DECOMPOSITION THEOREMS

Benno Fuchssteiner

The countable-decomposition theorem for linear functionals has become a useful tool in the theory of representing measures (see [4-7]). The original proof of this theorem was based on a rather involved study of extreme points in the state space of a convex cone. Recently M. Neumann [9] gave an independent proof using a refined form of Simons convergence lemma and Choquet's theorem. In this paper a (relatively) short proof of an extension (to a more abstract situation) of the countable-decomposition theorem is given. Furthermore a decomposition criterion is obtained which even works in the case when not all states are decomposable. All the work is based on a complete characterization of those states which are partially decomposable with respect to a given sequence of sublinear functionals.

PRELIMINARIES

For making this paper self-contained we gather first some of the material which will be used in the sequel. $F = (F,+,\leq)$ denotes a preordered convex cone, i.e. \leq is reflexive and transitive and

$$f_{i} \leq g_{i}, o \leq \lambda_{i} \in \mathbb{R} (i = 1,2) \Rightarrow \lambda_{1} f_{1} + \lambda_{2} f_{2} \leq \lambda_{1} g_{1} + \lambda_{2} g_{2}$$

Functionals are maps $p: F \to I\!\!R$ where $I\!\!R = I\!\!R U \ \{-\infty\}$. O· $(-\infty)$ is defined to be o and the other algebraic operations are extended to $I\!\!R$ in the obvious way. In the set of functionals we consider the pointwise order on F, this order relation is also denoted by \leq . Linear (sublinear, superlinear) means positive-homogeneous (i.e. $p(\lambda f) = \lambda p(f) \quad \forall \ \lambda > 0$, $f \in F$) and additive (subadditive, superadditive). A functional p is called order-preserving if $f \geq g \Rightarrow p(f) \geq p(g)$.

SANDWICH THEOREM ([3]): Let p be a sublinear and orderpreserving functional and let $\delta \le p$ be superlinear. Then there is a linear order-preserving μ with $\delta \leq \mu \leq p$.

As usual, a subset $\phi \subset F$ is called <u>downwards</u> <u>directed</u> if for f, $g\in \varphi$ there is always some $\ h\in \varphi$ with $\ h\le f$ and $\ h\le g$.

LEMMA 1: Let p be a sublinear order-preserving functional and let Φ⊂F <u>be downwards directed. Then there is a linear order-preserving</u> $\mu \le p$ such that inf $\mu(f) = \inf_{g \in F} p(f)$. f€¢

PROOF: Let $\alpha = \inf_{x \in \mathbb{R}^n} p(f)$ and define a superlinear $\delta \leq p$ by

 $\delta(g) = \sup\{\lambda \mid \alpha \mid \lambda > 0, \exists f \in \Phi \text{ with } \lambda \mid f \leq g\}$. From the sandwich theorem we get a linear order-preserving $\;\mu\;$ with $\;\delta\,\leq\,\mu\,\leq\,p$.

 μ has the desired property because of $% \left(1\right) =0$ inf $\delta \left(f\right) =\alpha$. \blacksquare

SUM THEOREM (cf. [3] or [8]) : Let μ be a linear functional and <u>let</u> p_n <u>be a sequence of order-preserving sublinear functionals</u> $\frac{\text{such that for all}}{\text{that for all}} \quad f \in F \quad \underline{\text{the sum}} \quad \sum_{n=1}^{\infty} p_n(f) \quad \underline{\text{converges in }} \quad \mathbb{R} \quad \underline{\text{and is}}$

 $\geq \mu(f)$. Then there are order-preserving linear functionals $\mu_n \leq p_n$ $\frac{\text{such that}}{\text{m} \to \infty} \ \, \stackrel{\text{lim inf}}{\text{n=1}} \ \, \stackrel{\text{iii}}{\text{p}}_{n}(f) \ \, \underline{\text{is linear and}} \ \, \geq \mu \ \, .$

PROOF: By the sandwich theorem there is a linear order-preserving $\check{\mu}$ with $_{\mu}\leq\frac{\tau}{\mu}\leq\frac{\Sigma}{n=1}$ p_{n} . Now, we prove the theorem for

 $F_{\bar{\mu}}^- = \{f \in F|\bar{\mu}(f) > -\infty\}$ instead of F. The full result is then obtained by putting $\mu_k(\phi) = -\infty$ for all $k=1,2,\ldots$ and $\phi \in F \backslash F_{\overline{\mu}}$. Let \tilde{F} be the cone of sequences $[f_{\hat{n}}]$ in $F_{\hat{\mu}}$ for which there is some k (depending on $[f_n]$ | such that $f_k, f_{k+1}, f_{k+2}, \dots$ do have a common upper bound.

