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having a special topology
uences of isotone functions
The main result states

additional property with

(b igdtt}(l)ls {)aper we obser.ve that lattices
seom o P}:) Cfgy) to_gether with monotone seqt
the o ave an important Qlace in ar‘131y31s.
existence of certain open ideals having an
respect to the given sequences.
Examples for lattices of this kind are amon

nvex subsets of a compact convex set in

g others:

1 () The compact co
a locally convex vector space, and
dom (2) the subadditive functionals on an abelian semigroup
ominated by a fixed subadditive functional.

As application of our main result we do prove that any compact

convex set X in a locally convex vector space is the countable convex
hull of any countable family of compact convex subsets containing
all extreme points of X. The same is proved for p-convex sets. As a
second application, we find that given 2 sequence ( py) of subadditive
functionals on an abelian semigroup S and a subadditive functional =
SuChv that every extreme point of A =1{lv additive on S, v < m) 18
dominated by some p, then every element of A 15 dominated by 2
COufltable convex-combination of the p, -

The second result leads to a new proof of Choquet’s theorem for
cones of functions and to several generalisations of this result.

1. SomeE REMARKS ABoUT LATTICES

lattice. The greatest element of X 18

Let (X, <) be 2 complete
6. The bands of X are the sets of the

?enote:d by I, the smallest by
ollowing kind [10, p. 12]:
[b] _:___.{xEX|xéb}'
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378 BENNO FUCHSSTEINER

A set F is called an ideal if 2, , 3, €. % implies 2, v 2,6.% and
3 < zeF implies 2’ € F. For a < b and a +# b, we write a < b.

We want to introduce some new notions, We call a topology on X
a band topology if for a <= b there is a band [o] which is a neighborhoo'd
of [a] and which does not contain b. We do say b is extreme to a if
bv x > a implies always x > a. In general, this relation is not
symmetric. However, for Boolean lattices, this means the same as
saying that b and « are disjoint. For 4, B C X, we call

Ex(A,B) = {ac A |bis extreme to a for all b € B}

the extreme set of A with respect to B.

Now, consider some band topology on X some quasicompact 4 C X
and a countable subset B = {b, | ne N} of X such that v Ex(4, B) =
T > @. Furthermore we assume that we have a monotone sequence
(¢n) of isotone functions X — X, (ie, ppiy = @, = idyanda = b =
Pnl@) = 9, (b)Vn e N), such that for all neN, ¢, (x) > T implies
x > T. Finally, an ideal # is called an g-ideal if el F} C FVneN.

THEOREM 1. There exists an open gp-ideal F containing B such that
AF =+ &,

Proof. By induction we show that we can choose a sequence (4,)
in X with Ex(4, B)\[¢,] # @ such that for all n, [g,..] is a neighbor-
hood of [,(g, v b,)].

Let ¢, be equal to @. Now, assume that we have chosen the g (n < m)
up to a number m. By definition of the extreme set, we obtain
Ex(4, B\[g,, v b,] = Ex(4, B)\[g,] . Thercfore, [g,, v by,] does
not contain 7. This implies 7'¢ [g,(g,, v b,)]. Now, using the
properties of our band topology, we can find a suitable g,, ., - This
completes the induction argument. Let S, be the open kernel of [¢,];
then we have [g,] C Su+1 Vn e N, This means that # = ,en [9n) N
Uren S, is an open ideal containing B. For n’ € N and b € %, there 18
some m" € N with m’ > ' such that be{q,]. Therefore, ¢,(b) <
PG v b,) € [9,21] € #. S0 % has to be an p-ideal. |}

II. p-Convex SETs

Let E be a locally p-convex Hausdorff vector space (0 < p < 1)
That means O e E has a neighborhood-base consisting of p-convex
sets, where 4 C E is called p-convex if a, be A implies aa + Bb € A
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for all o, B >> 0 such that o? + g7 = 1. For p = 1, this gives the
usual convexity notion, a € A is called extreme-point of A if for all
a,q€Aand 1 > o, 8 > Osuchthatcxal—i—ﬁag:dandap +p2 =1,
we have ¢ = a, = a, . Every nonempty compact set in E has at least
one extreme point ([3, 4]). A subset F of 4 is called a face of A if for
flﬂ a,,a,€ A, aay -+ BayeF with 1 > o, > 0 and of + p7 =
implies a, , a, € F.
Now, let K be a nonempty compact p-convex subset of E and
(X, C) the complete lattice of compact p-convex subsets of K. We
consider in X the topology which has the sets W, ={LeX|LC S}
as a base of its open sets, where S can be any open p-CODVEX subset
of E. Since L, € X is the intersection of all open p-convex subsets of £
containing L [4, p. 173], this has to be a band topology. For nonempty

