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Konvexe Mengen und ein Satz von TITCHMARSH

Von

BENNO FUCHSSTEINER

E. C. TrrcamarsH hat gezeigt, daB fiir integrable Funktionen u, v mit kompakten
Trigern die abgeschlossene konvexe Hiille des Triigers der Faltung u x v gleich der
Vektorsumme der abgeschlossenen konvexen Hiillen der Triger von u und v ist.
Gewohnlich wird der Beweis dieses Satzes funktionentheoretisch gefiihrt. Nach einer
Idee von Ryri-Narpzewskl [3] vereinfacht sich der Beweis jedoch erheblich fiir
u = v. In diesem Spezialfall kann man auf funktionentheoretische Hilfsmittel ver-

zichten.
In dieser Arbeit wird ein Beweis des oben erwdhnten Satzes vorgelegt, der auf

einer einfachen Eigenschaft konvexer Mengen in lokalkonvexen Vektorrdumen be-
rubt. Benutzt man die Giiltigkeit des Theorems von Titchmarsh fiir  x u, so fithrt
diese Betrachtung konvexer Mengen direkt zu einem Beweis des Satzes im allgemeinen
Falle.

1. Ein Satz iiber ahgeschlossene konvexe Mengen. Es sei E ein lokalkonvexer Haus-
dorffscher topologischer Vektorraum. Ist A7, A2 ¢ E, so schreiben wir:

A1+A2={m+y:x€A1,yeAg} mit A1+ﬁ:ﬂ

Mit ¢4,) bezeichnen wir die konvexe Hiille von A;.
Fiir abgeschlossene 4 c E gilb folgender Satz:
Satz 1, Die beiden folgenden Bedingungen sind dquivalent:
a) A ist konvex.
b) Wenn X,cE (n=0,1,2,...) mt
l) XU C A,
i) 3 eine beschrankte Menge B C E, sodaf XncA+ B Vn = 0,
iil) 2X, c Xp-1 -+ Xnn1 Vn 21,
dann gilt: Xp,c 4 Yn 20
Wenn 4 = 0, so ist der Beweis trivial, da dann Xp
annehmen, daB A nicht leer ist.
. Wir fixieren zwei beliebige Punkte E,ned und setzen:

Xo=A,Xa=AUE+n} mzl.

— @ ¥n = 0. Wir konnen also

Beweis b) = a)
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Damit gilt i), i) und iii). Also ist auch (€ 4 n) € A. Hieraus und aus der Abge-
schlossenheit von A4 folgt sofort, daf A konvex ist.

Beweis a) = b): Es seien die XncE (n=0,1,2,..) Mengen, fiir die i), ii)
und iii) gelten. Ohne Beschrinkung der Allgemeinheit kann B als absolutkonvex :in-
genommen werden. Fiir 7 = 0 sei 7, — Inf{t >0: Xou---u Xn cA+ tB-}, E-l”St?
T0=0,7 <7y und 7, <1. Da B absolutkonvex ist, schlieBt man mit 1il):
270 S Ta1 + Tyu1, oder Tn — Tu-1 S Tasg — T4 Y2 = 1. Mithin gilt:

m=Dn—7)<1—1 Vi <l<n.

Daraus folgt 7, = 0vn >0, Sei nun V¢ g eine belichige Nullumgebung, dann

1 :
existiert ein § > 0 mit Bc BV, auBerdem gilt: X, cd 7 BcdA + V. Damit
erhalten wir 4 = 4 — n(A + V)> X, ¥a 20,

v

2. Der Satz von Titechmarsh-Lions, Wir wollen im folgenden Multiindizes verwenden.
Als Multiindex ¢ in R» bezeichnen wir ein n-Tupel von nichtnegativen ganzen Zahlen
(@1, 22, ..oy an). M2 ist die Menge der Multiindizes in R”, Wir schreiben :

T = 2t 2 e gtn Vae M 2eRn,
d\u [ 3 \n 0 \aa

Da:(?x—;) '(5;;) '“(_a?,:) VaeMny

ol =a1+ay 4o g, Vae .

