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RESEARCH ARTICLE

ON EXPOSED SEMIGROUP HOMOMORPHISMS

Benno Fuchssteiner
Communicated by K.H. Hofmamn

In the main theorem of this paper the existence of weakly exposed
semigroup homomorphisms is proved. This theorem is effectively
equivalent to the axiom of choice and generalizes some well kmown
theorems of functional analysis like the Hahn-Banach theorem, the
Krein-Milman theorem, Bauer's minimum principle and a result of

T. Husain and I. Tweddle.

1. THE MAIN THEOREM

Let S = (S,+,<) be a preordered abellan semigroup with neutral

element 0. In a preordered semigroup the semigroup structure has
< , that means ine-

to be compatible with the preorder relation <

qualities can be added. Furthermore, we consider a complete vector

lattive (R,<). The supremum and infimm in R is dencted by

sup () and inf( ). If sup(A) € A we write max{A) instead of

sup(A). For simplicity an element - e = Inf(R) is adjoined to .

Finally, R stands for R\J{ - =!- Addition is extended to R in

the obvious way and we define X (- ) = — =, if 0<»€R and
O(-w) =0 .
Amap p: S-R is called supadditive {superadditive} if

p(0) = 0 and pls+t) < { 2} p(s) + p(t) forall ©, s€ S.
An additive map is one which is sub- and superadditive. Let

Iy ge & then \/(f,g) stands for the set of subadditive maps P
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between £ and g(i.e. f(s) < p(s) < gls) for all s € S) whereas
/\ (f,2) {Add(f,g)} stands for the set of superadditive
{additive} maps between f and g. This notation is chosen because
\/(f,g) is a sup~semilattice and /\(f}g is an inf-semilattice.
Supremum and infimum in A\(F,2) and \/ (f,g) are dencted by A\
ard \/ respectively,

For emphasizing which semigroup we mean we shall write sometimes
/\ S8, \/ o(f8) and Add.(f,g). Amap £ : 8- R is called
monotone if s 2 € = f(s) 2 f{t), and f dis called IN~-homogenecus

if f(ns) = n f(s) for all n €EN and s € 38,

First we gather some elementary facts about sub-and superadditive maps.

REMARK 1.1: For every subadditive p there is a unigue maximal
subaddltlve and N-homogenecus p < p. 5 is given by 5(8) =

inf{ = p(m s)] | 1<me€eMN). For Superadditive q < p one has

g < 5 .

If 7 is subadditive ang Q@ superadditive such that
(1) 7(8) + q(t) < vla+t) Vs, t€es,
then we write q=w. If in addition o is N-hcmogeneous with 7 # g

then we write q-< 7.

REMARK 1, 1.2:

Let p be subadditive and let qQ < p be super-
Gaditive. Then there is 4 unique maximal subadditive p. with
q= pq < p. o, is given by pq( s) = inf{p(s+t)-q(t) It € S,q(t)F~ o L

PROOF: Let, Py be defired as above. ®y is subadditive because of
the subadditivity of p and tpe superadditivity of q. From (1) it
follows that SVery m o with q—<rn < P has to be dominated by P

S0 1t remains to prove g :fp - For q(t) = - = we have tr1v1ally
pq\ )+ glt) < p (8+1). Ther e;owe we assume q(t) # - o and we get

via the supe-uqutz*lty of g the following inequalities :

pq(S) talt) = inf {p(s+t) - alt) + alt) | t e S, () 4 -« }

< inf {p(s+t+£) - q(t+£) +q(t) | % €53, q(%) ¥ — oo }

<

ol (p{s4t+t) - q(E)[% €5, q(f) # = eoe py(s+t) -
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As a consequence of 1.1, ard 1.2 we cbtain:

REMARK 1.3: Let p be subadditive and let g £ p be super-

additive. Ther there is a unigue maximal and N- homogenecus Sub-=

additive [p,q] with q =[p,ql <p. [p,al is defined by
(2) [p,ql(s) = inf{ % (plms + ©) - a(t))]|1 <m € N,LES, q(t)¥ -l

[p,q] 1s obviocusly monotone in p and antitone in g, that means

for p'2p and Q' £ g we nave [p', a'l z [p,al.