Ly,L,e X the join is given by:
LovI,— {aa+fblaf =0 acly,bely,o? + 8 =1

Let B = {K,|neN} be a countable set of compact p-convex
subsets of K such that every extreme point of K is contained in some
K,, and let A4 = {(x)lx€ K}, where (x) denotes the closed
p-convex hull of {x}. Of course, forp = 1 we have {(x) = {x} a~nd for
0 <p <1 (&) is equal to {Ax] 0 < A < 1} since 21-1/p5 € {x)
whenever & e (x>, It is easily seen that 4 is quasicompact. 1fICK,
then we denote by F(I') the maximal face of K disjoint to T, that 1s,
the set of all xc K such that x = oz + By with zel, yeK;

O‘»B}/Oandcx?-f-ﬁp = limpliesaio.

LeMMa 1. For every x € K there are B = 0, « =0, yekK, and

2 € Unen Kn such that x = ay + ﬁz and o + pr = .
Proof. We define L, € X by

A | , o !
=Y By (B2 00 2 O 17 2 " T
msn mgn

xmeKm,yEK

and Btobe{L, | ne N}.F = K\(Unen L,)is a face equal to F(UnenKa)»

and by the definition of the extreme set we get Ex(4, B) D {(x | % eF}.
which proves our Lemma

We claim that v Ex(4,B) 5 T = 9>
since it implies F = zg 1’\Tow:1 Seassume T2 & and define a sequence
(9,) with the desired properties by

Pa(L) = {aa —|—ﬁb|aeL,bET,a> inm, =0 o + p? =1}
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Theorem | gives us an open g-ideal % which contains B and whick
has a nonempty complement with respect to 4. This means tha
H-—={xeK|{x)eF} is an open p-convex subset of K which
contains {J,ey L, and has a nonempty complement ¥ — K\H. And
for any o > 0, 8 = 0 with o? + p¥ =1, we have oH | BFCH
since # is a g-ideal. This implies that X is a nonempty face of K
because of X' C F. Now, the compactness of X gives us an extreme
point of X which has to be an extreme point of K not contained in
Unen K, . This is a contradiction to the fact that every extreme point
of K is contained in (J,,, K,. 1

THEOREM 2. Let K bea compact p-convex subset of a locally p-convex
Hausdorff vector space and {K, | neN} a countable set of compact
p-convex subsets of K such that every extreme point of K is contained in
some K. ; then every x € K may be represented as

X =Y az2,,

nely

where X ; 03 <p € Kn y and Zner‘\\l O‘-np - I; i-e-’ every pOint xEK
15 @ countable p-convex-combination of points in Unen K, -

Proof. We consider in RV the pointwise order relation and the
topology of pointwise convergence and we define | f| = 3 ,on | f (”)1:

for fe RY. Let Y be the compact set of nonnegative elements f of R
such that | f{ < 1. We consider the map

Y X T =V xKx (le_!\;Kn)%—*K
given by:

(fs = xy, Xy, XNy ,e) > (1 — | fDVe =+ Z f(m)x,.
neli
If xe K, then we call feY a representation for x if the image of
{f} X T contains x. Lemma | gives us a representation [ with
| /1 > 0. Since the representations for x are a compact subset of Y,
we can always find a maximal representation f with respect to the
order of R™. Our theorem js proved if we can show that |f[ = I
If (2%, x,, X3,...) > %, then we take a representation g of 2
such that | g | > 0. Ope easily calculates that he YV given by A(n) -
[(f(m)) + (g(m)ye(1 — | fDI'? is again a representation of x. h i
strictly greater than fif | f| < 1. That contradicts to the maximality

of f. I
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F - .
Bangz }11." ti'l_ [, this theorem was already proved in [6] using the Hahn-
b eorem countably many times. There it was also shown that
eorem is closely related to Choquet’s theorem.

III. APPLICATION TO SEMIGROUPS

OnL;.T: i(LZ’, —;) be an abelian semigroup and 7 @ subadditive functional
s > t.) " mapping S —> [--co, + o[ such that: n(ns) = nn(s) and
latti(;e of \a\IIW(S)b—}— W(t) Vs, 1€ fg’ neN. Let (X, <) be the complete
order on S ’SIl‘lh addltw(? fuqctlonals <, where < 18 the pointwise
s o X. en the join is defined by (a v b)(s) = max(a(s), b(s))
s )——)-’__ afld se S. The smallest element © of X is the functional

%0. We take the weakest topology on X such that the point-

ev i :
: j};atlons given b-y the elements of S are continuous mappings on
, +oo[. This is a band topology and

call this topol X is a compact space.-We
on X o pology the weak S-topology. By S we denote the functions
given by S.

i 7he set of additive functionals in X we de

COnVereSPECt to the weak S-topology since every u
I ges to an element of A.

