
Fakultät für Elektrotechnik – Informatik – Mathematik
Institut für Informatik

Fachgebiet Softwaretechnik
Warburger Straße 100

33098 Paderborn

Ein komponentenbasierter, modellgetriebener
Softwareentwicklungsansatz für vernetzte, mechatronische

Systeme

Schriftliche Arbeit
zur Erlangung des Grades

„Doktor der Naturwissenschaften“

vorgelegt von

Dipl.-Inform. Stefan Henkler

Obernheideweg 13a
33106 Paderborn

Paderborn, im Juni 2012

II

Danksagung

An dieser Stelle möchte ich denjenigen Danken, die mich während meiner Zeit als Doktorand
unterstützt haben. Beginnen möchte ich mit Prof. Wilhelm Schäfer, der es mir ermöglicht hat
an seinem Lehrstuhl zu promovieren. Für die vielen fachlichen Gespräche und der Möglichkeit
meine fußballerische Expertise praktisch sowie theoretisch zu vertiefen danke ich dir, Wilhelm!

Besonderem Dank gilt Prof. Holger Giese, der mich davon überzeugen konnte den Weg einer
Promotion einzuschlagen. Während meiner gesamten Zeit als Doktorand wurde ich maßgeblich
durch die vielen Diskussionen und gemeinsamen Veröffentlichungen von dir inspiriert.

Einen ganz besonderen Dank gilt der Prüfungskommission, dessen Teilnehmer es nicht gescheut
haben aus Californien und Potsdam anzureisen. Ich Danke hiermit den Gutachtern Prof. Wilhelm
Schäfer, Prof. Ingolf Krüger und Prof. Franz Rammig sowie den Kommissionsmitgliedern Prof.
Steffen Becker, Prof. Gregor Engels, Prof. Holger Giese, Prof. Krüger und Prof. Schäfer.

An dieser Stelle möchte ich auch die Gelegenheit nutzen meinem langjährigen Bürokollegen
Prof. Martin Hirsch zu danken. Diese Arbeit wäre ohne die zahlreichen Diskussionen, Publika-
tionen und gerade die nicht fachlichen Gespräche mit dir in dieser Form nicht zustande gekom-
men. Danke Martin!

Meinen zahlreichen Ex-Kollegen am Lehrstuhl Softwaretechnik gilt ebenfalls besonderer Dank.
Meine Arbeit wurde durch viele Diskussionen und gemeinsame Publikationen besonders unter-
stützt durch ((Co-) Authoren der Publikationen): Björn Axenath, Christian Brenner, Christoph
Brink, Sven Burmester, Markus von Detten, Tobias Eckardt, Joel Grennyer, Christian Heinze-
mann, Martin Hirsch, Renate Löffler (né Ristov), Jan Meyer, Claudia Priesterjahn, Vladimir
Roubin, Andreas Seibel, Florian Stallmann (né Klein), Matthias Tichy und Dietrich Travkin. Für
das Korrekturlesen dieser Arbeit möchte ich mich bei Steffen Becker, Nicola Danielzik, Mar-
kus von Detten, Martin Hirsch, Jan Meyer, Claudia Priesterjahn, Achim Rettberg und Matthias
Tichy bedanken. Was wäre ein Lehrstuhlleben ohne Sekretariat und Administration? Jutta, Sam-
my herzlichen Dank für eure tolle Unterstützung während der gesamten Zeit! Ahmet, dir möchte
ich für die vielen nicht inhaltlichen Diskussionen und Ratschläge Danken!

All meinen Ex-Kollegen aus dem SFB möchte für die exzellente interdisziplinäre Zusammen-
arbeit danken. Besonders möchte denen danken, die mich in den Arbeitskreisen und weiteren
Gremien begleitet haben: Philipp Adelt, Jörg Donoth, Katrhin Flaßkamp, Jens Geisler, Sascha
Kahl, Benjamin Klöpper, Eckehard Münch, Simon Oberthür, Semir Osmic, Christoph Romaus,
Alexander Schmidt, Bernd Schulz, Henner Vöcking und Katrin Witting.

III

Diese Arbeit wäre für mich nicht möglich gewesen ohne die Unterstützung meiner Familie.
Meine Eltern haben mir die Ausdauer mitgegeben, einen solchen Schritt anzugehen. Meine Ge-
schwister hatten stets ein offenes Ohr für mich und konnten mich bestens zurück auf das Wesent-
liche im Leben führen.

Meinem größten Glück widme ich diese Arbeit: Sandra, Gavin & Jarne.

IV

V

VI

Zusammenfassung

Komplexe mechatronische Systeme, die autonom und flexibel auf Änderungen in ihrer Umwelt
reagieren, sind aus unserer Zukunft nicht mehr wegzudenken. Fahrerassistenzsysteme aus dem
Transportwesen (z.B. Automobil oder Luftfahrt) oder auch „das Haus der Zukunft“ sind Beispie-
le hierfür. Diese Systeme werden typischerweise durch eine Vernetzung von (mechatronischen)
Komponenten realisiert. Software wird dabei unter anderem eingesetzt, um durch Kommuni-
kation das Wissen von anderen Komponenten zu nutzen, um so benötigte Funktionalität zur
Verfügung zu stellen. Im Gegensatz zu reinen Softwareanwendungen bekommt der Sicherheits-
aspekt in solchen Systemen einen deutlich höheren Stellenwert, da Fehler zu einer Gefahr für
ihre Umwelt und damit auch zu einer Gefahr für Menschenleben führen können. Zudem muss
die Wiederverwendung bereits existierender Lösungen (Komponenten) in der Entwicklung von
mechatronischen Systemen unterstützt werden, um den Marktanforderungen wie Qualität und
Schnelligkeit gerecht zu werden.

Kompositionelle Vorgehensweisen sind weitverbreitete Engineering Ansätze, um solche komple-
xen Probleme durch kleinere Teilprobleme einfacher zu betrachten und einzelne Komponenten
wiederzuverwenden. Wiederverwendung ist dabei das Mittel, um komplexe Probleme durch be-
kannte (Teil-) Lösungen unterstützend zu entwickeln. Dies führt allerdings zu dem Problem,
dass Abhängigkeiten zwischen den verschiedenen Kompositionen, die auch auf unterschiedli-
chen Hierarchieebenen stattfinden können, berücksichtigt werden müssen, ohne die Eigenschaf-
ten der einzelnen Komponenten zu verletzen. Hierbei müssen sowohl Altkomponenten integriert
werden, deren Verhalten typischerweise nicht mehr formal durch Modelle beschrieben ist sowie
auch Komponenten, die ihre Struktur aufgrund von Veränderungen in ihrer Umwelt zur Laufzeit
anpassen.

In dieser Arbeit wird eine Unterstützung für die Komposition und Wiederverwendung von Kom-
ponenten in dem modellgetriebenen Entwicklungsansatz MECHATRONIC UML vorgestellt. Die
Abhängigkeiten, die bei der Komposition berücksichtigt werden müssen, werden dabei kon-
struktiv durch einen Syntheseansatz für das Verhalten von Komponenten und analytisch durch
eine Verfeinerungsüberprüfung zwischen unterschiedlichen Hierarchieebenen von Verhalten,
bzw. von Komponenten unterstützt. Die Verfeinerungsüberprüfung berücksichtigt Altsysteme so-
wie Strukturanpassungen, deren Ressourcenbeschränkungen in einer Codegenerierung adressiert
werden. Der Gesamtansatz wurde an dem RailCab-Projekt der Universität Paderborn validiert.

VII

VIII

Inhaltsverzeichnis

1 Einleitung 1
1.1 Ziele und Konzeptüberblick . 3
1.2 Anwendungsbeispiel . 6
1.3 Übersicht . 8

2 Mechatronic UML 9
2.1 Entwicklung hierarchischer Komponentensysteme 10
2.2 Selbstoptimierende, mechatronische Systeme 13
2.3 Komponenten . 15
2.4 Echtzeitverhalten . 16

2.4.1 Real-Time Coordination Pattern . 17
2.4.2 Real-Time Statecharts . 19
2.4.3 Parameterized Real-Time Coordination Pattern 27
2.4.4 Parameterized Real-Time Statecharts 28
2.4.5 Rekonfigurationsverhalten . 29
2.4.6 Verifikation . 35
2.4.7 Verfeinerungen . 38

2.5 Hybrides Verhalten . 42
2.5.1 Hybrid Reconfiguration Charts . 43
2.5.2 Verifikation und Verfeinerung . 45

2.6 Timed Story Driven Modeling . 45
2.6.1 Metamodell . 48
2.6.2 Timed Story Pattern . 53
2.6.3 Timed Story Diagrams . 57
2.6.4 Timed Story Charts . 57

3 Verfeinerung in hierarchischen Komponentensystemen 65
3.1 Verfeinerungsdefinition . 72

3.1.1 Real-Time Statecharts . 73
3.1.2 Timed Story Charts . 81
3.1.3 Diskussion . 85

3.2 Verfeinerungsüberprüfung . 86
3.2.1 Erreichbarkeitsanalyse . 86
3.2.2 Verifikation der Verfeinerung . 88
3.2.3 Diskussion . 94

IX

Inhaltsverzeichnis

4 Integration von Altkomponenten 97
4.1 Gray Box Checking . 100

4.1.1 Formalisierungen . 101
4.1.2 Initiale Verhaltenssynthese . 108
4.1.3 Iterative Verhaltenssynthese . 110

4.2 Black Box Checking . 116
4.2.1 L* Lernalgorithmus . 119
4.2.2 L* für mechatronische Systeme . 125

4.3 White Box Checking . 128
4.4 Identifikation von Reglerverhalten . 136
4.5 Diskussion . 138

5 Synthese von Komponentenverhalten 139
5.1 Kompositionsregeln . 144

5.1.1 Zustands-Kompositionsregeln . 145
5.1.2 Nachrichten-Kompositionsregeln . 147

5.2 Synthese . 150
5.2.1 Parallele Komposition . 150
5.2.2 Anwendung von Zustands-Kompositionsregeln 150
5.2.3 Anwendung von Nachrichten-Kompositionsregeln 155

5.3 Erhalt von Rollenverhalten . 158
5.3.1 Rollenkonformität . 159
5.3.2 Erhalt von Deadlock Freiheit . 168

5.4 Weitere Anwendungsfälle . 172
5.5 Diskussion . 174

6 Werkzeugunterstützung 175
6.1 Ausführung . 175

6.1.1 Laufzeitumgebung . 176
6.1.2 Codegenerierung und Laufzeitanalyse 183

6.2 Umsetzung . 197
6.3 Validierung . 200

6.3.1 Konvoi-Anwenungsszenario . 201
6.3.2 Weitere Anwendungsszenarien und Fazit 231

7 Verwandte Arbeiten 233
7.1 Modellgetriebene Entwicklungsansätze . 233
7.2 Modellierung und Verfeinerung kompositioneller Strukturanpassungen 235

7.2.1 Modellierung . 235
7.2.2 Verfeinerung . 237
7.2.3 Verifikation . 238

7.3 Analyse von Altkomponenten . 239
7.3.1 Reguläre Inferenz . 239

X

Inhaltsverzeichnis

7.3.2 Abstraktionstechniken . 240
7.4 Synthese von Komponentenverhalten . 241

7.4.1 Controller-Synthese . 241
7.4.2 Synthese von nicht-zeitbehafteten Komponentenverhalten 242
7.4.3 Synthese von zeitbehafteten Komponentenverhalten 242

8 Zusammenfassung und Ausblick 245

A Timed Story Charts 249
A.1 Elemente . 249

A.1.1 Statechart . 249
A.1.2 Zustände . 250
A.1.3 Transitionen . 251
A.1.4 Clocks . 252
A.1.5 Guards . 253
A.1.6 Synchronisationen . 253
A.1.7 Invariante . 258
A.1.8 Time Guards . 259
A.1.9 Clock Resets . 259
A.1.10 Deadlines . 260
A.1.11 Actions und Seiteneffekte . 261
A.1.12 WCET und Prioritäten . 264

A.2 Zusammengesetzte Ausführung . 265
A.2.1 Zustände . 265
A.2.2 Transitionen . 267

Abbildungsverzeichnis 271

Tabellenverzeichnis 275

Literaturverzeichnis 277

XI

Kapitel 1

Einleitung

Software ist zunehmend für einen schnell wachsenden Bereich von technischen Systemen wie in
dem Transportwesen oder der Medizintechnik ein Schlüsselfaktor, um Sicherheit, Effizienz oder
Komfort zu steigern [Wir04, BGH05, GH06b, GHH+08c]. Die Entwicklung dieser Systeme ist
nicht mehr nur Gegenstand der klassischen Ingenieursdisziplinen Maschinenbau, Elektrotech-
nik und Regelungstechnik, sondern auch der Informatik. Mechatronische Systeme bezeichnen
Systeme, die aus der Summe dieser Disziplinen entstehen.

Komplexe mechatronische Systeme, die autonom und flexibel auf Änderungen in ihrer Umwelt
reagieren, sind aus unserer Zukunft nicht mehr wegzudenken. Fahrerassistenzsysteme aus dem
Transportwesen (z.B. Automobil oder Luftfahrt) oder auch „das Haus der Zukunft“ sind Beispie-
le hierfür. Diese Systeme werden typischerweise durch eine Vernetzung von (mechatronischen)
Komponenten realisiert. Im Fall der Fahrerassistenssysteme wird z.B. die Motorsteuerung mit
der Brems- und Lenksteuerung vernetzt, um bessere Bremswege zu ermöglichen [Rie09]. Soft-
ware wird dabei unter anderem eingesetzt, um durch Kommunikation das Wissen von anderen
Komponenten zu nutzen, um so benötigte Funktionalität zur Verfügung zu stellen. Dabei kann
das durch Software gesteuerte Verhalten einer Komponente gegebenenfalls auch an geänderte
Bedingungen angepasst werden. Es entstehen komplexe Funktionsnetze aus (Software-) Kom-
ponenten, welche sowohl steuerungs- als auch regelungstechnische Aufgaben realisieren. Rea-
gieren diese Systeme optimal, autonom und flexibel auf Änderungen in ihrer Umwelt sprechen
wir von selbstoptimierenden, mechatronischen Systemen.

Im Gegensatz zu reinen Softwareanwendungen bekommt der Sicherheitsaspekt in solchen Sys-
temen einen deutlich höheren Stellenwert, da Fehler zu einer Gefahr für ihre Umwelt und damit
auch zu einer Gefahr für Menschenleben führen können [LAK92, Sto96]. Zudem muss die Wie-
derverwendung bereits existierender Lösungen (Komponenten) in der Entwicklung von mecha-
tronischen Systemen unterstützt werden, um den Marktanforderungen wie Qualität und Schnel-
ligkeit gerecht zu werden. Diesen Herausforderungen wird heutzutage mit modellgetriebenen
Entwicklungsverfahren begegnet, die Sicherheitsanalysen auf der Modellebene durch Simula-
tion sowie formale mathematisch fundierte Verfahren erlauben. Zudem ermöglicht die kompo-
nentenbasierte modellgetriebene Entwicklung durch wohldefinierte Schnittstellen und formale
Verhaltensmodelle ein hohes Maß an Wiederverwendungspotential von entwickelten Lösungen
[GJM91, Crn02, HKK04].

1

Kapitel 1 Einleitung

Auf Grund dieser Anforderungen mechatronischer Systeme ist es notwendig Methoden zu ent-
wickeln, die auf der einen Seite eine geeignete Modellierung und Analyse erlauben und auf der
anderen Seite in dem Entwicklungsprozess die Komposition und Wiederverwendung von Kom-
ponenten unterstützen, um komplexe Systeme umsetzen zu können [GAO95, IWY00, Gar03].

Modellgetriebene Softwareentwicklung Die hochgradige Vernetzung selbstoptimieren-
der, mechatronischer Systeme ermöglicht auf der einen Seite, wesentlich erweiterte Funktiona-
lität zu realisieren, bedeutet auf der anderen Seite aber auch entsprechend zusätzliche Software
zur nachrichtenbasierten Kommunikation zwischen Systemkomponenten. Diese Kommunikati-
on beinhaltet den Austausch von (komplexen) Zustandsinformationen über entsprechende Proto-
kolle und zugrunde liegende Kommunikationskanäle. Das Verhalten der einzelnen Komponenten
wird dabei massiv durch diese Kommunikationen beeinflusst.

Um diese Systeme zu beherrschen, wird ein systematischer Entwicklungsansatz gefordert, der
Modellierung als eine wesentliche Entwurfsaktivität beinhaltet. Um sicherheitskritische Anfor-
derungen zu adressieren, werden modellbasierte Analyseverfahren sowie eine Quellcodegenerie-
rung aus diesen Modellen benötigt [GH06b]. Die drei zusammenhängenden Aktivitäten Model-
lierung, Analyse und Quellcodegenerierung werden mit dem Begriff modellgetrieben bezeichnet
[Ken02].

In [GH06b] haben wir Verfahren zur modellgetriebenen Softwareentwicklung von mechatroni-
schen Systemen verglichen (siehe auch Abschnitt 7.1). Die meisten betrachteten Ansätze unter-
stützen nur eingeschränkt Konzepte für die Modellierung. Kompositionelle Strukturanpassungen,
die neue Elemente der bisherigen Struktur hinzufügen oder Elemente aus der Struktur entfernen,
um autonom und flexibel auf Änderungen in der Umwelt reagieren zu können, werden von kei-
nem der Verfahren unterstützt.

Weiterhin ist zu beobachten, dass keiner der Ansätze plattformspezifische Modelle (vollständig)
berücksichtigt, um Altsysteme zu integrieren oder eine Wiederverwendung von entwickelten
Lösungen zu ermöglichen.

An dem Vergleich nimmt auch der an diesem Lehrstuhl entwickelte Ansatz MECHATRO-
NIC UML teil. Die betrachtete Version aus dem Jahr 2006 berücksichtigt im Wesentlichen die
Ergebnisse der Dissertation von Sven Burmester [Bur06]. Der dort vorgestellte Ansatz unter-
stützt eine hybride Modellierung der Struktur auf Basis von diskreten Softwarekomponenten
und kontinuierlichen Reglerkomponenten sowie die Rekonfiguration der Reglerstruktur.

Um den hohen Qualitätsanforderungen an die Kommunikation gerecht zu werden, wurden Mus-
ter zur Spezifikation der Kommunikation in der MECHATRONIC UML eingeführt. Die Struktur
der sogenannten REAL-TIME COORDINATION PATTERNS besteht aus Rollen der beteiligten
Kommunikationspartner sowie einer Verbindung, dem Konnektor, zwischen den Rollen. Das
Rollenverhalten wird mittels REAL-TIME STATECHARTS beschrieben, die die bekannten Zu-
standsmaschinen der UML [Obj05b] im Wesentlichen wohldefiniert um Zeit erweitern.

Auf Basis dieser Muster wird eine Dekomposition des Systems in Komponenten und der Kom-
munikation zwischen den Komponenten, den REAL-TIME COORDINATION PATTERNS, ermög-

2

1.1 Ziele und Konzeptüberblick

licht. Hierfür wurden Analysetechniken vorgestellt (z.B. [GTB+03]), die den modularen Aufbau
des Systems ausnutzen.

Das Komponentenverhalten wird implementiert durch Verfeinerung des Rollenverhaltens zu
Komponenten-Portverhalten. Wesentliche Aufgaben sind hierbei das Hinzufügen von Reglern
zu einzelnen Zuständen, die Beschreibung von Rekonfigurationen der Regler sowie eine Anpas-
sung des Verhaltens, um Abhängigkeiten zwischen mehreren Rollen aufzulösen.

Für diese hybriden Modelle wird eine Quellcodegenerierung unterstützt, die die Echtzeiteigen-
schaften auf Quellcodeebene korrekt umsetzt. Die Dissertation von Martin Hirsch [Hir08] er-
weitert diesen Ansatz, um kompositionelle Strukturanpassungen der Muster zu modellieren und
zu analysieren. Matthias Tichy hat diesen Ansatz wiederum um kompositionelle Strukturanpass-
ungen der Komponentenstruktur, ohne das Verhalten zu betrachten, erweitert [Tic09].

Damit unterstützt die MECHATRONIC UML einige grundlegende Anforderungen, um selbstop-
timierende, mechatronische Systeme zu entwickeln. Eine skalierbare formale Verifikation wird
durch einen musterbasierten Ansatz, der eine Dekomposition des Systems ermöglicht, erreicht.
Allerdings werden wesentliche Anforderungen der komponentenbasierten Entwicklung komple-
xer Systeme nicht adressiert.

Die MECHATRONIC UML stellt, wie auch all die in [GH06b] betrachteten Verfahren, keine Un-
terstützung für eine Verfeinerung in hierarchischen Komponentensystemen mit kompositionellen
Strukturanpassungen zur Verfügung. Dies ist allerdings essentiell, damit Kommunikationsmuster
mit kompositionellen Strukturanpassungen durch eine Komponente angewandt werden können.
Hierdurch wird eine Wiederverwendung von Lösungen ermöglicht. Eine Unterstützung bei der
Komposition von Protokollverhalten zu einem Gesamtverhalten einer Komponente wird eben-
falls nur sehr eingeschränkt durch eine von dem Entwickler manuell hinzugefügte Synchroni-
sation adressiert. Hierbei weiß der Entwickler zu keinem Zeitpunkt der Entwicklung, ob eine
Komposition der Protokollverhalten überhaupt möglich ist. Zudem können nicht explizit An-
forderungen an eine solche Komposition gestellt werden. Darüber hinaus betrachten all diese
Ansätze keine Möglichkeit Altkomponenten, von denen kein Modell zur Verfügung steht, die
aber einen hohen Wert darstellen, zu integrieren.

Wie in [TOHS99, Crn02, HKK04] beschrieben stellen gerade diese, verallgemeinert dargestellt,
Kompositionen und Wiederverwendungen eine wesentliche Herausforderungen dar, um komple-
xe Systeme ganzheitlich von der Dekomposition des Systems hin zum komponierten Gesamt-
system zu entwickeln. Die in dieser Arbeit vorgestellte Unterstützung für die Komposition und
Wiederverwendung von Komponenten in dem modellgetriebenen Entwicklungsansatz MECHA-
TRONIC UML soll genau diese Anforderungen adressieren.

1.1 Ziele und Konzeptüberblick

Ziel dieser Arbeit ist es eine Unterstützung für die Komposition und Wiederverwendung von
Komponenten in dem modellgetriebenen Entwicklungsansatz MECHATRONIC UML vorzustel-

3

Kapitel 1 Einleitung

len, um eine systematische, modellgetriebene Softwareentwicklung für selbstoptimierende, me-
chatronische Systeme zu ermöglichen.

Dieser Ansatz baut auf den bisherigen Ergebnissen der MECHATRONIC UML auf, womit insge-
samt durch die Verifikationstechniken für vernetzte selbstoptimierende, mechatronische Systeme
aus [Hir08] durch Dekomposition des Systems und dem hier vorgestellten Kompositionsansatz
ein modellgetriebener Entwicklungsansatz entsteht, der hybrides-, Echtzeitverhalten und Res-
sourceneinschränkungen für mechatronische Systeme mit kompositionellen Strukturanpassung-
en unterstützt.

