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DECOMPOSITION THEOREMS

Benno Fuchssteiner

The countable-decomposition theorem for linear functionals has become
a useful tool in the theory of representing measures (see [4-71).

The original proof of this theorem was based on a rather involved
study of extreme points in the state space of a convex cone. Recently
M. Neumann {9] gave an independent proof using a refined form of
Simons convergence lemma and Choquet's theorem. In this paper a )
(relative]y) short proof of an extension (to a more abstract situation)
of the countable-decompositicn theorem is given. Furthermore a decom-
Position criterion is obtained which even works in the case when not
all states are decomposable. A1l the work is based on a complete
characterization of those states which are partially decomposable
with respect to a given sequence of sublinear functionals.

PRELIMINARIES

For making this paper self-contained we gather first some of the
material which will be used in the sequel. F = (F,+,<) denotes a
Preordered convex cone, i.e. < is reflexive and transitive and

f.Sg

i 0o <A, ER (i=1,2) = N fl + Azfz S Agp t 229,

i =N

Functionals are maps p : F - R where R = RU {- o}

0(- %) is defined to be o and the other algebraic operations are
extended to R in the obvious way. In the set of functionals we
consider the pointwise order on F, this order relation is also
denoted by < . Linear (sublinear, superlinear) means positive-
homogeneous (i.e. p(xf) =2rp(f) vai=o, fE€ F) and additive
{subadditive, superadditive). A functional p is called order-pre-
serving if £ > g = p(f) 2 p(9).
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2 FUCHSSTEINER

SANDWICH THEQREM ([31 ): Let p be 2 sublinear and orderpreserving
be - 11 is a linear
i uperlinear. Then there is a lipear
functional and Tet 6 <p be sup
order-greserving v with 6 <y < p.

As usual, a subset ¢ < F is called downwards directed if for
fs € ¢ there is always some h €06 with h<f and h < g .

, ; let
LEMMA 1: let p he 2 sublinear order-preserving jggg&lgﬂél_iﬂ!_glé
dow s di is a Tinear order-preservin
¢ < F be downwards directed. Then there is a
¥ < p such that inf w(f) = inf p(f) .
feo feo

PROOF: Let ¢ = inf p(f)
feo o

5(9) = suptra|x » 0. 3f €0 with »f < g}. From the sandwic

theorem we get a linear order-preserving v owith 6 < pu<p.

u has the desired Property because of inf6(f) o . m
feg

and define a superiinear & < p by

. ; d
SUM THEOREM (cf. [3] of (81) : Let u be a linear functional and
2 _INEOREM et 2= 2 llnear -

- i i functionals
let P, bea Sequence of order Eiiserv1ng sublinear funciiondls

: s

such that for al1 f € F the sum ¥ P (f) converges in R and 1s
T T — T T el T
z u(f). Then there are order-EreserVing linear functionals ¥ = Pn

m
such that f o 14p inf ¢ (f) is linear and =TI
M>@ p=] N -

< n - Now, we Prove the theorem for
n=1

o feri > o instead of F. The fu11 result is then

() = - = forary . 1,2,... and ¢ € R\ -
Let F be the cone of sequences [f ]

obtained by putting

F- for which there is
H

some g (depending on [fn]lsuch that f

have a
k’fk+1’fk+2"" do
common uppep bound.
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FUCHSSTEINER 3

In F we consider the order relation:

[fn] < [gn] - fn £ 9, vneN

And we define a sublinear order-preserving functional = on F and
a superlinear & < mw by:

n p(F) if £ = f=f von, keN
n{(f 1) = 1im sup 21 Pyt 8(If 1) =

Mmoo n=
- o otherwise

By the sandwich theorem and Zorn's lemma there is a maximal linear
order-preserving v with 8§ <v <w.
Define Ak([fn]) = (o,o,...,o,fk,o,o,...) (everywhere o except fk

at place k) and

o(If 1) = Vim inf

m —» co

v Ak([fn]).

x
M3
—

Then o s superlinear. Considering the following inequalities we

obtain p > v

m
(1) lim inf ¥ v, (IF0)+
m-o k=1

+ Vim sup v((o,o,...,ofm+1,fm+2,fm+3~-~)) z v (If 1)

m — oo

(2) 1im sup v{(0,...,0,f f ) s

m — oo

m+1’ me2?

