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In a previous paper! there was developed an approximation theory for the Green's
functions which gives approximations consistent with the conservation laws of the
Hamiltonian. We have chosen a concept of reduction which is different and which
leads to other approximations for the particle-hole Green’s function than the usual
concept of reduction. The particle-hole Green’s function is the function

P, tiaf (0)a,y(0) af (1) a (1)} |¥o>

where |¥,> is the real ground state and 7 stands for the time ordered products of

the operators.
Now, in this paper we want to give an example of an application of this theory.
We present a second order approximation since the first order approximation is the

well known Random Phase Approximation.

Introduction

We have considered the space £ of all linear operators in the space
of the many fermion systems. In £ there was a positive definite hermitian
metric defined. So we could define an operator G(z) in £ by its matrix
elements which are the Green’s functions. If 4, Be¥ then

(4] G(2) | B)=G 1(2)=(¥ol A" (H~Eo—2)"" B|¥o)
+(W,|B(H—Eq+2) 'A" [¥o).

H is the Hamiltonian
H=H,+V and H|¥y»=|¥eEp.

1 Beck, F., Fuchssteiner, B.: Approximation of Green’s function consistent with their
symmetries and conservation laws. Z. Physik 239, 276— 288 (1970).
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The unperturbed Hamiltonjan H,is
HO = Z HJ- a,-+ a,'
and the perturbation ¥ is given by

=1 tat
V=1 Z Vijklaj a; aga,.
i, ok, 1

G4p(2) is the Fourjer transform of the ysual f unction G, (7). The
particle hole Green’s function is the restriction of ¢ (z) onto the subspace
PL <= 8, where PQ s 3 subspace of the space of all particle hole operators
L.e. the linear Space which is generated by all:

a,-+ a,
where / denotes 3 particle with

regard to the unperturbed ground state
| %) and k a hole of Vice versa,

where the tilde denotes hermitian conjuga-
tion in €. The metric in £ induces metric in PE such that for all ai a,,

To the Green’s function

' (a) a,) G(1) |a} a,) contribute all graphs
which are linked with the ex

ternal lines in Fig. 1. The external inter-
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Fig. 1, General types of graphs
—

2 Thouless, D, .. The quantum mechanics of
’ Acade many-body- _ Kk
London: Academic Press 1961, y-body-systems New Yor



Application of Second Order Approximations 19

action line which binds a pair of external lines is called junction*. We
consider graphs depending on the time variable 7.

Definition 1. The exchange of a pair of particle-hole lines is a cut
of the lines at the point ¢=0, followed by a connection of different
lines resulting in a junction (Fig. 2).

| A~

Fig. 2. The exchange of two lines

Definition 2. By distinction of pairs we understand a distinction of
all pairs of lines for which the following conditions are fulfilled.

a) Both lines run through the same time intervall 4o.

b) The lines must not end up in a junction which connects them both.

¢) The exchange of a pair converts a connected graph into a dis-
connected one where each part has two junctions.

d) To each pair (ik) corresponds on operator € PL, i.e. the operator
a;t a,e PL where i and k are the indices of the two lines.

A pair of lines in the Fourier transform of a graph i.e. a graph
depending on z, is distinguished if it is dinstinguished in the graph
depending on 7.

Definition 3. A reduction of a graph is the exchange of a distinguished
pair.

Definition 4. A reduction of first kind leaves all distinguished pairs
distinguished except for the exchanged pair.

Definition 5. An irreducible graph is a graph which cannot be reduced
by a reduction of the first kind.

Definition 6. An irreducible graph belongs to the class {y,} if exactly
n different decompositions in irreducible graphs are possible. A decom-
position is an arbitrary number of reductions. Two decompositions are

equal if the set of reduced pairs is equal.

* In the following we shall only draw graphs linked with the external lines in Fig. 1a.
But, of course, with each graph like Fig. 1 a the graphs corresponding to Fig.1b,c,d,
also contribute to the various matrix elements.

