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ITERATIONS AND FIXPOINTS
BENNO FUCHSSTEINER

Starting with a decreasing map ¢: X — X on a partially
ordered set X we construct a map It ¢ which intuitively can be
understood as the iteration (countable or transfinite) of ¢. The
main properties which It ¢ inherits from ¢ are investigated. As
application of the main result some fixpoint theorems are
proved. Besides, our method yields constructive proofs for
results which are usually demonstrated with the help of the
axiom of choice.

I. The iteration theorem. We consider a partially ordered
set (X, =) and a decreasing map ¢: X — X. For Y CX we denote by
min(Y) the set of minimal elements in Y. A totally ordered subset
Y CX is said to be a ¢-chain if:

(C)y=¢p(x)forallx,y € Ywithx#yandy =x
(C2)" o(Y\min(Y))C Y.

(X, =) is assumed to be @ -complete, which means that every nonempty
¢-chain has an infimum. A ¢-chain Y is called a strong ¢-chain if:

(C2)* ¢(inf(Y)) € Y for all nonempty Y C Y with inf(Y) # inf(Y).

Condition (C2)* obviously implies (C2)". Elementary examples for
Strong ¢ -chains are {x} and {x, ¢ (x)}. A strong ¢-chain Y issaidtobea
complete ¢-chain if ¢ (inf(Y))€E Y.

REMARK 1. (i) A totally ordered subset Y CX is a complete
¢-chain iff (C1) and

(C2) ¢(inf(Y))€ Y forall nonempty YCY.

(ii) The intersection of a family of strong (complete) ¢-chains is a
Strong (complete) ¢-chain.

Lemma 1. Every strong ¢-chain Y is contained in a complete
¢-Chain. The complete ¢-chains containing Y have a minimum I, with
respect to C.
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Proof. Let M be the set of strong ¢-chains con.taining Y. Wf:
define ¢: M— Mby ¢(Y)= Y U{o (inf(Y))}. . Accor‘dm.g to Zermf:l'O §
fixpoint-lemma [4, Theorem 1.2.5} ¢ has a fixpoint, which is b_y qeﬁ_l:lltyl(})ll
a complete ¢-chain. 1y is obviously given by N{Y € M |(Y)= Y}.

A ¢-invariant subset Y C X is called a @-subset if the infimum of

every strong ¢-chain in Y is an element of Y. A map F: X=X is
called ¢-absorbing if:

(Al) Fep=F

(A2) if F is constant on a nonempty strong ¢-chain Y then F is
constant on Y U {inf(Y)}.

ITERATION THEOREM. There is a decreasing map Ilto: X - X such
that:

() It¢ maps onto the ¢-fixpoints of X

(i) Itgelto =Ttg

(iit) every ¢-subset is It ¢-invariant

(iv)  for every @-absorbing map F we have Folt ¢=F

(v)  for every @-absorbing map F with F(x)=x 2 F(x) =< ¢(x) we
have F(x)s x > F(x)=Tte(x).

(Vi) Tteis ¥-absorbing.
Itg is uniquely determined by Q.

Proof. We define Itxp(x)#inf(]x) where I, D{x} is the minimal

complete ¢-chain given by Lemma 1. We claim that It ¢ is constant
on [,

Proof of the claim. Let y,€I. Then {yELly =yl and
VELlyzylUL  are complete ¢-chains 5 {y ‘and Dl
respectively.  Hence from minimality of . anq I, it follows L=
veLiyzyjur,

This implies I ¢e(y,) = inf(L,)= inf

(i} and (ii): lte(x) = inf(L) is a
e(inf(I e, Now, let x =
implies [y (x)= inf(L)=y.
idempotent.

(i) Let xge Y where vy
{¥ CLii¢ellysgcy
because ¢ <y Vee .
inf(ly)eLcy

————

(L) =Tt o(x).

¢-fixpoint because of inf(L)Z
¢(x) then I, ={x} (minimality). This
Hence It maps onto the fixpoints and 1

zZ

X IS a  @-subset. Then Itlf
) is a complete ¢-chain. We have x E:
(minimality) and Ite(x)~

* The fixpoint-lemma js applied with reg

Pect to the followin, order in M:
Y<Y.ey, isideal of Y, j.e. g

Y.CY,andy =xVyev,\Y, xe€Y,.
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(iv): Consider I. = {y € I, |[F(x) = F(§)V¢ € 1. with £ = y} where
F is ¢-absorbing. I. is a complete ¢-chain D{x}. Hence I, = L and
lto(x)E L. This implies Folt¢(x)= F(x). _

(v) Let F be as in (v) and F(x)=x. Then L={y€l,]y=
F(y)=F(x)} is a complete ¢-chain D{x}. This gives I, = I. and
F(x)=F(inf(L))=inf(L,) = It ¢(x).