In \bar{F} we consider the order relation:

$$[f_n] \le [g_n] \Leftrightarrow f_n \le g_n \quad \forall n \in \mathbb{N}$$

And we define a sublinear order-preserving functional π on F and a superlinear $\delta \leq \pi$ by:

$$\pi([f_n]) = \limsup_{m \to \infty} \sum_{n=1}^{m} p_n(f_n), \quad \delta([f_n]) = \begin{cases} -\frac{1}{\mu}(f) & \text{if } f = f_k = f_n \ \forall \ n, \ k \in \mathbb{N} \\ -\infty & \text{otherwise} \end{cases}$$

By the sandwich theorem and Zorn's lemma there is a maximal linear order-preserving ν with $\delta \leq \nu \leq \pi$. Define $\Delta_k([f_n]) = (0,0,\ldots,0,f_k,0,0,\ldots)$ (everywhere σ except σ at place σ and

$$\rho([f_n]) = \underset{\substack{m \to \infty \\ k=1}}{\text{lim inf}} \sum_{k=1}^m \vee \Delta_k([f_n]).$$

Then $_{\rho}$ is superlinear. Considering the following inequalities we obtain $_{0}$ \geq ν

(1)
$$\lim_{\substack{m \to \infty \\ m \to \infty}} \inf_{k=1}^{m} \vee \Delta_{k} ([f_{n}]) +$$

+
$$\limsup_{m \to \infty} v((o,o,...,of_{m+1},f_{m+2},f_{m+3}...)) \ge v([f_n])$$

(2)
$$\limsup_{m \to \infty} v((0,...,0,f_{m+1},f_{m+2},...)) \le$$

$$\leq \lim \sup_{m \to \infty} \pi ((o,...,o, f_{m+1}, f_{m+2},...)) \leq$$

$$\leq \lim \sup_{m \to \infty} \sum_{k=m}^{\infty} p_k(f) = 0,$$

(where f is a common upper bound of f_k, f_{k+1}, \cdots for a suitable k). Because of $\rho \leq \pi$ the sandwich theorem provides a linear order-preserving $\bar{\nu}$ with $\nu \leq \rho \leq \bar{\nu} \leq \pi$. Therefore the maximality of ν implies $\nu = \rho = \bar{\nu}$. Now, we define $\mu_k(f) = \nu \Delta_k([f])$ (where $[f] = (f,f,f,\dots)$) and we obtain the desired result.

PROOF: We may assume $\mu(o)=o$, otherwise $\mu(f)=-\infty$ \forall $f\in F$ and the theorem is trivial. On the cone

 $\begin{array}{ll} \bar{F} = \stackrel{\{p_1, \dots, p_n\}}{\mathbb{R}} & \text{we consider the sublinear} & p(g) = \sup\{g(p_1), \dots g(p_n)\} \\ \text{and the superlinear} & \delta(g) = \sup\{\mu(f) \mid f \in F \text{ with } \bar{f} \leq g \} \text{ where} \\ \bar{f} & \text{denotes the function} & p_i \to p_i(f), \ i = 1, \dots, n. \ \text{The order in } \bar{F} \\ \text{shall be the pointwise order on} & \{p_1, \dots, p_n\} & \text{By the sandwich theorem} \\ \text{there is a linear order-preserving} & \nu & \text{on } \bar{F} \text{ with } \delta \leq \nu \leq p. \\ \text{Let} & \epsilon_i & \text{be the function} & p_i \to 1 \text{ and } p_k \to 0 \text{ for } k \neq i. \\ \end{array}$

Now, put $\lambda_{j} = v$ (ϵ_{j}) then $\lambda_{j} \ge o$ (since v is order-preserving)

and $\sum_{i=1}^{n} \lambda_i = \nu(1) = 1$ (since $\nu(-1) \le p(-1) = -1$ and

 $v(1) \le p(1) \le 1$). And we obtain

 $\mu(f) \leq \delta \ (\widehat{f}) \leq \nu(\widehat{f}) = \nu(\sum_{j=1}^{n} p_{j}(f) \epsilon_{j}) \leq \inf_{k \in \mathbb{N}} \nu \ (\sum_{j=1}^{n} \max(p_{j}(f), -k) \epsilon_{j}) = 0$

