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Signed Representing Measures

By

Bexx0 FUCHSSTEINER
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v is called a strict signed representing measure if we have equality in (*) for all
feF. Of course, every signed representing measure is strict if ¥ is a vector sp.a.ce.
A (strict) signed representing measure v which is a probability measure (i.e. p.osm.ve
and 7(X) = 1) is called a (strict) representing measure. For a maximal (pomtw.lse
order or F) state every representing measure is strict because the right-hand side
in (*) defines a state.

The cone F(X) is called a Dini-cone if F(X) contains all constant functions and

if it has the Dini property, i.e. if for every decreasing sequence (f,) in F(X) the
following holds:

infsupy (f,) = supx (inf f,).
neN neN
One example of a Dini cone is R + U C%(X), where U C% (X) are the non-nfegat'l.:"i
upper-semicontinuous functions f on the topological space X vanishing at 1nﬁ¥11 ¥
(ie. Ye>0, {z] |f{x)] = &} quasicompact). In {4, Main Theorem] we proved:
Let F(X) contain the constants. Then every state of F(X) has a representing measure
if and only if F(X) isa Dini cone. T} in addition X is a topological space am{ F(X) Uf]"'
tains only upper-semicontinuous functions then every state has representing mMeasure
which can be extended to a a-algebra containing all closed quasicompact sets.

Unfortunately this theorem does not immediately yield results about signed rip;
resenting measures since the following simple example shows that there are vectol

: . S not
spaces such that all states do have signed representing measures but some do
have representing measures,

Example 1. Define »: [0,1] >R by v(@) ={1l —x for 0 < 2 < 1/4, x for 1/4_Z
<z =1} and consider v([0), 1]={vf|f:[0,1] - R continuous}. Then the sta ‘
#:f =~ lm f(1/4 + ¢) has no representing measure, but 1/3 dy,4 (8174 Dirac measur

£}0

at the point 1/4) is certainly a signed representing measure for u. o

In fact all states do have signed representing measures (cf. [5, Theorem 2] 0
(6, Theoréme 4.9]).

However vC'[0, 1] is a vector lattice and for vector lattices the Main Theorem

. . . ition for
gives results about signed representing measures via a Jordan decomposition
linear functionals.

Lemma 1. Let E = E(X) be q vector lattice of bounded functions on X. Then evezi
mormed linear u: E — R. is of the form 1 — Apy — (L — Ay where 0 S A5 10
K1, prz are normed linear such (hat #1ig, and oy, are maximal states of

Er={feB|f =0}
If in addition u is a state then we may choose py, pz such that uy = pa-

Proof. The lemma is a consequence of the fact that Z* == (B, sup-norm)* is an

abstract L-space. For completeness we sketch 3 simple proof. Define

P(")T;‘S“P{”U)HEI’A, supx(f) <1} for yeE*.
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Then s L
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) states v., v of E and 0 < A <1 such that v = Avy — (1 — Ay—-

If pr) =
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. be order- i i
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which i .
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states are a zmzriltlon and the I.)artial additivity of p it fo

ficient o pr ° vex set. By virtue of the Jordan decomposition
prove the lemma for states. Assume therefore g = f+

L }+1Lu) 1—p L H#
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p. 199)).

(ﬁ—v)»p(i——v):() - p=79,
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py) = | as consequence- From
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Th ; i
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on th . 4 4
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ed to a g-algebra containing all closed quasioompact subsets of X-
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asures for maximal states on E. are

Theorem 1. Let B = B (X) be a vecto

Pr
the O%Of. A consequence of the quot
strict servation that signed represen
and probability measures.

ting Mme

Corollary 1. Let E be a vector Jattice of functions o" X and v: X o1 be a weight

function such that

polf) = supx |of| <= viek.
And let R +vEr =R+ (vf|feBs} e Dini cone. Then for every linea”
p: E—>R with M(f)é?o(f) vieF
algebra i X such that vE

there .
re is a signed measure Ty ( with respect 10 the smallest 0~

Consists of measurable functions ) such that
At =jfvjdr,. VicE and EAESE
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1T p is positive 7, can be chosen to be positive. If vE, consists of upper-semicontinuous
functions on the topological space X then there is always a v, which can be extended to
@ o-algebra containing all closed quasicompact sels.

Proof. Follows from Theorem 1 and the observation that if ﬁ: vF - Ris ~norﬂled
linear then : f —> 2 (vf) is linear =poand if 4: F — Ris lincar = py then p:of —
— p(f) is normed linear on vE. |}

Example 2 (cf. [5], 161,171, 19], [10]). Let v = 0 be an upper-semicontinuous weight
function on the Hausdorff space X and (), (X)="- {f] f: X - R is continuous and
vf vanishes at Infinity}. Then vCy(X): - R is a Dini cone because it is a subset
of R+ UCL(X).

By the Corollary the dual unjt ball of C'(X) is given by the functionals

f—)fz')"dr
P

where 7 is a measure on a a-algebra containing the compact scts. In these integralsh 7
can be replaced by a suitable tight measure  without changing the value of the
integrals. For example choose a sequence Ky of compact sets such that

]TI(U{KnlnEN}) =sup{|7|(K)| K compact cX}
and define 7 to be the restriction of 7 to U {Kn|neN).