Im Folgenden werden die einzelnen Beiträge, die im Rahmen dieser Arbeit entstanden sind,
näher erläutert. Zu jedem Beitrag werden die umfassendsten Veröffentlichungen referenziert.
Weitere Veröffentlichungen oder betreute Arbeiten (Master- und Bachelorarbeiten sowie Pro-
jektgruppen) werden in den entsprechenden Hauptkapiteln referenziert. Eine vollständige Liste
der im Rahmen dieser Arbeit entstandenen Veröffentlichungen ist im Literaturverzeichnis unter
„Eigene Veröffentlichungen“ sowie „Betreute Arbeiten“ zu finden.

Die einzelnen Beiträge sind aufgeteilt in die Bereiche Verfeinerung in hierarchischen Komponen-
tensystemen, Integration von Altkomponenten, Synthese von Komponentenverhalten und Werk-
zeugunterstützung. Die ersten drei Beiträge adressieren unmittelbar die Unterstützung der Kom-
position und Wiederverwendung. Der Beitrag zur Werkzeugunterstützung stellt die notwendige
Basis zur Verfügung, um Altkomponenten zu integrieren. Dabei werden die Herausforderungen
adressiert, um die (erweiterten) Modelle der MECHATRONIC UML auf Code abzubilden.

Verfeinerung in hierarchischen Komponentensystemen Abstraktion und Hierarchi-
sierung sind wesentliche Hilfsmittel bei der Entwicklung von Softwarekomponenten, um kom-
plexe Sachverhalte zu beherrschen. Der musterbasierte Ansatz zur Beschreibung der Kommu-
nikation sowie die Möglichkeit der Hierarchisierung der Komponentenstruktur sind daher feste
Bestandteile der MECHATRONIC UML. Die hierdurch entstehenden hierarchischen Komposi-
tionen fordern eine formale Definition der Verfeinerung zwischen den verschiedenen Abstrak-
tionen, um einen Erhalt des abstrakteren Verhaltens durch ein konkreteres Verhalten, bzw. ein
Verhalten auf einer niedrigeren Hierarchiestufe zu gewährleisten.

Eine Form der Komposition ist das Einbetten von Komponenten in hierarchische Komponenten.
Hierdurch wird Rollenverhalten bzw. Protokollverhalten an vorhandene Komponenten weiter-
geleitet, die eine Verfeinerung des Protokollverhaltens implementieren. Hierbei können unter-
schiedliche Rollenstrukturen auf Komponentenstrukturen abgebildet werden.

Der in dieser Arbeit vorgestellte Ansatz unterstützt eine Verifikation der Verfeinerung sol-
cher hierarchischer Komponentenstrukturen mit kompositioneller Strukturanpassung, die sowohl
Sicherheits- und Lebendigkeitseigenschaften berücksichtigt, als auch das nach außen sichtbare
Echtzeitverhalten [HHH10, HH11].

4

1.1 Ziele und Konzeptüberblick

Integration von Altkomponenten Es kann gerade in der industriellen Praxis häufig vor-
kommen, dass Altkomponenten wiederverwendet werden, um zum einen den Entwicklungspro-
zess zu beschleunigen und zum anderen auf bewährte Qualität zurückzugreifen. Unser Ansatz
unterstützt eine Integration von Altkomponenten. Zentrale Idee hierbei ist, das relevante Verhal-
tensmodell für die Integration iterativ zu erlernen und auf dessen Basis dann formal die Integra-
tion zu überprüfen [HH08a, GHH08a, HMS+10].

Synthese von Komponentenverhalten Wie bereits weiter oben beschrieben, propagieren
wir einen musterbasierten Ansatz zur Beschreibung der Kommunikation. Diese Vorgehensweise
erlaubt es, das Kommunikationsverhalten getrennt von dem Komponentenverhalten zu model-
lieren und zu analysieren. Der Ansatz von Hirsch [Hir08] nutzt den musterbasierten Ansatz aus,
um kompositionelle Strukturanpassungen der Kommunikationsstruktur formal zu verifizieren.

Diese formal verifizierten Rollenverhalten werden durch eine Komponente angewandt und kom-
biniert. Da die Rollenverhalten, egal ob sie zu gleichen oder unterschiedlichen Kommunikations-
mustern gehören, untereinander häufig Abhängigkeiten aufweisen und dadurch nicht nur einfach
parallel von einer Komponente angewandt werden können, unterstützt unser Ansatz eine forma-
le Sprache zur Beschreibung der Abhängigkeiten. Neben der Beschreibung von Abhängigkeiten
zwischen neuentwickelten Lösungen, kann in unserem Fall auch eine integrierte Altkomponente
berücksichtigt werden.

Die Abhängigkeiten sowie die Rollen sind Eingaben in eine Synthese für das Komponentenver-
halten. Diese stellt sicher, dass das synthetisierte Komponentenverhalten eine korrekte Verfeine-
rung der einzelnen Rollenverhalten ist [HGH+09, EH10a].

Werkzeugunterstützung Die entwickelten Konzepte zur Wiederverwendung werden durch
ein Werkzeug umgesetzt. Mit der Werkzeugunterstützung wird eine Laufzeitumgebung zur
Verfügung gestellt. Diese unterstützt neben dem Ausführen des Systems auf einer Zielplatt-
form eine Simulations- und Verifikationsumgebung für die Integration von Altkomponenten
[GH06a, HMS+10]. Eine automatische Überprüfung der Integration wird durch eine Codegene-
rierung basierend auf dem in [BGH+07] vorgestellten Ansatz, der hybride und Echtzeitsysteme
unterstützt, ermöglicht. Die Codegenerierung wird dahingehend erweitert, dass eine Betrachtung
von kompositionellen Strukturanpassungen unter Erhalt von Echtzeitanforderungen erreicht wird
[GHH11]. Der in dieser Arbeit vorgestellte Ansatz adressiert den Erhalt der Echtzeitanforderun-
gen durch eine Laufzeitanalyse (Worst Case Execution Time Analyse - WCET Analyse) für diese
Modelle [HOGS12].

5

Kapitel 1 Einleitung

1.2 Anwendungsbeispiel

Das RailCab Forschungsprojekt1 der Universität Paderborn dient als ein konkretes Anwendungs-
beispiel für ein selbstoptimierendes, mechatronisches System. Das RailCab System erweitert das
herkömmliche Schienensystem um einen Linearantrieb sowie passive Weichen. Der eigentliche
Antrieb wird über einen Stator im Schienennetz und einem Läufer im RailCab ermöglicht. Durch
ein Magnetfeld, welches sich entlang der Schiene fortbewegt, wird das Fahrzeug beschleunigt
und gebremst. Eine passive Weiche in Verbindung mit einer aktiven Lenkung ermöglicht das
Ausscheren von dicht hintereinander fahrenden Fahrzeugen bei voller Geschwindigkeit.

Eine wesentliche Eigenschaft dieses Systems ist, dass die RailCabs individuell agieren und un-
abhängig und dezentral Entscheidungen treffen. Das Feder-/Neigemodul des RailCabs tauscht
z. B. Informationen mit anderen RailCabs aus, um eine Störung auf den Schienen zu kompensie-
ren und um den Schienenlauf zu optimieren.

Als durchgängiges Anwendungsbeispiel wird in dieser Arbeit das Konvoiszenario betrachtet.
RailCabs bilden zur Laufzeit Konvois, um den Energieverbrauch durch Fahren im Windschatten
zu reduzieren und um den Streckendurchsatz zu erhöhen (siehe Abbildung 1.1).

(a) RailCab-Konvoi in der Simulation (b) RailCab-Konvoi auf der Teststrecke

Abbildung 1.1: RailCab Konvoi

Ein Konvoi muss durch ein RailCab koordiniert werden, um die Sicherheit und Stabilität des
Konvois nicht zu gefährden [GHH+06c, HHG08]. Das System ist z. B. unsicher, wenn die Rail-
Cabs aufeinander auffahren können. Ein stabiler Konvoi unterstützt die Sicherheit, in dem ein
Übersteuern der unterliegenden Regler beim Anpassen z. B. der Geschwindigkeit kontrolliert
wird. Übersteuern beim Anpassen der Geschwindigkeit führt zu dem Effekt, dass die vorgegebe-
ne Geschwindigkeit (Sollgeschwindigkeit) kurzfristig überstiegen wird. Aufgrund von Störun-
gen zur Laufzeit, wie Wind, kann dies durch die Regelung nicht vollständig verhindert werden.
In einem Konvoi ohne Koordinator kann durch Anpassen von Parametern des Konvois, wie der
Geschwindigkeit, ein Ziehharmonikaeffekt auftreten, der den Effekt des Übersteuerns über den

1http://www-nbp.uni-paderborn.de/

6

1.2 Anwendungsbeispiel

gesamten Konvoi verstärkt und so zu einer Auffahrgefahr werden kann, womit das System un-
sicher ist. Durch einen Koordinator wird dieser Effekt verhindert, da er zentral alle Teilnehmer
koordiniert steuern kann, indem Konvoiparameter (wie die Bremsgeschwindigkeit) direkt in be-
nötigter Reihenfolge den Konvoiteilnehmern zugewiesen werden.

Das dafür notwendige Kommunikationsprotokoll wird über das REAL-TIME COORDINATION

PATTERN ConvoyCoordination definiert. Die Bestimmung des Koordinators erfolgt dynamisch
bei der Bildung des Konvois. Um die Rolle des Koordinators übernehmen zu können, muss
das RailCab für jeden Konvoiteilnehmer die notwendigen Konvoiparameter berechnen können.
Hierfür werden zur Laufzeit individuell für jeden Konvoiteilnehmer sogenannte PosCalc-Regler
instanziiert, die individuelle Informationen des Teilnehmers für Berechnungen berücksichtigen.
Weiterhin wird ein DistanceCoordination-Kommunikationsmuster angewandt, welches den Ab-
stand zwischen zwei RailCabs regelt.

Abbildung 1.2 zeigt einen Ausschnitt des Convoy-Komponentendiagramms, welches in den fol-
genden Kapiteln verfeinert wird. In dem Ausschnitt bettet die RailCab-Komponente eine Coor-
dinator-Komponente ein, die das Verhalten als Konvoikoordinator kapselt und ihrerseits konti-
nuierliche Komponenten (Regler) vom Typ PosCalc für die Berechnung von Konvoiparametern
einbettet. Die Coordinator-Komponente verwaltet den Konvoi und die Parameter des Konvois.
Für die Berechnung der Parameter des Konvois sind die PosCalc-Regler verantwortlich. Da-
bei berechnet jede Instanz des PosCalc-Reglers Konvoiparameter für jeden Konvoiteilnehmer.
Veränderungen in der Größe des Konvois wirken sich direkt auf die innere Struktur der Coordi-
nator-Komponente aus. Weiterhin kann der Konvoi RailCabs integrieren, deren Verhalten nicht
als Modell vorliegt (LegacyRailCab).

Komponentenkomposition

:PosCalc

:Coordinator

:RailCab
:DistanceCoordination

:LegacyRailCab

:Convoy

:ConvoyCoordination

:front :rear
:member:coordinator

Protokollkomposition
Integration

Abbildung 1.2: Ausschnitt der RailCab-Komponentenarchitektur

Dieses Anwendungsbeispiel weist all die oben skizzierten Herausforderungen selbstoptimieren-
der, mechatronischer Systeme gerade hinsichtlich der Kompositionen und Wiederverwendung
auf: Es wird eine kompositionelle Strukturanpassung über mehrere Hierarchieebenen unter har-
ten Echtzeitanforderungen gefordert. Das Protokollverhalten front muss mit dem des coordinator
komponiert werden (Protokollkomposition) und des Weiteren besteht die RailCab-Komponente

7

Kapitel 1 Einleitung

aus einer Komposition der Coordinator- und PosCalc-Komponente (Komponentenkomposition).
Die Wiederverwendung (Integration) von Altkomponenten wird durch die LegacyRailCab-
Komponente verdeutlicht. Diese Anforderung ist gerade relevant, wenn RailCab-Systeme flä-
chendeckend integriert sind und RailCabs von unterschiedlichen Herstellern interagieren.

Dieses Beispiel lässt sich einfach auf andere Transportsysteme, wie z.B. Automobile transferie-
ren. Szenarien, in denen Fahrzeuge koordiniert eine Baustelle oder Kreuzung passieren, werden
seit Längerem diskutiert. Das Problem der Wiederverwendung, gerade von Altkomponenten un-
terschiedlicher Zulieferer, ist für diese Domäne ebenfalls typisch.

1.3 Übersicht

Im nächsten Kapitel werden die Grundlagen für die modellgetriebene Softwareentwicklung an-
hand der MECHATRONIC UML vorgestellt. Dabei betrachten wir die Grundlagen von Echtzeit-
und hybriden Systemen. In Abschnitt 2.1 stellen wir unseren Ansatz zur Entwicklung von hier-
archischen Komponentensystemen vor, in dem wir die bisherigen Modellierungs- und Analyse-
techniken der MECHATRONIC UML zusammen mit der in dieser Arbeit bereitgestellten Un-
terstützung für Komposition und Wiederverwendung darstellen. Wir stellen darüber hinaus mit
dem Timed Story Driven Modeling Ansatz (Abschnitt 2.6) die notwendigen Erweiterungen der
Modellierungstechniken der MECHATRONIC UML vor, um die Anforderungen dieser Arbeit zu
adressieren.

Unseren Ansatz zur Verfeinerung in hierarchischen Komponentensystemen stellen wir in Kapitel
3 vor. Wir werden dabei eine Verfeinerungsdefinition und -überprüfung erläutern, die die gefor-
derten kompositionellen Strukturanpassungen unterstützt.

In Kapitel 4 stellen wir unsere Integration von Altkomponenten vor. Der in dieser Arbeit entwi-
ckelte Ansatz unterstützt drei unterschiedliche Verfahren, um Altkomponenten mit unterschied-
lichen zur Verfügung stehenden Informationen (Black Box, White Box und Gray Box) zu inte-
grieren.

Die Synthese von Komponentenverhalten wird in Kapitel 5 erläutert. Im Mittelpunkt steht hierbei
die Konkretisierung von Protokollverhalten durch Komposition innerhalb einer Komponente.

In Kapitel 6 stellen wir die Werkzeugunterstützung vor. Unser Ansatz zur Quellcodegenerierung,
Laufzeitanalyse sowie Laufzeitumgebung wird in Abschnitt 6.1 präsentiert. Anschließend wer-
den in Abschnitt 6.2 und 6.3 die Umsetzung der Werkzeugunterstützung sowie eine Validierung
des Gesamtansatzes vorgestellt.

Kapitel 7 diskutiert die verwandten Arbeiten und abschließend wird in Kapitel 8 eine Zusam-
menfassung und Ausblick der Arbeit gegeben.

8

Kapitel 2

Mechatronic UML

Dieses Kapitel führt in die modellbasierte Softwareentwicklung mittels der MECHATRO-
NIC UML ein, da die in dieser Arbeit vorgestellten Konzepte auf der MECHATRONIC UML
basieren, bzw. diese erweitern. In diesem Zusammenhang werden die theoretischen Grundlagen
von Timed Automata und Graphtransformationssystemen behandelt.

Die MECHATRONIC UML ist eine Anpassung der UML [Obj05b] für die modellbasierte Ent-
wicklung mechatronischer Systeme. Eine Werkzeugunterstützung wird durch die Fujaba Real-
Time Tool Suite1 angeboten.

Im nächsten Abschnitt beschreiben wir unseren Ansatz zur Entwicklung von hierarchischen Kom-
ponentensystemen. Wir werden dabei die bisherigen Modellierungs- und Analysetechniken der
MECHATRONIC UML zusammen mit der in dieser Arbeit bereitgestellten Unterstützung für
Komposition und Wiederverwendung darstellen.

Anschließend erläutern wir die Modellierungselemente und Analysetechniken der MECHATRO-
NIC UML. Zuerst stellen wir in Abschnitt 2.2 genauer die hier betrachteten selbstoptimierenden,
mechatronischen Systeme vor. Wir beginnen dann mit der Strukturmodellierung der MECHA-
TRONIC UML in Abschnitt 2.3, die grundlegend in dieser Arbeit genutzt wird. Die Echtzeit-
Verhaltensbeschreibung und -Analyse stellen wir in Abschnitt 2.4 vor. Der dort beschriebene
musterbasierte Ansatz wird in dieser Arbeit ebenfalls ausgenutzt. Im Zusammenspiel mit dem
hierarchischen komponentenbasierten Aufbau der MECHATRONIC UML dient der musterba-
sierte Ansatz als Grundlage für die Unterstützung der Wiederverwendung von Komponenten
und Protokollverhalten. Anschließend stellen wir die hybride Modellierung der MECHATRO-
NIC UML vor (siehe Abschnitt 2.5), die wir für die Integration von Altkomponenten mit rege-
lungstechnischen Anteilen (siehe Abschnitt 4.4) sowie für die Codegenerierung ausnutzen (siehe
Abschnitt 6.1.2.4). In Abschnitt 2.6 beschreiben wir den Timed Story Driven Modeling Ansatz,
um über eine Datenstruktur gemeinsam Verhalten und Strukturanpassungen zu spezifizieren. Den
Timed Story Driven Modeling Ansatz werden wir in Abschnitt 3.1.2 ausnutzen, um eine Verfei-
nerung für hierarchische Komponentensysteme mit kompositionellen Strukturanpassungen zu
definieren.

1http://www.fujaba.de/projects/real-time.html

9

Kapitel 2 Mechatronic UML

2.1 Entwicklung hierarchischer Komponentensysteme

In diesem Kapitel wird die MECHATRONIC UML vorgestellt, die für Strukturanpassungen auf
der Kommunikationsebene einen Verifikationsansatz auf Basis einer Dekomposition des Systems
in Komponenten und Kommunikationen zwischen Komponenten ermöglicht. Um ein Gesamt-
system zu entwickeln wird zudem wie durch [SGW94, TOHS99, Crn02, HKK04], [Obj05b, S.
515ff] und [Obj09, S. 534ff] beschrieben, eine Komposition der getrennt entwickelten und ana-
lysierten Komponenten und Kommunikationen zwischen Komponenten zu hierarchischen Kom-
ponenten benötigt. In den Kapiteln 3 bis 5 stellen wir Ansätze vor, die genau dieser Forderung
nachgehen, indem eine Wiederverwendung von Komponenten und Kommunikationen zwischen
Komponenten zu hierarchischen Komponenten unterstützt wird.

Wir werden in diesem Abschnitt einen systematischen Entwicklungsansatz skizzieren, der die
bisherigen Entwicklungsschritte der MECHATRONIC UML wie in den folgenden Abschnitten
vorgestellt mit denen, die in dieser Arbeit vorgestellt werden, integriert darstellt. Die grundle-
gende Arbeit zu dem Entwicklungsansatz der MECHATRONIC UML wurde von Giese in [Gie03]
vorgestellt.

Der Entwicklungsansatz besteht aus den Schritten Szenarien modellieren, Rollenverhalten syn-
thetisieren, Koordinationsmuster analysieren, Rollen anwenden (diese Schritte werden durch die
bisherige MECHATRONIC UML unterstützt) und dem Schwerpunkt dieser Arbeit Verfeinerung in
hierarchischen Komponentensystemen, Altkomponenten integrieren und Komponentenverhalten
synthetisieren. Im Folgenden erläutern wir die einzelnen Schritte anhand von Abbildung 2.1. Wir
werden dabei nicht explizit auf mögliche Iterationen zwischen den einzelnen Schritten eingehen.

Szenarien modellieren und Rollenverhalten synthetisieren

Die MECHATRONIC UML unterstützt mit der Aktivität Szenarien modellieren die Mög-
lichkeit in den frühen Phasen der Softwareentwicklung formal Kommunikationen zwischen
den Rollen eines Musters zu spezifizieren. Ermöglicht wird dies durch eine Anpassung von
UML-Sequenzdiagrammen. Hierbei wird die Anforderung unterstützt, Zeit in den frühen Pha-
sen durch eine Parametrisierung für nicht genau bekannte Zeitbedingungen zu beschreiben
[BGK05, ACE+08]. Das Gesamtverhalten MSc

i (für alle Muster i = 1 . . . , i = n) ergibt sich
aus den parallel geschalteten Szenarien (1 . . . , k): MSc

i = MSc
i,1‖ . . . ‖MSc

i,k (siehe Abbildung 2.1
unter Parameterized Real-Time Sequence Diagram). Durch den Fokus auf die Kommunikati-
onsbeschreibung zwischen Rollen propagieren wir bereits in den frühen Phasen einen kompo-
sitionellen Entwicklungsansatz, im Vergleich zu den klassischen Verfahren zur Synthese von
Zustandsverhalten basierend auf Harel [HKP05], die ein Gesamtverhalten synthetisieren.

Um aus den Szenarien Rollenverhalten für ein Koordinationsmuster zu synthetisieren, müs-
sen die Szenarien Synthesebedingungen genügen (MSc

i |= ci). Es darf z.B. nicht vorkommen,
dass eine ausgewiesene Konfiguration (Zustand) unterschiedliche Vorbedingungen in verschie-
denen Szenarien besitzt oder dass spezifizierte Konfigurationen nicht erreichbar sind (siehe
[GHHK06]).

10

2.1 Entwicklung hierarchischer Komponentensysteme

anwenden

e2
e2

O1 O2 O3

O1

Synthesebedingung:

...
Hierarchische Komponenten

konfliktfreie Szenarien

Verfeinerungsbedingung:

...

Sequence Diagram
Parameterized Real−Time

Rollenverhalten
synthetisieren

Szenarien
modellieren

Koordinationsmuster
analysieren

Rollen

Aktivität Modelle Analyse

...

Komponenten
konkretisieren:
Komponenten
wiederverwenden,
Altkomponenten
integrieren,
Komponentenver−
halten synthetisieren

Synthesebedingung:

Coordination Pattern
Parameterized Real−Time

Korrektheit:

S1

S2

Ms
i ≤MC

i,k‖MC
i+1,k+1‖ . . .

mit Ms
i komponiertes Protokollverhalten

Ms
i |= ψi

mit ψi : Kompositionseigenschaften

MP
i |= φi ∧ ¬δ

M r
1,1‖

MC
1,1 M

C
1,2 MC

1,k1
MC

j,1

MSc
i =MSc

i,1‖ . . . ‖MSc
i,k

mit 1, . . . , k Teilszenarien

mit 1, . . . , k Rollenverhalten, Nk Kanalverhalten

‖ . . . ‖M s
1 ‖ . . . ‖M s

l ‖

1, . . . , l komponierten Protokollverhalten

∀1 ≤ m ≤ j,

1, . . . , k instanziierten Rollen von Muster j,

mit M r
m,n: Protokollverhalten

eingebettete Komponente,

hierarchische Komponente
M c

m,n Protokollverhalten

∀1 ≤ n ≤ kj :M
r
m,n ≤M c

m,n

Gesamtverhalten Scenario MSc
i :

MSc
i |= ci

ci : Beschreibt Eigenschaften für

MP
1,2 MP

k,1 MP
j,1 M

P
j,2 MP

j,kj

MP,N1

1 MP,Nk

k

Gesamtverhalten Muster MP
i :

MP
i =MP

i,1‖ . . .‖MP
i,k‖Nk

MP
1,1

φi : Sicherheits- und begrenzte
Lebendigkeitseigenschaften

δ: Deadlock

mit 1, . . . , j angewandten Mustern,
MC

i =M r
1,1‖ . . .‖M r

j,kj
‖Ms

1‖ . . . ‖Ms
l

Gesamtverhalten Komponente MC
i :

MC
j,2 MC

j,kj

M r
1,2 M r

j,kj

M r
j,kj

M s
1M r

1,2M r
1,1

Abbildung 2.1: Übersicht Entwicklungsansatz

Dieser Ansatz ermöglicht es damit das Rollenverhalten von Koordinationsmustern zu syntheti-
sieren. Das Koordinationsmuster muss zusätzlich manuell definiert werden. Dies beinhaltet den
Namen des Musters festzulegen sowie die Spezifikation zu beschreiben.