 $=\inf_{k\in I\!\!N} \{\sum_{i=1}^n \nu(\epsilon_i) \max(p_i(f),-k)\} = \sum_{i=1}^n \lambda_i p_i(f).$

Application of the sum theorem to $\mu \leq \sum_{i=1}^n \lambda_i p_i \text{ gives the desired}$

result. Here the sum theorem is applied in the case of the trivial preorder given by $\ =\ .$

COUNTABLE DECOMPOSITION

Let $I \in F$ with I > o, where I > o means $I \ge o$ but not $I \le o$. (F,I) is called <u>order - unit cone</u> if for every $f \in F$ there is an $n \in \mathbb{N}$ such that $f \le n I$. By S_I we denote the sublinear functional

$$f \rightarrow \inf\{r \in \mathbb{R} \mid rI \in F, f \leq rI\}.$$

 S_I is called the <u>order - unit functional</u>. We say that (F,I) contains the <u>constants</u> if $F \supset \{r \mid | r \in \mathbb{R} \}$. Obviously we have then $S_I(I) = -S_I(-I) = 1$, or equivalently $S_I(r \mid I) = r \lor r \in \mathbb{R}$. Furthermore

$$p(f + rI) = p(f) + r \forall f \in F, r \in \mathbb{R}$$

for any sublinear $~p \le S_{\vec{1}}\,.$ This is an easy consequence of the sublinearity of ~p~ and the linearity of $~S_{\vec{1}}~$ on the constants ~R~ I .

Of course, subtraction is not defined in F, but we shall write $f-h\in F$ if there is a $g\in F$ with h+g=f.

If not otherwise mentioned we consider from now on the following:

REMARK: This situation is rather general. Let for example G be a cone and let $A \in G$ with $G \supset \{rA \mid r \in R\}$. If π is sublinear on G with π $(rA) = r \quad \forall \ r \in R$ then

$$f \leq g \Leftrightarrow \exists h \in G \text{ with } \pi(h) \leq o \text{ and } g + h = f$$

is a preorder on G such that A = I is an order-unit with π = S_I . And every sublinear functional $p \le \pi$ is order - preserving .

We need a simple convergence lemma.

<u>LEMMA 2</u>: <u>Let</u> $\lambda_n \ge 0$ <u>with</u> $\sum_{n\in\mathbb{N}} \lambda_n = 1$, then $\sum_{n\in\mathbb{N}} \lambda_n p_n(f)$ converges in \mathbb{R} for all $f \in F$.

PROOF: For r = S(f) we have

$$\sum_{n=1}^{m} \lambda_{n} p_{n}(f) = \sum_{n=1}^{m} \lambda_{n} p_{n}(f - (r + \frac{1}{n})I) + \sum_{n=1}^{m} \lambda_{n} (r + \frac{1}{n}).$$

Now, the convergence (in \mathbb{R}) of the sum follows from the fact that $\lambda_n p_n(f-(r+\frac{1}{n})I)$ is \leq o for all n.

Of course, this lemma holds for any sequence $[\pi_n]$ of linear or sublinear $\pi_n \leq S.$

A linear $\mu \leq S$ is said to be <u>decomposable</u> (with respect to $(p_n)_n \in \mathbb{N}$) if there are $\lambda_n \geq o$ and linear $\mu_n \leq p_n$ with

 $\sum_{n\in I\!\!N} \lambda_n = 1 \quad \text{such that} \qquad \mu \quad \leq \quad \sum_{n\in I\!\!N} \lambda_n \ \mu_n \qquad , \quad \mu \quad \text{is said to be}$

partially decomposable if there are $\varepsilon>0$, n and linear $\nu,\bar{\nu}$ with $\varepsilon\leq 1$, $\nu\leq p_n$, $\bar{\nu}\leq S$ such that $\mu\leq \varepsilon$ $\nu+(1-\varepsilon)$ $\bar{\nu}$. In the last definition the emphasis is on the fact that ε is strictly positive to R_+^N with $|t|=\sum\limits_{n\in\mathbb{N}}t(n)\leq 1$ is called a representation of μ (with respect to $(p_n)_{n\in\mathbb{N}}$) if

 $\mu(f) \le \sum_{k \in \mathbb{N}} t(k) p_k(f) + (1 - |t|) S(f) \quad \forall f \in F$

In the set of representations we consider the pointwise order on N. Thenfor every $\mu \leq S$ there is a maximal representation (consequence of Zorn's Lemma or the compactness of the set of representations with respect to the weak*-topology given by c_{Λ}).