DEFINITION 1: 1 € A(f.2) is called weakly exposed with re-

spect to £ and g (exposed in short) iff for every N- homogeneous

p' ard for every q' with f<gq" —p' =8 there is an S, € 5

such that
(%) q‘(so) < p(so) > p'(SO) .

In this definition the emphasis lies on the fact that q'(s, ) 1is

strictly less than u(S ) and that we have the two :mequalltles

for the same 5, The full force of the property required in this

e secord chapter. If we had”

definition becomes obvious in th
() we would have described

required only q' (so) < u(so) instead of
maximal elements of Add(f,g). But (%) implies a property which 18

even stronger than being an extreme point of Add(f &)

IEMMA 1: Let p Dbe subadditive and let g pe superadditive

with g <p .
(1) Ir 8€/A(q,p) is exposed and 6Su€/\(q,p
additive. In particular & itse i

(ii) Let & € /\ (q,p) be exposed and and let
L * 6. Then there 18 an S, €3 vrlth u(S ) < 6(5 3

Y then p 1is

‘ b
FJ
wn
[A%]
(5%
[N
[N
ot
} -
<3
4]

€ Add(g,p) with

(1ii) Every exposed & € /\ (q,p) is maximal, i.e.
S§ <y € /\(q,p) implies & = k-

(iv) Assume that p 1is monotone ard that Q = p.
Let To>{0} bei subsemigroup of S, let o E/\T(q,p)
ix so € 8 and consider the

be monotone and exposed. We fix
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subsemigroup T(s,) = {t +n 5, £ €T, n€N3}. Then there is a
monotone and exposed extension 6 € /\rP(s y (@p) of &,
o

PROCF: (i) Consider p' = [p,u]. If p' = u then by definition 1
there would be an 8, € 3 providing the contradiciton

6(so) > ;KSO) because & I1s exposed. Therefore p' = 1 and u

must also be subadditive.

(11) et p' =\/{(6,u}, q' =/\ (6,u1, then q' < p'. Since &
is exposed, there is an s, € S with inf{é(so), u(so)} < é(so)
> sup{é(sO), u(so)}. Thus we have u(SO) < 6(50).

(1i1) is an immediate consequence of (ii) ang (1),

(1v) First, we exterd & +to g superadditive & E/N\T(SO)(q,p)

with 6'IT =26 by

(3a) 6'"(u) = sup{ &(t) + als)lt €T, 5 ¢ T(s.), t+s = u }.

The maximality of & on 7 implies 6'IT = 6. Unfortunately &'

is in general not exposed ,But by (i), any exposed & > &'
has to be maximal, So we construct a supe

radditive map attaining on
T(so)\ T the maximal value which is poss

ible for elements in

\/%(SO)(é',p). To be more precise, we define

Gb) &) = supl 6'(¢) 4 n [p,6'1(s ) In € N, ¢ ¢ T(s ).t + ns_ < ul

where [p,8'] is the
to (2). For y°

taken increases,

subadditive map on T(SO) defined according

2 U the set over which tne supremum in (3b ) is

therefore § mygt pe monotone. & is superadditive
because of

Slup+u,) = sup(sr(t) 4 nlp,6'1(s ) | n € N,t€T(s ), tens < u.+u.}
o o o) 172

5,0 1 n,n, €N, b5t € T(So)»tf”iso

v

sup{é'(t1+t2) + (n1+n2)[p,6'](

<
_ul,t2n2+sosu2}

POty 4 ni[p,é'](so) + ﬂg[p,é’](so)lsame set as above
8(u)) + 8(u,).

v

sup{ 6'(t1)
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By defmltlon we have § > 6'. Thus by the maximality of 5 =206" T
we get & = 6IT We claim that 6 < Pip(s ) For this we have to
o)

prove that &'(¢) + nlp,d’ ](s y < plu) if t +1nsg < u. We may
assume 6'(t) % — o othemse the inequality trivially holds.

But trom (2) we get n [p,8'1(s ) < pln s, + t) - 8'(t). Since p is
monotone we have p(n 5, * t) € p(u) Hence the desired inequality is

proved and it remains to show that 6 is exposed.

