1,05) = (108,
(3") 1,(e)

is barre]led/bornologica1,
satisfies the density condition,

(3") the bounded subsets of 1 (E') are metrizable.

At this point, the Proof of 13.(3) = (2) amounts to showing that
an echelon space A; satisfies the density condition if (and always-
only if) it is diStinguished, and this can be dgne by use of the equi-

ditions (1) and (3) of Theorem 15. Then, finally,
ruction (and involving a result frop [9]), the proof
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To achieve a better understanding, it is now useful to again study
echelon spaces Ap==xp(A) of order p, l<p<e or p=0. There the
situation is radically different from the case p=1: We know from
Section 2. that X is always distinguished, and all A~ for 1<p<e
are even reflexive. However, the equivalence 13.(1) « (2) remains valid,
and in view of Definition 14. and Theorem 15., it takes the following
form.

16.  Theorem. For an echelon space Ap= Ap(A) of order p, lgp<®

or p=0, the following are equivalent:
(1) A satisfies condition (D),

(2) Ap satisfies the density condition,

(3)  each bounded subset of (A)p= Kg (=kg) Ts metrizable, where

l-"'%dl for l¢p<» and q=1 for p=0.

P

Hence, condition (D) on the K&the matrix A should rather be
regarded as characterizing the density condition for A, = AP(A),
l<p<w or p=0 (and the equivalence of 13.(1) and (3) turns out to
be a “coincidence”). (This idea might also help to understand the fact
~ mentioned after Corollary 9. above - that "(D)" does not characterize
the topological identity vC(X)=CV(X).)

Finally, applying Theorem 16. with l<p<® (say, p=2), @

countable index set I (say, I=NxN) anda Ksthe matrix A on I
which does not satisfy condition (D) (in view of Theorem 13., we may

take A as in Proposition 2.10.{b)), we arrive at an example of a
separable reflexive (even hilbertisable) Fréchet space E (=KP(A)) such

that the strong dual E; is again separable, but contains bounded sub-

sets which are not metrizable.
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Notes added in proof (February 1988).

1. In the recent article "Dual Density Conditions in (DF)-Spaces"
{preprint, Paderborn and Valencia 1987), the author and J. Bonet solve
Problem 2. in Section 3. of the present article affirmatively. In fact,
it is shown that VC(X) 1is (not only the bornological, but also) the
barrelled space associated with the complete 1.c. space CV(X), and
hence is itself complete, whenever V= (vn)n is a decreasing sequence
of strictly positive continuous functions on a compietely regular kp-

R
space X. — The article also contains some other results connected with

our discussion in Section 4.

2. F. Bastin (private communication, Ligge 1987) gives various
reformulations of condition (D) (cf. Definition 4.12), respectively,
of the related conditions (N,J) and (M,J) (see Proposition 4.8).

As a consequence, she is able to derive a converse of Proposition 4.8

in a more restricted setting: If X is a Tocally compact and c-compact

space and if v-= (vn)n is a decreasing sequence of strictiy positiv?
continuous functions on X, then the topological equality vC(X)=CV(X)
does indeed imply that V satisfies (N,d) and (M,J) for a suitable
increasing sequence J==(Xm)m of closed subsets Xm of X. (As
remarked in Section 4., this converse is false if one omits the hypo-
thesis that X 1s locally compact and o-compact. )

3. Concerning countable weakly compact projective and inductive

Timits, M. Valdivia (lecture at the Oberwolfach Conference on Functional

Analysis, October 1987) recently proved the following interesting

result: A Fréchet space E is totally reflexive (i.e., every separated

quotient of E is reflexive) if and only if E is the countable projec-
tive limit of reflexive Banach spaces (which is equivalent to requiring

that its strong dual EE is the inductive limit of a sequence of
reflexive Banach spaces)

-
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