A

Tim sup w “op.qo,fmd,GHT-n))S

m - o

A

lim sup (lim sup

m-> o n-—-w©

x X
"M
E:] =

p(fi)) =

--J
1im sup = p(f) = 0,
m->o k=m

A
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4 FUCHSSTEINER

itable k).
(where f is a common upper bound of fk’fk+1"" for a suit )
Because of 5 < n the sandwich theorem provides a 1inear order-
preserving U with v<p <3 <n | Therefore the maximality of v
implies v = p = 3 . Now,we define e (f) = v A ([£1)
(where [f] = (f.f.f,...)) and we obtain the desired result. B

TINITE DECOMPOSITION THEOREM: Let u be a linear functional and_
let Pps---sPp be sublinear such that u(f) < max(py(f),...,p,(f))
for all feF . Then there are Apreeesd 20 and linear

n
t
Ul""’un with < Ak =1 and W < Pys k=1,...,n such that
T k=1 ‘
n
sz A u
k=1 K Tk
PROOF:  We may assume u(o) = o, otherwise uf) = -= vFfefF
and the theorem is trivial. On the cone
= -{pysup i}
F=r 1 n

we consider the sublinear p(g) = Eup(g(pﬂ,-~-9(pn”
and the superlinear 8(9) = sup{ w(f) | FEF with f<g}l thre
¥ denotes the function Pi > pPi(f)s i =1,...,n. The order in F

. m
shall be the pointwise order on {Pl,...,Pn) . By the sandwich theore
there is a linear order-preserving voon F owith 6<v< p-

Let £; be the function P; > 1 and Pp = 0o for k #1.

Now, put . = {e5 ) then Aj 2 0 (since v s order-preserving)

n
and 3z

X -1 and
i=1 1

<
—
A

p(l) < 1). And we obtain

n n -
w(f) <6 (f) < v(f) = v( ¢ pP;(f) €) inf oy (= maX(Pi(f)"k)sﬁ
i=1 keN i=1

n n
= dnf {(x (g, max{p.(f),-k . p. .
vy Ty V() max(p (F),k) I A py(f)

i=1
. . n .
Application of the sum theprem to Aipi gives the desired

1
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FUCHSSTEINER

COUNTABLE DECOMPOSITION

let I €F with I > o0, where I >0 means I 20 butnot I <o.
(F,I) is called order - unit cone if for every f € F there is an
n€N such that f = nl. By SI we denote the sublinear functional

f - inf{rerR I rI €F, f<rl}.

S; s called the order - unit functional.We say that (F,I1) contains
the constants if F o {rl{ r €R }. Obviously we have then

S{{I) = - $;(-I) = 1, or equivalently Sy(rl)=r VreER.
Furthermore

p(f+rI)=p(f) +r vIifEF, reRr
for any sublinear p < SI' This is an easy consequence of the sub-

Tinearity of p and the linearity of S$; on the constants R I.

Of course, subtraction is not defined in F, but we shall write
f-heF if there isa g€ F with h+g-="*.

If not otherwise mentioned we consider from now on the following:

SITUATION: (F,I) 4s an order - unit cone containing the constants.

S =S, is the order-unit functional on F and p < S is a

sequence of sublinear order-preserving functionals.

BE!ABE: This situation is rather general. Let for example G be a
cone and let A€ G with Go {rAl r € R}. If w is sublinear on
G with mw(rA)=r Vv ré€R then

f<g e3heG with m(hy<o and g+ h ="

I is an order-unit with w = SI'

i

is a preorder on G such that A
And every sublinear functional p < w is order - preserving .