. no(: us briefly recall the notion of

fllnctiempty compact space and ¥ a

o SCQ)I?.S on £ separating the points 0
n Q is called a representing measure for x

note by A. 4 is compact
ltrafilter on A

the Choquet-boundary. If Q1s
family of upper semicontinuous
f Q, then a probability measure
cQifforallfe ¥,

0[9 Fdo = f().

T

x gzch()guet-boundary Ch(Q) (with respect to ¥) is the set of those

is th such that the Dirac-measure 8, (the measure with support {x})
¢ only representing measure for x. The Choquet-boundary is not

empty ({5] or [I, p. 46]).
exgow’ 1et-K be a nonempty com tof A peKis called an
o (eme point of K if for all v, ,v€K and 1 >a >0 such that
Clle;)1+ (1 = o) vo(s) = pls) Vse S, we do have v =12 = p.
to S.l: Yy, every element of the Choquet-boundary Ch(K) with respect

is an extreme point. That proves that K has always extreme points.

onI:;tfx be an extreme point of A; then any Fe];.)resenting measure o
other or x with respect to S has a support c?n51st1ng of only one .pomt,
wise a would be equal to 2 nontrivial convex-combination of
E;Oléabﬂ_ity measures on 4, their integrals would bf’ additive functiox}als

, giving a contradiction t0 the fact that x 1s an extreme point.

pact subse
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So the set of extreme points of A4 is equal to the Choquet-boundary
of 4.

We have proved ([7, Corollary to Konigs theorem]) that 4 has the
following property:

(*) fpe Aanda,be Xsuchthatu < a v b, thenthereisal > « =0
such that u < oz + (1 — a)b.

Now, we consider a sequence ( p,) in X such that for every extreme
point x of A4 there is some 7 with x < p,, .

Lemva 2. For every p € A, there arene N and « with 1 = o >0
such that p < op, + (1 — o).

Proof. We use the same arguments we gave in the proof of Lemma .
We define g, to be V {(I/n)p,, + (1 — l/n)n|m < n} and B =
{g, | neN} and F to be the set of e 4 such that there are no
1 2 a>0and neN with p < ap,, + (1 — a)m. As a consequence
of (*), we obtain that u is an element of F if and only if there are no
1 =B >0and neN with u < B¢, + (1 — B)=. From this and (¥)
we get F C Ex(4, B). Furthermore, the definition of (g,) implies that
F is the complement of I' = {x € 4 | x < ¢, for some n} in 4. We
claim that V Ex(4, B) =, I' = 6, which proves our Lemma. We
assume T' > O and define a sequence (¢, by:

Pa(¥) = Vi + (1 = )T 1 = a = I/n} Vxe X (where 0 - (—0) = 0)-

‘Theorem 1 gives us an open ¢-ideal & containing B such that 2 =
A\F is a nonempty subset of F since # DI Forall 1 = a >0,
we have a + (I — o)F C F since F is an g-ideal, that implies
aF 4 (1 — )2 C F, ie., every extreme point of 2 has to be an
extreme point of 4. Such an extreme point exists since X is nonempty
and compact. Because of X' C F, this gives a contradiction to the fact
that for every extreme point v of 4 we have v < p,, for some 7.

Another property of A4 is the following ([7, Theorem 3]):

(**) Ifpedanda,beX,0 <A < 1withp < Aa + (1 — A)b, then
there are y; , py € A such that u, < q, pe < b,and p < Apy + (1 — A

From this we obtain

TH.EOREM 3. Let S be an abelian semigroup and w a subaddz:ﬂ:ﬂe
Junctional: S — [— 0, 4+ o[ and {p. | ne N} a family of subaddz.tt_‘ve
Junctionals on S such that for any extreme point v of A = {u | p additive
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onS, p < 7 .
it g = ;T, there is some p,, = v. Then for any p of A we have Ay =0
nefl Ny T 1 and My € A with Hn g Pn such that

# < Z Am”‘n.:

nelN

l'.e. ever - .
’ v u € A is dominated by a countable convex-combination of the p,, .