Let
4 7(s ) <q'=<p'= plT(s y - For q' IT-*p | (x) follows

from the fact that 6 = 6iT is exposed. Thus there remains the
case where q'|q = =Py and both are additive on T. If P'p * 6

then (%) follows from (ii). Sothe case remains where

P'p = @ IT & . Now, q' #p' implies q'(s) < p'(so) and we

obtam (%) from (2),(3) and q' —p' in the following way
6(s.) > [p,8'1(s,) = [psa')(s,) 2 [p7,a'1(5g) =

:inf{%(p'(mso+t)—q*(t)loaemew,tei? with q'(t) ¢ -}

2p'(s ) >q'(s,).
The second inequality follows from §' < q' which is an immediate
consequence of & = @' yms 4 <q' and

1T S1T(s)

5(t) + q(s) < q'(t) +a'(s) <q'(bes) Y LET, s € T(SO).I

MAIN THEOREM: Let g be superadditive and P 24 be sub-

weakly exposed additive and

additive andmonotore.Then there 1s a weakl

monotone & € /\(a,p) -

PROOF: We replace p by Py defined in remark 1.2. Then

q=sg'<p'=p if and only if a = q' = p' = pq because Py

is the maximum of all the subadditive o with q=~w S DP. Therefore

the exposed elements of /\(q,p) ard /\(q Py ) are the same. We

consider the set of those (Si’“l) such that 5,2 {0y isa sub-

semigroup of S ard w4 is exposed in /\31 (q,pq)-

This set is not empty because it has ({01, 0~0) as element. We

define an order relation by
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(Sls Ul) < (823 Uz) Aad Sl < 82, Ug 111 -
IS
1

Then the set is inductively ordered ard the theorem follows via

Zorn's Lemma from Lemma 1 (iv).l

BEMARK 2: (i) 1r u 1is additve on 8 and if T 1s a subgroup

of 8 then u does not attain the value - w on T, This follows
immediately from 0 = u(0) = u(t) + u(=t) vter .

(i) Let R have an order unit [6] and let us assume in addition
that S 1is a preordered cone (i.e. an R+— module such that ine-
qualities can be multiplied by elements of R, ). If the subadditive

P has the property that 1im ple 8) =0 for all s €S
€40

(1im with respect to the order unit norm) then every additive u<Ep
is linear ( R,- homogeneous and additive). Thig isproved as usual
by approximating the reals from below by rationals.

(1ii) The main theorem remains trye if one leaves out the notion
"monotone”. (One has to consider the g
equality relation).

pecial preorder given by the

2. GEOMETRIC PROPERTTIES

In the following we assume that R
By the fundamental Stone-

the vector lattice C(K) of real continuous funetions on some compact

K([6},p.1oaYPherefore we have in a natyra) way a multiplication in R
because C(K) ig an algebrs.

If 0<ax<r then 1 g + (I - b 1s called 3 canvex combination
of a,be Add(f,g). Note that Add(f,g)
all conveyx combinations of its elements.

additive maps 3+ §. 4 Subset X < $* is calleq bounded if

sup{ x(s) | x € x } exists for a1y S5 € S . For bounded nonempty X
the maps g o V X(s) = sup{ x(s) | x € X } and

S*/\X(s) = i

has an order unit 1.
Kakutani thecrem g is then isomorphic to

is convex since it contains
Denote with g* the set of




e m ene _a
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of ¥. We shall denote the closed-convex hull of X DY < X >.

Note that Add(f,g) is obviously always closed-convex.

LEMVA 2: Let p be subadditive, N-homogeneous and monotone and

let g be superadditive with g £ . Then the following 2re

equivalent:

(1) ag=p
(i1) p = \/ X, where X = {v]v € Aad(q,p), Vv monotonet .

PROOF: (ii) = (i): By definition we have
vit) + g(s) < v(t) + v(s) = v(t+s) £ p(t+s) for 2]l v € X.

Now, one takes the supremum Over Vv € X on the left side and ob-

tains the desired resull.
(1) = (ii): We fix © € g and define a superadditive q = qg' <£p
(s)Int  + 8= t, n €N}, By the main

by q'(t) = supin p(to) +q
v € Add(q ,p). By definition we have

thecrem there is a monotone
plt ) = q'(t,) ard p(t_) 2 v(t, ) = q'(t, y. This implies (ii)
because t was chosen arbltrarlly I