Der bisherige Ansatz unterstützt grundsätzlich nur die Synthese von REAL-TIME STATECHARTS

(siehe Abschnitt 2.4.2) für eine bilaterale Kommunikation, die über ein REAL-TIME COORDI-
NATION PATTERN beschrieben wird (siehe Abschnitt 2.4.1). Handelt es sich um eine multilate-
rale Kommunikation, wie dies für unser Konvoi-Beispiel benötigt wird (siehe Abschnitt 1.2), so
muss zusätzlich manuell das für die multilaterale Kommunikation benötigte Verhalten beschrie-
ben werden. Dies beinhaltet unter anderem die Beschreibung der Strukturanpassung des Musters
durch einen Seiteneffekt. Hiermit werden dann PARAMETERIZED REAL-TIME COORDINATION

PATTERNS als Kommunikationsmuster sowie PARAMETERIZED REAL-TIME STATECHARTS,
die das Rollenverhalten beschreiben, beschrieben (siehe Abschnitt 2.4.3 und 2.4.4).

Koordinationsmuster analysieren und Rollen anwenden

11

Kapitel 2 Mechatronic UML

Die Koordinationsmuster stellen eine wesentliche zentrale Einheit des kompositionellen Vorge-
hens der MECHATRONIC UML dar (siehe Abschnitt 2.4.1). Hierdurch wird eine Dekompositi-
on des Systems in Komponenten und der Kommunikation zwischen den Komponenten erreicht
sowie eine Wiederverwendung bereits auf der Ebene der Protokollverhalten. Diese Vorgehens-
weise ermöglicht eine kompositionlle formale Verifikation. Das Gesamtverhalten MP

i (für al-
le Muster i = 1 . . . , i = n) ergibt sich dabei aus den parallel geschalteten Rollenverhalten
(MP

i,1‖ . . . ‖MP
i,k) und einem zusätzlichen Kanalverhalten Nk, welches abstrakt das Netzwerkver-

halten spezifiziert (z.B. via Nachrichtenpuffer und Berücksichtigung von Nachrichtenverlust):
MP

i = MP
i,1‖ . . . ‖MP

i,k‖Nk (siehe Abbildung 2.1 unter PARAMETERIZED REAL-TIME COOR-
DINATION PATTERN).

Dieser Aufbau des Systems wird ausgenutzt, um eine kompositionelle Analyse des Systems
durchzuführen. Im Gegensatz zur Überprüfung einer temporallogischen Formel auf dem globalen
Zustandsraum nutzt ein kompositioneller Ansatz die Architektur aus, um nur für einzelne Ele-
mente (Komponenten und Kommunikationen) lokale temporallogische Formeln zu überprüfen.
Für jedes Muster MP

i wird entsprechend überprüft ob die lokalen Sicherheits- und begrenzten
Lebendigkeitseigenschaften φi sowie die Deadlockfreiheit ¬δ erfüllt sind: MP

i |= φi ∧ ¬δ.
Erfüllen die Muster die Korrektheitsbedingungen, kann auf Basis der Rollen Komponententy-
pen spezifiziert werden. Eine Komponente instanziiert die für den Typ relevanten Rollen. Wir
sprechen hier von sogenannten Basiskomponenten (siehe auch [Tic09]), die lediglich Rollen an-
wenden. Im Folgenden stellen wir vor, wie diese Basiskomponenten konkretisiert werden.

Komponenten konkretisieren: Verfeinerung in hierarchischen Komponentensystemen, Alt-
komponenten integrieren und Komponentenverhalten synthetisieren

Dieser Schritt beschäftigt sich mit der Konkretisierung der im vorherigen Schritt Rollen anwen-
den definierten Basiskomponenten. Die Basiskomponenten setzen sich aus den parallel geschal-
teten Protokollverhalten zusammen. Da die Protokollverhalten in Form von Rollen erst unab-
hängig von der Komponentenimplementierung entwickelt werden, um eine Wiederverwendung
komponentenübergreifend zu ermöglichen, ist eine komponentenspezifische Verfeinerung not-
wendig.

Wir können im Wesentlichen drei unterschiedliche Ursachen für eine Konkretisierung des Rol-
lenverhaltens unterscheiden. Die offensichtlichste ist die 1) Konkretisierung der unterliegenden
Funktionen in Form von Reglern und Seiteneffekten. Dabei kann es sich um eine konkretere
Form einer vorliegenden abstrakten Funktion handeln sowie um eine Einbettung von noch nicht
spezifizierten Funktionen, wie z.B. das Hinzufügen des Abstandsreglers, der für den Konvoi be-
nötigt wird, oder auch die Funktion zur Beschreibung der Strukturanpassung des Konvois, um
z.B. einen weiteren Teilnehmer aufnehmen zu können.

Die Konkretisierung der Funktionen hat häufig zur Folge, dass 2) das zeitliche Verhalten oder
auch das Rollenverhalten konkretisiert werden muss. Es kann hierbei zum Beispiel zu einer An-
passung von Guards oder einer Anpassung des Zustandsverhalten durch Hinzufügen weiterer
Zustände kommen.

12

2.2 Selbstoptimierende, mechatronische Systeme

Durch die Komposition von mehreren Rollen führen 3) Abhängigkeiten zwischen diesen Rollen
zu einer Konkretisierung des Rollenverhaltens. Die Rollenverhalten können entsprechend nicht
mehr nur parallel ausgeführt werden. Hierbei kann ebenfalls wie unter 2) das Echtzeitverhalten
konkretisiert werden. Ein Beispiel hierfür ist, dass zwei Zustände unterschiedlicher Rollen nicht
gleichzeitig betreten werden dürfen. Das Verhalten der Rollen muss also untereinander synchro-
nisiert werden.

Alle drei Ursachen für eine Konkretisierung können in Kombination miteinander auftreten, wie
dies auch einfach an dem Konvoibeispiel zu sehen ist. Wie in Abschnitt 2.3 zu Abbildung 2.2 er-
läutert, werden für die Situationen, ob ein RailCab im Konvoi ist oder nicht zwei unterschiedliche
Regler (VelocityControl und DistanceControl) eingebettet. Die hierdurch bedingte Rekonfigura-
tion führt zu einer Konkretisierung des Guards. Zudem darf ein RailCab nur an einem Konvoi
teilnehmen, wenn es auch registriert ist.

Das Gesamtverhalten einer Komponente MC
i ergibt sich damit aus den Konkretisierungen der

Rollenverhalten M r
1,1‖ . . . ‖M r

j,kj
sowie den Synchronisationen zwischen den Rollenverhalten

M s
1 . . . ‖M s

l : MC
i = M r

1,1‖ . . . ‖M r
j,kj
‖M s

1 . . . ‖M s
l . Eine Konkretisierung kann damit erfolgen

durch:

i) manuelles anpassen des Protokollverhaltens (in Abbildung 2.1 durch M r
1,1 unter hierarchi-

sche Komponenten dargestellt),

ii) durch vorhandene modellierte Komponenten (wird ebenfalls in Abbildung 2.1 durch M r
1,1

unter hierarchische Komponenten dargestellt),

iii) Altkomponenten (siehe M r
1,1 in Abbildung 2.1 unter hierarchische Komponenten),

iv) hinzufügen von zusätzlichen Abhängigkeiten in Form von Synchronisationsverhalten (sie-
he M s

1 in Abbildung 2.1 unter hierarchische Komponenten).

Für die Analyse der sich hiermit ergebenden hierarchischen Komponenten muss eine Verfeine-
rung definiert und überprüft werden, um sicherzustellen, dass die durchgeführten Konkretisie-
rungen nicht zu einer Verletzung des bereits verifizierten Rollenverhaltens führen.

Aus Sicht der Analyse sind die Anwendungsfälle i) und ii) identisch, da zwei bekannte Modelle
hinsichtlich einer Verfeinerung überprüft werden (siehe Kapitel 3). Für den Anwendungsfall iii)
muss zusätzlich das relevante Verhalten erlernt werden (siehe Kapitel 4) und für iv) können
wir konstruktiv durch eine formale Abhängigkeitsbeschreibung das Synchronisationsverhalten
(gesamte Komponentenverhalten) synthetisieren (siehe Kapitel 5).

2.2 Selbstoptimierende, mechatronische Systeme

Werden Systeme für mehrere Anwendungssituationen entwickelt, treten häufig Konflikte zwi-
schen den Anforderungen auf. Diese Konflikte müssen im Entwicklungsprozess gefunden und
eine mögliche Lösung ausgewählt werden. Da nur eine Lösung ausgewählt werden kann, wird
nicht zwangsläufig eine optimale Lösung für alle Anwendungssituationen umgesetzt. Einen Lö-

13

Kapitel 2 Mechatronic UML

sungsansatz zur Aufhebung der Anforderungskonflikte stellen selbstoptimierende Systeme dar.
Hierdurch ist das entwickelte System in der Lage, mehrere Anwendungssituationen umzusetzen,
zur Laufzeit die aktuelle Situation zu erkennen, eine Gewichtung oder Priorisierung der Anfor-
derungen auf wechselnde Umweltbedingungen zu bestimmen und daraus erforderliche Verhal-
tensanpassungen abzuleiten, die optimal für eine bestimmte Anwendungssituation sind. Defi-
nitionen sowie eine Reihe von Anwendungsbeispielen für selbstoptimierende, mechatronische
Systeme werden in [ADG+09] vorgestellt.

Zur Erfassung der aktuellen Situation nutzt das entwickelte System lokale und globale Netz-
werkressourcen, um die Qualität der eigenen Funktionalitäten auf Grundlage einer möglichst
umfangreichen Wissensbasis zu verbessern. Teil dieser Systeme ist daher eine Koordination zwi-
schen den einzelnen Teil-Systemen, bzw. Komponenten, um eine umfangreiche Wissensbasis in
dem vernetzten System zu erstellen. Die Koordination mit der Umgebung bewirkt damit eine
lokale Anpassung des Verhaltens, um den neuen Anforderungen gerecht zu werden.

Wie in [FGK+04] beschrieben, kann die Anpassung unterschiedlich erfolgen. Die einfachste
Form ist die Parameteranpassung, z.B. das Ändern eines Parameters einer Motorregelung. Dar-
über hinaus kann die Struktur des Systems angepasst werden, z.B. wird für die Motorregelung
im Betrieb „sportlich fahren“ eine andere Reglerstruktur benötigt als im Betrieb „ökonomisch
fahren“. Eine Strukturanpassung verändert die Ordnung oder Beziehungen zwischen den Ele-
menten des Systems. Es wird zwischen einer Rekonfiguration und einer kompositionellen Struk-
turanpassung unterschieden. Eine Rekonfiguration verändert die Beziehungen einer festen Men-
ge von verfügbaren Elementen. Eine kompositionelle Strukturanpassung fügt neue Elemente der
bisherigen Struktur hinzu oder entfernt Elemente aus der Struktur.

Darüber hinaus sind wesentliche Merkmale mechatronischer Systeme, dass sie eingebettete,
Echtzeit-, hybride und sicherheitskritische Systeme sind [GH06b].

Ein Mikrocontroller, der in einer technischen Umgebung integriert ist, wird eingebettetes System
genannt. Ein Mikrocontroller steuert, regelt, oder überwacht dabei Teile der technischen Um-
gebung, in der er eingebettet ist, indem die Software des Mikrocontrollers mit der Hardware
(elektrische oder mechanische Module) interagiert. Um einen möglichst günstigen Preis in der
Massenproduktion von Mikrocontrollern zu erzielen, sind die Ressourcen (Speicher und CPU)
stark eingeschränkt.

Systeme, deren Verhalten von Zeitbedingungen/-restriktionen abhängig sind, werden Echtzeit-
systeme genannt. Die Korrektheit der Funktionen eines Echtzeitsystems hängen nicht nur von
dem logischen Ergebnis einer Berechnung ab, sondern auch von dem Zeitpunkt, wann dieses
Ergebnis vorliegt. Ein Airbag-System ist offensichtlich ein Echtzeitsystem. Das Auslösen muss
zuverlässig innerhalb eines bestimmten Zeitintervalls passieren.

Eine Integration von kontinuierlichen und diskreten Systemen wird hybrides System genannt.
Ein Beispiel für ein kontinuierliches System ist eine Motorregelung, die kontinuierlich Eingaben
in Form von Sensorsignalen verarbeitet und kontinuierlich Ausgaben berechnet. Diskrete Modi,
wie „der Motor ist im Zustand ökonomisches Fahren“ oder „sportliches Fahren“, zwischen den

14

2.3 Komponenten

umgeschaltet werden kann, führen zu einem hybriden System, da hierdurch die Motorregelung
beeinflusst wird.

Kann eine Fehlfunktion eine Gefahr für die Umgebung darstellen, handelt es sich um ein sicher-
heitskritisches System. Hierunter fallen sowohl die Gefahr ein Menschenleben zu verlieren, wie
auch hohe ökonomische Verluste.

Selbstoptimierende, mechatronische Systeme beschreiben damit komplexe mechatronische Sys-
teme, die optimal, autonom und flexibel auf Änderungen in ihrer Umwelt reagieren können.

2.3 Komponenten

Die Struktur des (Software-) Systems wird in der MECHATRONIC UML mit Komponentendia-
grammen spezifiziert [Bur06, HH06]. Es wird dabei zwischen diskreten, kontinuierlichen und
hybriden Komponenten2 Unterschieden. Das Verhalten diskreter Komponenten wird durch Zu-
standsverhalten spezifiziert (siehe Abschnitt 2.4.2) und kontinuierliche Komponenten durch Reg-
lerverhalten. Eine hybride Komponente besteht aus diskreten und kontinuierlichen Anteilen. Eine
Komponente ist in sich abgeschlossen und verbirgt ihre innere Struktur und ihr inneres Verhalten.

Ein Zugriff ist nur über bestimmte Zugangspunkte, die sogenannten Ports, möglich. Hierbei wird
auch zwischen diskreten, kontinuierlichen und hybriden Ports unterschieden. Ein diskreter Port
kann dabei in der MECHATRONIC UML ein Required Interface und ein Provided Interface mit
jeweils einer Menge von Nachrichten spezifizieren. Im Fall von kontinuierlichen Ports sind dies
kontinuierliche Ein- und Ausgangsgrößen (Parameter oder Variablen) des Reglerverhaltens. Ein
hybrider Port beinhaltet beide Informationen.

Über ein Required Interface werden Nachrichten verschickt und über ein Provided Inter-
face empfangen. Im Fall eines diskreten Ports wird ein Protokollverhalten (mit REAL-TIME

STATECHARTS- siehe Abschnitt 2.4.2) auf Basis der Nachrichtenschnittstelle definiert. Die Spe-
zifikation des Protokollverhaltens ist ein wesentlicher Bestandteil des MECHATRONIC UML-
Ansatzes und wird in Abschnitt 2.4 betrachtet.

Komponenten erlauben die Modellierung eines hierarchischen Systems, d.h. die interne Struk-
tur einer Komponente kann sich aus mehreren eingebetteten Komponenten zusammensetzen.
Es wird dabei zwischen Basiskomponenten und hierarchischen Komponenten unterscheiden. Im
Gegensatz zu einer hierarchischen Komponente enthält eine Basiskomponente keine weiteren
Komponenten. Ein Beispiel einer hierarchischen Komponente wurde in Abschnitt 1.2 vorgestellt.

Abbildung 2.2 zeigt eine RailCab Komponente, die im Vergleich zu Abbildung 1.2 zwei
regelungstechnische Komponenten (VelocityController und DistanceController) einbettet. Die
Schnittstellen der eingebetteten regelungstechnischen Komponenten stellen dabei kontinuierli-
che Ein-/Ausgangsgrößen dar. Zur Verringerung der visuellen Komplexität wurden in dem Bei-

2In dieser Arbeit wird aus Gründen der besseren Lesbarkeit allgemein von Komponenten gesprochen, wenn durch
den Kontext offensichtlich ist, ob Komponententypen oder -instanzen gemeint sind.

15

Kapitel 2 Mechatronic UML

spiel die Schnittstellen nicht zur übergeordneten RailCab Komponente weitergeleitet. Der Velo-
cityController regelt die Geschwindigkeit und der DistanceController den Abstand zum voraus-
fahrenden RailCab. V und d geben die jeweiligen Sollgeschwindigkeiten für die Geschwindkeit
und Distanz vor. Die Eingänge versehen mit einem ∗ geben die Istwerte zur Geschwindigkeit
und Distanz an. Der VelocityController benötigt zudem noch die Position des RailCab, die über
X angegeben wird. Der VelocityController gibt an dem Ausgang die Beschleunigung (F ∗) an und
der DistanceController die Geschwindigkeit V ∗.

rear
:Velocity Controller

front

RailCab

:Distance Controller V ∗
d∗
d

F ∗V ∗

X

V

Abbildung 2.2: RailCab Komponente

2.4 Echtzeitverhalten

Systeme, deren Verhalten von Zeitbedingungen/-restriktionen abhängig sind, werden Echtzeit-
systeme genannt. Echtzeitsysteme verändern ihren Zustand als eine Funktion über die Zeit. Die
Korrektheit eines Ergebnisses einer Funktion hängt damit nicht nur von dem logischen Ergebnis
einer Berechnung ab, sondern auch von dem Zeitpunkt, wann dieses Ergebnis vorliegt [Kop97].

Je nach gegebener Anforderung, können wir zwischen harter Echtzeit und weicher Echtzeit un-
terscheiden. Unter harter Echtzeit wird verstanden, dass ein Ergebnis einer Berechnung inner-
halb eines bestimmten Zeitfensters (Deadline) vorliegt. Wird diese Zeitfenster nicht eingehalten,
können negative oder fatale Konsequenzen entstehen. Bei weicher Echtzeit tritt eine positive Wir-
kung ein, wenn das Zeitfenster eingehalten wird. Wird das Zeitfenster verfehlt, führt das zu einer
Verschlechterung des Ergebnisses, allerdings nicht zu fatalen Konsequenzen [Kop97].

Die MECHATRONIC UML ist darauf fokussiert, dass nachrichtenbasierte Echtzeit-
Koordinationsverhalten zu beschreiben, das zwischen verschiedenen mechatronischen
Komponenten unter harten Echtzeitanforderungen auftritt. Um das Koordinationsverhalten
wiederverwenden zu können, werden REAL-TIME COORDINATION PATTERNS eingeführt
(siehe Abschnitt 2.4.1). Diese erlauben die Spezifikation von Rollen und Rollenverhalten, die
dann durch eine Komponente angewandt werden können.

Das Rollenverhalten wird mit REAL-TIME STATECHARTS beschrieben. REAL-TIME STATE-
CHARTS sind eine Erweiterung von UML State Machines [Obj05b] um spezielle Echtzeiteigen-

16

2.4 Echtzeitverhalten

schaften für die periodische Ausführung, Echtzeitverhalten, Wort Case Ausführungszeiten und
Deadlines zu modellieren. Die Semantik der REAL-TIME STATECHARTS ist über die Seman-
tik der Timed Automata definiert (siehe Abschnitt 2.4.2). Im Folgenden beschreiben wir zuerst
REAL-TIME COORDINATION PATTERNS und anschließend REAL-TIME STATECHARTS.

Da mechatronische Systeme zur Laufzeit ihre Struktur anpassen können (z.B. Konvoi, siehe Ab-
schnitt 1.2), kann sich die Kommunikationsstruktur ebenfalls dynamisch zur Laufzeit anpas-
sen. Um diesen Fall betrachten zu können, wurden die PARAMETERIZED REAL-TIME STATE-
CHARTS und PARAMETERIZED REAL-TIME COORDINATION PATTERNS entwickelt (siehe Ab-
schnitt 2.4.4 und 2.4.3).

2.4.1 Real-Time Coordination Pattern

Um das Kommunikationsverhalten von Echtzeitsystemen zu spezifieren, müssen Nachrichten-
verzögerungen berücksichtigt werden und Antwortzeiten garantiert werden. REAL-TIME COOR-
DINATION PATTERNS [GTB+03] unterstützen diese Anforderungen. Ein Muster besteht aus den
Mitgliedern, die an dem Muster teilnehmen (Rollen genannt), das Verhalten der Rollen, den Kon-
nektor zwischen den Rollen, das Verhalten der Konnektoren und Invarianten für jede Rolle sowie
Musterbedingungen.

Das Verhalten einer Rolle definiert die externe Kommunikation (das Kommunikationsprotokoll)
eines Teilnehmers. Eine Rolle beschreibt nicht das konkrete Verhalten einer Komponente, son-
dern abstrahiert hiervon. Eine konkrete Komponente muss dieses Verhalten anwenden und darf
dabei kein weiteres externes Verhalten hinzufügen. Um dieses Verhalten zu erfüllen, kann eine
Komponente zusätzlich internes Verhalten hinzufügen (z.B. das unterlagerte Regelungsverhalten
oder konkrete Implementierungen von Seiteneffekten). In Abhängigkeit von den Kommunikatio-
nen, an denen eine Komponente teilnimmt, wendet eine Komponente Rollen aus verschiedenen
Mustern an. In der Folge einer Anwendung einer Rolle durch eine Komponente wird das Rol-
lenverhalten durch einen Port der Komponente realisiert (konkretisiert). Um die Eigenschaften
einer Rolle bzw. Musters nicht zu verletzen muss das Portverhalten eine Verfeinerung des Rol-
lenverhaltens sein (siehe Abschnitt 2.4.2).

Die Konnektoren spezifizieren die Kommunikationsverbindung (Link) zwischen den Kommuni-
kationsteilnehmern (Rollen). Das Verhalten eines Konnektors beschreibt abstrakt das unterlie-
gende Netzwerkverhalten (z.B. UDP), in dem die Qualität des Netzwerkprotokolls, wie Verzö-
gerung oder Nachrichtenverlust, berücksichtigt werden.

Um das Verhalten einer Rolle oder Konnektors zu beschreiben, verwenden wir REAL-TIME

STATECHARTS (siehe Abschnitt 2.4.2). Das Verhalten kann, wie wir z.B. in [GHHK06] und
[ACE+08] gezeigt haben, auch aus Szenarien synthetisiert werden.

Eine Rolleninvariante beschreibt Eigenschaften, die durch den Teilnehmer garantiert werden und
Mustereigenschaften beschreiben Eigenschaften, die durch das Muster erfüllt werden sollen. Rol-
leninvarianten und Mustereigenschaften beschreiben Sicherheits- und Lebendigkeitseigenschaf-
ten. Sicherheitseigenschaften beschreiben, dass etwas Schlechtes niemals passieren wird. Wäh-

17

Kapitel 2 Mechatronic UML

rend Lebendigkeitseigenschaften beschreiben, dass etwas Gutes eventuell passieren wird. Im
Rahmen von Echtzeitsystemen findet typischerweise eine eingeschränkte Form von Lebendig-
keitseigenschaften, die begrenzten Lebendigkeitseigenschaften, Anwendung. Hiermit wird eine
zeitliche Obergrenze festgelegt, in der etwas Gutes passieren soll.