P - _

Theoram 2 wh Ordge | and its topology is the same 2 in the proof of
’ ere I —

upper semicontinuous rniipzi:-mgl‘\l Fln) For every 2 §, we define an

pet ¥ > [—o0, oo by f—> (1 — [fDmls) + X f()2(5)

ifsecz) r;;zziled ':11 re:presentation for p e Aif p(s) < p{ f Vs € S. Since Y
e and since the p, are upper semicontinuous, we can find a
Propert (*Iires.entatlon f (with respect to the order of Y) for p€ 4.
e th};t ) gives us the existence of g, fi, € A with p, < p,Yn€N
represemagof (1 f_ |f~!)ﬁ + S o f () p, - By Lemma 2 there 1s a
Pty g for f with |.g| ~ 0. Now, if |f] <1, then
than 7. Tt )¢ is a representation for p which is strictly greater
Which' at contradicts to the maximality of f. Therefore | f| = L,
proves the theorem. [

L
et E be a real vector space, {Pn | NE N} a bounded family of

subli .

By glljlear functlonals on E, and A = {u | p linear, p < suppen( Pu))-

o b S(;rvqﬂg that an additive functional g, < Px with p,(0) = 0 has
inear and that » < # for linear functionals implies v = ¥,

we obtain:

Co . : :
ROLLARY 1. If every extreme pounl of Ais dominated by some Py
linear functionals

then , . .
. <an_} p € A is a countable convex-combination of
n < p, (meN).

IV. CHOQUET'S THEOREM
n the last chapter:

S - .

onag abelian semigroup, 7 subadditive on S, and 4 = {pl 1 additive
, i < =} equipped with the weak S-topology.

n. Let C(4) be the [— %, 4 oof-

f course, S is a subset of C(A).

Consi ] ) )
onsider the same situation as 1

ValLet us first introduce some notatio
It ued CO.IItlnuous functions on A. O
P < = is subadditive on S, then

Hf) = suplfl@)|acda<tt V€ Cc(4)
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is subadditive on C(A). If P is a set of subadditive functionals on S,
then P denotes {pipe Pl Fora subsemigroup T ofﬁC(A) £/ denotes
the restriction of $ to 7 and P, shall be { p/r | p € P A functional s
on T is called order-preserving if ¢, , t, € T' with tp) < tz(,u)Vyd.G. 4
implies »(#,) < v(ty), A, is the set of order-preserving add1t¥ve
functionals v on 7 such that w(t) < #(t)Vt e T. Of course, A, contains
A A; s compact under the weak 7-topology and it is ordered
under <, where v; <{ v, means vi(t) < vy(t)V € T. For any ve A,
Zorn’s lemma gives us a v e Ay being maximal with respect to < such
that v < 7. ¢4, denotes the set of extreme points of A, and Ch,(£)
the Choquet-boundary of a compact 2 C A, with respect to L C T.
In the last section we showed ¢4, = Chy(4,). .
Now, let M be the cone stable for the pointwise-maximum operation

generated in C(4) by § and the constant functions. We can state the
following remarks.

N
Remark 1. aA‘w — (aA)/‘w .

Proof. We have 4,, — Chy(4,,). This set is equal to Chg(A4y)
since the Choquet-boundary does not change by going from a set of
upper semicontinuous functions to the max-stable cone of functions
generated by them and the constants ([1, p. 47] or [8, Satz 3])
But 4,,,; (restriction of A\ to S) is a subset of A, and by the sandwich
theorem ({7, Cor. LL1]), there is for any ue 4 a i € A, such that

—

# < fiyg . That implies Chg(4,,) = Chg(4),,, and finishes the proof
since ¢4 = Chgy(4).

Remark 2. 1f  1s 2 maximal element of A,,, then there exists 2
unique probability measure m, on A such that

ph) = [ hdm, vhe .
“A

Proof. Let F be the finite-valued functions in M. Then p has a

.

unique additive extension fito F — F. This extension is order-preser-

ving since f; — g, > f, — 8:(/1,f2, 81,8 € F)implies u( f,) + u(gs) >
#(f2) + u(gy), and therefore we have

alfy — £y) = m(f) — mg) = p(f2) — p(g2) = i fo — £)-

That means 7 is positive on G = F — F and therefore continuous
with respect to uniform convergence. The Stone~Weierstrass theorem
tells us that G is dense in the set of finite-valued functions in C(4), so
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positive Borel measure with

there is a uni il
que probability measure 7
m,(A4) = 1) on A4 such that: 3

[ fam = up) VIEF

For A i
e M is the set F, = {(feF|f(a) = h(a)Va € A4} downwards

direct ‘
cted. From this and the fact that fi is order-preserving, we obtain:
u(h) < infGa(f) | feFa} = | hdm..
A