PARTIAL DECOMPOSITION THEOREM: Let μ be linear \leq S. Then the following are equivalent:

(i) μ <u>is partially decomposable</u>

(ii) For every decreasing sequence
$$f_m$$
 in F with
$$f_{m+1} - f_m \in F \text{ and inf } \mu(f_m) > -\infty \text{ we have}$$

$$\sup_{n \in \mathbb{N}} \inf_{m \in \mathbb{N}} p_n(f_m) > -\infty$$

PROOF: (i) \Rightarrow (ii): is trivial. (ii) \Rightarrow (i): Put $\pi_n(f) = \max(p_1(f), p_2(f), \ldots, p_n(f))$ then π_n is an increasing sequence with $\pi_n \leq S$. Assume that for every n there is a $\bar{g}_n \in F$ with

$$\mu(\bar{g}_n) > \frac{1}{n} \pi_n(\bar{g}_n) + (1 - \frac{1}{n}) S(\bar{g}_n)$$
.

We replace \bar{g}_n by

$$g_n = \bar{g}_n - \{S(\bar{g}_n) + \varepsilon_n\} I$$

where

$$\varepsilon_n = \mu(\bar{g}_n) - S(\bar{g}_n) - \frac{1}{n} \{ \pi_n(\bar{g}_n) - S(\bar{g}_n) \} > 0$$
.

This is an element of F because of $S(\bar{g}_n) \geq \mu(\bar{g}_n) > -\infty$.

Then
$$g_n \le o$$
, $S(g_n) = -\epsilon_n < 0$ and

$$0 > - \epsilon_n \ge \mu(\bar{g}_n) - S(\bar{g}_n) - \epsilon_n = \mu(g_n) = \frac{1}{n} \{ \pi_n(\bar{g}_n) - S(\bar{g}_n) \} = 0$$

$$= \frac{1}{n} \{ \pi_n(g_n) - S(g_n) \} > \frac{1}{n} \pi_n(g_n) .$$

Hence we have found the inequality

$$o \ge \mu(g_n) > \frac{1}{n} \pi_n(g_n) ,$$

and multiplication of g_n with a suitable positive constant gives an $h_n \le o$ with $o \ge \mu$ $(h_n) \ge -\frac{1}{n^2}$ and $-\frac{1}{n^2} > \frac{1}{n} \pi_n(h_n)$,

i.e.
$$-\frac{1}{n} > \pi_n(h_n).$$
 Since $[\pi_n]$ is increasing we have in addition $-\frac{1}{n} > \pi_k(h_n) \quad \forall \ n \geq k$.

Now, we define $f_n = \sum_{k=1}^n h_k$ and obtain:

$$\inf_{n\in N} \ \mu(f_n) \ \geq \ - \ \sum_{n=1}^{\infty} \ \frac{1}{n^2} \ = \ - \ \frac{\pi^2}{6} \quad \text{,}$$

$$\sup_{n\in I\!\!N} \inf_{m\in I\!\!N} \pi_n(f_m) \ \le \ \sup_{n\in I\!\!N} \ (\ - \ \ \sum_{m=n}^{\infty} \ \frac{1}{m} \) \ = \ - \ \infty$$

This contradicts (ii). So we have proved that there is some $n\in \mathbb{N}$ with $\mu \leq \frac{1}{n} \pi_n + (1 - \frac{1}{n})$ S. By the sum theorem there are linear ν, φ with $\mu \leq \nu + \varphi, \nu \leq \frac{1}{n} \pi_n$, $\varphi \leq (1 - \frac{1}{n})$ S. From the finite decomposition theorem we get linear v_1,\dots,v_n and positive

$$\lambda_1, \dots, \lambda_n$$
 with $\sum_{k=1}^n \lambda_k = \frac{1}{n}$ and $\nu_k \le p_k$ such that

$$v \le \sum_{k=1}^{n} \lambda_k v_k$$
. This obviously implies (i).