We need a simple convergence lemma.

LEMMA 2: Let A,z 0 with 2“ A, = 1, then néNAn pn(f) converges
n

in R forall feF.



6 FUCHSSTEINER

PROOF: For r = S(f) we have

1

m
m 1 o (r+2)
zl A, po(f) = A Pplf - (r s 2)1) + noy n
n=

Tma
0

- that
Now, the convergence (in R) of the sum follows from the fact

1 is < o forall n.m
An pn(f - {r + n)I) is <

inear or
OF course, this lemma holds for any sequence [m ] of Tin
sublinear n, < S.

: to
A linear u <S s said to be decomposable (with respect

i z 0 and linear . =< p with
(pn)n en ) if there are oz n n

: i be
Z 2 =1 such that BoSOToaw - ¥ is said to
nen " neEN
. v with

partially decomposable if there are &£ >0, n and linear 1“’;
€<1,yx< Py V<S such that M<ev+ (1-g) 5. In the las Cive

X : si :
definition the emphasis is on the fact that & is strictly po

i f v
ter with |ty - 5 t(n) <1 s called a representation o
* neN

(with respect to (pn)n € N) if
u(f) < 1 tk)p () + (1 - [t1) S(f) vfer
keN

In the set of representati
Thenfor every

of Zorn's Lemma
respect to the w

Ons we consider the pointwise order on N.
WSS there is a maximal representation (consequeﬁce
Or the compactness of the set of represenations with
eak*—topo]ogy given by co).

PARTIAL DECOMPOSITION THEOREM:
following are equivalent:
(i)

let be linear < S. Then the

wois Eartiallz decomgosab1e
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FUCHSSTEINER 7

(ii) For every decreasing sequence fm in F with

foe1 - fm € F and ;g: u(f) > -« we have

sup inf p (f ) > - =
neN men "7
PROOF: (i) = (ii): is trivial.
(ii) = (i) : Put m (f) = max(p(f)> py(F)s...5p (f})) then
T, s an increasing sequence with L S. Assume that for every n
there is a §n € F with

- _ 1 _
W(@,) > & om(3) + (1-3) (5
We replace g by
6, - 3, - 15(3,) ¢ e 1,
where

ey = w(3,) - S(E,) - 5 { (3, - S(3) F >0

This is an element of F because of S(én) > u(§n) > -,

Then 9, < 0, S(gn) =-¢g, <0 and

0> - 2 u(3,) - S(3,) - £, = ulgy) = L (3, - S(E,) )=

1

1 1
S Um(g,) - S(gy) ¥ > 5 mplg,) -

Hence we have found the inequality
1
0= u(gn) >4 "n(gn) s
and multiplication of 9, with a suitable positive constant gives an
1
h <o with o2 u (hy) = - %2 and - . > = m(h),

ie. - % > W (hn). Since [m 1 is jncreasing we have in addition
n

- % > "k(hn) ¥Yon=zk.
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8 FUCHSSTEINER

n
Now, we define fn = k§1 hk and obtain:
infu(f) = - 5 1 __ x
inf u > - = =- I
nel n n=1 n2 [
[ee] 1 _
sup inf mlf) < sup (- x )= -
neN meN naN m=n

3 N
This contradicts (i1). So we have proved that there is some n €

. : -1 theorem there are linear
with < T Tt (1 n) S. By the sum the

1 inite
Vs with 1 < v+, v < % Tfn, Pp < (1'}‘\) S. From the fi

decomposition theorem we get linear V1seeesvp and positive
n

with 1§

A = % and Vg £ P, such that
k=1

1,...,An

n
v £ % A v - This obviously implies (i). =
k=1 k

DECOMPOSITION THEOREM: The fo]]owing are equivalent:
(1) Every linear n=Ss i§>partia11y decomposable.
(ii)  Ever linear , < is decomposable.
=Yery linear —= Z=omposable
(iit) For évery decreasing sequence fn in F

we have

Sup inf p (f ) = inf S(f ) .
NN men MM Tim

(iv})  For every decreasing s€quence f in F with L

such that there is a linear us<s

F
17 €
with
inf (fm) > - = we have sup inf pn(fm) > - e
meN NEN meN

PROOF: (i) = (11) : We take a maximal representation t for u-
If 1t =1 then the decomposition of
the sum theorem. Theref

there are Tinear Yo

follows via lemma 2 from
ore we assume |t] <1 . By the sum theorem
< P, and y < g such that

