Bemerkungen zu den Minimumsätzen von H. BAUER

Von

B. Fuchssteiner

Ist Ψ eine Menge unterhalb stetiger Funktionen auf einem kompakten Raum X mit Werten in $\mathbf{R} \cup \{+\infty\}$, so machen die Minimumsätze von H. BAUER Aussagen über Mengen $L \subset X$, so daß die $f \in \Psi$ auf L ihr Minimum in X annehmen. Eine solche Menge ist zum Beispiel der Choquet-Rand von X bezüglich Ψ .

In der vorliegenden Arbeit wird ein einfacher, allgemeiner Satz angegeben, der die verschiedenen Minimumsätze als Spezialfälle enthält.

1. Ein allgemeiner Satz. Im folgenden sei X ein kompakter Raum und Ψ eine Menge unterhalb stetiger Funktionen auf X mit dem Wertebereich $\mathbb{R} \cup \{+\infty\}$. K sei eine beliebige nicht-leere, kompakte Teilmenge von X. Für $f \in \Psi$ bezeichnen wirmit f[K]:

(1)
$$f[K] := \{x \in K \mid f(x) = \inf_{y \in K} f(y)\}.$$

Da unterhalb stetige Funktionen auf kompakten Mengen ihr Minimum annehmen, gilt $f[K] \neq \emptyset$, außerdem ist f[K] kompakt und $f[K] \subset K$. Sei $\Phi \subset \Psi$ und ϱ eine Wohlordnung von Φ und $f_0 \in \Phi$ das minimale Element bezüglich ϱ , d.h. $(f_0, f) \in \varrho$ $\forall f \in \Phi$.

Wir definieren induktiv:

$$K_{f_0} = f_0[K],$$
 $K_f = f\left[\bigcap_{\substack{(\tilde{f},f)\in\varrho\\f\neq\tilde{f}}}K_{\tilde{f}}\right] \quad \forall f\in \Phi\setminus\{f_0\}.$

Aus der Kompaktheit von K folgt, daß die K_f nichtleere kompakte Mengen sind. Weiter setzen wir:

$$K_{\varrho} = \bigcap_{f \in \mathcal{O}} K_f$$

K ist wieder nichtleer und kompakt. Außerdem gilt für alle $f \in \Phi$

(2)
$$f(x) = f(y) \quad \forall x, y \in K_{\varrho}.$$

Durch vollständige Induktion sieht man leicht, daß für $x \in K_{\varrho}$ und $x \in \tilde{K} \subset K$, K kompakt, gilt, daß $x \in \tilde{K}_{\varrho}$. Es sei nun \mathscr{W} die Menge aller Wohlordnungen von Ψ . Wir setzen

 $B(K) \stackrel{\mathrm{def}}{=} \bigcup_{\varrho \in \mathscr{W}} K_{\varrho}.$

Satz 1. Jedes $f \in \Psi$ nimmt auf B(X) sein Minimum in X an.

Beweis. Wir fixieren ein beliebiges $f \in \mathcal{\Psi}$. Es gibt dann eine Wohlordnung ϱ von $\mathcal{\Psi}$, so daß f minimales Element von ϱ ist. Also $X_{\varrho} \in f[X]$. Mit (1) ergibt sich $f(x) \leq f(y) \ \forall x \in X_{\varrho}, \ y \in X$. Aus $\emptyset \neq X_{\varrho} \in B(X)$ folgt dann die Behauptung. \blacksquare Es gilt folgende Charakterisierung von B(x).

Satz 2. $x \in X$ ist genau dann Element von B(x), wenn für jede kompakte Menge K mit $x \in K \subset X$ entweder ein $f \in \Psi$ und ein $y \in K$ existieren mit

$$f(x) = \inf\{f(z) \mid z \in K\} < f(y), \quad oder \quad \varphi(x) = \varphi(y) \; \forall \; y \in K, \; \varphi \in \Psi.$$

Beweis. Aus der Konstruktion von B(K) sieht man, daß für $x \in B(X)$ und $x \in K \subset X$ (K kompakt) folgt $x \in B(K)$. Damit folgt unmittelbar die Notwendigkeit der obigen Bedingungen. Wir nehmen nun an, für ein festes $x \in X$ sei die obige Bedingung erfüllt, und wir betrachten die Menge \mathscr{F} bestehend aus allen Paaren (Φ , ϱ), so daß $\Phi \subset \Psi$ und ϱ Wohlordnung von Φ ist mit $x \in X_{\varrho}$. \mathscr{F} wird mit folgender Ordnungselation ausgestattet:

$$(\varPhi,\varrho) \prec (\varPhi',\varrho') \Leftrightarrow \varPhi \in \varPhi' \text{ und } \varrho' \text{ Fortsetzung von } \varrho \text{ ist.}$$

Diese Ordnung ist induktiv. Sei (Φ, ϱ) ein maximales Element in \mathscr{F} . Es sind nun alle $f \in \Phi$ konstant auf der kompakten Menge X_{ϱ} . Für $\Psi \setminus \Phi \neq \emptyset$, gäbe es auf Grund der Annahme ein $g \in \Psi \setminus \Phi$ mit $g(x) = \inf_{y \in X_{\varrho}} g(y)$, dann wäre aber

$$(\Phi \cup \{g\}, \varrho \cup \{(f,g) \mid f \in \Phi\}) \succeq (\Phi, \varrho).$$

Dies widerspricht der Maximalität von (Φ, ϱ) . Also ist $\Psi = \Phi$. Damit ist alles bewiesen.