Es sei G(R") der Raum

R" versehen mit der Topolo
ist:

der beliebig oft stetig differenzierbaren Funktionen auf
gie, die durch dje Halbnormen o (k=0,1,...) gegeben

o 0klg) =D sup | Dxg|  Ypegmay,

le| <k

C'(R") ist der Raum der stetigen linearen Funktionale tiber E(Rn). ¢'(Rr) ist
dann der Raum der Distribut

ionen mit kompaktem Tréger [1, p. 11]. (u, ¢) bezeic'h-
net den Wert des Funktionals 4 ¢ €'(Rn) angewendet auf @ € G(R"). Supp(u) 1?13
der Triger von 4. [st ¢ € C(R") und a€R?, dann sej Pa: Fa(r) = @(a — z). Fir

VueE'(Rn), VpeG(Rn),

u * @ ist aus €(Rn). Fiir %, v € '(R") kann man nun die F&ltung wie folgt definjeren:

Uky: (u*v,xp):(u,vg*tp) YpeG(Rn).
Fiir den Triger von 4 %y gilt dann wie liblich:
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Satz 2, Fiir u,ve G(R") ist die konvexe Hiille (= abgeschlossene konvexe Hiille)
des Trigers von w % v gleich der Vektorsumme der konvexen H iillen der Trdger von u
und v:

(Supp (u %)) = (Supp()> + (Supp(v)) -

Im folgenden wird dieser Satz als eine Anwendung von Satz 1 bewiesen. Wir be-
ginnen zuerst mit Funktionen mit kompakten Trégern. Co(R") bestehe aus den
stetigen Funktionen auf R*, die kompakten Trager haben, und C (R*) aus den stetigen
Funktionen auf R*.

2,1, Die Faltung u * u fiir u e Co(R").
Lemma 1. Ist we C(RY) mit u(x) =0 fir & <0< T, und ist
(wxu)(x) = fu(x —u)dt=0 Vo< 2T,
dann tst u(x) =0 Vo< T.

Der recht einfache Beweis dieses Lemmas von C. RYLL-NARDZEWSKI ist enthalten
in M1kUSINSKI [3, p. 20].

Wir fixieren nun in R# (rn >> 1) einen beliebigen Einheitsvektor 1.

Fiir u e Cy(R7), g € C(R™) setzen wir:

ug: up(t) = [ o u@do@),
{z:z, A>=1}

wobei (z, 1) das innere Produkt der Vektoren x und 7 ist, und die Integration iiber
die (n — 1)-dimensionale Hyperebene {x, 4) = t geht. Es ist damit ug € Co(R?Y).

Es sei nun u,veCo(R?), und ¢eC(R") sei eine Exponentialfunktion, also:
¢x+y) = ¢(x) p(y) Vz,y e R*. Man kann sich leicht iiberzeugen, daf dann fiir die

Faltung u v gilt: ug * vy = (4 * v)o.
Lemma 2. (Supp (u % u)> = 2{Supp(u)> Yu € Co(R").

Beweis. Die Inklusion c ist klar.
Wir nehmen nun an: & € 2¢Supp(u)) und & ¢ (Supp ( * u)). Dfl gSupp(u *u))
konvex und abgeschlossen ist (siehe etwa VALENTINE [5, p. 40]), existiert nach dem

Trennungssatz von Hahn-Banach ein Finheitsvektor A2 € R® mif
(A E > (A Ve {Supp(usku)).

Wir setzen: Max (4,7 =27 und <4, =27 also 7> T. Wenn nun ¢

. ne{Supp (s*u)} .
eine beliehige Exponentialfunktion ist, dann folgt aus (u%u)p = Ug* Ug, dab

(Ug % ug)(f) = 0 Vi > 27T. Fir tp: ug(t) = te(T — ) gilt also g(t) =0 V£ <0
und (g % ig)(f) = 0 Vt < 2(v — T). Daraus folgt mit Lemma 1, daf @(t) =0
Vt < 1 — T, oder auch ug(f) = 0Vt > T.Da dies fiir alle Exponentialfunktionen ¢
gilt, folgt aus dem Satz von Stone-Weierstrass (Yosipa [6, p. 9]), daB u(x) =0 Vx
mit (4,z> > 7. Damit gilt dannim Widerspruch zur obigen Annahme : £ ¢ 2{Supp (u).
Also haben wir (Supp (i 1)) > 2{Supp (u)>-

2.2, Die Faltung u * v fiir u,v € Co(R")- Es sei u,v € CO(RT’) und a, f € M. Wir
setzen: vy : vy (r) = 2% - v(x), e B (x) = xP(ve * u)(x). Dann gilt Supp (va) = Supp (v)
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und  Supp () = Supp (v, * u). Weiter ist bekanntlich Supp(a % 5) c Supp(#) +
+ Supp(5) Va,7 e Cy(Rn). |
Es sei f € M" mit | 8] = 1. Bekanntlich gilt dann die Produktregel:
wB(0%0) (1) = (g% ) (2) + (G ag)(x) V&, deCo(Rn).