2%
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With this concept of reduction an exact equation for G(z) was

derived G()=Go(2)+T'(2)G(2), (1)
F()=3 (1-n)y(). @)
0

Gy (2) is the Green’s function of the uperturbed system.

The matrix clements (g aq| 7" (z) lag a,) are given by the contribu-
tion of all graphs like Fig. 3a, which would be €[y.] if we closed the

lines (a, b) with a junction i.c. the graph in Fig. 3b has to be a graph
€[7,]-

T ¢4/ Nd
: )
a b
\/

Fig. 3a. A graph contributing to the

Fig. 3b. A graph e[y"]
matrix elements of ad

following rules,

Rule 1. Eqch vertex like Fig. 4 gives a factor 2y v,

bed-
a

P
c d
Fig. 4. Ap interaction line

Rule 2. There js 4 factor —
and for the z [ine. The lin
count in this ryle.

1 for each closeq loop, for each hole line,
hich are not closed do not

crossing the section,
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Approximation of I'(z)

In this chapter we shall approximate I'(z) by all graphs of first and
second order in 7 which are contributing to the sum (2). These graphs
contributing to (ai a,| I'(z) a3 a,) are shown in Fig. 5* All these

(a) (b} (c)

{f)

Fig. 5. Graphs contributing to the second order approximation

* We did neither draw the exchange terms of these graphs nor the graphs con:eqund-
ing to Fig. 1 b, c, d. But of course these graphs do contribute to our approximation,
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graphs are elements of [70]. According to the graph rules we get the
second order approximation

(a2 ;1T (2)] a5 ay) (3)

523V4l,11_514V21,t3 S(I,2) V42,13
B LA LI A AL Y ]
! all holes (Z+H1‘H2) (z+H,~H,)

1 S(1a4,cb2)614 Viaes Vebsa
abe (Z+H1—Hz)(Z+H1+Ha~HC—Hb)

S(lbcs 3(12)523 Vcbla V4acb
(Z+H1—H2)(Z+HC+H5"H¢1—H2)

V. V.
+ Sl 4’3b2 4abl Y234 o
g (e ){(Z+H1—Hz)(z+Ha+H4—Hb—H2)
+ V4ab1 I/IJZ?H:I
(Z+H1‘Hz)(Z+H,,+H1~H,,-H3)
V. V.
+2.8(1a3,4p2 4ab1 ¥p213,
"Zb ( ){(2+H1-Hz)(Ha+H3~Hb—H2)
+ V4ab1 Vbz3a
(Z+H1_H2)(Hb+H1“Ha"H3)

5148(11)0’ b23) VZacb I/cbfia
ahe (H2+HQ“H,J—HC)

1 |
A—— 1
{(Hb+HC—H3—HG) * (z+H1—H2)}
+Z 5235(104,(31)2)]/

chla V4ach

ahc (HC+Hb‘—Hl——-Ha)

1 I
N ———— e
{(H4+Ha"Hb“Hc)+(Z+H1“H2)}
S(a,b)and § (abec, def) is defined by:

4 particle and b denotes 4 hole 4)
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The lines of Eq. (3) are in the same order as the graphs in Fig. 5. The
approximation (3) is a consistant approximation in the sense of '. Let
us assume that |¥,> and |®,) are eigenstates of an operator 7=T"
for which the conservation law [H, T]=0 holds. We denote by ¢(T) an
hermition operator in £ such that @(T) A=[T, A] for all Ae¥. Let
{1,, be the projection operator on an invariant subspace ¥, < £ with
regard to ¢(T), i.e. p(T) Ae®,, for all A€L,,.