Bemerkung. Ist X eine konvexe kompakte Teilmenge eines lokalkonvexen Vektorraumes E und ist Ψ die Menge der stetigen reellen linearen Funktionale in E, so folgt aus Satz 2, daß B(X) eine Untermenge der Extrempunkte von X ist. Mit dem Satz von Hahn-Banach folgt aus Satz 1 dann unmittelbar der Satz von Krein-Milman.

Man kann nun die diversen Minimumsätze [1], [2], [3], [6] mit Satz 1 oder auch mit Satz 2 beweisen. Wir wollen dies an zwei Beispielen zeigen.

2. Ein Minimumsatz von H. BAUER. X und Ψ seien wie eingangs definiert. M sei die Menge aller Radonschen Wahrscheinlichkeitsmaße auf X. Jedem Punkt $x \in X$ wird die Menge \mathcal{M}_x zugeordnet.

$$\mathcal{M}_x = \{ \mu \in \mathcal{M} \mid \int_X f \, d\mu \leq f(x) \, \forall f \in \mathcal{Y} \}.$$

Der Choquet-Rand Ch(X) von X bezüglich der Funktionen Ψ ist die Menge aller Punkte $x \in X$, so daß alle $\mu \in \mathscr{M}_x$ von $\{y \in X \mid f(x) = f(y) \ \forall f \in \Psi\}$ getragen werden. Lemma 1. Ch(X) $\supset B(X)$.

Beweis. Sei ϱ eine Wohlordnung von Ψ , $x \in X_{\varrho}$ ein festes Element und $K \subset X \setminus X_{\varrho}$ eine kompakte Menge. Wir betrachten das Minimum φ bezüglich ϱ von folgender

Menge $\Phi = \{ f \in \Psi \mid X_f \Rightarrow K_f \}$. Φ ist nicht leer. Es gilt dann: $\inf_{y \in K} \varphi(y) - \varphi(x) = \alpha > 0$. Mithin folgt für alle $\mu \in \mathcal{M}_x$

$$lpha \mu(K) = \int_K \alpha d\mu \le \int_K (\varphi - \varphi(x)) d\mu \le 0$$
.

Also gilt für alle $\mu \in \mathcal{M}_x$ und alle kompakten $K \subset X \setminus X_{\varrho}$ $\mu(K) = 0$; d.h. μ wird von $X_{\varrho} \subset \{y \in X \mid f(x) = f(y) \; \forall \, f \in \mathcal{Y}\}$ getragen. Mithin $x \in \operatorname{Ch}(X)$. \blacksquare Aus Satz 1 folgt sofort:

Satz (Bauer). Jedes $f \in \Psi$ nimmt sein Minimum auf X auf dem Choquet-Rand von X an.

Im allgemeinen gilt jedoch nicht B(X) = Ch(X). Dafür ein einfaches Beispiel.

Beispiel. Sei $X=\{a,b,c\}$ ausgestattet mit der diskreten Topologie, und sei $\mathcal{Y}=\{\varphi_1,\varphi_2\}$, wobei $\varphi_1=\{(a,1),(b,2),(c,4)\}$ und $\varphi_2=\{(a,4),(b,2),(c,1)\}$. Dann ist $B(X)=\{a,c\}\in \operatorname{Ch}(X)$. Wir wollen feststellen, ob $b\in \operatorname{Ch}(X)$. δ_a , δ_b , δ_c seien die Punktmaße auf X. Jedes $\mu\in \mathscr{M}$ hat die Form $\mu=\alpha\,\delta_a+\beta\,\delta_b+\gamma\,\delta_c$ mit $\alpha,\beta,\gamma\geq 0$ und $\alpha+\beta+\gamma=1$. Wenn $\mu\in \mathscr{M}_b$, so folgt: $\alpha+2\beta+4\gamma\leq 2$, $4\alpha+2\beta+\gamma\leq 2$. Mithin $\beta=1$, also $\mathscr{M}_b=\{\delta_b\}$ und $b\in \operatorname{Ch}(X)$.

Von W. HACKENBROCH wurden mir die folgenden Sätze mitgeteilt.

Satz (Hackenbroch). Wenn Ψ punktetrennend ist und $\{f+g \mid f, g \in \Psi\} \subset \Psi$, dann $gilt: B(X) \subset Ch(X) \subset \overline{B(X)}$.