DECOMPOSITION THEOREM: The following are equivalent:

- (i) Every linear $\mu \leq S$ is partially decomposable.
- Every linear $\mu \leq S$ is decomposable. (ii)
- (iii) For every decreasing sequence f in F we have $\sup_{\mathbf{n} \in \mathbf{N}} \inf_{\mathbf{m} \in \mathbf{N}} \ \mathbf{p}_{\mathbf{n}}(\mathbf{f}_{\mathbf{m}}) = \inf_{\mathbf{m} \in \mathbf{N}} \mathbf{S}(\mathbf{f}_{\mathbf{m}}) \ .$
- (iv) For every decreasing sequence $f_m = \underline{in} F \underline{with} f_{m+1} - f_m \in F$ such that there is a linear $u \le S$ with inf μ (fm) > $-\infty$ we have sup inf $p_n(f_m)$ > $-\infty$

PROOF: (i) \Rightarrow (ii) : We take a maximal representation t for μ -If |t|=1 then the decomposition of μ follows via lemma 2 from the sum theorem. Therefore we assume |t| < 1 . By the sum theorem there are linear $\mu_{\mbox{\scriptsize n}} \leq p_{\mbox{\scriptsize n}}$ and $\nu \leq S$ such that $\mu \leq \sum_{n \in \mathbb{N}} t(n) \mu_n + (1 - |t|) \nu$.

Now, (i) provides a representation $\bar{\bf t}$ for ν with $|\bar{\bf t}| > 0$. So, we obtain in contradiction to the maximality of ${\bf t}$ a representation $\hat{\bf t} = {\bf t} + (1 - |{\bf t}|) \bar{\bf t}$ for μ which is strictly greater than ${\bf t}$.

(ii) \Rightarrow (iii): From lemma 1 we get a linear μ with inf μ (f_m) = inf S(f_m). Let $\sum_{n\in N} \lambda_n \mu_n$ be a decomposition of μ men men

then $\mu \leq \sum_{n \in \mathbb{N}} \lambda_n p_n$ and.

$$\leq \sum_{n\in\mathbb{N}} \lambda_n \quad \inf_{m\in\mathbb{N}} \mathsf{p}_n(\mathsf{f}_m) \leq \sup_{n\in\mathbb{N}} \inf_{m\in\mathbb{N}} \mathsf{p}_n(\mathsf{f}_m).$$

This together with $p_n \le S$ gives the desired equality. (iii) \Rightarrow (iv) is trivial and (iv) \Rightarrow (i) follows from the partial decomposition theorem.

As corollaries we derive decomposition theorems for concrete order-unit cones. We consider a convex cone F(X) of real upper-bounded functions on some set X. By VF(X) we denote the max-stable cone generated by F(X); i.e. the set of functions $x \to \max \ (f_1(x), \ldots, f_k(x))$ where $f_1, \ldots, f_k \in F(X)$. F(X) and VF(X) are equipped with the pointwise order on X. A linear functional u on F(X) (or VF(X)) is called a state if $u(f) \le \sup_{x \in X} f(x)$ for all f.

COROLLARY 1: (cf [5]) If F(X) contains the constant functions on X then the following are equivalent:

- (i) For every decreasing sequence f_m in VF(X) we have
 - (*) sup inf $f_m(x) = \inf_{m \in \mathbb{N}} \sup_{x \in X} f_m(x)$.
- (ii) (*) holds for every decreasing sequence f_m in F(X).

- (iii) For every decreasing sequence f_m in F(X) with $f_{m+1} f_m \in F(X) \quad \underline{\text{such that there is a state } \mu \text{ with}}$ $\underbrace{\inf_{m \in N} \mu(f_m) > -\infty \text{ we have } \sup_{x \in X} \inf_{m \in N} f_m(x) > -\infty}.$
- (iv) For every state μ on F(X) and for every sequence $Y_n \subset X \text{ with } U \text{ } \{Y_n | n \in \mathbb{N}\} = X \text{ there are states } \mu_n \text{ and } \lambda_n \geq 0 \text{ with } \sum_{n \in \mathbb{N}} \lambda_n = 1 \text{ and } \mu_n(f) \leq \sup_{x \in Y_n} f(x) \text{ } \forall f \in F(X)$ such that $\mu \leq \sum_{n \in \mathbb{N}} \lambda_n \mu_n$.

PROOF: (i) \Rightarrow (ii) \Rightarrow (iii) is trivial.