COROLLARY 1: Let X = Add(F,g) = Add(f',g'). Then 6 € X 1S

weakly exposed with respect 1O f,g iff it is weakly exposed with

respect to £,

PROOF: Let & be exposed with respect to £ g' and take

q' € AN (r,e2), p' € \/ ‘I g) with a'= p'. We show that (%) can be
obtained. Consider Y = {v € Xlg" € v =P
we have p' =\/Y. For g :/A\Y > q' we have either q =<p' ©r

g = p'. In the first case (x) can be obtained from

f'' < q~p' €g' and the fact that & 1is (1.8 )- exposed In the

second case we have either &% g=7p' or §=q=p'- For §%q-p
¢ 6 =p' (%) 188 consequenoe of

1. According O lerma 2

(%) follows from lemma 1(ii).

p' i q'. Hence & 18 exposed with respect to 7,8

REMARK 3: If X < S* 1s closed-convex then the property of
rd on the particular re=

§ € X to be weakly exposed does not depe
presentation X = Add(f,g) but is a geometric property depercirg

only on the closed-conveX set and the semigroup s.
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LEMYA 3: Consider a monotone subadditive p ard let T > {0}
be a subsemigroup of S. Then a weakly exposed monotone

8 €/\ T(q,p) can be extended Lo a weakly exposed monotone

b €/\g(a,p) if and only ir
8(t) + q(s) < p(s+t) Vvt g T, s € 3.

PROOF: Because of lemma 1(1) the cordition is necessary. Now, consider
an exposed monotone  u € /\(q,p), where

a(E) = supf 6(t) + q(s)] t € Ty s €8, 8=t + s} <p(f).

By lemma 1(iii) u is an extension of &. For showing that yu is
also exposed in /\(q,p) we take arbitrary q' € /\ (q,p) and

P' €\/(g,p) with q' — p'.

If Q' # P'ip then (x) follows fram the fact that 6 is exposed

in/ﬁ\T(Q,p)- We assume therefore q'IT = p'IT. This implies that

Q' p and P'yp are additive. Ir ¢ ¢ q'yp = P'p then () follows

from lema 1(ii). For q'[T = 0 we obtain q' 2 q from the super-

additivity of q' and () follows because u 1is exposed in/A\(é,p),l

DEFINITION 2: Let X < s* be bounded and closed-convex. Then

6 € X is called extreme point of ¥ if 6

S A vy + (I-2) vy with
. . a _ and
Vi2 V5, € X and Q $ $ 1 implies vy 5> = 6. Further 3X

!
<
t

points of X, respectively,

THEOREM 2: Let ¢ + X c 5* be bounded and closed-convex.
(1) exp(X) c 3 X (This implies 3 x o $).
(ii)

on X at some element

of exp(X) ; i.e. there isa u € exp(X) such that (s ) = \V/X(so)-
PROOF: (i) wWe consider 4 ¢ exp(X) with

M w<a vyt (I-2) Vo v, v

5 €X,0 5 S I,
and define p! *\/{u, Vis Vo), gt o= N\, Vi Vg}‘ We have to show

p! = Q' Dbecause that implieg = \;1 = \,2_ If p' s q' then we

Obtain fronldefinition 1 an element S €3 with
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inf {v,(s), vE(S)} < u{s) z sup{v,(s), vz(s)} in contradiction to (4).

(i1) We fix = € S and consider a = p(so), where p =\/X 6=/\X.
Then « 2 sup{x(s) | x € X}. Now, we set T = {ns | n€ N} and
define an exposed u €/\T(6,p) by ﬁ(nso) = na. Lemma 3 then gives
the desired result. [

REMARK }i . Every compact convex subset of a locally convex Haus-
dorff vector space E may be considered as a pounded closed-convex
set(in the above sense) of linear functionals on E'. This shows that
Theorem 2(i) has the Krein-Milman theorem as special case. Theorem
2(ii) is a generalization of H. Bauer’smaximum principle [1].
Another immediate consequence of Theorem 2 is that every dual ball

of a real Banach space has an extreme point. Since this statement

already implies the axiom of choice ([21,15]) our main theorem mist

be effectively equivalent to the axiom of choice. The Hahn-Banach

theorem and its applications can be obtained from the main theorem

in the same way as in [3].The generalization of the above mentioned
generalization to vector lattices

theorems does not only stem from the
1 exp(X)

(instead of the reals) but also from the fact that in genera
and 3 X are not egual.