Damit erhilt man folgende Gleichung:

(1) (varg*u) % (vyyg%u) = By % (Varg* u) — hg+ﬂ * (Vo %) + (vys0p %) % (Vg % 0).

Es sei nun S, = Supp (v, * u). Fir 2 ¢ R? mit (Vatp % u) % (Vgig % 1) (2) + 0 folgb
aus Gleichung (1) z e S, - Soutp U Sut2p. Mit Lemma 2 erhilt man dann:

28418 C2{Sy1g) = (Supp (Vs ) & (Vg5 % w)) € (S, + (Sa+g U Sus2p) -

Setzen wir: X, = (US“) V=0, also X, = {So», dann sind die X, abge-

lx[<n
schlossen und durch ein von 5 unabhéingiges B beschrinkt, denn X nC <Su]9p (u»‘i
1 (Supp(v)> Vn =0, auBerdem gilt: 2X,c X, + Xua1 ¥Yn = 1. Mit Satz

schlieBt man nun: X, c CIYES (Supp(v*u)> ¥n > 0, oder auch: S, c (Supp (?’ *U))
Vo. Es sei nun ¥ c R eine offene Menge mit ¥ n {Supp (v % u)> == 0. Dann ist

V 0y Supp (vy % u) = ¢ Va, oder [o()u(x — Hi*dt =0 YoaeMr, Yxel.
Mit dem Polynom-Approximationssatz von Weierstrass ergibt sich dann
v ufe—t) =0 VicRn, Yac V.
Da V offen ist, folgt schlieBlich Supp (u

+ (Supp (v)) c <Supp (v % u)>.
Wir haben also bewiesen :

) -+ Supp (v) c (Supp (v #u)>, oder (Supp (u)> -+

Ptz 3. Supp (v )y = Supp(u) + (Supp)) Va, oe Co(R7).
2.3. Beweis von Satz 2. E sei V{a, 8
a € R mit Radius 4 > ¢, C(a, &)
Funktionen mit Tréger in ¥ (q, d)

J={2:]z—a| < d} die Kreisumgebung von
sei die Menge der beliebig oft differenzierbaren
- Fir u e G'(Rn) gilt dann bekanntlich:

GESUPP(u) = ulp, 0+ 0 Y5 0,

wobei |y, 5) die Restriktion von auf G(a, 0) ist. Diey ist gleichbedeutend mit:

GESUPD(u) = 9 G(0,5)  mit (Wxp)(@) =0 Vo= 0.
. -_“_—‘n——_“

Sei nun Ty(u) = g_}d?upp(u* ?), wobei die Vereim'gung iiber alle e €(0, 9)

Fel (0,

gehen soll. Es gilt:

SUPP (1) + ¥(0, 3) > 7', (u)

> Supp(u).
Daraus ergibt sich :

Do To(u) = Supp(u) vy € E'(Rn).

Wir betrachten NUD % % 0% @ % p i ?, ¥€C(0, ) und u, v e €'(R). Da u x g C(R?)
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und v %y € € (R#), erhalten wir mit Satz 3

{Supp (w vk @ #p)> = (Supp{u* ¢)> + (Supp(v*y))-
Daraus folgt:

(Supp(u#v)) + 2V (0,8)2(Ts(u)y + {Ts(v)).
Die Bildung des Durchschnittes iiber alle § > 0 liefert dann:

{Supp (u %v), 30(\0 ((To(u)y + <{Ts(e)3)2 (ﬂ Ta(ﬂ)) + {ﬂ Ts (v)) -

4>0
Also gilt:
{(Supp (u % v)) > (Supp (u)> + {Supp(v); .

Aus Supp (u ) c Supp (1) + Supp(v) folgt dann die Behauptung von Satz 2.

Diese Arbeit wurde wihrend eines Aufenthaltes am California Institute of Techno-
logy in Pasadena geschrieben. Der Aufenthalt ist durch ein Stipendium der Deutschen
Forschungsgemeinschaft ermdglicht worden. Herrn Professor Dr. H. KNI aus
Saarbriicken bin ich fiir seine Hilfe und fir zahlreiche Hinweise zur Verbesserung der
Beweise auBerordentlich dankbar.
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