Diese Eigenschaften können durch Model Checking basierend auf dem Verhalten der Rollen und
Konnektoren verifiziert werden. Im Fall von REAL-TIME STATECHARTS, die über die Semantik
von Timed Automata definiert sind (siehe Abschnitt 2.4.2), ist dies mittels des UPPAAL Model
Checkers3 möglich.

Um zu zeigen, dass ein Gesamtsystem bzgl. seiner Spezifikation korrekt umgesetzt wurde, wird
in einem ersten Schritt überprüft, ob jedes Muster seine Spezifikation erfüllt. Hierzu gehört,
dass die Eigenschaften des Musters erfüllt sind und Deadlock-Freiheit gezeigt wurde. In einem
zweiten Schritt wird überprüft, ob jede Komponente korrekt ist. Eine Komponente ist korrekt,
wenn ihre Eigenschaften erfüllt sind, die Komponente keine Deadlocks enthält, die Invarianten
der Rollen eingehalten werden und die angewandten Rollen korrekt verfeinert werden. Wenn
diese beiden Schritte erfolgreich sind, dann ist ein syntaktisch korrekt komponiertes System,
welches aus Mustern und Komponenten besteht, ebenfalls korrekt [GTB+03].

Abbildung 2.3 zeigt das DistanceCoordination-Muster mit den Rollen rear und front, die über
einen Kanal miteinander verbunden sind. Die Intention dieses Musters ist die Koordination zwi-
schen zwei hintereinanderfahrenden RailCabs in einem Konvoi zu beschreiben. Dabei befindet
sich das vorherfahrende RailCab in der Rolle front und das hinterherfahrende RailCab in der Rol-
le rear. Das Verhalten der Rollen, welches genauer in dem nächsten Abschnitt 2.4.2 beschrieben
wird, muss dabei bestimmte Eigenschaften erfüllen, die dem REAL-TIME COORDINATION PAT-
TERN zugeordnet werden. Zum einen, dies gilt für jedes Muster, muss die Deadlock Freiheit
gelten. Zum anderen gibt es musterspezifische Eigenschaften, wie, wenn das RailCab in der Rol-
le rear im Konvoi (Konvoizustand) ist, dann muss auch das vorherfahrende RailCab im Konvoi
(Konvoizustand) sein (rear.convoy implies front.convoy). Diese Eigenschaft wird benötigt, um si-
cherzustellen, dass ein rechtzeitiges Bremsen des RailCabs in der Rolle rear möglich ist. Hiermit
wird impliziert, dass eine entsprechende regelungstechnische Komponente in diesen Zuständen
aktiv ist, die z. B. für eine Abstandskontrolle sorgt (siehe Abschnitt 2.5).

Ein weiteres Beispiel ist das REAL-TIME COORDINATION PATTERN Registration. Hiermit wird
die Koordination zwischen einem RailCab und der Streckenabschnittskontrolle beschrieben. Die
Streckenabschnittskontrolle ist die Entität im RailCab-System, die für die Bestromung des Sys-
tems sowie der Bekanntmachung der RailCabs untereinander innerhalb eines Streckenabschnitts
zuständig ist. Eine Eigenschaft, die dabei sichergestellt sein muss ist, dass wenn ein RailCab
(welches hier in der Rolle registree ist) registriert ist, die zugehörige Streckenabschnittskon-
trolle (die in der Rolle registrar ist) den gleichen Status hält (registree.registered implies regis-
trar.registered). Ansonsten kann z. B. nicht garantiert werden, dass ein RailCab die relevanten
Daten der RailCabs in dem gleichen Streckenabschnitt erhält. Dies ist wiederum eine Vorausset-
zung, damit die RailCabs sich untereinander koordinieren können.

3www.uppaal.com

18

2.4 Echtzeitverhalten

A[] not deadlock

DistanceCoordination

front rear

rear.convoy implies front.convoy

Abbildung 2.3: Convoy-Koordinationsmuster

registrar

A[] not deadlock

Registration

registree.registered implies registrar.registered

registree

Abbildung 2.4: Registration-Koordinationsmuster

2.4.2 Real-Time Statecharts

REAL-TIME STATECHARTS [GB03] sind eine Erweiterung von UML State Machines [Obj05b],
um den Einsatz in eingebetteten Systemen zu ermöglichen. Bis auf das after- und when- Kon-
strukt besitzt ein Realtime Statechart alle Eigenschaften von UML State Machines. Um Echtzeit-
verhalten modellieren zu können, werden die Transitionen und Zustände um Clocks erweitert.
Zustände werden um Zeitinvarianten, Clock Resets, die mit den entry()- und exit()- Methoden
assoziiert sind, WCETs (Worst Case Execution Time) zu den entry()-, do()- und exit()- Methoden
und ein Periodenintervall für die do()- Methode erweitert. Transitionen werden um Time-Guards,
Clock Resets, Prioritäten, Deadlines, WCETs und Synchronisationskanäle erweitert. Die Seman-
tik der REAL-TIME STATECHARTS ist über Hierarchical Timed Automata [DMY02] definiert, so
dass eine formale Verifikation der Modelle mit dem Model Checker UPPAAL ermöglicht wird.

Ein Beispiel für ein REAL-TIME STATECHART zeigt Abbildung 2.5 und Abbildung 2.6. Die Ab-
bildungen zeigen eine Implementierung der Rolle front und rear aus Abbildung 1.2. Das REAL-
TIME STATECHART der Rolle front hat zwei verschachtelte Zustände noConvoy und convoy mit
Unterzuständen default und wait im Fall des Zustands noConvoy und Unterzustand default im
Fall des Zustands convoy. Die Struktur des REAL-TIME STATECHARTS der Rolle rear ist gleich
aufgebaut. Die Kommunikation zwischen den beiden Rollen wird durch die Rolle rear initiiert.
Initial schickt diese eine convoyProposal-Nachricht, die die front-Rolle empfangen kann und in-

19

Kapitel 2 Mechatronic UML

nerhalb des Intervalls von 0 ≤ 1000 den Konvoi über eine startConvoy-Nachricht starten kann
und zu einem beliebigen Zeitpunkt durch Verschicken der Nachricht breakConvoy wieder been-
den kann.

Abbildung 2.5: REAL-TIME STATECHARTS

der Rolle front
Abbildung 2.6: REAL-TIME STATECHARTS

der Rolle rear

Abbildung 2.7 und 2.8 zeigt eine Erweiterung des bisherigen Beispiels um Echtzeitkommunika-
tionsverhalten mit einer Streckenabschnittskontrolle (siehe Abschnitt 2.4.1). Für die Rolle regis-
trar und registree wird ein entsprechendes REAL-TIME STATECHART beschrieben. Beide weisen
die gleiche Struktur auf: zwei verschachtelte Zustände unregistered und registered. default ist der
Unterzustand des Zustands unregistered. default und waiting sind die Unterzustände von registe-
red. Initiiert wird die Koordination durch eine register-Nachricht der Rolle registree. Innerhalb
des Zeitintervalls ca ≤ 2000 verschickt die registree eine requestUpdate-Nachricht. Vor Betre-
ten des Zustands waiting wird die Clock ta bzw. ce zurückgesetzt (auf null gesetzt). Innerhalb
von 500 Zeiteinheiten verschickt die Rolle registrar dann eine performUpdate-Nachricht. Vor
Betreten des Zustands default wird dann jeweils wieder die entsprechende Clock (ca bzw. ce)
zurückgesetzt.

Abbildung 2.7: REAL-TIME STATECHART

der Rolle registrar
Abbildung 2.8: REAL-TIME STATECHART

der Rolle registree

20

2.4 Echtzeitverhalten

Aus Sicht einer Komponente werden die Rollen im Idealfall unabhängig voneinander ausge-
führt. Es existiert also ein übergeordneter Zustand (Railcab in Abbildung 2.9), der die einzelnen
Rollen parallel ausführt. Dieses Idealbild kann und wird auch häufig verletzt, indem Abhängig-
keiten zwischen den verschiedenen Rollen existieren. Wendet eine Komponente z.B. gleichzeitig
die Rolle rear und registree an, so muss gelten, dass das RailCab registriert sein muss, um an
einem Konvoi teilzunehmen. Diese Anforderung wird in der MECHATRONIC UML durch ein
zusätzliches Synchronisationsverhalten (Beobachter-Automat) realisiert, der durch aktive Syn-
chronisation mit den Portverhalten solche übergreifenden Anforderungen realisiert.

Initial ist das Synchronisationsstatechart im Zustand unregistered. Wenn über den Trigger
when(bsAvailable) signalisiert wird, dass eine Streckenabschnittskontrolle in der Nähe ist, wird
die Registrierung über die Synchronisation doRegister gestartet. Im Vergleich zu Nachrichten
wird eine Synchronisation über ein ! bzw. ? kodiert, wie dies in UPPAAL üblich ist. Im Zustand
noConvoy verweilt das Synchronisationsstatechart für wenigstens 2500 Zeiteinheiten, damit das
RailCab die aktuellen Streckendaten empfangen kann. Wenn ein Konvoi nützlich für ein RailCab
ist (when(convoyUseful)), dann wird über die Synchronisation buildConvoy ein Konvoi initiiert.
So lange das RailCab im Zustand convoy ist, kann es nicht in den Zustand register wechseln.
Entsprechend kann das RailCab nicht gleichzeitig im Zustand convoy und unregistered sein.

Eine Verfeinerung muss zudem sicherstellen, dass die verifizierten Eigenschaften des Musters
(der Rolle) nicht durch das Synchronisationsverhalten verletzt werden (siehe Abschnitt 2.4.1).

2.4.2.1 Formalisierungen

Die bisher informal eingeführten REAL-TIME STATECHARTS werden im Folgenden über Timed
Automata definiert. Für eine Abbildung von REAL-TIME STATECHARTS auf Timed Automata
sei auf [GB03] verwiesen.

Bei der Verifikation von auf Timed Automata basierenden Systemen ist deren unendlicher Zu-
standsraum problematisch, an dessen Stelle daher eine geeignete Abstraktion analysiert werden
muss. Für diesen Zweck werden oft Zone Graphen eingesetzt, welche auch die Grundlage für die
in Abschnitt 3 vorgestellten Erreichbarkeitsanalyse und die in Abschnitt 5 eingeführten Synthese
darstellen.

Timed Automata [AD90] basieren auf endlichen Automaten und sind, wie diese, ein zustands-
basiertes Verhaltensmodell. Sie definieren ebenfalls Transitionen und Entsprechungen zu den
Zuständen endlicher Automaten, die jedoch als Locations bezeichnet werden. Der Grund für die
unterschiedliche Benennung ist, dass eine Location, für sich genommen, nicht den Gesamtzu-
stand des Modells definiert, da dieser im Unterschied zu (gewöhnlichen) endlichen Automaten
auch zeitabhängig ist. Wenn allerdings keine explizite Unterscheidung notwendig ist, werden wir
im Rahmen dieser Arbeit den Begriff Zustand auch für Timed Automata verwenden.

Zeitbehaftetes Verhalten wird auf dieselbe Weise modelliert, wie dies bereits für REAL-TIME

STATECHARTS (siehe Abschnitt 2.4.2) eingeführt wurde, also mit Clocks, Clock Resets und
Time Guards sowie Invarianten, die auf die Clocks Bezug nehmen.

21

Kapitel 2 Mechatronic UML

RearRole

Synchronization

RegistreeRole

when(bsNotAvailable) / !doUnregister

convoy

[cs>=2500]
when(convoyUseful)
/ !buildConvoy

{cs}
when(bsAvailable) / !doRegister

breakConvoy / !notInConvoy

[cr<=999]
startConvoy /

default

[cr>999] / !notInConvoy

waiting

cr<=1000default
{cr}

convoy

noConvoy

{ce}

performUpdate /

{ce}

/ requestUpdate

?doUnregister
/ unregister

registered

waiting

ce<=500

default

ce<=2000
default

unregistered

{ce}

?doRegister / register

noConvoy

registered

unregistered

Railcab

?buildConvoy / convoyProposal

?notInConvoy /

Abbildung 2.9: Verhalten RailCab Komponente

22

2.4 Echtzeitverhalten

Ein Timed Automaton sei hier basierend auf [GB03] und [JLS00] wie folgt definiert:

Definition 1 (Timed Automaton)
Ein Timed Automaton A ist ein Tupel (L, l0,Σ, C, I, T), wobei

• L endliche, nichtleere Menge von Locations

• l0 ⊆ L Teilmenge von Startlocations

• Σ eine endliche Menge von Events, mit den internen Events ε

• C eine endliche Menge von Clocks

• I : L→ Φ(C) ordnet jedem Zustand einen Clock Constraint (Invariante) zu

• T ⊆ L×Σ×Φ(C)××2C×L eine endliche Menge von Transitionen t = (l, a, g, r, l′) ∈ T
mit

– l ∈ L Quell-Location

– a ∈ Σ ein Event

– g ∈ Φ(C) ein Clock Constraint (Time Guard)

– r ∈ C eine Menge von Clock Resets

– l′ ∈ L die Ziel-Location

Die parallele Komposition mehrerer Automaten basiert auf der Komposition in Prozessalgebren
[Mil89]. Für Timed Automata wurde dies bereits durch die vernetzten Timed Automata definiert
[YPD94, Pet99, BDL04].

Definition 2 (Parallele Komposition Timed Automata)
Seien A1 = (L1, l

0
1,Σ1, C1, I1, T1) und A2 = (L2, l

0
2,Σ2, C2, I2, T2) zwei Timed Automata mit

C1 ∩ C2 = ∅ und Σ1 ∩ Σ2 = ∅. Wir definieren die parallele Komposition A1 ‖ A2 als einen
Produktautomat AP = (LP , l

0
P ,ΣP , CP , IP , TP), mit

• LP = L1 × L2,

• l0P = (l01, l
0
2),

• ΣP = Σ1 ∪ Σ2,

• IP : LP → Φ(C1) ∪ Φ(C2) mit IP ((l1, l2)) = I1(l1) ∧ I2(l2),

• CP = C1 ∪ C2,

• TP ⊆ LP × ΣP × Φ(CP)× 2CP × LP , mit

– ((l1, l2), e1, g1, r1, (l1
′, l2)) ∈ TP ⇔ (l1, e1, g1, r1, l1

′) ∈ T1, und

– ((l1, l2), e2, g2, r2, (l1, l2
′)) ∈ TP ⇔ (l2, e2, g2, r2, l2

′) ∈ T2.

Die Menge der Zustände ergibt sich aus dem Kreuzprodukt der Zustände der einzelnen Automa-
ten. Die Nachrichten sind entsprechend eine Vereinigung der separaten Automaten, wie dies auch

23

Kapitel 2 Mechatronic UML

für die Uhren CP gilt. Für Invarianten von komponierten Zuständen I((l1, l2)) werden die Inva-
rianten der einzelnen Zustände I(l1) und I(l2) miteinander verbunden, da beide Invarianten in
der parallelen Ausführung betrachtet werden müssen. Die Menge der Transitionen TP reflektiert
genau die verschachtelte, nebenläufige Ausführung der Nachrichten der parallelen Ausführung
der separaten Automaten. Die Transition korrespondiert entweder zu Automaten A1 oder A2. Im
Vergleich zu [Mil89] betrachtet diese Definition keine Synchronisationen von Nachrichten, da
die separaten Rollenautomaten der MECHATRONIC UML unabhängig voneinander sind.

Asynchrone Kommunikation kann durch Modellierung eines Puffers als zusätzlicher Automat
auf synchrone Kommunikation abgebildet werden. Im Rahmen dieser Arbeit wird diese Vorge-
hensweise vorausgesetzt und daher generell von der Verwendung von Synchronisationskanälen
ausgegangen.

Die Priorität p modelliert wie bei den RTSCs, dass Transitionen mit höherer Priorität (also höhe-
rer Zahl p) bevorzugt zu alternativen Transitionen geschaltet werden müssen. Analog zu [GB03]
gelten hier alle Transitionen mit p > 0 als urgent, alle mit p = 0 als nicht-urgent.

Die verschiedenen existierenden Varianten von Timed Automata unterscheiden sich in einigen
Details, beispielsweise darin, ob urgent-Transitionen unterstützt werden oder ob grundsätzlich
von einer synchronen oder asynchronen Kommunikation ausgegangen wird. Die hier vorgestell-
te Variante orientiert sich an derjenigen, die den Extended Hierarchical Timed Automata (ExH-
TA), einer Erweiterung der Timed Automata, zugrunde liegt, da die Semantik der REAL-TIME

STATECHARTS über diese definiert ist.

Die in Definition 1 verwendeten Clock Constraints sind wie folgt definiert.

Definition 3 (Clock Constraint)
Für eine Menge C von Clocks, ist die Menge Φ(C) von Clock Constraints ϕ definiert über die
Grammatik

ϕ := x ≤ c, c ≤ x, x < c, c < x, x− y ≤ c, x− y < c, ϕ1 ∧ ϕ2

mit x, y ∈ C Clocks und c ist eine Konstante aus Q. (vgl. [Alu99, BY03])

Ein Clock Constraint vergleicht den Wert einer Clock mit einer Konstanten oder mit einer ande-
ren Clock.

Timed Transition System Ein Timed Transition System (TTS) [Alu99] ist, ebenso wie ein
Timed Automaton, ein zustandsbasiertes, zeitbehaftetes Verhaltensmodell in Form eines Gra-
phen. Im Unterschied zum Timed Automaton repräsentieren die Knoten in diesem Graphen je-
doch die tatsächlichen Zustände des Systems, die zusätzlich zur aktuellen Location des dazuge-
hörigen Timed Automaton auch durch die aktuellen Werte aller Clocks bestimmt wird. Selbst bei
einem diskreten Zeitmodell ist der Zustandsraum und damit die Größe des TTS unendlich. Wird,
wie in dieser Arbeit, ein kontinuierliches Zeitmodell (Clock-Werte aus R+

0) vorausgesetzt, dann
gibt es sogar überabzählbar viele Zustände.

24

2.4 Echtzeitverhalten

Der Zustand eines Timed Transition System wird durch ein Paar (l, v) ∈ S × Cv charakterisiert,
wobei l die aktuelle Location und v die aktuelle Clock Bewertung ist. Bei dieser handelt es sich
um eine Bindung aller Clocks des Automaten, die als v ∈ Cv = [C → R

+
0] definiert ist; sie legt

also die aktuellen Werte aller Clocks fest. Der Startzustand ist (l0, v
0), wobei v0 eine Bindung

ist, die allen Clocks den Wert 0 zuordnet.

Ein Timed Transition System sei hier wie folgt definiert:

Definition 4 (Timed Transition System)
Ein Timed Transition System ist ein Tupel (S, s0,Σ,−→) mit Zustandsmenge S, Startzustand
s0 ∈ S, Alphabet Σ = ΣD ∪ ΣE und Transitionsrelation T ⊆ S × Σ × S. Dabei sei D die
Menge der möglichen Delays

{
δ|δ ∈ ΣD = R+

0

}
und ΣE die Menge der Nachrichten (bzw. Syn-

chronisationskanäle), einschließlich des speziellen internen Ereignis τ . Dabei muss T folgende
Bedingungen erfüllen (mit s, s′, s′′ ∈ S und δ, δ1, δ2 ∈ ΣD):

1. s δ−→ s′ ∧ s δ−→ s′′ =⇒ s′ = s′′ („Zeitdeterminismus“)

2. s δ1+δ2−→ s′′ ⇔ s
δ1−→ s′

δ2−→ s′′ mit s′ beliebig („Zeitadditivität“)

3. s 0−→ s′ ⇔ s = s′ („Zero-Delay“)

Auf Basis von Timed Transition Systems kann die Semantik der Timed Automata nach [BY03]
wie folgt definiert werden:

Definition 5 (Semantik der Timed Automata)
Die Semantik eines Timed Automaton wird definiert durch ein Timed Transition System, dessen
Zustände Paare (l, v) sind und dessen Transitionsrelation T definiert ist durch:

• (l, v)
δ−→ (l, v + δ), wenn v ∈ I(l) ∧ (v + δ) ∈ I(l) für ein δ ∈ R+

0

• (l, v)
µ−→ (l′, v′), wenn (l, g, µ, r, l′) ∈ T, v ∈ g, v′ = [r 7→ 0]v und v′ ∈ I(l′)

Dabei sind v, v′ ∈ R+
0 Clock-Bewertungen. v ∈ g bedeutet hier, dass die Clock-Bewertung v

den Time Guard g erfüllt. Entsprechend gibt v ∈ I(l) an, dass v die Invariante von Location l
erfüllt.

Weiterhin ist v + δ für δ ∈ R+
0 diejenige Clock-Bewertung, die alle Clocks c ∈ C auf v(c) + δ

setzt. Für Clock Resets r ⊆ C ist [r 7→ 0]v die Clock-Bewertung, die alle Clocks in r auf 0 setzt
und alle anderen Clocks c ∈ C\r unverändert lässt.

Zone Graph Ein Timed Transition System eines Timed Automaton kann potentiell unendlich
groß sein. Um ein solches System analysieren zu können, wurden Zone Graphen [Alu99, BY03]
eingeführt, deren Zustände jeweils mehrere Zustände des durch sie repräsentierten Timed Tran-
sition Systems mit identischem Zeitverhalten zusammenfassen. Die Zustände des Zone Graph
beinhalten neben der jeweils aktuellen Location auch eine sogenannte Clock Zone. Letztere re-
präsentiert die Menge aller Clock-Bewertungen, die für die gegebene Location eine bestimmte
Clock Constraint (siehe Definition 3) erfüllen.

25

Kapitel 2 Mechatronic UML

Eine Clock Zone fasst TTS-Zustände zusammen, die in derselben Location dasselbe Verhalten
beschreiben. Konkret heißt das, dass innerhalb einer Clock Zone für eine gegebene Location
immer dieselben Transitionen schalten können. Eine Clock Zone kann für jede Clock eine obere
und eine untere Schranke definieren, sie legt also ein Intervall fest, in dem der Wert der Clock lie-
gen muss, um in dieser Clock Zone enthalten zu sein. Eine Clock Zone für n Clocks ist demnach
ein konvexer Körper im n-dimensionalen Raum.

Ein Zone Graph wird, ausgehend von einer gegebenen Clock Zone, die dem Startzustand des
dazugehörigen Timed Automaton (bzw. dessen TTS) entspricht, konstruiert, indem solange die
Nachfolge Zones aller bereits erzeugten Zones konstruiert werden, bis auf diese Weise keine
neuen Zones mehr erzeugt werden können. Dafür wird eine Operation verwendet, welche zu ei-
ner gegebenen Zone eine mögliche Nachfolge Zone für diese zurück liefert, also eine Zone, die
durch Schalten einer Synchronisation oder aber dem Vergehen von Zeit erreicht werden kann.
Die Konstruktion des gesamten Zone Graphen entspricht also der Konstruktion der Abgeschlos-
senheit zu dieser Operation und dem gegebenen Startzustand.