Now, if [P, I1,]]=0 where P is the projection onto the subspace PR
then it holds the conservation Jaw

[[(z), 11,,]=0. (3)
Since G (z) is given by (1) we have
[G(z),1,]=0. (6)

If (5) and (6) are valid for all invariant subspaces A4, with regard to
@(T) then
[F(2), o(T)]=0

[G(Z)a QD(T)] =0 *

The validity of the conservation law [G(z), I1,,]=0 for the approximated
G(z) depends only on P2 not on the order of the approximation. That
means if the conservation law is fulfilled for the first order approxi-
mation (Random Phase Approximation) then it holds for all higher
order approximations.

The poles of the Green’s function in the z-plane give us the excitation
energy of the considered fermion system. The poles of G(z) which are
different from the poles of G,(z) are identical with the zeros of the

determinant

Q)

Detpo(I-T(2))=0 (8)

where the determinant is taken over an orthonormal basis in PX. This
procedure is well known from the theorie of systems of linear equations.
If PIT, =1, P=0 then the validity of Eq. (5) and (6) makes it sure that
no matrix elements (4| I'(z) | B) and (4| G(z) | B) resp. contribute to
the zeros of I'(z) and the poles of G(z) resp. if 4 or Bef,, generates an
excitation of 7, of the eigenvalue of 7.

For an easier calculation we assume in the following that

1 |
- ~0
ZU+H4—Hb_Ha—"Hc H3+Hb—Ha_Hc (9)
1 1 0

zo+H,+H,—H,—H, H,+H,—H,~H,
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where z, is the zero of (8). This approximation holds if lhe c‘xcitation
energies of the system do not differ very much from the excitation ener-

gies of the unperturbed system. With this assumption Eq. (3) has the
form

(a3 a,|T (z)| a5 a,)

923 Vary —6,4 Vzr:3+ SU,2) Va5
—== AL _"Tta Taus 9L 2) by,
L all holes (20+H1—H2) (20+H1_H2)

+Z S(1a4,cb2)614 Vaacs Vebsa
abc (20+H1‘H2)(20+H1 +H,—H.—H,)
S(lbc,3a2)523 Vebta Vaacn .
(20+H1“Hz)(zo+Hc+Hb—Ha“H2,)
S(1a4, 3b2) Vi b
— 2" "%/ Taab1

+
av  (2o+H, —H,)

. V2b3a + I/b23a }
=
(ZO+H(1+H4-—Hb"'H2) (ZO+Hb+HI——Hﬂ-_H4)

Ly SUa3.4b2)v,,,, (10)
22785302 Vagps
ab (ZO+H1"H2)

_ { b23q + Vias,
T e Y230
(HQ+H3_-Hb—*H2) (Hb+Hl_Ha-—H4)

8,4 S(1be, al3v,

V
+ ach Vchig

4+Hb_Hc_Ha)

AY K2 2
Hgpy= 2, P 1
SH r +2 (1)

T e ——
3 Elliot, J. p Lane, A M.

- S A.M.: The nuclear shell-mode]. Handbuch der Physik,
Bd. XXX1x. Berhn-Gﬁttingen-Heide]berg: Springer 1957,
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For the *He we assume* A4 =1.31 fm then we get
£=24 MeV.
For the perturbation interaction we choose

V(r,e,,65,7,,715)

= V(r){0.334+0.036, - 6,—0.117, - 7, —0.116, - 6,7, - T}

where & is the spin-operator and t is the isospin-operator. This inter-
action is the so called Soper-mixture. V(r) is assumed to be a GauB
potential

V(r)=Vye 247,

We have calculated the zeros of Det (/—I'(z)) for total angular momen-
tum J=0 and total isospin T=0.1. For P2 we have taken the space of
all particle-hole operators which are scattering particles between the
first two shells. |¢,) is the state containing four particles in the first
shell. Our calculation shows that there are excitation energies which
do not differ very much from the excitation energies of the unperturbed
system. Therefor one has to investigate if these excitations are given by
a center of mass motion.