B X t(")un+(l—|tl)v.

neaN
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FUCHSSTEINER 9

Now, (i) provides a representation t for v with It] > 0. So, we
obtain in contradiction to the maximality of t a representation

t=t+ (1-1tl) T for u which is strictly greater than t.

(i1) = (iii): From Temma 1 we get a linear yu with
infu (f ) = inf S(f ). Let I X w be a decomposition of u
meN meEN

neN n
then SnéN . Pn and.
;2;: S(f,) = ;2;: u(fy) < r:g: { né« Ay Palfp)) =
< sup inf p (f).

oA, ;g: Pt

nemN neN meEN

This together with Pn < S gives the desired equality.
(i1i) = (iv) 4s trivial and (iv) = (i) follows from the partial

decomposition theorem. M

As corollaries we derive decomposition theorems for concrete
order-unit cones. We consider a convex cone F(X) of real upper-
bounded functions on some set X. By VF(X) we denote the max-stable
cone generated by F(X); i.e. the set of functions
X > max (Fi(x),...,f, (x)) where flaeaf € F(X). F(x) and VF(X)
are equipped with the pointwise order on X. A linear functional u
on F(X) {or VF(X)) is called a state if wu(f) < §2§ f(x) for all f.

COROLLARY 1: (cf [5]) If F(X) contains the constant functions on X

then the following are equivalent:

(1) For every decreasing sequence f_ in VF(X) we have
(*) sup inf f_(x) = inf sup f (x).
x€X meN " mEN x€Xx
(i1) (*) holds for every decreasing sequence f, in F(X).
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10 FUCHSSTE INER

(1i4) For every decreasing sequence fm in F(X) with
- i te with
fm+1 f € F(X)  such that there is a sta u

inf u(f)>- o we have sup inf fm(x) > - -
meN m X€X  meN

(iv) For every state on F(X) and for every sequence
Yo S X with U {Y In €N} = X there are states u, and

A 20 with © A =1 and ua(f) < sup f(x) v f€F(X)
n nen " - xeyY

such that < ¥ An TR
nen n
PROOF: (i) = (ii) = (ii1) s trivial,

(111) = (iv): consider S and p, defined by S(f) = sup f(x)
X€

and Ppif) = su$ fly). Then (iv) follows from the decomposition
Y€
n

theorem.
(iv) = (i): Let E(X) stand for the vector lattice VFB(X) - VFB(X)
where VFg(X) are the bounded functions in VF(X). Now, assume

inf sup f (x) =B >a = sup  inf f_(x
mEN xeX M XEX  meN m()

and take ,» & with a<§ < Y<B .

By the Stone-Kakutani Theorem {1,p.761 the set ¢ of 1attice-preserV1“9
states is compact under pointwise converdgence on E(X) and (E(X),sup~
norm) s isometric to a dense subspace of C(q) . Therefore we obtain

from Dini's lemma a 1att1ce—preserving state p e o with

(3) inf u(f ) = inf sup f (x) =8
mN ™ e ey M

where %m = max(fm, §). We extend

putting

u to a state on VF(X) by
u(f) = dinf u{max(f,-n)) v f € VF(X).
neN

And we define Prlg) = sup g(y) wvgq e VF(X)
yEYn
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FUCHSSTEINER 11

where Yn = {x € len(x) < yv}. By (iv) there must be a decomposition

(4) w(f) < = *n pn(f) v f € F(X)
neEN
with 2 >0 and © a_ =1 . Since u is lattice-preserving
n nen "

and every g € VF(X) is of the form g = max(gl,...,gk), where
95---59) € F(X) the inequality {4) must also hold for all f € VF(X).
This together with (3) implies y = p. Therefore a 28 . And o< B
follows immediately from the definition of a and p . H

The next corollary is closely related to the theory of signed

representing measures (cf. [6]).