Definition 6 (Clock Zone, Zone, Zone Graph)
Sei A = (L, l0,Σ, C, I, T) ein Timed Automaton. Eine Clock Zone z ist eine ∧-Verknüpfung
mehrerer Clock Constraints über Clocks inC. Eine Zone zo ist ein Tupel 〈s, z〉mit einer Location
s ∈ L und einer Clock Zone z. Eine Zone beschreibt für die Location s die Menge der zulässigen
Clock-Bewertungen, die äquivalent zueinander sind. Ein Zone Graph wird ausgehend von der
Clock Zone des Startzustands l0 konstruiert. Es wird dabei solange eine Nachfolge Zone der
bereits erzeugten Zones konstruiert, bis keine neuen Zones erzeugt werden können. Ein Zone
Graph ist entsprechend definiert durch Zustände die Zones sind und der Transitionen zwischen
zwei Zones, falls A einen Übergang zwischen diesen Zones erlaubt.

Difference Bound Matrice Difference Bound Matrices [Dil89, CGP00] sind eine effiziente
Form der Repräsentation von Clock Zones über eine Matrix. Für eine Clock Zone mit n Clocks
erhält man eine n × n-Matrix, deren i-te Zeile und Spalte zu Clock i der Clock Zone gehören.
Zusätzlich zu den Clocks der Clock Zone wird eine Clock x0 eingeführt, deren Wert immer 0 ist.
Dies erlaubt es, Vergleiche einer Clock mit einer Konstanten als Differenz über x0 darzustellen,
d.h. x < c wird zu x− x0 < c. Der Eintrag di,j der Matrix hat die Form (c,≺), wobei c für eine
Konstante oder∞ steht und ≺ für < oder ≤. Er kodiert damit die Ungleichung xi − xj ≺ c. Ein
Beispiel für eine Difference Bound Matrix zu der Clock Zone 0 ≤ t ∧ t ≤ 10 zeigt Abbildung
2.10.

0 1
0 (0,≤) (0,≤)
1 (10,≤) (0,≤)

Abbildung 2.10: Difference Bound Matrice für eine Clock Zone mit einer Clock.

26

2.4 Echtzeitverhalten

Die Einträge der 0-ten Spalte entsprechen den oberen Schranken der Clocks, die Einträge der
0-ten Zeile entsprechen den negierten unteren Schranken der Clocks. Die Einträge auf der Dia-
gonalen sind immer (0,≤), da hier eine Clock mit sich selbst verglichen wird.

Difference Bound Matrices erlauben durch eine Normalisierung eine kanonische Darstellung von
Clock Zones und somit einen einfachen Vergleich, ob zwei Clock Zones identisch sind. Diese
Eigenschaft wird für die Verifikation der Verfeinerung benötigt.

Der Zustand eines Timed Automaton ist der Zustand des diesem entsprechenden Timed Transiti-
on Systems. Die Semantik von Zustandsübergängen und damit die gesamte Semantik des Timed
Automaton wird daher über Timed Transition Systems definiert.

2.4.3 Parameterized Real-Time Coordination Pattern

Bei REAL-TIME COORDINATION PATTERNS muss die Anzahl der beteiligten System-Instanzen
bei der Definition des Musters statisch festgelegt werden. Dieser Mangel an Flexibilität ist aller-
dings beim Modellieren von Situationen problematisch, in denen neue Kommunikationsteilneh-
mer hinzukommen oder vorhandene die Kommunikationsbeziehung verlassen. Derartige dyna-
mische Änderungen der Kommunikationsstruktur kommen bei verteilten eingebetteten Systemen
relativ häufig vor. Um solche Fälle modellieren zu können, wurde daher das Konzept der REAL-
TIME COORDINATION PATTERNS zu dem der PARAMETERIZED REAL-TIME COORDINATION

PATTERNS [GHH+06c, Hir08, HHG08, HHH10, HHPS10] erweitert.

PARAMETERIZED REAL-TIME COORDINATION PATTERNS können neben gewöhnlichen Rol-
len an deren Stelle auch Multi-Rollen enthalten. Diese stehen jeweils für mehrere Instanzen einer
Rolle. Das Rollenverhalten wird daher im Allgemeinen nicht durch ein einfaches, sondern durch
ein parametrisiertes Realtime Statechart beschrieben (siehe Abschnitt 2.4.4). Zusätzlich ist die
Angabe einer Multiplizität (auch: Kardinalität) der Rolle, der oberen Grenze für die Anzahl
von Instanzen (n für unbeschränkt), möglich. Optional kann zudem durch ein spezielles Attribut
{ordered} spezifiziert werden, dass die einzelnen Rollen-Instanzen geordnet sein müssen.

Um das Hinzufügen und Entfernen von Rolleninstanzen zu beschreiben, definiert ein parametri-
siertes Koordinationsmuster zusätzlich eine Menge von Erweiterungsregeln sowie eine Menge
von Reduzierungsregeln. Bei diesen handelt es sich jeweils um zeitbehaftete Graphtransforma-
tionssysteme (Timed Graph Transformation Systems (TGTS)), einer speziellen Form von Graph-
transformationsregeln. Diese Strukturanpassungen werden durch einen Seiteneffekt der Rollen-
verhalten implementiert (siehe Abschnitt 2.4.5). TGTS werden in Abschnitt 2.4.5.1 behandelt.

Weiterhin definiert ein PARAMETERIZED REAL-TIME COORDINATION PATTERN eine Men-
ge von Profilen, sowie zusätzliche Eigenschaften für diese. Sie beschreiben das kontinuierliche
Systemverhalten in einer Konfiguration. Für diese Arbeit sind diese allerdings nicht von weiterer
Relevanz und es sei daher auf [Hir08] für Details verwiesen.

Zusätzlich zu den bereits bei REAL-TIME COORDINATION PATTERNS möglichen Einschrän-
kungen des Verhaltens durch Eigenschaften können bei PARAMETERIZED REAL-TIME COOR-

27

Kapitel 2 Mechatronic UML

DINATION PATTERNS zusätzlich verbotene Strukturregeln spezifiziert werden, die unsicheren
Konfigurationen des Systems entsprechen (siehe Abschnitt 2.4.5.1).

Abbildung 1.2 zeigt das PARAMETERIZED REAL-TIME COORDINATION PATTERN Convoy
Coordination, mit den Rollen coordinator und member. An Stelle des einfachen Quadrats für
eine Rolle, wird eine Multi-Rolle durch zwei überlappende Quadrate dargestellt (siehe coordina-
tor Rolle). Multi-Rollen mit der Multiplizität 1 entsprechen dabei einfachen Rollen.

2.4.4 Parameterized Real-Time Statecharts

PARAMETERIZED REAL-TIME STATECHARTS wurden als Erweiterung der REAL-TIME

STATECHARTS eingeführt, um mehrere Instanzen desselben Statecharts mit leicht verändertem
Verhalten modellieren zu können. Die Einführung erfolgte in [Hir08] zusammen mit den PA-
RAMETERIZED REAL-TIME COORDINATION PATTERNS, in deren Kontext sie für mehrfach
instanziierte Komponenten (welche Multi-Rollen implementieren) verwendet werden.

PARAMETERIZED REAL-TIME STATECHARTS umfassen grundsätzlich die Syntax der gewöhn-
lichen RTSCs, wobei auch die Semantik dieselbe bleibt. Die wesentliche Erweiterung ist, dass
Instanzen von PARAMETERIZED REAL-TIME STATECHARTS ein Parameter k zugeordnet wird,
welcher eine eindeutige ID der Instanz darstellt.

Auf den Parameter des PARAMETERIZED REAL-TIME STATECHARTS kann direkt in Guards an
Transitionen zugegriffen werden, in denen diese mit numerischen Konstanten verglichen wer-
den können. Die Transition darf dann also nur für bestimmte Instanzen schalten, während das
betreffende Verhalten für die übrigen ausgeschlossen wird. Prinzipiell ist es also möglich, für be-
stimmte Parameter k völlig eigene Unter-Statecharts (beispielsweise in Form von OR-Zuständen)
zu definieren.

Eine weitere Anwendung der Parameter ermöglichen die in PARAMETERIZED REAL-TIME

STATECHARTS ebenfalls neu eingeführten parametrisierten Synchronisationskanäle: Sie werden
zusätzlich zu ihrem Namen anhand eines eigenen Parameters identifiziert, der als Index angege-
ben werden kann (also beispielsweise x3! für ein Senden über Kanal x mit Parameter 3). Dieser
muss für eine Synchronisation ebenfalls identisch sein. Der Kanal-Parameter kann in einem PA-
RAMETERIZED REAL-TIME STATECHART durch einen numerischen Ausdruck, beispielsweise
eine Addition oder eine einzelne Variable bestimmt werden. Insbesondere ist aber auch ein Bezug
auf den Parameter des PARAMETERIZED REAL-TIME STATECHARTS möglich.

PARAMETERIZED REAL-TIME STATECHARTS werden wie REAL-TIME STATECHARTS über
Timed Automaton definiert. Hierbei handelt es sich allerdings ebenfalls um eine parametrisier-
te Version, also parametrisierte Timed Automaton, die die oben beschriebenen Erweiterungen
gegenüber Timed Automaton beinhalten.
Definition 7 (Parametrisierter Timed Automaton [Hir08])
Ein parametrisierter Timed Automaton A ist ein 7-Tupel A := (Σ,S,S0, X, I, Sig(l, P), T),
wobei Σ ein endliches Eingabealphabet, S eine endliche Menge an Locations, S0 ⊆ S eine
endliche Menge von Start-Locations, X := (x1, .., xn) eine endliche Menge an Clock Variablen

28

2.4 Echtzeitverhalten

mit xi ∈ R+, I eine Zuordnungsfunktion I → C(X), welche den einzelnen Locations eine Menge
an Ungleichungen zuordnet, die so genannten Invarianten, Sig(l, P) eine Menge von Signalen
die mit l parametrisiert und die Eigenschaft P ist hierbei eine spezielle Eigenschaft/Profil des
Automaten. T ist die Menge der Transitionen. C(X) ist eine Menge von Bedingungen über Clock-
Variablen aus X . Dabei besteht C(X) aus einer Menge an Ungleichungen der Form xi ≺ c ∨
c ≺ xi, wobei ≺ entweder < oder ≤ ist und c ∈ N+. Für T , die Menge der Transitionen, gilt
T ⊆ S ×Σ×C(X)× 2X ×Sig(l, p)×S . Eine Transition von Location s nach s′ läßt sich durch
ein 6-Tupel (s, a, ϕ, λ, sig, s′) beschreiben. Dabei ist a ∈ Σ die Beschriftung der zugehörigen
Kante, ϕ eine Bedingung, die erfüllt sein muss damit die Transition schalten kann und λ ⊆ X
eine Anzahl an Clockvariablen, die beim Schalten auf 0 zurückgesetzt werden. sig ⊆ Sig(l, P)
ist ein durch einen Parameter l gekennzeichnetes Signal, dass den Wert p ∈ P übermittelt.

Die parallele Komposition (||) zweier parametrisierter Automaten Ai und Aj ist wie folgt defi-
niert:

Definition 8
Gegeben sei ein parametrisierter Timed Automaton Ai := (Σi,S i,S0i, X i, I i, Sig(li, P i), T i)

und ein parametrisierter Timed Automaton Aj := (Σj,Sj,S0j, Xj, Ij, Sig(lj, P j), T j) wie in
Definition 7 definiert. Jeder Automat verhält sich lokal wie ein Timed Automaton. Nur über die
parametrisierten Signale Sig(li, P i) und Sig(lj, P j) findet eine Synchronisation statt, wenn i =
j ist. Dabei wird P j := P i, falls i ≤ j

2.4.5 Rekonfigurationsverhalten

Rekonfigurationsverhalten wird in der MECHATRONIC UML nicht zustandsbasiert, sondern
durch Graphtransformationen [Roz97] beschrieben, die sich auf den Objektgraphen der aktu-
ellen Konfiguration (auch: Instanzsituation) des Systems beziehen. Graphtransformationen be-
schreiben dabei im Allgemeinen Änderungen eines Graphen, in diesem Fall eine Rekonfiguration
des Systems, also eine Strukturänderung zur Laufzeit. Der Prozess der graphbasierten Verhal-
tensmodellierung, der in MECHATRONIC UML eingesetzt wird, wird als Story Driven Modeling
bezeichnet.

Rekonfigurationsverhalten wird als Seiteneffekte an Transitionen von (PARAMETERIZED)
REAL-TIME STATECHARTS aufgerufen. Das Rekonfigurationsverhalten wird mittels Story-
Diagrammen spezifiziert, die in Abschnitt 2.4.5.4 behandelt werden.

Bevor in Abschnitt 2.4.5.2 die Graphtransformationen selbst behandelt werden, werden zunächst
Objektgraphen im folgenden Abschnitt 2.4.5.1 betrachtet.

2.4.5.1 Objektgraphen

Wir führen im Folgenden Objektgraphen nach Zündorf ein [Zün01]. Es handelt sich hierbei um
gerichtete, typisierte und attributierte Graphen mit Beschriftungen an Kanten und Knoten. Typ-

29

Kapitel 2 Mechatronic UML

informationen werden durch eine Schema Information festgelegt, die zudem die möglichen Attri-
bute und Assoziationen der einzelnen Typen definiert (und einschränkt). Die Schema Information
wird durch Klassendiagramme definiert. Im Fall der MECHATRONIC UML Komponenten wer-
den diese aus Komponentendiagrammen generiert. Der Graph eines Objektdiagramms wird als
Extension der jeweiligen Schema Information bezeichnet. Ein Objektgraph ist damit wie folgt
definiert:
Definition 9 (Objektgraph)
Ein Objektgraph G ist ein Tupel (SI,Ext) mit SI Schema Information und Ext Extension der
Schema Information.

SI := (NL,EL,A, IsAs,Assoc, Attrs) mit

• NL, Endliche Menge von Knotenbeschriftungen

• EL, Endliche Menge von Kantenbeschriftungen

• A, Endliche Menge von Attributnamen

• IsAs ⊆ Relation(desc ∈ NL, anch ∈ NL), Vererbungsbeziehung

• Assocs ⊆ Function((el ∈ EL)→ (src ∈ NL, srcCard ∈ {one,many},
assocType ∈ P (AssocTypes := {ordered, qualified, aggregation}),
tgt ∈ NL, tgtCard ∈ {one,many})), Assoziationen

• Attrs ⊆ Function((A)→ NL×BaseTypes), Attribute von Knoten

BaseTypes sind alle Grunddatentypen wie z.B. Integer, Float, Boolean, String, usw.

Ext := (V,E, nl, av)

• V , Endliche Menge von (eindeutig identifizierbaren) Objekten

• E ⊆ Relation(src ∈ V, el ∈ EL, tgt ∈ V), Menge von beschrifteten Kanten

• nl : V → NL, Funktion, die jedem Knoten einen Namen zuordnet

• av : (N,A) → Attributwerte, Attributwertfunktion, die jedem Attribut eines Knotens
einen Wert zuweist.

Attributwerte sind alle Instanzen der BaseTypes oder Referenzen auf andere Objekte.

2.4.5.2 Graphtransformationssysteme

Graphtransformationen [Roz97] beschreiben Änderungen auf Graphen (häufig Wirtsgraph gen-
nant). Ein Graph kann dabei z.B. als ein Objektgraph gegeben sein (siehe Definition 9). Die
Änderungen auf den Graphen werden durch Regeln beschrieben. Eine Regel wird über jeweils
zwei Teilgraphen definiert. Diese werden nach der Seite bezeichnet, auf der sie in der Regel dar-
gestellt sind. LHS (Left Hand Side) für den Graphen auf der linken Seite der Regel und RHS
(Right Hand Side) für den auf der rechten.

Die Anwendungsbedingung der Regel wird durch die LHS beschrieben. Als Voraussetzung für
die Anwendung der Regel, muss die hierdurch definierte Struktur eine Entsprechung im Wirts-

30

2.4 Echtzeitverhalten

graphen haben. Es handelt sich hierbei um einen Homomorphismus der LHS zu einem Teilgra-
phen des Wirtsgraphen. Dies bezeichnen wir mit Matching.

Eine Zuordnung sämtlicher Elemente eines Graphen zu Elementen (Knoten, Kanten und Label,
einschließlich Attributen und Typen) eines anderen Graphen unter Einhaltung von deren Struk-
tur ist ein Homomorphismus. Soll ausgeschlossen werden, dass mehrere Elemente der LHS auf
dasselbe Element des Wirtsgraphen abgebildet werden können, wird ein bijektiven Homomor-
phismus (genannt Isomorphismus) gefordert.

Soll die Anwendbarkeit einer Regel ausgeschlossen werden, kommen sogenannte Negative An-
wendungsbedingungen zum Einsatz. Die anderen Elemente des Wirtsgraphen, die in der LHS
nicht enthalten sind, schließen eine Anwendung nicht aus, auch wenn sie in einem strukturellen
Zusammenhang mit denen in der LHS enthaltenen stehen.

Die durch die Regel vorgenommene Änderung wird durch die RHS der Regel zusammen mit
der LHS definiert. Für die Änderung ist der Unterschied zwischen diesen beiden relevant. Wir
können dabei zwischen den Fällen unterscheiden, 1) in denen das Element auf beiden Seiten vor-
kommt. In diesem Fall verbleibt es bei Anwendung der Regel im Wirtsgraphen. 2) Das Element
kommt nur in der RHS vor. Dann wird bei Regelanwendung ein entsprechendes neues Element
im Wirtsgraphen erzeugt. 3) Das Element kommt nur in der LHS vor. In diesem Fall muss das
Element im Matching enthalten sein. Bei Anwendung der Regel im Wirtsgraphen wird das Ele-
ment gelöscht.

Hiermit kommen wir nun schließlich zu der Definition eines Graphtransformationssystems
(GTS). Ein GTS wird durch eine Menge von Graphtransformationsregeln und einem Typgra-
phen definiert. Ein Zustand eines solchen Systems entspricht dabei einem Graphen.

Definition 10 (Graphtransformationssystem)
Ein Graphtransformationssystem G = 〈TG, TR〉 ist ein 2-Tupel aus einem Typgraphen TG
gemäß Definition 9 und einer Menge von Transformationsregeln TR. Die Menge GRAPHTG

bezeichnet die Menge aller Objektgraphen über TG.

Der Typgraph TG wird im Rahmen dieser Arbeit durch ein Klassendiagramm beschrieben. Die
Elemente der MengeGRAPHTG sind Objektdiagramme des Klassendiagramms. Damit entspre-
chen das Klassendiagramm der Schemainformation und die Objektdiagramme den Extensions
aus Definition 9. Die Menge TR besteht aus Graphtransformationsregeln.

2.4.5.3 Zeitbehaftete Graphtransformationssysteme

Eine Anforderung der hier betrachteten Systeme ist, auch zeitliche Bedingungen beschreiben zu
können. In [Hir08] wurden daher Graphtransformationssysteme zu zeitbehafteten Graphtransfor-
mationssystemen erweitert. Hiermit kann eine Spezifikation erfolgen, so dass die Ausführung der
Graphtransformation nur unter bestimmten zeitlichen Bedingungen erfolgen darf oder dass eine
bestimmte Instanzsituation nur für eine bestimmte Zeit vorliegen darf. Im Folgenden werden die
durch [Hir08] zusätzlich eingeführten Elemente beschrieben.

31

Kapitel 2 Mechatronic UML

Clocks: Clocks wurden basierend auf der Theorie der Timed Automata nach [AD94, Alu99,
CGP00] eingeführt. Durch eine Clock wird das Vergehen von Zeit über die Menge R+

0 beschrie-
ben. Wie bei einem Timed Automaton kann ein zeitbehaftetes GTS eine Menge von Clocks
haben. In [Hir08] wird eine Abbildung der zeitlichen Elemente eines Timed Automaton auf
Graphtransformationsregeln beschrieben. Im Unterschied zu einem Graphen, der über Graph-
transformationsregeln aufgebaut und verändert wird, sind die Elemente eines Timed Automaton
bereits zu Beginn der Ausführung vollständig vorhanden und verändern sich auch während der
Ausführung nicht. Daher werden die zeitlichen Elemente mit den Graphtransformationsregeln
assoziiert. Im Folgenden betrachten wir dies genauer.

Clock-Instanzen Zeitliche Bedingungen werden über die in Abschnitt 2.4.2.1 beschriebenen
Clocks definiert. Die Werte einer Clock sind abhängig vom Erzeugungszeitpunkt der Elemente.
Da grundsätzlich eine Clock von mehreren Elementen genutzt werden kann, müsste die Clock
unterschiedliche Werte für verschiedene Elemente annehmen können, um unterschiedliche Er-
zeugungszeitpunkte von Elementen gerecht zu werden. Hirsch führt daher Clock-Instanzen ein.
Clock-Instanzen gelten für eine bestimmte Menge von Elementen aus dem Graphen. Dabei hat
die Clock-Instanz Referenzen auf alle Objekte des aktuellen Graphen. Clock-Instanzregeln kön-
nen automatisch aus den LHS der Anwendungsregeln erzeugt werden, die diese Clock-Instanzen
benutzen.

Time Guards Ein Graphtransformationsssytem mit einem Time Guard zeigt Abbildung 2.11.
Das Beispiel zeigt das Erweitern des Konvois um ein RailCab. Der Time Guard wird als zeitliche
Bedingung über die Clock c1 angegeben. Die Transformation der LHS zur RHS ist im Beispiel
nur möglich, wenn der Wert der Clock c1 zwischen 5 und 10 liegt. Im Allgemeinen wird hier
ebenfalls durch einen Time Guard spezifiziert, dass eine Bedingung über die Werte einer oder
mehrerer Clocks erfüllt sein muss, damit eine Transition schalten kann.

 : RailCab Clock:c1 : RailCab

 : Convoy Clock:c1 : Coordinator

member

coordinates

is

member
<<create>>

ID=1 ID=2

ID=3ID=4

ID=5

ID=6
ID=7 5≤c1∧c1≤10

Resets: c1 := 0

Abbildung 2.11: Erweiterung des Konvois um ein RailCab mit einem Time Guard und einem
Clock Reset

32

2.4 Echtzeitverhalten

Resets Durch einen Clock Reset wird der Wert einer Clock auf 0 zurück gesetzt. Zeitbehaftete
GTS führen Clock Resets aus, wenn die Transformation, an der sie gebunden ist, abgeschlossen
wurde. Abbildung 2.11 zeigt einen Clock Reset für Clock-Instanz c1.

Invarianten Invarianten beschreiben einen Teilgraphen, der nur für eine bestimmte Zeit im
Graphen vorkommen darf. Invariantenregeln haben nur eine LHS, da die Invariante nur im Gra-
phen gefunden werden muss. Abbildung 2.12 zeigt ein Beispiel für eine Invariantenregel. Hiermit
wird ausgedrückt, dass ein RailCab, das nicht im Konvoi ist, nur für 10 Zeiteinheiten im System
existieren darf.

 : RailCab

 : Convoy

member

c1≤10

Abbildung 2.12: Eine Invariantenregel über einen Teilgraphen

2.4.5.4 Story Patterns und Story Diagramme

In der MECHATRONIC UML werden Graphtransformationsregeln durch Story Patterns, einer
speziellen Notation für Graphtransformationen, definiert. Sie können in Story-Diagrammen, ei-
ner Erweiterung der UML-Aktivitätsdiagramme, in einen sequentiellen Kontrollfluss eingebun-
den werden. An Transitionen von REAL-TIME STATECHARTS können diese wiederum als Sei-
teneffekte aufgerufen werden.