(vi): (A1) is a consequence of ¢(x)€ I, and the fact that It¢ is
constant on I, Now, let x € Y where Y is a strong ¢-chain on which
It ¢ is constant. For £ = inf(Y) we show that I, N I, # . This gives
the desired result because for y € I, N I; we have Ito(x)=Ite(y)=
Ite(x)=lt¢(inf Y). Assume therefore that I, NI =¢J. The set
Y UL is a complete ¢-chain D{x}. Hence Y UI = I and [, must be
a subset of Y. This gives ¥=inf(l,) (# because of ¥ & 1) Since
Y D1, is totally ordered therc is some y € Y with y=inf(l;). From this
it follows It ¢(y)=y=sinf(l,) = It (x) which is in contradiction to the
fact that It ¢ is constant on Y.

Proof of uniqueness. l.et F be ¢-absorbing and decreasing then
according to (v) we have F(x)=It¢(x) for all x. Thus Ite¢ is the
maximum of all decreasing ¢-absorbing maps. Hence It ¢ is unique.

From now on It ¢ is called the iteration of ¢. The reason for
choosing this name will become obvious in the next chapter. It should
be mentioned that the proof of the iteration theorem does not make use
of Zorn’s lemma or the axiom of choice. The crucial tool was Zermelo’s
fixpoint-lemma (see also [15]) which can be proved constructively.

II. Examples and applications.

- IL1. Monotony and a theorem of Tarski. First we show that It ¢
inherits monotony from ¢.

LEmva 2. Let ¢ be monotone. _
() Ttg(x) is the maximum of the -fixpoinis = x.
(i) It ¢ is monotone.

Proof. (i) Let x, be a fixpoint =x. We show x, =1t ¢ (x). Obvi-
ously the constant map F: X — X given by F(y)=xo is @-absorbing.
%=y implies ¢(x,)= xo=¢(y) because ¢ is monotone. Hence F
fuifills {v) of the iteration theorem and we have x, = F(x);lt e (x).

(i) Let y =x then It(y) is a ¢-fixpoint =x. By (i) we know
It"u()’)glt‘i’(x). Thus It ¢ must be monotone.

Exampie 1. Let L be a complete lattice and u:L—L a
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: ich is not
monotone map. u is decreasing on X = {x € L|u(x)=x} which is
empty because sup(L)€E X.

X contains Fix () (set of & -fixpoints).

i in i is again
X is pu-complete because the infimum of every chain in X is g

i is
element of X. This yields that Fix(u ) # &5 (see [9]) because Fix(u)
the image of X under It px.

; i is the
Now, let Y CFix(u) then by Lemma 23i) It/-l-g'x (mf(}'/))tlllse tin-
maximum of all fixpoints Sinf(Y). Hence It wix (inf(Y)) is ‘
fimum of Y in Fix(u). So we have proved:

te
THEOREM (Tarski (14]). Letpy:L -1 pe monotone on the comple
lattice L, then Fix(u) is a nonempty complete lattice.

: le is

Iz, Contracting and condensing maps. Th.e next exan(l;ﬁosen

rather trivia), Nevertheless it shows why the name iteration WaSWe ool
,d) be a complete and bounded metric space.

he
3(T(A))=g5(A) for alf T-invariant A CZ, where 8( ) denotes t

. . e
diameter. Op x = {Acz|a closed, nonempty, T-invariant} we defin

a C-decreasing map ¢, by ¢r(A) = closure (T(A)). Then X lseﬁs
complete because g ¢r-chain either contains only finitely many elem a5
or is the basis of z Cauchy filter, 1t or(X) is a singleton.becausema
#r-fixpoints it hag diameter (. Furthermore It or(X) contqlnS (Lem n
2(i)) the closure of the set of T-fixpoints, Hence the iteration theore
vields:

THEOREM (Banach and others),
has a unique fixpoing.

Every generalized contraction on Z
4(T(x). T(y))

=4 max{d(x,y), g(x, T(x)), d(y,
Vy,yez

Tecently considered i3

TN d(x, T(y)), d(y, T(x))

1by L. B. Giri¢.

€ contraction PToperty in the jast exam
assure that x g ¢r-complete. By it (Z,d)
¢r-complete for any map T Therefo

Ple was mainly used t‘z
is compact then X i

re the same argument leads to:
THEOREM (M

- Edelstein [5)), Every condensing map T (i.e. a map
with (T(Ay< 3(A) :

for every T-invarigns 4 CZ, with 5(A)>0) on a
compact metr;c Space hgs 4 unique fixpoiny,
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For the next example let us consider a continuous map T: § — S,
where S is a nonempty closed bounded convex subset of a separated
locally convex vector space. T is said to be limit-compact if every
closed M CS with c6 T(M)D M has to be compact. (co denotes the
closed convex hull).

THEOREM (Sadovski [13]). Let T be limit-compact and assume that
there is some nonempty A C S withco T(A)D A.  Then T has a fixpoint.