COROLLARY 2:  For a convex cone F(X) of bounded functions (not
necessarily containing the constants) the following are equivalent:

(1) For every linear u : F(X) =R with
u(f) < sup [f{x)I v f € F(X) and for every sequence
xeX

Vn ©X with u {Y In €N} = X there are A Zz 0 and Tinear

w, with £ a =1 and w(f) < sup If{y)l v FEF
nen " yeY,

such that y <« I A H
nenN

(i)  For every sequence (f .r ) € F(X) xR such that

rp* fo(x) and r - f (x) are decreasing for all x € X

we have:
sup inf (If (x)I + r ) = inf sup( If (x)1 + rn)
xex neu( n " open xex "
PROOF: in F = F(X) x R we consider the arder-relation
(far) < (g,r) & sup If(x) -g(x}I = r-7r
XEX
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12 FUCHSSTEINER

Then (fn,rn) € E is decreasing if and only if the seauences
"ot Fa(X) and r - f (x) are decreasing for all «x € X.

Furthermore we consider the sublinear order-preserving functionals

Py (far) =sup | f(y)| +r
n yEY

where Y, = X. Then ( Fo I = (0,1)) is an order-unit cone and

S{((far)) = sup F{x)I + r . Now, for a decreasing sequence
X€X

(fn.rn) € F  condition (ii) is equivalent to:

sup inf p,

(f .r ) = inf S(f_,r)
neN meN Yn mem mey L mm

for all sequences Y, with U{Ynln €N} = X. And the equivalence

(i) » (i1) is a consequence of the decomposition theorem. M

The decomposition theorems we have given so far are dealing with
the situation that a1l states are decomposable. The characterisation

of decomposability for 3 single Vinear functional is much more diffi-
cult. The next theorem s the only resylt we are able to present
in this direction.

Again we use the notation by (f) = sup F(y).
n

yEYn

THEOREM 1: Let F(x) be a convex cone of upper bounded functions
ontaining the constants. Let o be an order-preserving state on
F(X) and et YhSX bea sequence with Y in €N} = X,

Furthermore We assume:
(a) f e F(X), rer = max(f,r) € F(X)

(b) for every representation t of with respect to py  there
n

are order—preserving states v and v < Py
n
n

1R2



FUCHSSTEINER 13

such that u = £  t(n) vyt (1 - 1tl) v .
n=1

Then the following are equivalent:

(i) w is decomposable with respect to py
n

(i1) For every positive decreasing sequence f_ in F(X) with

sup inf sup fm(y) = 0o we have inf u(f ) = o
NEN meN yEYn meN

PROOF: (i) = (ii) is trivial.
(i1) = (i): Consider a maximal representation t for u and
choose v and v, according to (b). (i) is trivial for Itl = 1.
Assume therefore |t} < 1. Then (i) implies ;2: v (fm) = 0.

This means that (ii) is also valid for v instead of u . From (a)
together with F(X) >R and (ii) one can easily conclude that (ii)

of the partial decomposition theorem holds for v . So, v has a
representation t with It] > 0. This implies that
t=1t+ (1-tl)t is in contradiction to the maximality of t a

representation strictly greather then t. ®

The condition (b) imposed on p in the above theorem is quite
often fulfilled. For example if u is maximal or if F(X) is
min-stable or if it is a vector space.

This means that states on a vector lattice >R fullfilling Stones
condition (cf. [2]) are always decomposable. This fact together
with an application of the Riesz representation theorem can be used
(in this very special case) to prove the Daniell -Stone theorem.

I am indebted to M. Neumann for many helpful suggestions.
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