Story Patterns Story Patterns beschreiben die Spezifikation von LHS und RHS einer Graph-
transformationsregel in einem einzigen Graphen abgekürzt [Zün01]. Elemente, die Vorausset-
zung der Anwendung sind (aber nicht gelöscht werden), werden in Story Patterns in schwarz
dargestellt. Zu löschende Elemente (nur in LHS) werden in rot notiert und zudem mit dem Ste-
reotyp << −− >> (alternativ: << destroy >>) versehen. Erzeugte Elemente (nur in RHS)
werden in grün notiert und mit << ++ >> (oder << create >>) gekennzeichnet. Für die An-
wendung eines Story Patterns muss ein Isomorphismus (siehe Abschnitt 2.4.5.2) des durch die rot
und schwarz dargestellten Elemente definierten Subgraphen des Patterns zu einem Subgraphen
des Wirtsgraphen bestehen. Hierdurch wird vermieden, dass eine Regel für einzelne Elemente
gleichzeitig den Erhalt und Löschung fordert. Für die Kanten gelöschter Knoten gilt, dass diese

33

Kapitel 2 Mechatronic UML

ebenfalls entfernt werden, auch wenn dies nicht explizit durch die Regel gefordert wird. So wer-
den „dangling edges“ vermieden. Das sind Kanten, die nicht zwei Knoten miteinander verbinden
(ein offenes Ende besitzen).

In Abbildung 2.13 wird ein Story Pattern gezeigt, welches die Aufnahme eines RailCabs in den
Konvoi spezifiziert. Die Assoziation vom Objekt Convoy zu dem Objekt RailCab wird in dem
Pattern neu erstellt.

 : RailCab : RailCab

 : Convoy : Coordinator

member

coordinates

is

member
<<create>>

Abbildung 2.13: Ein Story Pattern zur Erweiterung des Konvois um ein RailCab

Das Story Pattern in Abbildung 2.14 beschreibt das Austreten eines RailCabs aus dem Konvoi.
Dazu wird die entsprechende Kante member zwischen dem Objekt Convoi und dem betreffenden
Objekt RailCab entfernt.

 : RailCab : RailCab

 : Convoy : Coordinator

member

coordinates

is

member
<<delete>>

Abbildung 2.14: Ein Story Pattern zur Reduzierung des Konvois um ein RailCab

Story-Diagramme In [Zün01] wurden Story-Diagramme eingeführt, um zusätzlich zu den
regelbasierten Änderungen auf Graphen auch einen Kontrollfluss durch zustandsbasiertes Ver-
halten verbindlich vorzugeben. Story Diagramme sollen damit eine Kombination der UML-
Aktivitätsdiagramme [Obj05b] mit Story Patterns beschreiben. Hierdurch werden folgen von Ak-
tivitäten festgelegt sowie Fallunterscheidungen in der Syntax der Aktivitätsdiagramme. Innerhalb
der einzelnen Aktivitäten, die in Story-Diagrammen als Stories bezeichnet werden, können Story
Patterns definiert werden. Für diese wird im Unterschied zu Graphtransformationssystemen nur
dann Matching gesucht, wenn sie vom Kontrollfluss der Story-Diagramme erreicht werden.

34

2.4 Echtzeitverhalten

Zu einer Story kann zudem eine Bedingung spezifiziert werden. Diese Bedingung ist dabei im
Allgemeinen eine aussagenlogische Formel, die mehrere Teilbedingungen über die Elemente,
wie Vergleiche von Attributwerten, miteinander verknüpfen kann. Ein Story Pattern wird nur
dann ausgeführt, wenn die Bedingung mit true ausgewertet wird. Zusätzlich kann bei den aus-
gehenden Transitionen der einzelnen Stories danach unterschieden werden, ob ein Matching ge-
funden werden konnte, oder nicht. Kann ein Matching gefunden werden, wird die Transition mit
dem Label [success] geschaltet, andernfalls die mit dem Label [failure]. Im Erfolgsfall bleiben
die Objektbindungen der verlassenen Story in der nächsten gültig.

Um alle möglichen Matchings eines Story Patterns zu betrachten, werden iterierte Stories einge-
führt, die durch doppelte Rahmen dargestellt werden. So lange ein Matching gefunden werden
kann wird die Story durch eine Transition mit dem Label [eachtime] verlassen. Andernfalls wird
eine zweite ausgehende Transition mit [end]-Label geschaltet.

Durch Story-Diagramme werden Methoden(aufrufe) modelliert. Daher werden sie auch ausge-
nutzt, um Seiteneffekte an REAL-TIME STATECHART-Transitionen zu beschreiben. Eine Beson-
derheit ist dabei, dass innerhalb der einzelnen Stories das this-Objekt immer an dasjenige Objekt
gebunden ist, auf dem die Methode aufgerufen wird. Innerhalb von Story-Diagrammen können
ebenfalls Methoden aufgerufen werden. Dies ist mittels Collaboration Messages für jedes in-
nerhalb einer Story gebundene Objekt möglich. Der Methodenaufruf wird dazu in der Syntax
der Zielsprache der für Story-Diagramme verwendeten Codegenerierung (beispielsweise Java)
textuell in der Story aufgeführt. Ein von diesem Text ausgehender Pfeil zeigt auf das Objekt, auf
das sich der Aufruf bezieht. Ist kein Pfeil angegeben, so ist das aktuelle Objekt this gemeint.

Ein Beispiel für ein Story Diagramm zeigt Abbildung 2.15. Die Methode addMember() be-
schreibt, dass ein RailCab in den Konvoi aufgenommen wird und anschließend die Anzahl der
RailCabs im Konvoi um 1 erhöht wird. Das Objekt Convoy, auf dem die Methode aufgerufen
wird, ist in jeder Story über das this-Objekt gebunden und dient als Referenzpunkt für das Mat-
ching des Story Patterns.

2.4.6 Verifikation

In Abschnitt 2.4.1 und 2.4.3 haben wir (parametrisierte) REAL-TIME COORDINATION PAT-
TERNS eingeführt. Komponenten können mehrere Rollen unterschiedlicher Koordinationsmuster
anwenden. Das Verhalten der Komponente muss das Verhalten der angewandten Rollen verfei-
nern. Die Auftrennung von Kommunikationsverhalten und Komponentenverhalten führt zu ei-
nem kompositionellen Modell, welches in der Verifikation ausgenutzt wird [GTB+03].

Wie bereits in Abschnitt 2.4.1 beschrieben, müssen wir zum einen zeigen, dass das Muster kor-
rekt ist und zum anderen, dass die Komponente korrekt ist. Um die Korrektheit zu zeigen werden
dabei Model Checker (im speziellen UPPAAL) eingesetzt, die die Gültigkeit einer Eigenschaft
über das (Teil-)System überprüfen bzw. eine Verfeinerung überprüft, um zu zeigen, dass eine
Komponente korrekt eine Rolle verfeinert.

35

Kapitel 2 Mechatronic UML

rc2 : RailCab rc1 : RailCab

this : Coordinator

member

coordinates

is

member
<<create>>

this

size := size + 1

[success]
[failure]

Convoy::addMember()

1: addFollower(rc2)

{this.size < 10}

rc2

pos := this.size + 1

member

Abbildung 2.15: Ein Story Diagramm zur Erweiterung des Konvois um ein RailCab

Üblicherweise werden die Eigenschaften in Form von temporallogischen Formeln beschrieben.
Diese werden wir im Folgenden Abschnitt 2.4.6.1 näher betrachten. In Abschnitt 2.4.6.2 dis-
kutieren wir den Ansatz der kompositionellen Verifikation und anschließend in Abschnitt 2.4.7
erläutern wir einige relevante Verfeinerungsbeziehungen.

2.4.6.1 Eigenschaften

Die Spezifikation von Anforderungen an ein System können mit Temporallogiken beschrieben
werden. Temporallogiken beziehen sich auf die zeitliche Abfolge von Zuständen oder Ereignis-
sen. Eine temporallogische Formel, ist für ein System genau dann erfüllt, wenn dessen Verhalten
die durch die Formel ausgedrückten Einschränkungen einhält. Eine (formale) Verifikation be-
schreibt den Vorgang der Überprüfung eines Systems S auf Gültigkeit einer solchen Formel φ
(geschrieben: S |= φ) [BK08, CGP00]. Ein vollautomatisches Verifikationsverfahren ist das Mo-
del Checking.

Eine verbreitete Temporallogik, ist die Computation Tree Logic (CTL) [CGP00]. Ihre Formeln
beziehen sich auf den Berechnungsbaum des Systems. Dieser Baum enthält sämtliche mögli-
chen Pfade durch das System, ausgehend von dessen Startzustand. Er ist daher für Systeme, die
Zyklen enthalten, unendlich groß. CTL-Formeln können aussagenlogische Formeln sein, die für
einen Zustand des Systems bzw. einen entsprechenden Knoten im Pfadbaum erfüllt sind, wenn
die Formel für die atomaren Aussagen (auch: atomare Propositionen), die für diesen Zustand

36

2.4 Echtzeitverhalten

gelten, erfüllt sind. Für jeden Zustand wird dabei eine Menge von gültigen atomaren Aussagen
als gegeben vorausgesetzt.

Die temporallogischen Aussagen können in CTL durch einen Pfadquantor (E für ∃ oder A für
∀), gefolgt von einem temporalen Operator formuliert werden. Ein temporaler Operator bezieht
sich auf eine oder zwei temporallogische Formeln. Der Pfadquantor gibt an, ob die durch den
Rest der Formel definierte Bedingung für mindestens einen (E) oder für alle (A) Pfade gelten
muss, die vom aktuellen Zustand ausgehen. Der temporale Operator kann einer der folgenden
sein:

• Xφ, „Next“: φ muss für den Nachfolge-Zustand des aktuellen Zustands auf dem Pfad
gelten.

• Gφ, „Globally“: φ muss ab dem aktuellen Zustand auf dem gesamten Pfad gelten.

• Fφ, „Finally“: φ muss ab dem aktuellen Zustand irgendwann auf dem Pfad gelten.

• φUψ, „Until“: φ muss ab dem aktuellen Zustand irgendwann auf dem Pfad gelten; bis ψ
(für mindestens einen Zustand) gilt, muss immer φ gelten.

• in manchen Dialekten: φWψ, „Weak Until“: ab dem aktuellen Zustand muss auf dem
gesamten Pfad φ gelten, bis (für mindestens einen Zustand) ψ gilt. Es ist jedoch nicht
erforderlich, dass ψ jemals gilt.

Eine Beispiel CTL-Formel für folgende Aussage: „Auf allen Pfaden muss für immer gelten, dass
es mindestens einen Pfad gibt, auf dem irgendwann p ∧ q gilt“, ist AG(EFp ∧ q).

Um zusätzlich Zeitbedingungen an den temporalen Operatoren zu erlauben, wurde die Timed
Computation Tree Logic (TCTL) [ACD93] eingeführt. Hiermit können für einen temporalen
Operator O Bedingungen in der Form O∼c mit c ∈ N0, ∼∈ {<,≤,=,≥, >}, O ∈ {G,F, U}
angegeben werden. Eingeschränkte Varianten der CTL bzw. TCTL sind die ACTL bzw. ATCTL,
die die Untermengen der (T)CTL-Formeln erlauben, die mit A beginnen und deren temporaler
Operator sich nur auf einfache aussagenlogische Formeln bezieht.

2.4.6.2 Kompositionelle Verifikation

Standard Model-Checking-Verfahren sind in ihrer Laufzeit exponentiell abhängig von der Größe
des Zustandsraums der untersuchten Systeme. Wird ein System in kleinere Subsysteme zerlegt
und die Verifikation jeweils einzeln auf diese angewendet, dann ist die Gesamtlaufzeit der Ve-
rifikation insgesamt deutlich geringer, da die exponentielle Laufzeit für kleinere Systeme gilt.
Kann die Größe der Subsysteme sogar als konstant angenommen werden, dann ist die Veri-
fikation insgesamt nur linear abhängig von der Anzahl der Systeme. Die Voraussetzung für
die Korrektheit einer solchen kompositionellen Verifikation (siehe z.B. [GTB+03, JLS00]) ist,
dass aus der Gültigkeit der überprüften Eigenschaft φ für alle Teilsysteme S1, S2, ..., Sn des
Systems S auch die Gültigkeit für das Gesamtsystem S = S1 ‖ S2 ‖ ... ‖ Sn folgt (also:
(S1 |= φ ∧ S2 |= φ ∧ ... ∧ Sn |= φ) =⇒ (S |= φ)).

37

Kapitel 2 Mechatronic UML

Der grundlegende kompositionelle Verifikationsansatz der MECHATRONIC UML wurde in
[GTB+03] vorgestellt. Eine Erweiterung zur Betrachtung von auseinander driftenden Uhren
wurde in [GHH06a] betrachtet. Eine Verifikation, die auch eine kompositionelle Anpassung der
Kommunikationsstruktur berücksichtigt, wird durch den Ansatz vorgestellt in [HHG08, Suc08,
HHPS10] ermöglicht (siehe auch Abschnitte 2.4.1 und 2.4.3).

Abstraktion ist eine weitere wirksame Technik zur Verbesserung der Skalierbarkeit. Anstatt ein
Model Checking auf einem konkreten System K durchzuführen wird ein abstraktes und meist
kleineres System A an dessen Stelle analysiert. Ein weiterer Vorteil ergibt sich, wenn es mehr
als eine konkrete Implementierung von A gibt, da auch die übrigen dann nicht mehr geson-
dert verifiziert werden müssen. Daraus, dass A die Überprüfung besteht, wird geschlossen, dass
auch das konkrete System bezüglich der überprüften Formel korrekt ist. Damit dieser Schluss
A |= φ =⇒ K |= φ erlaubt ist, muss eine geeignete Verfeinerungsbeziehung von K zu
A bestehen, die eine Übertragbarkeit von Verifikationsergebnissen für Formeln der Art von φ
(beispielsweise TCTL oder lediglich ACTL, je nach Verfeinerung) garantiert. Im folgenden Ab-
schnitt betrachten wir, wie Eigenschaften einer Verifikation auf einem abstrakten Modell auch
in einer Konkretisierung dieses Modells erhalten bleiben, ohne erneut die Konkretisierung bzgl.
der gestellten Eigenschaften zu überprüfen.

2.4.7 Verfeinerungen

Im Rahmen der MECHATRONIC UML können Rolleninvarianten und Mustereigenschaften für
Koordinationsmuster spezifiziert werden, die sich jeweils nur auf eine beschränkte Anzahl von
Teilsystemen beziehen und damit eine kompositionelle Verifikation ermöglichen [GTB+03] (sie-
he Abschnitt 2.4.6.2). Das Model Checking wird dabei auf dem abstrakten Kommunikationsver-
halten der Rollen durchgeführt. Eine Übertragbarkeit der Ergebnisse erfordert somit eine Verfei-
nerungsbeziehung von den Ports der konkreten Komponenten zu den Rollen.

Eine weitere Form der Abstraktion stellt die Delegation von Verhalten an Subkomponenten dar,
deren Portverhalten daher in einer Verfeinerungsbeziehung zum Verhalten des implementierten
Ports stehen muss. Es kann dabei sein, dass eine Verfeinerung ausgeschlossen ist, weil die struk-
turellen Voraussetzungen nicht erfüllt sind: Beispielsweise könnte der Fall auftreten, dass einer
der Ports der analysierten Komponente in der aktuellen Konfiguration nicht implementiert ist, da
eine Subkomponente durch eine Strukturanpassung nicht mehr erreichbar ist. In Kapitel 3 stellen
wir einen Ansatz vor, der auch diese Abhängigkeiten berücksichtigt.

Im Folgenden werden einige für die MECHATRONIC UML relevante Definitionen für Verfeine-
rungen aufgeführt. Dies sind die Timed Simulation, die Timed Ready Simulation und die Timed
Bisimulation.

Die Definitionen in diesem Abschnitt beziehen sich auf Timed Transition Systems (TTS) nach
Definition 4 (Abschnitt 2.4.2.1). Ein TTS definiert die Semantik eines Timed Automaton nach
Definition 1 (Abschnitt 2.4.2.1). Für ein Timed Automata A und K mit TTS TA und TK und

38

2.4 Echtzeitverhalten

einer Verfeinerung � giltK�A genau dann, wenn TK�TA gilt. Eine Verfeinerung zweier Timed
Automat kann also über die dazugehörigen TTS gezeigt werden.

Für die Verfeinerungen ist im Folgenden das externe sichtbare Protokollverhalten relevant. Dies
ist bestimmt durch (externe) Nachrichten und den Zeitabständen dazwischen. Die im Folgen-
den betrachtete Timed Simulation und Timed Bisimulation werden nach [WL97] als „schwache“
Simulationen bezeichnet. Diese unterscheiden sich von den „starken“ darin, dass sie nicht das
Vorhandensein einzelner Transitionen (Delay-Transitionen oder Transitionen mit internen Ereig-
nissen) fordern, sondern sich auf Transitionsfolgen beziehen, die im Bezug auf das beobachtbare
Verhalten äquivalent sind. Diese werden nach [WL97] als Weak Transition Relation bezeichnet
und sind für TTS nach Definition 4 wie folgt definiert:

Definition 11 (Weak Transition Relation)
Sei ein Timed Transition System gegeben mit s, s′, s′′, s′′′ ∈ S, µ ∈ ΣE , δ, δ0, δ1, δ2 ∈ ΣD, δ0 = 0,

sowie dem internen Ereignis τ ∈ ΣE . Bezeichne weiterhin τ∗−→ einen beliebig langen Pfad über
ausschließlich τ -Transitionen (τ−→). Eine Weak Transition Relation ist dann die kleinste Relation
=⇒, für die gilt:

1. s
µ

=⇒ s′ gdw. s
τ∗−→ s′′

µ−→ s′′′
τ∗−→ s′ für bel. s′′, s′′′, und

2. s δ0=⇒ s′ gdw. s
τ∗−→ s′ und

3. s δ
=⇒ s′ gdw. s

δ1=⇒ s′′ ∧ s′′
δ2−→ s′ ∧ δ = δ1 + δ2 für bel. s′′

Es dürfen nach =⇒ vor und nach einem extern sichtbaren Ereignis (Nachricht) µ beliebig viele
Transitionen mit dem internen Ereignis τ geschaltet werden (Bedingung 1). Bedingung 2 stellt
sicher, dass beliebig viele τ -Transitionen einer Delay-Transition mit Dauer 0 entsprechen. Durch
Bedingung 3 wird das Aufteilen einer Verzögerung in eine beliebig lange Folge von Delay-
Transitionen erlaubt, wobei sich diese zu einer Gesamt-Verzögerung aufaddieren.

2.4.7.1 Timed Simulation

Im Folgenden betrachten wir die Timed Simuluation unter Anwendung der Weak Transition Re-
lation =⇒ nach Definition 11 (vgl. [WL97] und [JLS00]). Diese Form der Timed Simulation
ist die „schwächste“ der hier behandelten Verfeinerungsbeziehungen. Hiermit wird für ein Paar
eines abstrakten und eines konkreten Systems gefordert, dass das konkretere System kein sicht-
bares Verhalten definiert, das nicht bereits im abstrakten System definiert wurde.

Definition 12 (Timed Simulation)
Seien TA und TK Timed Transition Systems mit Zustandsmengen SA bzw. SK und Startzuständen
s0A bzw. s0K . Sei weiterhin Ω eine Relation Ω ⊆ SK × SA. Dann ist Ω eine Timed Simulation
TK ≤TS TA, wenn gilt:

1. (s0K , s0A) ∈ Ω und

2. ∀(sK , sA) ∈ Ω : sK
µ

=⇒ s′K
Impl.⇒ ∃s′A : sA

µ
=⇒ s′A ∧ (s′K , s

′
A) ∈ Ω und

39

Kapitel 2 Mechatronic UML

3. ∀(sK , sA) ∈ Ω : sK
δ1=⇒ s′K

Impl.⇒ ∃s′A : sA
δ2=⇒ s′A ∧ (s′K , s

′
A) ∈ Ω

∧ δ1 = δ2

Erfüllt Ω die Bedingungen 1 und 2 und ist 3. bis auf δ1 = δ2 erfüllt, dann ist das hinreichend
dafür, dass Ω eine (nicht zeitbehaftete) Simulation TK ≤S TA ist.

Die Simulationsbeziehung wird durch die Ω Relation umgesetzt, die die korrespondierenden Zu-
stände des abstrakten und konkreten Systems zuordnet. Die korrespondierenden Zustände wer-
den dabei induktiv beginnend mit dem Startzustand in der Relation aufgenommen (siehe Bedi-
nung 2 und 3). Es muss dabei für alle Zustände eines konkreten Systems sichergestellt werden,
dass ausgehende Weak Transitions eine Entsprechung im abstrakten System haben. Bedingung
zwei bezieht sich dabei auf Transitionen und Bedingung drei auf die Einhaltung der Zeitinterval-
le. Die Verwendung einer Weak Transition Relation =⇒ nach Definition 11 führt dazu, dass das
konkrete System zusätzlich zu den Transitionen mit sichtbarem Verhalten beliebig viele interne
Transitionen τ−→ und Delay-Transitionen δ−→ schalten kann, sofern sich diese zur Gesamtver-
zögerung aufaddieren.

Erhalt temporallogischer Eigenschaften Nach [CGP00] werden durch nicht zeitbehafte-
te Simulationsbeziehungen der Erhalt von ACTL-Formeln zugesichert (siehe Abschnitt 2.4.6.1).
Da durch Zeitbedingungen zusätzlich Time Stopping Deadlocks auftreten können, muss zusätz-
lich für eine Timed Simulation nachgewiesen werden, dass genau diese nicht auftreten.

Bedingung 3 sichert zudem zu, dass ATCTL durch die Verfeinerung erhalten bleiben. ATCTL
Formeln beziehen sich auf Zeitintervalle, die eben durch Bedingung 3 zugesichert werden (hier-
durch bleiben die zeitlichen Abstände dieselben).

Da eine Simulationsbeziehung nicht fordert, dass Verhalten des abstrakten Systems erhalten blei-
ben muss, werden in der Praxis häufig Bismulationen für eine Defintion der Verfeinerungsbezie-
hung verwendet. Im Folgenden werden wir daher auf diese näher eingehen.

2.4.7.2 Timed Bisimulation

Zusätzlich zu einer Timed Simulation fordert eine Timed Bisimulation, dass sämtliches im ab-
strakten System mögliche Verhalten vom konkreten System ebenfalls unterstützt wird. Das sicht-
bare Protokollverhalten (beobachtbare Verhalten) muss im konkreten System identisch zum ab-
strakten System sein. Hiermit wird eine Timed Simulation (siehe Definition 12) in beide Rich-
tungen gefordert. Eine Timed Bisimulation ist damit wie folgt definiert:

Definition 13 (Timed Bisimulation)
Seien TA und TK Timed Transition Systems. Dann ist Ω eine Timed Bisimulation TK ≈TBS TA,
wenn gilt:

1. Ω ist eine Timed Simulation TK ≤TS TA und

2. Ω ist eine Timed Simulation TA ≤TS TK

40

2.4 Echtzeitverhalten

Ist Ω eine (nicht zeitbehaftete) Simulation ≤S in beide Richtungen, dann ist Ω zumindest eine
(nicht zeitbehaftete) Bisimulation TK ≈BS TA.