Proof. On X ={Y CS|coY =Y} we consider the C-decreasing
map ¢ (Y)= Y Nco T(Y) and the constant map F(Y)=co(A). Xisa
complete lattice with respect to C and therefore ¢-complete. The
¢-fixpoint K = It ¢ (S) is compact because T is limit-compact. (v) of the
iteration theorem gives @ #Co(A)=F(S)Clte(S)=K. So K is
nonempty. Finally we get T(K)CK from the fact that X =
{YEX|T(Y)CY} is a o-subset. Hence the Schauder-Tychonoff
Theorem [4, Theorem, V.10.5] provides a fixpoint.

A special case of this theorem is that every continuous A-condensing
Operator on a closed bounded convex set has a fixpoint (A is a measure of
loncompactness, see [12]).

IL3.  Normal structure. Throughout this chapter § will be a
nonempty weakly compact set with normal structure in a Banach space.

Normal structure means that if M is a convex subset of S which
tontains more than one element then it holds that

r(M)=infsuplx - z[|<8(M)= sup. fx - z].

We know that for every nonempty closed convex subset M CS the
‘{Ceb)’éev-centre of M with respect to S Cedbs(M )=
X €S [sup, x — z|l=r(M)} is agaim nonempty closed and convex
(see [2], [81;)-% QVe shaql wr(ite )éeb,;,(%/f) for Cebs(M)N M and Ceb (M)
for Ceb,,(M). Cebs(M)D M# @, or equivalently Ceb(M)=M# 2,
h_appens if and only if M is a singleton. We are interested in nonexpan-
SV maps T:8§- 8. Nonexpansive means that I T(x)— T.()")H =
Ix - ¥|l for all x, y €S. It is well known ([6], [8]) that with additional
Conditions Cebs(M) is invariant under a nonexpansive map. We need
this result in a slightly more general form.

. LEMMA 3. Le f: §— S be nonexpansive aftd M CS such that
fM)> M= €6(M). Then Cebs(M) is f-invaniant.
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Proof. Let x €M and X0 € Cebs(M) be arbitrary. By as‘suemlr&
tion for € >0 there are A,,---,A, 20 with SA, = | and y,.-- -y,
such that:

[If(xo) - x I= £ (xo) - IAf(y)l+e =34, If(xo) = f(y)l + €
=XA[x-y|l+e (because f is nonexpansive)
=r(M)+e.

This implies || f(xo) ~ x | < /(M) Vx € M and f(x,) must be in Cebs(M).
THEOREM (Kirk [8)). Every honexpansive T: § — S has a fixpoint.

Froof. X ={YCS|@#% Y =eo(V). T(Y)C v} is o-complete -
every decreasing ¢ because it consists of weakly compact sets. 1oy
define a decreasing ¢,: X — X by ¢(Y)=CoT(Y). The Cebyte
centre of It ¢ (Y) is T-invariant because of Lemma 3. B
Thus qo:(Y)#Ceb(ltqol(Y)) is a decreasing map X — X and K=
It ¢:(S) must be an element of X with Ceb(K)= K. Hence K is 2
T-invariant singleton, Thar means K consists of one T-fixpoint.

We close this section with a theorem of the Belluce-Kirk type. ) Le}
T:5—>5 be nonexpansive and & 5 family of nonexpansive Wlth, n
commuting maps § — § such that for every f € F there is a g € F wit
fog=T

THE Last THEOREM. & pgs a common fixpoiny,

Proof, Consider
Z*={YCs|T(v)c v},

Z={yez'fiv)c YVfe 7
and

ing monotone on Z*. Since Z, is 2
—Z. By Kirk’s theorem there ’53
Xum} is a @-fixpoint an
have Xpy EIt(p(M) and It o (M) must bf
e know & f(it o (M)) S f(1t o (M) 2
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It (M) because of It ¢(M)= T(It¢(M)) = fog(Ite(M))C f(It o (M)).
With the aid of Lemma 3 we conclude that ¥: M — Ceb,,co(It ¢ (M)) is a
map X' — X. Obviously we have Ceb(ItW(S)) = It W(S). Hence It ¥(S)
is a singleton consisting of a fixpoint for .

CororLaRY (Belluce—Kirk [11). Let 7 be a finite family of commut-
ing nonexpansive maps S — S. Then ¥ has a common fixpoint in S.

Proof.  Use the last theorem for T = fye f,o- - - o f,, where & consists
of all compositions of different elements of {f,, -, f,}.

The last theorem is quite general because whenever a family % of
nonexpansive maps has a common fixpoint x, € S then we can finda T
and a family # D F fulfilling the required conditions. For example
define T(x)=x,¥xES and % =FU{T} then obviously fo7T =
TVfe &

There are very many other theorems which are simple applications
of the iteration theorem. One example: the fixpoint theorem of
Brodski-Milman [2]. Lim's generalization of the Belluce-Kirk
Theorem ({101, [11]) also can be simplified with the iteration
theorem. But it seems that Lim’s theorem cannot be done without the
axiom of choice. All theorems of this paper are theorems of construc-
tive functional analysis although many of them are usually proved with
the aid of Zorn’s lemma. This seems worthwhile to mention because
the interest in constructive analysis has grown with the discovery of
Solovay’s model [7].
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