In order to investigate further geometrical properties of exp(X) we
need a technical lemma. For this purpose we consider a proper sub-
semigroup T > (0} of S. For s, € S\I we denote b T(s,) the
subsemigroup {t + ns, |t €T, n €N} If X< S* then XIT stands

LEMMA 4: Let X Dbe closed-comvex and nonempty.
(1) Bvery v € exp({ %)y ) ) has one ad only one exposed €x
tension v € exp( { Xjqp(g ) Y ) to
0

(11) Let v €exp( ( Xjp p) ad VE G TERVAR-
Then v € exp( <X|T(S)> ) if and only if
Q

} = maX{u(So)|u € X, vFuT }.

]

;(SO) max{u(s,)|u € X, v = W

. ‘
(1id) Let u € exp(X) then there is an S, € S\T such thal

p(so) = ma_x{u(so)‘v € X, “IT < v‘T }.
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PROOF: (1) 1In lemma 1(iv) the existence of an exposed extension

was already shown. Consider two exposed extensions Vis V5 and
assume vy # v,.Lemma 1(ii) provides us with some 5 € S such that
“1(5) < v2(5). This implies vi(so) < vg(so) because of VipT S Vo p

Hence Vi<, in contradiction to lema 1(1i4).
*

(ii) By lemma 3 the set v = {u €Xlv < b7 } is not empty. And
because of lemma 1(iii), Y is equal to {u € X|v = M| }. From
theorem 2(ii) we know that 5, attains its maximum on Y, say at u .

Let v € eXp(<)ﬁT%s ) ) ) Dbe the unique exposed extension of v
0

Lo T(s,). According to iemma 3,5 can be extended to some
v € exp(X).Cbviously, we have VEY  and vis,) < E(SO)- Now,

we have v = vlT(SO) < UIT(SO) because of vlT = ”|T and

v(so) < u(SO). Finally, with the help of lemma 1(iii) we conclude
S = “|T(so) because v is exposed.

(ii1) Consider v

{x € X|u|T < XIT } ard define gq' = /N\Y,
p' = \/ Y. Ir 9" = p' then Y contains only cne element and
this mist be u. In this case we can take for s, any element of
S\I. If g'" # p' then q' A p' and there is an 5, with
q'(so) < u(so) > p'(sO). Now, q'(so) < u(so) clearly implies

S, € T, l

Let X,Y € 8* then ¥y stards for {x+y|x € X, y € Y}, We are
interested in the relations betweer the exposed points of X+Y and

those of ¥ and ¥ - respectively. Even for closed-convex X and Y, ur-
fortunately, ¥+Y is not always closed convex. But the following
theorem shows that in certain cases X+Y is ind

THECREM 3:

eed closed-convex.

Let P, p, be subadditive arg u additive with
W=p o+ Py« Then there are additive < P, and My < Py such that

PROOF: On the semigroup s° - {(s

L 1’82)I81’ 82 € 3} we define a sub-
additive

7 and a superadditive p by:
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ﬂ((slssg)) pl(si) + p2(52)

p(s) if s =8, =5;
p(<51’52)) =
- @ otherwise

By the main theorem there is an additive p on 52 with p <u <.

Now, uq(s) d: B((s,0)) and wuy(s) = 5((0,s)) do the job.
ef def

COROLLARY 3: Let S Dbe a group and 1ot X « S* be closed-con-

vex.
(1) y€S* isin X if and only if bV X
(ii) If Yo S* is closed-convex then X + Y is closed-convex.

PROOF: (i) The necessity of ¥ = VX is trivial. Now, let

p < \/ X. We have to prove ¥ > /\ X. But this follows from

b(8) = - u=s) = - (\/X(=s) = (AXs).

(i1) Let v € ( X+Y ), then v < \/X + \/Y. According to theorem 3
there are additive y, S \/ % up S\ T W v EM by - We
have just proved that ] € X, s €y. It remains to show that

V2 oug s Tphis follows via v = uy * ¥ from

w(s) = - u(-s) 2 - wyl-8) - ny(-s) = uy(s) + uy(s)-

Now, we fix two subadditive maps P4, Pp and we consider the
closed-convex sets Xp =[x €s*Flxs pi} (1 = 1,2).
i