Erhalt temporallogischer Eigenschaften Nach [CGP00] erhält eine Bisimulation CTL-
Formeln. Da die Timed Bisimulation die Bisimulation umfasst, bleiben ebenfalls durch eine Ti-
med Bisimulation CTL-Formeln erhalten. Wie im Fall von Timed Simulationen muss allerdings
zusätzlich sichergestellt werden, dass Time-Stopping Deadlocks ausgeschlossen werden. TCTL-
Formeln bleiben ebenfalls erhalten, da die Zeitintervalle, auf die sich die TCTL-Formeln bezie-
hen, durch die Timed Bisimulation erhalten bleiben. Da eine Timed Bisimulation sehr restriktiv
bzgl. der möglichen Verfeinerungen ist, betrachten wir im Folgenden eine Verfeinerung, die auf
Kompromisse eingeht, um eine größere Anzahl an Verfeinerungen zu erlauben.

2.4.7.3 Timed Ready Simulation

Eingeführt wurde die Timed Ready Simulation in [JLS00]. Motivation für diese Verfeinerung
ist, dass auch bei Gültigkeit einer Timed Simulation TK ≤ TA, in der urgent-Transitionen oder
globale Variablen betrachtet werden, nicht garantiert ist, dass bei Einbettung der Systeme in einen
Kontext TC auch TK ‖ TC ≤ TA ‖ TC gilt. Problematisch hieran ist, dass aus TA ‖ TC |= ϕ
nicht auch TK ‖ TC |= ϕ gefolgert werden kann. Die Verfeinerungsbeziehung verliert damit
ihr Gültigkeit bei paralleler Komposition der Systeme. Um aus TK1 ≤ TA1 ∧ TK2 ≤ TA2 auf
TK1 ‖ TK2 ≤ TA1 ‖ TA2 schließen zu können, ist dies aber erforderlich.

Begründet ist dies damit, dass urgent-Transitionen und globale Variablen in einem Automaten
zur Nicht-Erreichbarkeit von Verhalten in einem anderen Automaten führen können, welcher
dieselben Urgent-Synchronisationen oder Variablenzugriffe anbietet. Um dieses Problem aus-
zuschließen werden durch eine Timed Ready Simulation zusätzliche Bedingungen für globale
Variablen und urgent-Transitionen eingeführt. Eine Timed Ready Simulation sei damit wie folgt
definiert:

Definition 14 (Timed Ready Simulation)
Seien TA und TK Timed Transition Systems mit Zustandsmengen SA bzw. SK und Startzuständen
s0A bzw. s0K . Sei weiterhin Ω eine Relation Ω ⊆ SK × SA. Dann ist Ω eine Timed Ready
Simulation TK ≤TRS TA, wenn gilt:

1. Ω ist eine Timed Simulation TK ≤TS TA und

2. ∀(sK , sA) ∈ Ω : sA
µ−→ s′A ∧

µ−→∈ (Tu)A
Impl.⇒ sK

µ−→ s′K ∧
µ−→∈ (Tu)K

Dabei bezeichne (Tu)A, (Tu)K jeweils die Menge der urgent-Transitionen in TA bzw TK .

Aus Vereinfachungsgründen haben wir in der Definition auf die Berücksichtigung von globa-
len Variablen verzichtet, da dies für die MECHATRONIC UML nicht relevant ist. Begründet

41

Kapitel 2 Mechatronic UML

ist dies damit, dass die REAL-TIME STATECHARTS nicht über globale Variablen Informatio-
nen austauschen, sondern über Nachrichten. Damit ergibt zusätzlich die Forderung, dass urgent-
Transitionen des abstrakten Systems im konkreten System erhalten bleiben müssen.

Erhalt temporallogischer Eigenschaften Da eine Timed Ready Simulation eine Timed
Simulation zusätzlich einschränkt, bleiben für eine Timed Ready Simulation die gleichen For-
meln erhalten wie dies für eine Timed Simulation gilt. Zusätzlich bleiben (T)CTL-Formeln für
die Teile erhalten, die vollständig durch urgent-Transitionen definiert sind. Sobald ein Pfad eine
nicht urgent Transition beinhaltet, gilt dies allerdings nicht mehr.

2.5 Hybrides Verhalten

Wie in Kapitel 1 beschrieben, sind die hier betrachteten mechatronischen Systeme hybride Sys-
teme. Hybride Systeme sind dadurch gekennzeichnet, dass sie sowohl aus einem diskreten wie
auch einem kontinuierlichen Anteil bestehen. Ein hybrider Automat [Hen96] stellt eine Erweite-
rung zum Timed Automaton dar (siehe Abschnitt 2.4.2.1), da er zusätzlich zu einem diskreten zu-
standsbasierten Verhalten auch ein kontinuierliches Verhalten beschreibt. Neben der Einbettung
von kontinuierlichen Verhalten ermöglicht der hybride Automat wie auch der Timed Automaton
die Spezifikation von Zeitangaben.

In einem mechatronischen System wird das kontinuierliche Verhalten typischerweise durch An-
sätze der Regelungstechnik beschrieben. Das Verhalten wird durch Differentialgleichungen be-
schrieben, die dafür sorgen, dass sich das System wie gewünscht verhält [Föl05].

Allgemein wird dabei zwischen einer Steuerung und Regelung unterschieden. Das Problem einer
Steuerung kann wie folgt beschrieben werden: Gegeben sei das Ziel eines Systems, die Stellgröße
(control) y und die Zustandsgröße/Ausgangsgröße (controlled) x. Die Aufgabe der Steuerung ist
die Beeinflussung von x durch y in der Art und Weise, dass ein gewünschtes Verhalten trotz
Einwirkung von Störgrößen z (disturbance), die nicht immer bekannt sind, erreicht wird.

Steuerungen reagieren schneller auf a priori bekannte Störungen, allerdings nicht auf unbekannte
Störungen. Regler reagieren durch einen Regelkreis (Rückkopplung des Ausgangs auf den Ein-
gang) auf jede Art von Störungen, allerdings nur, wenn die Zustandsgrößen und die Abweichun-
gen messbar sind. Das Ziel einer Regelung ist es, die Differenz zwischen einem Vorgabewert und
der Realität gegen 0 zu regeln. Eine gängige Technik für die Modellierung von Reglerstrukturen
sind hierarchische Block Diagramme [Föl05].

Im Folgenden beschreiben wir den Modellierungsansatz der MECHATRONIC UML zur Spezifi-
kation von hybriden Systemen. Hierbei wird besonderer Fokus auf die Beschreibung von Reg-
lerkonfigurationen (ein Zustand indem eine Menge von Regler(-Instanzen) aktiv sind) und deren
Rekonfiguration gelegt. Anschließend werden wir die Verifikation und die Verfeinerung von hy-
briden Verhalten in Abschnitt 2.5.2 nach dem MECHATRONIC UML-Ansatz diskutieren.

42

2.5 Hybrides Verhalten

2.5.1 Hybrid Reconfiguration Charts

Aufgrund der steigenden Komplexität regelungstechnischer Komponenten werden diese ver-
mehrt modular entworfen. Dies hat auch den Vorteil, dass Ressourcen eingespart werden können,
da nicht ein Regler, der alle Funktionen umsetzt aktiv sein muss, sondern nur die regelungs-
technische Komponente, die aktuell tatsächlich benötigt wird. Die in Abbildung 2.2 dargestellte
RailCab-Komponente bettet z.B. zwei kontinuierliche Unterkomponenten ein. Die Aktivierung
und Deaktivierung, wird dabei von Software übernommen.

Das Modell der REAL-TIME STATECHART (siehe Abschnitt 2.4.2) wurde dementsprechend er-
weitert zu so genannten HYBRID RECONFIGURATION CHARTS, die die Aktivierung und De-
aktivierung von (kontinuierlichen) Komponenteninstanzen beschreiben können. Die Komponen-
teninstanzen werden Zuständen zugeordnet, die wir Zustandskonfigurationen nennen.

Im Vergleich zum klassischen hybriden Automaten [Hen96] ermöglichen HYBRID RECONFI-
GURATION CHARTS eine modulare Rekonfiguration (siehe Abschnitt 1) zur Laufzeit [BGH05a].
Wie auch bei hybriden Automaten bettet ein HYBRID RECONFIGURATION CHART Komponen-
teninstanzen in Zustände ein und tauscht diese durch einen Zustandswechsel aus. Jedoch bieten
HYBRID RECONFIGURATION CHARTS zusätzlich die Möglichkeiten, die Struktur und den in-
ternen Zustand der Komponenten durch einen Zustandswechsel zu modifizieren. Hierdurch wird
eine Rekonfiguration des Systems ermöglicht.

Um die beschriebenen Vorteile umzusetzen, verwenden HYBRID RECONFIGURATION CHARTS

im Gegensatz zum hybriden Automaten ein verändertes kontinuierliches Modell. In diesem Mo-
dell werden die Zustands-, Eingabe- und Ausgabevariablen in Abhängigkeit des jeweiligen Zu-
stands angegeben. Zudem wird die Umschaltung zwischen den Reglern oder kontinuierlichen
Verhalten explizit betrachtet und analysiert, so dass hier keine Störungen auftreten, die zu einer
Beeinträchtigung der Sicherheit bzw. Stabilität führen können [OMT+08].

Für die Spezifikation der RailCab-Komponente aus Abbildung 2.2 muss definiert werden, in wel-
chen Zuständen des RailCab-REAL-TIME STATECHARTS, welche kontinuierliche Komponente
aktiv ist. Das HYBRID RECONFIGURATION CHART für die rear-Rolle zeigt Abbildung 2.16.
Dies ist eine Erweiterung des korrespondierenden Rollenverhaltens der rear-Rolle (siehe Abbil-
dung 2.6) um die Reglereinbettungen in Form von kontinuierlichen Komponenten. In Zustand
noConvoy ist nur der VelocityController aktiv und in Zustand convoy zusätzlich der Distance-
Controller. Der DistanceController wird benötigt, um im Konvoibetrieb zusätzlich den Abstand
zum vorherfahrenden RailCab für die Berechnung der Beschleunigung zu berücksichtigen.

Für die Verfeinerung des Systems müssen die Reglerkonfigurationen betrachtet werden, wenn
eine Komponente mehrere Rollen anwendet. Die Komponente befindet sich z.B. in einen nicht
sicheren Zustand, wenn der DistanceController gleichzeitig von zwei Statecharts aktiviert (ge-
nutzt) wird. Dies liegt daran, dass der DistanceController eine einzelne Ressource ist und eine
mehrfach Aktivierung in unterschiedlichen Statecharts zu widersprüchlichen Eingaben führen
kann. Dies muss entsprechend bei der Entwicklung des Komponentenverhaltens aufgelöst wer-
den. Der in Kapitel 5 vorgestellte Syntheseansatz löst diese Konflikte automatisch auf.

43

Kapitel 2 Mechatronic UML

 DistanceController

 :VelocityController

breakConvoy /

[cr <= 999]

startConvoy /

default

convoy

wait

cr<=1000default

noConvoy

[cr > 999]

{cr}
/ convoyProposal

 :VelocityController

Abbildung 2.16: HYBRID RECONFIGURATION CHART für die rear Rolle

44

2.6 Timed Story Driven Modeling

2.5.2 Verifikation und Verfeinerung

Für allgemeine hybride Systeme ist die Erreichbarkeit nicht entscheidbar, sondern nur die
eingeschränkte Klasse der Rectangula Automata4 [HKPV95]. Selbst für diese eingeschränk-
te Klasse ist die Verifikation durch Model Checking nur für kleine Beispiele anwendbar
[Hir08, HHP08, Dor08].

Daher beschränkt sich die Analyse der MECHATRONIC UML auf das reine Echtzeitverhalten so-
wie der Erreichbarkeit von konsistenten Konfigurationen mit wohl-definierten kontinuierlichen
Komponenten [Hir08]. Erreicht wird dies durch Abstraktion von dem kontinuierlichen Verhalten
eines HYBRID RECONFIGURATION CHART, indem nur die Clocks betrachtet werden [Bur06].
Auf diesem Modell kann dann wie unter Abschnitt 2.4 beschrieben eine Verifikation und Ver-
feinerung durchgeführt werden. Eine Wesentliche Herausforderung besteht daher darin eine für
die Analysen gültige Abstraktion zu beschreiben. Im Folgenden werden wir dies nicht näher
betrachten.

2.6 Timed Story Driven Modeling

Selbstoptimierende, mechatronische Systeme passen ihr Verhalten zur Laufzeit den Umweltbe-
dingungen an. Um diese Anpassungen zu modellieren und zu analysieren, wird unter anderem
eine enge Verzahnung zwischen der Verhaltensbeschreibung dieser Systeme sowie den (kompo-
sitionellen) Strukturanpassungen benötigt, wie zu Abbildung 1.2 und im Folgenden erläutert.

Abbildung 2.17 illustriert die Notwendigkeit einer Anpassung des Konvois. Damit sich das Rail-
Cab RC3 zwischen den RailCabs RC1 und RC2 im Konvoi einordnen kann, muss der Konvoi
restrukturiert werden. Die Strukturanpassungen des Multi-Ports zur Koordination des RailCab
Konvois wird durch ein Adaptionsverhalten angestoßen (siehe Abschnitt 2.4.3 und 2.6.1). Das
Adaptionsverhalten ist wiederum eng verzahnt mit den Portinstanzen, die hierdurch indirekt eine
Strukturanpassung steuern können. Eine Portinstanz darf z. B. nicht gelöscht werden, wenn diese
noch mit einem RailCab kommuniziert.

Die Beeinflussung des Verhaltens durch eine Strukturanpassung ist inhärent, da eine Strukturan-
passung das Verhalten verändert (siehe Abschnitt 2.2). Durch z. B. das Hinzufügen eines weite-
ren Ports, um ein neues Mitglied im Konvoi aufzunehmen, wird nicht nur einfach ein weiteres
Verhalten parallel zu den anderen ausgeführt. Je nach Position des neuen RailCabs im Konvoi
müssen die Abhängigkeiten zu den direkt benachbarten Ports angepasst werden. Es muss dabei
sichergestellt sein, dass eine Restrukturierung nur dann stattfindet, wenn die beteiligten Ports
in einem dafür geeigneten Zustand sind (Quiescent State [KM98, ZC06]). Es gilt wieder, dass
keine Restrukturierung durchgeführt werden darf, wenn z. B. gerade Konvoiparameter (wie das
Bremsverhalten) ausgetauscht werden.

4Rectangula Automata beschreiben analoge Trajektorien mit teilweise-linearer Entwicklung und Sprüngen

45

Kapitel 2 Mechatronic UML

Convoy

Abbildung 2.17: Beispiel Konvoirestrukturierung

Die in Abschnitt 2.4.3 vorgestellten PARAMETERIZED REAL-TIME COORDINATION PATTERNS

wurden für diesen Anwendungsfall entwickelt. Hierüber ist es allerdings nicht möglich mit den
unterliegenden Formalismen für das Verhalten (PARAMETERIZED REAL-TIME STATECHARTS,
siehe Abschnitt 2.4.4) und den Strukturanpassungen (TGTS, siehe Abschnitt 2.4.5.3) über die
gleichen Objekte, wie Nachrichten oder Ports, das Systemverhalten (Komponenten und Muster)
zu spezifizieren. Wird also ein Seiteneffekt, mit dem eine Strukturanpassung über TGTS um-
gesetzt werden kann, implementiert, so kann nicht auf die Objekte des Statecharts zugegriffen
werden. Dies wird aber genau in dem skizzierten Szenario benötigt, um sicherzustellen, dass die
beiden Statecharts der Portinstanzen für RC1 und RC2 in einem aktuellen Zustand sind, der eine
Strukturanpassung erlaubt.

Der unterlagerte Ansatz der Fujaba Tool Suite, der Story Driven Modeling Ansatz von Zündorf
[Zün01], ermöglicht dies allerdings, in dem Statecharts und Graphtransformationssysteme ob-
jektorientiert definiert werden. Der Formalismus zur Verhaltensbeschreibung wird dabei Story
Charts genannt und der zur Beschreibung von Strukturanpassungen Story Patterns, bzw. Story
Diagramme (siehe Abschnitt 2.4.5).

Diese Voraussetzungen nutzen wir aus, um in diesem Abschnitt den Timed Story Driven Mode-
ling Ansatz als eine Erweiterung des Story Driven Modeling Ansatzes um Zeit, der die unterlie-
genden Formalismen der PARAMETERIZED REAL-TIME COORDINATION PATTERNS integriert,
vorzustellen. Unser Ansatz erweitert, bzw. passt daher die Formalismen des Story Driven Mode-
ling Ansatzes (Story Diagramme, Story Pattern und Story Charts) um Zeit an zu TIMED STORY

DIAGRAMS, TIMED STORY PATTERNS und TIMED STORY CHARTS.

Diese Formalismen werden eingeführt, indem wir zuerst die einzelnen Elemente des Formalis-
mus durch Abbildung von dem Ursprungsformalismus (z. B. PARAMETERIZED REAL-TIME

STATECHARTS) in den neuen Formalismus (z. B. TIMED STORY CHARTS) beschreiben. Da ge-
rade die Ausführung eines TIMED STORY CHARTS durch eine Kombination einzelner Elemente
geprägt ist, beschreiben wir zudem eine Abbildung der Ausführungssemantik von PARAMETE-
RIZED REAL-TIME STATECHARTS auf TIMED STORY CHARTS, die entsprechend eine Kombi-

46

2.6 Timed Story Driven Modeling

nation aller Elemente berücksichtigt. Ein formaler Beweis über die semantische Äquivalenz der
Formalismen ist ein Ausblick für weiterführende Arbeiten.

Die Modellierung des Verhaltens sowie der Struktur kann durch diese Vorgehensweise weiter-
hin über die in Abbildung 2.1 dargestellten Formalismen durchgeführt werden, da die Struk-
turmodellierung unverändert bleibt und das Verhalten über die Semantik von PARAMETERIZED

REAL-TIME STATECHARTS definiert ist. Dies ist wichtig, da z. B. eine Verhaltensspezifikation
mit TIMED STORY CHARTS für die meisten Entwickler ungewohnt ist und zudem einen höheren
Aufwand erfordert, da hier die einzelnen Statechart Objekte und Transitionen explizit spezifiziert
werden müssen (siehe Abschnitt 2.6.4). Die Spezifikation der Strukturanpassungen mit TIMED

STORY PATTERN und TIMED STORY DIAGRAMS wird nicht durch eine andere Syntax ersetzt,
da diese bereits die Syntax von Story Diagrammen aufweisen, die in der MECHATRONIC UML
zur Beschreibung von Strukturanpassungen verwendet werden.

Wir werden zuerst TIMED STORY PATTERNS (siehe Abschnitt 2.6.2) und TIMED STORY DIA-
GRAMS (siehe Abschnitt 2.6.3) vorstellen. Anschließend werden wir TIMED STORY CHARTS

(siehe Abschnitt 2.6.4) auf Basis der TIMED STORY PATTERN und TIMED STORY DIAGRAMS

beschreiben. Grundlegende Arbeiten hierzu wurden in [HHG08, Hei09, HHZ09, HHH10] vor-
gestellt. Bevor wir auf die Modellierungssprachen eingehen, werden wir in Abschnitt 2.6.1 ein
domänenspezifisches Metamodell für MECHATRONIC UML Komponenten beschreiben, auf Ba-
sis dessen die Modellierungssprachen angewandt werden. Als Einführung in die Formalismen,
werden wir im folgenden Paragraphen einen Ausschnitt des Eingangs beschrieben Einfädelsze-
narios skizzieren.

Beispielanwendung Abbildung 2.18 und 2.19 zeigt am Beispiel der Coordinator Kompo-
nente die Restrukturierung eines Konvois, ausgelöst durch das Hinzufügen eines weiteren Kon-
voiteilnehmers. Abbildung 2.17 illustriert die Situation, die die Restrukturierung auslöst. RC3
möchte an dem Konvoi von RC1 und RC2 teilnehmen und sich zwischen diesen beiden RailCabs
einordnen.

Das Komponentenmodell zeigt die Struktur der Coordinator Komponente (siehe Abbildung
2.18). Wie bereits in Abschnitt 1.2 erläutert, ist die Coordinator Komponente verantwortlich für
das Berechnen der Konvoiparameter. Das entfaltete Komponentenmodell zeigt, welche Ports für
die Koordination von zwei RailCabs miteinander verbunden sind. Mit gestrichelten Linien wird
dabei angedeutet, wie sich das neue RailCab einordnen soll.

updatePort zeigt das TIMED STORY PATTERN, welches den Port für RailCab RC3 in den bishe-
rigen Multi-Port der Coordinator Komponente integriert. Dies wird nur erlaubt, wenn das zu dem
Port gehörige Statechart in dem Zustand NoUpdate ist5 und die Clock (siehe Abschnitt 2.4) c im
Intervall zwischen fünf und zehn ist. Damit wird ausgedrückt, dass das Hinzufügen im Intervall
zwischen fünf und zehn Zeiteinheiten stattfinden muss.

5Aus Vereinfachungsgründen wird in dem Timed Story Pattern nur auf die Verbindung zwischen den Hauptklassen
eingegangen. Z. B. wurden die Port Objekte zwischen den next Assoziationen nicht extra aufgeführt.

47

Kapitel 2 Mechatronic UML

updatePart() implementiert im Wesentlichen die gleiche Strukturanpassung wie updatePort. Der
Unterschied ist lediglich, dass Part statt Port Objekte verwendet werden.

updateDel() zeigt die Strukturanpassung der Delegation. In diesem Fall ist das einfach, da ledig-
lich eine Delegation erzeugt werden muss, die die beiden neuen Ports (p3 und pc3) miteinander
verbindet.

Abbildung 2.19 zeigt, wie die einzelnen Story Pattern zur Strukturanpassung der Port-, Part- und
Delegations-Elemente durch ein TIMED STORY DIAGRAM verknüpft werden. Neben dem einfa-
chen Ausführen der TIMED STORY PATTERN durch Aufrufen der entsprechenden Methode, wird
Initial eine ClockInstance angelegt, über die nach jedem Aufruf der TIMED STORY PATTERN,
eine Invariante überprüft wird und die Clock zurückgesetzt wird.

In den folgenden Abschnitten 2.6.2 bis 2.6.4 werden wir die einzelnen Formalismen beschreiben,
die wir bereits in dem Beispiel zum Teil verwendet haben. Vorher werden wir in Abschnitt 2.6.1
ein Metamodell für MECHATRONIC UML Komponenten vorstellen, welches die Formalismen
nutzen, um das Konvoibeispiel illustrativ umzusetzen.

2.6.1 Metamodell

Hierarchische Komponenten sind ein mächtiges Mittel, um das interne Verhalten einer Kompo-
nente von ihrem externen Verhalten zu trennen [SGW94]. Wie bereits in Abschnitt 2.3 vorge-
stellt, unterstützt die MECHATRONIC UML hybride hierarchische Komponenten. Um den An-
forderungen von Strukturanpassungen gerecht zu werden, wird allerdings eine Erweiterung des
zugrunde liegenden Metamodells benötigt. Die RailCab-Komponente (siehe Abschnitt 1.2) ist
z. B. mit dem bisherigen Komponentenmodell nicht realisierbar, da das Verhalten welches die
Strukturanpassung steuert, nicht berücksichtigt ist.