Beweis. Lemma 1 liefert die erste Inklusion. Mit den Voraussetzungen ist $\overline{\operatorname{Ch}(X)}$ bekanntlich der Silov-Rand von X bezüglich Ψ [4]. Nach Satz 1 ist aber $\overline{B(X)}$ ein abgeschlossener Rand, mithin haben wir: $\overline{B(X)} \supset \operatorname{Ch}(X)$.

Korollar. Wenn $\Psi \subset C(X)$ und $\{f+g \mid f,g \in \Psi\} \subset \Psi$, dann gilt für $\operatorname{Cl}_{\Psi}(B(X))$, die abgeschlossene Hülle von B(X) in der Ψ -schwachen Topologie, da β $\operatorname{Cl}_{\Psi}(B(X)) \supset \operatorname{Ch}(X)$.

Be we is. Wir betrachten die Äquivalenzrelation $\pi = \{(x, y) | f(x) = f(y) \ \forall \ f \in \Psi \}$ und die natürliche Abbildung $\nu \colon X \to X/\pi$. X/π ist kompakt unter der Quotiententopologie und $\Psi \in C(X/\pi)$. Für die abgeschlossene Hülle $\operatorname{Cl}_{\Psi}(B(X/\pi))$ von $B(X/\pi)$ in der Ψ -schwachen Topologie, die gröber als die Quotiententopologie in X/π ist, gilt nach dem angeführten Satz $\operatorname{Cl}_{\Psi}(B(X/\pi)) \supset \operatorname{Ch}(X/\pi)$. Man sieht aber sofort, daß $\nu^{-1}(\operatorname{Cl}_{\Psi}(B(X/\pi))) = \operatorname{Cl}_{\Psi}(B(X))$, und eine einfache Anwendung des Hahn-Banach Satzes ergibt $\nu^{-1}\operatorname{Ch}(X/\pi) = \operatorname{Ch}(X)$. Daraus folgt dann $\operatorname{Cl}_{\Psi}(B(X)) \supset \operatorname{Ch}(X)$.

3. Satz von Ky Fan. Eine Spezialisierung der Minimumsätze von Bauer ist der Satz von Ky Fan. Wir wollen ihn als Beispiel für die Anwendbarkeit von Satz 2 benutzen. Sei X, Ψ wie eingangs definiert. Von Ψ wird noch vorausgesetzt, daß Ψ die Punkte in X trennt. Man sagt, $x \in X$ liegt zwischen z und y ($x \in [z, y]$), wenn: $[(f(x) \le f(z) \land f(x) \le f(y)) \Rightarrow f(x) = f(y) = f(z)] \ \forall f \in \Psi.$

Ky Fan nennt einen Punkt Extrempunkt von $X (x \in E(X))$, wenn für alle $z, y \in X$

mit $x \in [z, y]$ folgt: x = y = z.

Beweis. Sei $x \in B(X)$ und $y, z \in X$ mit $x \in [y, z]$. Wir betrachten $K = \{x, y, z\}$. Aus $x \in [y, z]$ folgt, daß es kein $f \in \mathcal{Y}$ geben kann, welches auf x ein echtes Minimum in K annimmt. Mit Satz 2 folgt dann, daß alle $f \in \mathcal{Y}$ konstant auf K sind. Da \mathcal{Y} die Punkte von X trennt, erhält man: x = y = z.

Auch hier gilt im allgemeinen nicht, daß B(X) = E(X). (Beispiel in Abschnitt 2.) Daraus folgt sofort mit Satz 1:

Satz (Ky Fan). Jedes $f \in \Psi$ nimmt in E(X) sein Minimum auf X an.

Herrn Dr. W. Hackenbroch und Herrn Prof. Dr. H. König von der Universität Saarbrücken möchte ich für ihre Hinweise und Anregungen herzlich danken.

Literaturverzeichnis

- H. BAUER, Minimalstellen von Funktionen und Extremalpunkte. Arch. Math. 9, 389-393 (1958).
- [2] H. BAUER, Minimalstellen von Funktionen und Extremalpunkte II. Arch. Math. 11, 200 bis 205 (1960).
- [3] H. BAUER, Supermartingale und Choquet-Rand. Arch. Math. 12, 210-223 (1961).
- [4] H. BAUER, Silovscher Rand und Dirichletsches Problem. Ann. Inst. Fourier (Grenoble) 11, 89-136 (1961).
- [5] W. HACKENBROCH (private Mitteilung).
- [6] Ky Fan, On the Krein Milman Theorem. Proc. Symposia pure Math. 7, 211-219 (1963).

Eingegangen am 21. 1. 1970*)

Anschrift des Autors:
Benno Fuchssteiner
Mathematisches Institut
Technische Hochschule Darmstadt

^{*)} Eine Neufassung ging am 4. 1. 1971 ein.