LEMMA 5: Let u € expl (xpi Xy y), then there are uq € % o
Hy € sz such that u = wy * ¥p- Furthermore, Hq and u, &re

unique.
PROOF: By theorem 3 there are 3y € Xpl, u, € sz with w < uy ¥
and the maximality of u (lem2 1(3ii))implies equality. Now, let
u; € Xpi (i = 1,2) such that v~ Byt
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Then we consider q' =N\ {“1’ ;1} + /\{“2’ 1:2},
p' =\/ {uys ﬁl} +\/ Ly, 32 }. For q' # p' there is an 8 € S
with q'(58) < u(8) » p'(é), because u is exposed. This inequality
is in contradiction to p(8) = ul(é) + 112(5) = ﬂl(g) + ;2(8)-

Therefore we must have Q' = p'. Hence He= 1_11 and My = 1_12 I

The secord part of the following theorem shows that the My occuring
in lemma 5 have to be exposed.,

THEOREM 4: (i) For every v € eXp(Xp ) there is a & ¢ eXp(sz)
- - - 1 ———_ ——
such that (w6) € exp( <Xp1 + ng) ).

i1 + X )
(i1) Let vexpi,ﬁexpz such that u+6€exp(<Xp1 pz) ,

then v € exp(X ) and S € exp(X_ ).
Py = s

PROCF: (1) We consider the set of (T,u) where T o {0} is a sub-

semigroup of S ang u € exp( ( Xp I ) such that
2

viT + u € exp( Xpll'l‘ + nglT > ). This set is not empty because

it contains ({0}, 0»0) amg it is
to the order relation considered in

inductively ordered with respect

the proof of the main theorem,

Now, let (T,u) bpe g maximal element. We prove the statement by

Showing T = g | By way of contradiction we assume T % S. Lemma

4(iii) then provides us with some S, € S\T such that

v(so) = max{x(so)lx € Xpl, Vip ser }. From this and lemma 4(ii) it

follows that vIT(SO) € exp( < XpelT(SO) > ).

Let ¢
¥ € exp( ( Xp1|T(SO) + XDZ'T(SO) > ) and

b € exp( ( XpelT(so) ) ) be the wnique (lemma 4(1)) extensions of

(p=u+vlTandptO T(So).Weclaim (T)=H+v This
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Proof of the claim: We have to show 6(30) = ﬂ(so) + v(so). Because

we know already (BIT = GIT + Vg - Lemma 4(ii) applied to ¢ tells
us that (p(so) > ﬂ(so) + v(so). S0 it remains to prove

@(SO) < v(s,) + ﬁ(so). We can extend @ to an @ € exp( (Xp + Xp )
1 2

(lemma 3). According to lemma 5 we have © = X, + X, with

X, € X, . A secord application of lemma 5 to the restrictions of
i

Opp = Vg + Us Xqpps Xpyp BIVES Xyyp T vip A9 Tpyp T H T

Lemma 4(ii) applied to the exposed v1T(S ) ard u allows us to
o

conel -
nelude v(s ) 2 x,(s,) and u(s,) 2 x,(s8,) - Therefore we have
o(s,) = 0ls,) = x,(s)) + %y(s0) = v(s,) + u(sy) and the claim is

proved.

(ii) is proved in essentially the same way as (i). Let T o> {0} be
a maximal subsemigroup of S such that V| € exp( Xp : ) ),
11T
& .. € exp{ {X and + &), € expl ( X +X ).
o €y ) yed OB Fope Moo

21T

We have to prove T = S . We assume T+S and we take an SOES\T

such that

(5) (v+8)(s_)= max(x, (s)) + Xp(s5)[%; € Fp.o (6+v))p S (% ¥ %5 )7}

= ma_X{Xl(so) + xz(so)ixi € pi, \)|T = XiiT ’ 6!T = X2|T}

The last equality follows from the maximality of (&6+v) [T and from
(X ) )

lemma 5. Now, we consider the extensions v € €Xp 5
1!"1‘(50)

and 8 € exp( ( Xp Y ) of vir and &, respectively-

2IT(SO)

Due to (5) and lemma U (ii) we have (vt ) 7(s,) <5+ & . From (5)

and lenma U4(ii) we know that (v+6)|T(S ) is exposed, therefore
0

(V+5)lT( s) " S + § . Finally, application of lemma 5 to the exposed
o

(""6)11‘(30) gives V|p(g ) = % 8l2(s)) 5.
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This 1s in contradiction to the maximality of T.