The Spurious States

In shell model calculation we have always trouble with the motion
of the center of mass, since we have assumed a fixed origin of the shell
model potential V. For the center of mass motion” we have the
Hamiltonian

NA*R? , P°
HS__'Em R+§mN

where N is the operator of the number of particles. R=) r/N is the
i
coordinate of the center of mass and P=Y_ p; is the momentum of the
i

center of mass motion. There hold the conservation laws
[H, Hg]=0, [Hsy Hs]=0.

All states which differ from the ground state in the eigenvalue of H
are unphysical states. But it is often difficult to eliminate these states

4 Elton, L. R. B.: Nuclear sizes. Oxford: University Press 1961.
5 Baranger, E., Chong Wan Lee: Spurious states arising from the centre-of-mass
motion of a nucleus. Nucl. Phys. 22, 157— 163 (1961).
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since H, is not a one particel operator, i.e. a rfprfsentanon ot;c H, “1/2
the terms of second quantization has terms ai ay a,a,. There or :
have generally [p(Hy), P1+0 if P9 consists only of one particle opi{ra
tors. That means that we must investigate the spectrum of ¢ (H)).

From® we see that the eigenvectors e ¢ of o(H,) are given by products
of A7 and 4,

j iNm
A+____(P+_11_‘Vﬁ_n1__gR), Ahz(P— h ER)

It holds .
[Hs, A" ]=cd™*, [Hs, A" ]=—cA~.

A" and A" are elements of 3 Tépresentation of the rotation group Wl_th
J=1. For £ we take an orthogonal decomposition =2, 08 @9,
where 2, is generated by the 4;" and £, is generated by A7 (i=1, 27 3).
L and € are invariant cupspaces with regard to ¢(H,) since
P(H)a=exif 5eQ, and P(H)p=—¢p if pel, .
IEIT and 1T are the projections onto Ly and £, resp. then it holds
that

PI=11P=0, Pli<=fip—g

because P is g projection onto gz subspace with /=0 and I, IT are
projections onto subspaces with J= 1 Of course most desirable W(_)Ul_d
be if [P, ©(Hg)]=0 but since Hy is not a one-particle operator th{S 1S
impossible. So we have seen that there are no single spurious excitations
contributing to the poles of G(z) but there may be contributions from
multiple spurious excitations. This result is not surprising since one
already knew that single spurioys excitation wouyld not contribute to
the poles calculated with the Rand0m-phase~approximation.

Calculation of ‘He Excitati

In order to have an easy calculation we shall consider as particles
only the states in the I p-shell. Th

en for the reason of parity conser-
vation the graphs of Fig. 6 are zero. That means that the second line
of Egs.(3) and (10) vanishes. 1p Eq. (10) each index stands for the
following set of indices

on Energies

=
(=R
0
fou
o
. B
=
aq
—
=
(¢’]
e
&
3
=
—
&
e,
n

l, denoting the orbit an

M, | denoting the third com

Sz | denoting the third com
; .

13
[
(14
=
=
=
]
=
[¢]
g
—
[N
S
g
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=NV

Fig. 6. Graphs vanishing because of parity conservation

In PQ we perform a transformation of the basis

arg
ls
mg

sg

Ry

Ly g, 35, J Mg, mg, 5,5 g M)
- (g> =Mg, jar Mo 100)(3, 255 2 1|11 )(—p Mttt

The brackets (j, m,j’, m’ |JM) are the Clebsch-Gordan coefficients in
the standardisation of Fano-Racah®. This transformation corresponds
to the reduction of the basis vectors of P2 into irreducible tensorial sets.

Let us choose in the space of all two-particle states the following
basis

Mo Sge tae M x [
mgsgtgMpg |mg

Sx

|a=ﬁ9ja7jﬂstsr3): Z a[-a

Lo

Ia,ﬁ,_]a,_]ﬂ,J,M,T,T3>= 2 ¥ o 'P’,B
My Sy b My Iy ig

?ﬂﬂSﬂfﬂMﬂ My mg

Sa S8

tx 15

- (lou My, %’ Sa[.jaa Afar)(lﬁ’ hg, %s SﬂljBMB)
' (jcz’ Masjﬂ’ MﬂIJM)(%a las %.'tﬁlrr_’,)'

Where the ¥ are orthonormal wave functions of the shell model states.
For getting the matrix elements of }” we can apply the Wigner-Eckart
Theorem.