(iii) \Rightarrow (iv): consider S and p_n defined by $S(f) = \sup_{x \in X} f(x)$

and $p_n(f) = \sup_{y \in Y_n} f(y)$. Then (iv) follows from the decomposition

theorem.

(iv) \Rightarrow (i): Let E(X) stand for the vector lattice $VF_B(X) - VF_B(X)$ where $VF_B(X)$ are the bounded functions in VF(X). Now, assume

and take γ , δ with $\alpha < \delta < \gamma < \beta$.

By the Stone-Kakutani Theorem [1,p.76] the set $\,\Omega\,$ of lattice-preserving states is compact under pointwise convergence on E(X) and (E(X),supnorm) is isometric to a dense subspace of C(Ω). Therefore we obtain from Dini's lemma a lattice-preserving state $\,\mu\in\Omega\,$ with

(3)
$$\inf_{m\in IN} \ \mu(\tilde{f}_m) = \inf_{m\in IN} \ \sup_{x\in X} \ \tilde{f}_m(x) = \beta \ ,$$

where $\tilde{f}_m = \max(f_m, \delta)$. We extend μ to a state on VF(X) by putting $\mu(f) = \inf_{n \in \mathbb{N}} \mu(\max(f, -n)) \quad \forall \ f \in VF(X)$.

And we define $P_n(g) = \sup_{y \in Y_n} g(y) \quad \forall g \in VF(X)$,

where $Y_n = \{x \in X | f_n(x) \le \gamma\}$. By (iv) there must be a decomposition

$$(4) \hspace{1cm} \mu(f) \hspace{2mm} \leq \hspace{2mm} \sum_{n \in I\!\!N} \hspace{2mm} \lambda_n \hspace{2mm} p_n(f) \hspace{1cm} \forall \hspace{2mm} f \in \hspace{2mm} F(X)$$

with $\lambda_n \geq 0$ and $\sum_{n \in \mathbb{N}} \lambda_n = 1$. Since μ is lattice-preserving and every $g \in VF(X)$ is of the form $g = \max(g_1, \ldots, g_k)$, where $g_1, \ldots, g_k \in F(X)$ the inequality (4) must also hold for all $f \in VF(X)$. This together with (3) implies $\gamma = \beta$. Therefore $\alpha \geq \beta$. And $\alpha \leq \beta$ follows immediately from the definition of α and β .

The next corollary is closely related to the theory of signed representing measures (cf. [6]).

COROLLARY 2: For a convex cone F(X) of bounded functions (not necessarily containing the constants) the following are equivalent:

- (i) For every linear μ : $F(X) \to IR$ with $\mu(f) \le \sup_{X \in X} |f(X)| \quad \forall \ f \in F(X)$ and for every sequence $Y_n \subset X$ with $U \ \{Y_n | n \in N\} = X$ there are $\lambda_n \ge 0$ and linear $\mu_n = \frac{1}{n} \sum_{n \in N} \lambda_n = 1$ and $\mu_n(f) \le \sup_{y \in Y_n} |f(y)| \quad \forall \ f \in F$ such that $\mu \le \sum_{n \in N} \lambda_n = 1$.
- (ii) For every sequence $(f_n, r_n) \in F(X) \times IR$ such that $r_n + f_n(x)$ and $r_n f_n(x)$ are decreasing for all $x \in X$ we have:

$$\sup_{\mathbf{x} \in \mathbf{X}} \inf_{\mathbf{n} \in \mathbf{N}} (|\mathbf{f}_{\mathbf{n}}(\mathbf{x})| + r_{\mathbf{n}}) = \inf_{\mathbf{n} \in \mathbf{N}} \sup_{\mathbf{x} \in \mathbf{X}} (|\mathbf{f}_{\mathbf{n}}(\mathbf{x})| + r_{\mathbf{n}})$$

PROOF: In $\bar{F} = F(X) \times \mathbb{R}$ we consider the order-relation $(f,r) \le (g,\bar{r}) \Leftrightarrow \sup_{x \in X} |f(x) - g(x)| \le \bar{r} - r$

Then $(f_n, r_n) \in \overline{F}$ is decreasing if and only if the sequences $r_n + f_n(x)$ and $r_n - f_n(x)$ are decreasing for all $x \in X$. Furthermore we consider the sublinear order-preserving functionals

$$\widetilde{p}_{\gamma_n}$$
 $(f,r) = \sup_{y \in Y_n} |f(y)| + r$

where $Y_n \subset X$. Then $(\bar{F}, I = (0,1))$ is an order-unit cone and $S_{\bar{I}}((f,r)) = \sup_{x \in X} |f(x)| + r$. Now, for a decreasing sequence

 $(f_n, r_n) \in \bar{F}$ condition (ii) is equivalent to:

for all sequences Y_n with $\cup \{Y_n | n \in \mathbb{N}\} = X$. And the equivalence (i) \Leftrightarrow (ii) is a consequence of the decomposition theorem.