As a consequence of corollary 3 and lemma 5 we obtain:

COROLLARY 4:  Let S be a group and let X, Y < o* be nonempty

—_—— e S L T

and closed-convex.

(1) For every v € exp(X) there is a & € exp(Y) such that
v+ 8 E exp(X+Y)

(i1) Let =z € exp(x + Y) then there are unique v € exp(X) ard
6 € exp(¥Y) such that 2z =y + 6.

RENMARK 5 It should be noted that the results of lemma through
corollary 4 are also valid when R does not contain an order unit.

DEFINITION 3: Let X < g* be bounded and closed-convex. Then
W€ X Is called a strong extreme point of X if for every bounded
closed convex Y # ¢ there is g HEDJY such that o + §E D (X+Y)

The set of strong extreme points of X is denoted by 9, X. (For the
source of this definition see [4]).

As a consequence of theorem 2(1) arg coerollary 4(1) we have

COROLLARY 5: Let S be a group and X< 8% closed-convex.
Then 9. X = exp(X).

Corollary 5 also shows that exp(
equal because in [4]

X) and 3 X, are in general not

there is an example for aS Xc 35 X,
¥

The next thecrem gives in a special case a characterization of
exp(X) which does not involve 8.

LEMVA 6: Let X c g*

ES.PQEEQEQ and closed-convex, The following
2r¢ equivalent.

1) %€ Xexp(x)

(i1) there is gz closed-convex v with X 57Y 5 (x }  such that
—— - IVEA - 0 -
*

¥(s) = y'(s) for all y,y ey whenever

x,(s) 2 sup{y(s)|y € v}.
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PROOF: (ii) = (i): (¥) camnot hold for p' = VY, q =/ Y.
(i) = (ii): Choose q', p' with/\X < ¢' —=p' \/ X such that ()
never holds with respect to X_ .

~ O"' ~ ~
‘fle replace q', p' by a=/\Y, p =\/Y, where
Y= {x€Xlqg ¢x<p'}. Then (%) never holds for 4, p because
- . .
q2q' and p = p' (Lemma 1). But p' = X, 18 not possible,other-
wise (%) would hold for some s and p', q' Decause p' > q'.

*

Now, we take for Y the closed-convex hull of vy xS .k
o

THEOREM 5: Let S be a real vector space and let E Dbe a space

of linear functionals on 3 equipped with a topology of the dual
pair (E,S) such that E 1is a Frechet space. Furthermore, iet XckE
be a compact convex set. Then for every X, € 3 Xexp(X) there is a
compact convex set Z < E such that x, * 2 ¢ o (X+z) for all

z €3 7.

COROLLARY 6: 3 X = exp(X)

PROOF: Let d denote an invariant metric of E. Without loss of

- 0. According to lemma £ there is a
X DY? {0} such that 0 is not a
se of YcX. We define

generality we can assume X
compact convex set Y with
support point of Y. But O €3 Y becau
F,o= \UJ{nY jnen , F_ - \_J{- n ¥|n € N}. Since 0 €2 Y we
have FJ\ F_ = {0}. The closure of F, has to contain F_ \JF_

otherwise the Hahn-Banach-sep por®

aration theorem would provide a sup
functional of O with respect to Y. Now, we fix O # ¥, € (-Y) < F_

and choose inductively

z €F, wi 2 1 - -
n , Wwith az» 5 yn—l) < 3 where Y, 3 Y1 2 2.0
n=1,2,3.... From d(yn,O) < % we obtain that

Z = {ynln € N}U{Zn | n€ N} _J {0} is compact. By & We denote the

of 7. We know 32 e 7 (compactness of 7) and

, Iimplies in addition 3 2 € {z |n € NH O}

compact convex hull
1 2

+ = =
3 It 3% 7 n-

[EEY

1
Now, O + O = O € a(z+Y) because of 7 JYo» 72 y, € Z+Y,and

ro
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0+ Z ¢ 3(Z+Y) because of z,€F .50 Z has the required
property.l
The corollary follows from Corollary 5.

PROBLEMS: (1) Give a complete characterization of those X with
8 X = exp(X).

(ii) Give a complete characterization of those X with
exp(X) = 3 X.

Partial answers for (ii) are known. This is the case for finite

dimensional compact convex sets [4] or for Choquet simplexes
(consequence of [1]Cor. IT. 5.20).
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