<a7ﬂﬂj11jﬁ7‘]5 Ma T, T3| Vla,: ﬁ”ja’yjﬁ’vJ” j\/ffs T,: TI3>

_mV(oc g o f J ‘c) _ Oyy Oppap 07T OT3T5
Ja Jp o Jp V2T +1)/ 27 +1

Antisymmetrisation of the reduced matrix element gives us

w(*FE

Ja Jp Jo Jp
’ 7 iyt o I4 “r
zv(‘f‘ B X B J,t)—{—(—l)’““ﬁ y v(, ﬁ ﬁ _ J,r).
Ja Jﬁ Ja' Jﬁ’ Ja .]B J,B' Ja

6 Fano, U., Racah, G.: Irreducible tensorial sets. New York: Academic Press 1959.
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We recouple I
- / 4 /—h~‘—'~_—————~——.:*_
W(O.! ﬁ O.[ B J,r)= ]/(2J+1)(2J+1)(21+1)(21+i)
Ja Jg Ju Jp 7

SURRANE: %mc_‘/_j":".gf,%}
Ja Jg J 1l Ja Jp Jx Jp
where the large brackets denote the 6-j.

symbols of Wigner in the stand-
ardisation of Fano-Racah®.

Now, if we calculate Zy

from the Eq. (10) and from

Detpo(I —T(2))=0
we get

2
z§=82+% (P2+2Pa-|-2M2~— [S+%]

. (12)
———
il/;{-(P2+2Pa+2M)2— [s+%] ~M*4+2MPe
where we used the following abbreviations
2211 -~ 1122
M?= W( J’") W( J )
T ( T
P(z)=(21+1)“%w(f : f %0,1’
Fl % 2z 2
111 2112 )
0,0} +4Ww 0,0
4 (%H% )4 (—%%%%
. z (13)
— “l T+ ‘% % T
0(7) %}Z;( ) {% 1

_ 2211
SO=(2v+1) *W( 0, r)
SRR
€=H2—H1=24 Mev.
I denotes the 1-s-
the reduced matri
-—-—'_"———_.‘_

7 Talmi, |- Nuclear Spectroscopy with harmonjc
Physica Acta 25, 185

-P-shell. Taking from Talmi’
8 the terms ( 13) for the chosen
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Hamiltonian we get
=0 =1
M?*=0.006 V2  M>=0.006 V¢
P=—0.15V, P=-025V,
S=—-0015V, S=-0.065V,
0=-0.009VZ Q=0.04V;.

Considering z, as a function of V, we see that the terms of higher than
linear order in ¥, are very small for reasonable V(] Vo|<50 MeV).
For V,= —40 MeV we get the following excitation energies.

Table

Zm Zo2 ZrRPA

0 24.2 30.5 30.0 [MeV]
1 24.2 34.0 34.0 [MeV]

Zppa 15 the result of the Random Phase Approximation for the same
Hamiltonian
22pa=(e+P)* 5.

We see that the excitation energies which differ very much from & are
nearly the same as the excitation energies calculated with the Random
Phase Approximation. But as a result of the second order approximation
we get also excited states whose excitation energies are almost 24 MeV.
For the conclusion that these states are not spurious with respect to
the center of mass it was indeed necessary to show that single spurious
excitation does not contribute to these poles since the energy contri-
bution of a single spurious excitation would be also 24 MeV. However
the physical meaning of the second excitation energy shall not be
discussed in this paper.

Dr. B. Fuchssteiner

Mathematisches Institut

Technische Hochschule Darmstadt
D-6100 Darmstadt, Hochschulstrale 1
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