No ..
w, the maximality of p gives us equality. i

THEOR
EM 4. For every p€ A, there1s a probability measure m, on A4

with ,§
[,§dm, > p(s\Vse S such that for all f€ C(A), [fdm. 1

domin
ated by a countable convex-combination of Pl f) for any sequence

5, f?])w"]; ;;tbadditifz{e functionals on S having the property that for every v
reme points 0A of A (Choquet-boundary of A), there is some 1

with p,(s) = v(s) Vs € S.

element pe; in Axr such that
Remark 2. Then Remark 1
s dominated by 2 countable

Pr
Yo oof. For p e A, we choose 2 maximal
" \;t{:l Is - .Let m be the measure given by
Cogn ! er Wlth.Theorem 3 implies that g, 1
ex-combination of the P, /s, 1-€
TS Z Amﬁn/M' ()

nel

B :
y the sandwich theorem ([7, Cor. 1.1]), there is an additive order-
< Ojum and & <

%reservn}g functional 8 on C(A) such that g

gi:;an A};@ Pg . The maximality of p; implies py = 8, » SO the measure

cince thy _has to })e m. That means m, = ™ has the desired properties
e inequality (*) implies

[ fam< 3 2l V€ c). 1
t Q be a compact set,
ous functions on Q,
also the Choquet
¥), and let 2 be
asurable.

for a special case. Le

Le :
t us rephrase this result
r semicontinu

b4 )
ChaQset of point-separating UpPPc
(©) be the Choquet-boundary of £ (which is

:’;’“ndary with respect to the cone Sy generated by
¢ least o-algebra on £ such that all functions in ¥ are me

580/17/4-3
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THEOREM 5. (i) Letxe Qand A D Ch($2) be an F,-set. Then ther
18 a probability measure o, , on 2 such that opa(A) =1 and[,q@do, , >
q:(x) V(p eV

(i1) Let x € Q; then there is a positive X-measure o, on Q suck

that o(B) = ¢,(Q) = | for all ChQ)C BelX and Jopdo, =
p(x) Vo e,

(i) If all oW are continuous, then for x < Q there &5 a
probability measure o on Q such that o(A) = 1 for all F,-sets, A D Ch(£)
and [, ¢ do, > p(x) Vo e P.

Proof.  For compact K we denote by py the subadditive functional
defined on the upper-semicontinuous functions fon K by pel f) =
SUp,ex f(x). Let S, be the cone of upper semicontinuous functions
on £ generated by ¥ and X - {n | w additive on S, , p < paf-In X
we consider the weak Sg-topology. Of course, £2 is a subset of X.
We have ¢X C Ch(£2), because by the Hahn--Banach theorem, there
is for any xe X a representing measure supported by £ (compare
[7, Konig’s theorem]).

Now, (i) is proved by the following argument: Let
Ch@)CAC K,

nelNy

where the K, are compact. According to Theorem 3, xis dOminaFed
on S, (and therefore on #) by a countable convex-combination
Yuen A Py of the Px,- By the sandwich theorem, there is 2
representing measure 0. 4 for x such that Jof do, <3, en A Pxﬂ(f)
Vfe C(X). This certainly implies HAUnen K,) = o(Q) — 1.

According to Theorem 4, there is for x € X 4 representing measure
m, on X for x such that for any sequence of compact subsets K, of X
with (J,., K, D Ch(£2), we have 1 countable convex-combination of
the p; with:

| Fdme < Y ape(h)  wper, )
= nely
That means m, is supported by any Baire set of X containing Ch(Q)-
Now, (ii) is proven by the observation that 2 C{B N Q| B Baire set
in X}and by taking for ¢, the measure defined by o (B N Q) = my(B)
for all Baire sets B i X.

(i1) follows from (*) and the fact that 2 is a compact set with
respect to the topology induced by X if all ¢ € ¥ are continuous.

Remark.  (iii) implies that for all x € Q, there is a representing

measure o, which lives on the Baire sets containing the Choquet-
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bou T

contlilgf;?; SOf 1{? (1, -U-leorem 5.23]). That the maximal measures for

boundare . ralrle living on the F.-sets containing the Chogquet-

Q1 ;70 . fwe —known if ¥ is a group of continuous functions
, p. 30]); for a semigroup, this statement seems to be new.
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