The decomposition theorems we have given so far are dealing with the situation that all states are decomposable. The characterisation of decomposability for a single linear functional is much more difficult. The next theorem is the only result we are able to present in this direction.

Again we use the notation
$$p_{\gamma}$$
 $(f) = \sup_{y \in Y_n} f(y)$.

THEOREM 1: Let F(X) be a convex cone of upper bounded functions containing the constants. Let μ be an order-preserving state on F(X) and let $Y_n \subset X$ be a sequence with $U(Y_n \mid n \in N) = X$.

- (a) $f \in F(X)$, $r \in \mathbb{R} \Rightarrow \max(f,r) \in F(X)$
- (b) for every representation t of μ with respect to $p_{\mbox{$\gamma$}}$ there are order-preserving states ν and $\nu_{\mbox{$\eta$}} \leq p_{\mbox{$\gamma$}}$

$$\underline{\text{such }} \underline{\text{ that }} \quad \mu = \sum_{n=1}^{\infty} t(n) v_n + (1 - |t|) v.$$

Then the following are equivalent:

- (i) μ is decomposable with respect to p_{γ_n}
- (ii) For every positive decreasing sequence f_m in F(X) with sup inf sup $f_m(y) = 0$ we have inf $\mu(f_m) = 0$ men $\mu(f_m) = 0$

PROOF: (i) \Rightarrow (ii) is trivial. (ii) \Rightarrow (i): Consider a maximal representation t for μ and choose ν and ν_n according to (b). (i) is trivial for |t|=1. Assume therefore |t|<1. Then (ii) implies $\inf_{m\in \mathbb{N}} \nu$ (f_m) = 0.

This means that (ii) is also valid for ν instead of μ . From (a) together with $F(X) \supset IR$ and (ii) one can easily conclude that (ii) of the partial decomposition theorem holds for ν . So, ν has a representation \bar{t} with $|\bar{t}| > 0$. This implies that $\hat{t} = t + (1 - |t|)\bar{t}$ is in contradiction to the maximality of t a representation strictly greather then t.

The condition (b) imposed on μ in the above theorem is quite often fulfilled. For example if μ is maximal or if F(X) is min-stable or if it is a vector space.

This means that states on a vector lattice $\supset \mathbb{R}$ fullfilling Stones condition (cf. [2]) are always decomposable. This fact together with an application of the Riesz representation theorem can be used (in this very special case) to prove the Daniell -Stone theorem.

I am indebted to M. Neumann for many helpful suggestions.

REFERENCES

- [1] Alfsen, E.M.: Compact convex sets and boundary Integrals. Berlin-Heidelberg-New York: Springer 1971
- [2] Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. Berlin: de Gruyter 1968

- [3] Fuchssteiner, B.: Sandwich theorems and lattice Semigroups. J. functional Analysis 16, 1-14 (1974)
- [4] Fuchssteiner, B.: Maße auf σ -kompakten Räumen. Math.Z. 142, 185-190 (1975)
- [5] Fuchssteiner, B.: When does the Riesz representation theorem hold? Arch.Math. 28, 173-181 (1977)
- [6] Fuchssteiner, B.: Signed representing measures. Arch.Math. (1977)
- [7] Fuchssteiner, B. and J.D. Maitland Wright: Representing isotone operators on cones (1976) to appear in : Quart.J.Math. Oxford
- [8] König, H.: Sublineare Funktionale. Arch.Math. 23, 500-508 (1972)
- [9] Neumann, M.: Varianten zum Konvergenzsatz von Simons und Anwendungen in der Choquettheorie. Arch.Math. 28, 182-192 (1977)

B. Fuchssteiner Fachbereich Mathematik Gesamthochschule D - 479 Paderborn Germany*

and

Dept. de mathématiques Ecole Polytechnique Fédérale de Lausanne 61 Av de Cour CH-1007 Lausanne

* permanent address

(Received May 16, 1977)