IL. The general ease. For the general situation we shall use the technique of 3'““%
symmetric functions, However, first one definition. Let F — F (X) be a cone 0
bounded functions on X. F is said to have the weak Dini-property if for every se-
quence (s, fy)eRx F, n = 1,32, ~+> such that o, + f, and &, — f, are both de-
creasing sequences we do have

SUupx (inf(“” + [ fa [)) = infsupy (o, -+ [1u]).
nely nelN

Now, consider g set Z, a sabset ¥ ¢z and an involutory (i.e. joj == id|z) map

7:Z — Z and assume that Yis j-generating, Here, j-generating means YU j(¥) = Z

Furthermore we consider a cone @ — D(Z) of hounded real-valued antisymmetrlf

functions on Z, where 9 is called antisymmetric ifgz) =— p(j(z)) VzeZ. Let @

be the restriction of ptoY and ¢ — {@loe ®@}. Then 1r: @ > @ is bijective be-

cause Y is j-generating and @ consists only of antisymmetric functions.
Furthermore we obtain from the antisymmetry :

(**) SUPzg =supy 5| Vpeo.
This immediately implies:

Lemma 2. & 4 R is 4 Dini cone if and only if b has the weak Dini property.

Since 4 is bijective and because of (**) we get:
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Lemma 3. Let u be a state of @ then Ik ® R defined by 7 — p(g) i normed
and linear. If y: @ — R 13 normed and linear then v defined by ¢ — y ((?7) 1s a slale.
The next lemma s a little bit more difficult. Let X be the o-algebra inZ generated
by @ and X' the g-algebra in ¥ generated by &. One difficulty in the lemma stems
from the fact that Y is not always Y .measurable. Fortunately we have
S—(BnY|BeZ}.
Lemma 4. For every signed $ measure 7 with |T| S 1 there is a X-probability mea-
sure v such that

(% fgdv={pdT VYge®.
z hid

And for every X-probability measure T there is @ signed S-measure 7 with |7 £1
such that (***) holds.
Proof (first part of the lemma). Leb % be a signed 5 measure with 0 < [1 [ <1
Consider the Jordan decomposition 7 =7T+— 2_of 7 and define for B€ <:
T(B) = (1 + &)T+(BAY) +e7-(BD Y)+
+{ Foi- BN+ e (((BYNT)
Vhere ¢ = (1/(27) — 1). Then 7 is & positive 5. measure with
) = (L + 263 (Y) + (1 +27-(1) = [zl =1
and the antisymmetry of ¢ € @ implies (***)- yoBaeZ

(Second part of the lemma). Let 7 be 2 S.probability meagure and take

such that
T(By) = (1 —1/n) sup{t(B)|¥ > Bel}.

Now, consider £ = J{Bn|ne N}; then QcYand

) (@) = sup{z(B)| ¥ > BeZ}-
We define v+(B) - £(B Q) — 7((B\Q) and we S
(11) T*(B)—‘E*(B) for B,EES with BnY:Bny

BN =1(BNn Q) is trivial. BA Bea\Y gives §(B) AJ(ean.)sil)’?follows:

®¢alse j is involutory and Y is j-generating: From this and ()
T({B)\Q) = T(H(B)\D)-

I\?O‘Wé (ii) means that 7 defined by (¥ B) ol
= i. FOI’ Q e¢ we Obtain ﬁna]]y:

j@d;:j(pdf_w.?-d,sydz. |

*(B) is & signed measure with

¥ Q Z|9 . Then
T ] od undions on S
heorem 2. Lt F — F(X) be a cone of bourded 10 w(l;ichiresped to the smaller

or .
every normed linear p: F — R there 18 & measure Tp
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o-algebra in X generated by F) of total variation [Tu] =1 such that
# = [1d5, Vier
X

tf and only if F has the weal Dini property.

., 7 d
Proof. Consider Z <= (X {1Hu(Xx {—1}), Y =xx {1} &nd]~Z‘>4‘izﬁItlﬁe
by jlzx1) =ex (—1), HexX(—1)) =2x1 forze X. For feF let g5
function

FrleXx1) =/(z), PriEX(=1)) = — f(z) VzeX

and ¢ — $(Z) = {qu]/eF}. Obviously every normed linear g on F has Z;g;;,e;i
representing measure iff there is such a measure for every normed lincar g OZ ) has 4
This is equivalent (Lemma 3,4) to the assertion that every stater on ]R( being a
Tepresenting measure, That, is equivalent (Main Theorem) to D(Z) —'- Iy 5(7)
Dini cone ang by Lemma 2 to D(Y) having the weak Dinj property. Finally

has the weak Dinj property if and only if (X) has this property.

Corollary 2, Let # — & (X) be a cone of real-valued (not necessarily boum'leté()mf:g;
tions on X and v 4 (not necessarily positive ) function X — R such that vf is Vi F
for every fe . Then for every linear y: F LR with u(f) < SUPXIUI{'
there is a measyre Tu with respect to the smallest g-algebra in X generated by

vfﬁ’é.'—'{vf[feﬁ"}
of total variation [Tl <1 such that
2 < Jfodr, VieF
x

tf and only if v.F has the weak Ding property.

P
Proof. We observe that every normed linear § on p.# defines a lir?ear i‘: :ch e;;lg
with (*) u(f) < supy [vf| Vie F by f = 8(f) and for every u with (*) t Sand.
a normed linear § o v such that ) < d(wf) V/e F (consequence of the Sa
wich Theorem 2, p. 2)). Now, everything follows from Theorem 2. [

: e do not
At the end of this Paper we like to mention some problems for which we
know satisfactory answers,

Problem 1. Under what kinqg of additional ag
signed Tepresenting measyre given by Theorem 9
pact subsets of the topological space X ?

he
sumption on ¥ can we extend tm_
to a g-algebra containing all co

ique ?
Problem 2. Under which, additional condition on 7 js 7, for every y uniqu

Problem 3. Assume that does no
characterization (in terms of order pr
representing meagureg

: imple
t have the weak Dini propertg.?. Give a ﬁid
operties for F) for those 4 which have
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