Wie in unseren eigenen Arbeiten [HHG08, HHH10] und auch in [ZC06] beschrieben hat sich
für die Modellierung von Strukturanpassungen eine hierarchische Modellierung durchgesetzt, in
der auf der obersten Ebene das Verhalten für die Anpassung beschrieben wird. Diese explizite
Betrachtung ermöglicht es, Strukturanpassungen und das dafür benötigte Verhalten unabhängig
von dem Zustandsverhalten der Komponente oder Ports zu betrachten. Wir bezeichnen dies mit
Adaptionsverhalten. Das Adaptionsverhalten muss nun für hierarchische Komponenten explizit
für Multi-Ports (siehe Abschnitt 2.4.3), Multi-Parts (siehe Abschnitt 2.3) und Delegationen, die
Multi-Ports und Multi-Parts verbinden, spezifiziert werden können.

Wir haben daher in [BBB+09, HHH10] einen Ansatz vorgestellt, der für die Elemente Multi-
Port, Multi-Part und Delegation eine extra Adaptionsklasse berücksichtigt. Dieses ermöglicht es
uns speziell für diese strukturellen Elemente Adaptionsverhalten zu beschreiben.

Für eine spezifizierte Komponente unterstützen wir eine automatische Synthese des komponen-
tenspezifischen Klassendiagramms, auf Basis dessen Strukturanpassungen beschrieben werden
können. Das Klassendiagramm beinhaltet Klassen für jede Komponente, Ports, Parts und für alle
Delegationen. Die Struktur des Klassendiagramms basiert auf dem Metamodell für Komponen-

48

2.6 Timed Story Driven Modeling

pc3

member

port part

cd1:CoordDelegation

port part

p3 pc3

:PosCalcDelegation

<<++>> <<++>>

<<++>> member
<<++>>

cd1

:Coordinator

:PosCalcDelegation

p3

Strukturanpassung Mulitdelegation (updateDel(Port p3, Port pc3))

[success]

[failure]

has

member member

<<++>>member

:Active

<−−>

next

:NoUpdate

state

:Active

active

:NoUpdate

state

pc2:PosCalcpc1:PosCalc

cpc:ClockInstance:CoordPart

Strukturanpassung Multiport (updatePort(p)) Strukturanpassung Multipart (updatePart(p))

Komponentenmodell entfaltetKomponentenmodell

:Coordinator

:PosCalc
:PosCalc

:PosCalc

:PosCalc

c:ClockInstance
has

member member

<<++>>member

:Active

<−−>

next

:NoUpdate

state

:Active

active

:NoUpdate

state

p1:CoordMember p2:CoordMember

:CoordPort

<++>
next next

<++><++>

p3:CoordMember

position = p;

active

next
<++>

next
<++><++>

pc3:PosCalc

position = p;

active

p1

p2

p3

[5 ≤ cpc ∧ cpc ≤ 10][5 ≤ c ∧ c ≤ 10]

Abbildung 2.18: Konvoirestrukturierung: Überblick

49

Kapitel 2 Mechatronic UML

updateDel(p3,pc3);

rs:ClockReset

c1:ClockInstance

id = cup

this c1:ClockInstance

id = cup

this

rs:ClockReset

c1:ClockInstance

id = cup

this

rs:ClockReset

c1:ClockInstance

id = cup

this

rs:ClockReset

reset

<<++>>
<<++>>

<<++>>update()

updatePart(p);

updatePort(p);

[cup ≤ 10]

[cup ≤ 10] [cup ≤ 10]

Abbildung 2.19: Konvoirestrukturierung: Story

ten (siehe Abbildung 2.20). Der dort gezeigte Ausschnitt orientiert sich an dem Metamodell von
Komponentenstorydiagrammen (siehe Abschnitt 2.3 [Tic09]). Die Coordinator-Klasse realisiert
dabei die Stellvertreterklasse, um Adaptionsverhalten beschreiben zu können. Die Assoziation
zur Port-, ComponentPart-, PortPart- und DelegationTyp-Klasse realisieren die geforderte Ver-
knüpfung zu den Multielementen, um dessen Struktur anpassen zu können. Die Selbstassoziation
erlaubt eine Verknüpfung der Adaptionen untereinander.

Abbildung 2.21 verdeutlicht die diskutierte Adaptionsschicht an der Coordinator-Komponente.
Für jedes Multielement sowie Delegationen zwischen Multielementen wird eine Adaptions-
schicht angelegt (Multi-Part-Adaption, Multi-Port-Adaption, Delegation-Adaptation), die jede In-
stanz des Multielements (z. B. coordPortPart1, ..., coordPortPartk) koordinieren kann (siehe auch
2.4.3).

Ein Beispiel-Klassendiagramm für die Coordinator-Komponente ist in Abbildung 2.22 gezeigt.
CoordPort, CoordPart und CoordDelegation repräsentieren die Adaptionsklassen.

Eine durch das Adaptionsverhalten gesteuerte Strukturanpassung kann mit Story Diagrammen,
bzw. Story Pattern beschrieben werden (siehe Abschnitt 2.4). Um Zeit bei der Spezifikation der
Strukturanpassung zu berücksichtigen führen wir in Abschnitt 2.6.2 TIMED STORY PATTERN

und in Abschnitt 2.6.3 TIMED STORY DIAGRAM ein.

Strukturanpassungen werden als Seiteneffekt von REAL-TIME STATECHART, die das Adapti-
onsverhalten implementieren, ausgeführt. Ein Seiteneffekt wird durch eine Methode in der unter-
liegenden Verhaltensklasse, hier also der Adaptionsklasse, definiert. Hierdurch haben die Story
Diagramme eine Assoziation zu den Multielementen und können diese entsprechend strukturell

50

2.6 Timed Story Driven Modeling

required

<<reference>>

FujabaCore::

UMLClass

+ name : String

Part

+ name : String

ComponentPartComponent

+ name : String

*
typeRef

* isComposedOf

ConnectorType

Coordinator

+ name : String

*

has

+ name : String

Port

*

has

*

has

has

*

has

*

typeRef

PortPart

*

DelegationType

has

*
*

portPart

*

port

Interface

has

*

1 1

has
InterfacePart

has

Interface

Provided

InterfacePart

Provided

*

typeRef

Interface

Required

InterfacePart

Required
typeRef

*

AssemblyType
0..1

typeRef
0..1

Abbildung 2.20: Komponenten und -parts Metamodell

51

Kapitel 2 Mechatronic UML

PosCalc

Coordinator

coordPort

coordPortPart

coordPortPart1 coordPortPartk...
Multipart-Adaptation

coordPort1 coordPortk...
Multiport-AdaptationDelegation-Adaptation

del1 delk...

Abbildung 2.21: Multi-Part, -Port, und -Delegation

PosCalc

Coordinator

coordPort

coordPortPart

Coordinator

CoordPort

CoordinatorSC

CoordPortSC

PosCalcPart

CoordPortPart

Delegation

CoordPortPartSC

PosCalcPartSC

isComposedOf

has

uMLRealtimeStatechart

protocolStatechart

portPartport

protocolStatechart

uMLRealtimeStatechart

has

1 1

1 1 1 1

1 1
1 0..*

1

0..*

1

0..1

1

0..10..1

1

Abbildung 2.22: Beispiel-Klassendiagramm

52

2.6 Timed Story Driven Modeling

verändern (siehe Abschnitt 2.21). Eine Strukturanpassung kann die innere Struktur der Kompo-
nente verändern, aber nicht direkt die Struktur außerhalb der Komponente. Es ist jedoch möglich,
dass eine Strukturanpassung über Nachrichten oder eine Synchronisation andere Komponenten
ebenfalls zur Strukturanpassung veranlasst, wie dies z.B. über die Delegations-Adaption durch-
geführt wird. Es kann so ein kausaler Zusammenhang zwischen verschiedenen Strukturanpass-
ungen bestehen, die aber einzeln nur innerhalb einer Komponente Veränderungen vornehmen
können.

Ein Adaptionsverhalten kann über Strukturanpassungen Parts und Ports erzeugen und entfernen,
sowie Assemblies zwischen den Partinstanzen anlegen und entfernen. Die Instanzen eines Ports
oder Parts können durch die entsprechenden Adaptionsverhalten erzeugt und entfernt werden.
Über eine Delegations-Adaption können Delegationen zwischen Multi-Ports und -Parts angelegt
und entfernt werden.

Die Statecharts zu einem Port, bzw. einer Komponente, müssen beim Erstellen des Ports, bzw.
der Komponente, mit erzeugt werden. Das Löschen geschieht automatisch über die verwendeten
Kompositionsbeziehungen, so dass es ausreichend ist, in einem Story Diagramm nur den Port,
bzw. die Komponente, zu löschen.

2.6.2 Timed Story Pattern

TIMED STORY PATTERN erweitern Story Pattern [Zün01] um zeitliche Bedingungen. Ein weit
verbreiteter Formalismus um zeitliche Bedingungen zu spezifizieren ist der Timed Automata-
Formalismus [AD90, AD94]. Daher wird der Zeitformalismus nach den Timed Automata als
Grundlage dienen. Dies ermöglicht die Spezifikation von Zeitbedingungen für das Verändern
von Strukturen.

In [Hir08] wurden zeitbehaftete Graphtransformationssysteme (Timed Graph Transformation
Systems - TGTS) eingeführt, um die Instanziierungsdauer von Elementen und eine kontinuier-
liche Bewegung spezifizieren zu können (siehe auch Abschnitt 2.4.5.3). Um einen konsistenten,
gemeinsamen Formalismus zu spezifizieren benötigen wir allerdings einen Ansatz der basierend
auf einem gemeinsamen Metamodell Strukturveränderungen beschreiben kann.

Da TGTS grundsätzlich den gestellten Anforderungen gerecht werden, definieren wir TIMED

STORY PATTERN als eine Erweiterung von Story Pattern über der Semantik von TGTS. Damit
ermöglichen TIMED STORY PATTERN zum einen objektorientierte Strukturen zu verändern und
des Weiteren zeitliche Bedingungen für Strukturanpassungen zu spezifizieren. Um die Syntax
von Story Pattern nicht zu verändern, werden die benötigten Elemente in der Syntax von Story
Pattern definiert.

Die benötigten Elemente, um zeitliche Bedingungen zu spezifizieren sind: Uhren (Clock-
Instanz), Uhren Resets (Clock Resets) und Zeitbedingungen (Time Guards und Invarianten). Wie
im Timed Automata-Formalismus können mehrere Uhren definiert werden, da sich dies für die
Modellierung von Zeitbedingungen bewährt hat [Alu99].

53

Kapitel 2 Mechatronic UML

Da Story Pattern über Objekte, bzw. Objektinstanzen, Strukturanpassungen spezifizieren, wird
ein Clock-Objekt eingeführt. Wird eine Uhr spezifiziert, dann wird also eine Instanz des Clock-
Objektes angelegt. Daher verwenden wir hier den Begriff der Clock-Instanz.

Um die hier betrachteten Systeme spezifizieren zu können, müssen Eigenschaften von reaktiven
Systemen berücksichtigt werden. Elementar ist daher die Spezifikation von relativen Zeitbedin-
gungen, da häufig Bedingungen relativ zu einem Ereignis definiert werden müssen.

Das Konzept der Clock Resets wird benötigt, um eine Uhr auf null zurückzusetzen. Clock Resets
werden ebenfalls durch Objekte definiert.

Um zeitliche Bedingungen zu beschreiben werden wie bei dem Timed Automata-Formalismus
die folgenden Bedingungen φ erlaubt: φ ::= x ∼ n | x−y ∼ n | φ∧φ | true | false, mit x, y ∈
C,∼∈ {≤, <,=, >,≥}, n ∈ N. Wie in [AD94, Alu99] beschrieben haben sich diese Bedingun-
gen als nützlich herausgestellt und sind im Allgemeinen auch nicht erweiterbar, um z. B. Addi-
tion von Uhren, um die Analysefähigkeit nicht zu verlieren.

Um die Zeitbedingungen anwenden zu können, muss das zugrunde liegende Metamodell um
spezielle Clock-Instanz- und Clock-Reset-Objekte erweitert werden. Das kann entweder ganz
allgemein für alle Objekte definiert werden oder einschränkend für eine bestimmte Menge an
Objekten.

Für unser Komponentenmetamodell (siehe Abbildung 2.20) ist z. B. eine Einschränkung nur auf
die Objekte notwendig, deren Struktur angepasst werden kann. Daher reicht es aus, der Klasse
Coordinator eine Assoziation dem Clock-Objekt hinzuzufügen. Dadurch kann ein Story Pattern,
welches durch eine Methode einer konkreten Coordinator Klasse definiert wird, auf die Multi-
Elemente Port, Part und Delegation zugreifen und entsprechend Zeitbedingungen für eine Struk-
turanpassung definieren (siehe Abbildung 2.23).

CoordinatorClockInstance
id: String
value: Double

 ClockReset

reset

has

1

0...*

0...* 0...*

Abbildung 2.23: Erweiterung Komponentenmetamodell um Zeit

Im Folgenden beschreiben wir die Uhren-Elemente in der Syntax von Story Pattern. Weiterhin
erläutern wir die Semantik über TGTS.

Clock-Instanz Eine Clock-Instanz wird definiert durch ein ClockInstance Objekt mit einem
id und value Attribut (siehe Abbildung 2.23). Das value Attribut vom Typ Double beschreibt

54

2.6 Timed Story Driven Modeling

den aktuellen Wert der Clock-Instanz. Die id gibt den Namen der Clock-Instanz an. Durch eine
Assoziation zu einer Clock-Instanz zu den Objekten des Pattern oder allgemein des zugrunde lie-
genden Graphen wird die Zugehörigkeit einer Clock-Instanz zu einzelnen Objekten spezifiziert.
Das Erstellen einer Clock-Instanz wird über die Standard-Modifizierer «++» von Story Pattern
erreicht. Clock-Instanzen werden über spezielle Clock-Instanzregeln dem Objektgraphen zuge-
wiesen. Da die Regeln aus Hirsch [Hir08] auf Story Pattern anwendbar sind, sei für Details auf
diese Arbeit verwiesen. Über diese Clock-Instanzregeln wird es zudem ermöglicht, dass sich ei-
ne Clock-Instanz auf eine Kante des Objektgraphen bezieht, obwohl diese nicht als extra Objekt
definiert wird.

Abbildung 2.24 zeigt die Spezifikation einer Clock-Instanz. Die ClockInstance c wird angelegt,
wenn ein RailCab an einem Convoy teilnimmt.

 : RailCab

 : Convoy

member

c : ClockInstance
id := „c“
value := 0

 : ClockReset

reset
<<++>>

<<++>>

<<++>>
<<++>>

has

<<++>>
has

<<++>>

Abbildung 2.24: Definition einer Clock-Instanz und eines Clock Resets

Clock Resets Ein Clock Reset ist beschrieben über ein ClockReset Objekt und der Zugehö-
rigkeit zu einer Uhr über eine reset Assoziation (siehe Abbildung 2.23). Eine ClockReset Instanz
wird automatisch mit einer Clock-Instanz erzeugt. Ein Clock Reset wird spezifiziert, indem das
mit der Clock-Instanz angelegte ClockReset Objekt gebunden wird.

In Abbildung 2.24 ist das Anlegen eines Clock Resets zu sehen. Abbildung 2.25 zeigt ein zu-
rücksetzen der Clock c.

Time Guards Ein Time Guard wird spezifiziert über das Bedingungs-Element eines Story
Pattern. Ein Time Guard nimmt Bezug zu einer Clock-Instanz und spezifiziert eine Bedingung
über den Wert value dieser Instanz. Die Bedingung wird zu einem Booleschen Wert evaluiert. Um
einen Time Guard über eine Clock-Instanz zu spezifizieren, muss die Clock-Instanz in dem Story
Pattern gebunden sein. Es werden folgende Bedingungen berücksichtigt: φ ::= x ∼ n | x− y ∼
n | φ ∧ φ | true | false, mit x, y ∈ C,∼∈ {≤, <,=, >,≥}, n ∈ N (vgl. [AD94, Alu99]).

Abbildung 2.25 zeigt einen Time Guard 5 ≤ c ∧ c ≤ 10. Damit kann eine Übereinstimmung
mit dem Objektgraphen nur im Intervall fünf bis zehn erfolgen. Ein neues Konvoimitglied muss
also innerhalb dieses Intervalls hinzugefügt werden.

55

Kapitel 2 Mechatronic UML

 : RailCab

 : Convoy : Coordinator

member

coordinates

is

member
<<++>>

{5≤c∧c≤10}

 : RailCab

 : ClockInstance
id = „c“

 : ClockReset

has

has

reset

Abbildung 2.25: Clock Reset und Time Guard

Invarianten Eine Invariante wird durch ein Story Pattern ohne rechte Seite durch ein
Bedingungs-Element von Story Pattern spezifiziert. Die Clock-Instanz, über die die Invariante
spezifiziert wird, muss in dem Story Pattern gebunden sein.

Abbildung 2.26 zeigt ein Beispiel einer Invariante über die Clock c. Die Invariante spezifiziert,
dass ein RailCab nicht länger als zehn Zeiteinheiten ohne Convoy sein soll.

 : RailCab

 : Convoy

member

c : ClockInstance

id := „c“
value := 0

has

has

{c≤10 }

Abbildung 2.26: Invariante

Die Semantik von TIMED STORY PATTERN wird über die von TGTS definiert. Da TIMED

STORY PATTERN lediglich eine andere Syntax verwenden und auf Objektgraphen statt allge-
mein auf Knoten agieren, bleibt die Semantik unverändert (vgl. Definition von Story Pattern
über Graphtransformationssysteme [Zün01]). Die Definitionen sowie die Semantik von TGTS,
Clock-Instanzregeln und Invariantenregeln [Hir08] sind damit uneingeschränkt auf TIMED STO-
RY PATTERN anwendbar. Dies gilt auch für die Berechnung eines Folgegraphen über eine linke

56

2.6 Timed Story Driven Modeling

und rechte Regelseite, da ein Story Pattern, wie in [Zün01] beschrieben, hierauf abbildbar ist,
bzw. die linke und rechte Regelseite aus Vereinfachungsgründen in einer Sicht dargestellt wer-
den.

2.6.3 Timed Story Diagrams

TIMED STORY DIAGRAMS erweitern Story Diagramme um Zeit. Zeitbedingungen werden dabei
in Aktivitäten des Story Diagramms in Form von TIMED STORY PATTERN berücksichtigt.

Zeitbedingungen in Timed Story Diagrams Eine Zeitbedingung wird in TIMED STORY

DIAGRAMS über TIMED STORY PATTERN definiert. TIMED STORY PATTERN können an Stelle
von Story Pattern eine Aktivität spezifizieren.

Im Unterschied zu Story Diagrammen können damit TIMED STORY DIAGRAMS TIMED STORY

PATTERN einbetten. Die Syntax bleibt daher unverändert. Diese Form der Definition führt zu
dem Effekt, dass nur Zeit in einer Aktivität eines TIMED STORY DIAGRAM durch Anwenden
eines TIMED STORY PATTERN vergehen kann. Wenn auch Zeit zwischen den Aktivitäten verge-
hen soll, muss ein extra TIMED STORY PATTERN eingeführt werden, welches entsprechend die
zeitlichen Bedingungen realisiert.

Da die Definition der Semantik von Story Diagrammen unabhängig von den eingebetteten Story
Pattern definiert ist, verändert sich die Definition der Semantik durch die Berücksichtigung von
TIMED STORY PATTERN nicht. Entscheidend für die Ausführung eines Story Diagramms ist nur
die Anwendbarkeit der eingebetteten Pattern. Die Anwendbarkeit ist wiederum durch das Pattern
selbst definiert (siehe Abschnitt 2.6.2).

2.6.4 Timed Story Charts

TIMED STORY PATTERN und TIMED STORY DIAGRAMS ermöglichen die Beschreibung von
Strukturanpassungen. Die hier vorgestellten TIMED STORY CHARTS schließen den Timed Story
Driven Modeling Ansatz ab.

TIMED STORY CHARTS beschreiben wie Story Charts [Zün01] Zustandsverhalten. Um Ver-
halten für Echtzeitsysteme zu beschreiben dessen Struktur zur Laufzeit angepasst wird ist der
Statchart-Ansatz nach Harel [Har87, HPSS87], der den Story Charts zu Grunde liegt, allerdings
ungenügend. Zum einen fehlt die Möglichkeit Zeitbedingungen zu spezifizieren und zum ande-
ren gibt es keine Möglichkeit die unterschiedlichen Verhaltensvarianten und Instanzen gesondert
zu betrachten.

PARAMETERIZED REAL-TIME STATECHARTS stellen die benötigten Konstrukte zur Verfügung
[HHG08, Hir08, HHH10] (siehe auch Abschnitt 2.4.4), um Zeitbedingungen sowie Verhalten
spezifisch für eine Instanz zu beschreiben. Wir werden daher die Semantik von TIMED STO-
RY CHARTS durch eine Abbildung von PARAMETERIZED REAL-TIME STATECHARTS auf be-

57

Kapitel 2 Mechatronic UML

stimmte TIMED STORY DIAGRAM Elemente definieren. Damit wird ein konsistenter Formalis-
mus für Multielemente, die eine dynamische Änderung der Kommunikationsstruktur beschrei-
ben, gewahrt, da TIMED STORY CHARTS durch TIMED STORY DIAGRAMS ebenfalls über Sto-
ry Pattern und Story Diagramme definiert werden. Dies stellt damit sicher, dass, wie in dem
einleitenden Beispiel beschrieben, auch in der Strukturanpassung die Elemente des Kommuni-
kationsprotokolls berücksichtigt werden können. Die Beschreibung von Zeitbedingungen wird
über TIMED STORY DIAGRAMS durch TIMED STORY PATTERN ermöglicht, womit die unterla-
gerte Semantik über zeitbehaftete Graphtransformationssysteme (Timed Graph Transformation
Systems) beschrieben ist (siehe Abschnitt 2.6.2).

Um einen gemeinsamen, konsistenten Formalismus zu definieren, müssen TIMED STORY

CHARTS ebenfalls über Objekte definiert werden. Eine einfache und weit verbreitete Mög-
lichkeit, um Statecharts objektorientiert darzustellen ist das Zustandsmuster [GHJV95]. Stall-
mann hat einen ersten Ansatz für die Abbildung von REAL-TIME STATECHARTS auf Objekte
in [Sta08] vorgestellt. Ereignisse, Zeit, Parametrisierungen und Synchronisationen wurden al-
lerdings nicht beschrieben. Weiterhin führen wir in dem hier vorgestellten Ansatz Transitionen
nicht als extra Objekte ein sondern implizit über Regeln, da hierdurch keine relevanten Informa-
tionen verloren gehen und zudem eine Analyse erleichtert wird, da nicht explizit Objekte für die
Transition erzeugt werden müssen.

Der durch Zündorf vorgestellte Story Chart Ansatz [Zün01] betrachtet zwar nur Statecharts, je-
doch werden Ereignisse berücksichtigt sowie eine Semantik definiert. Folgend werden die we-
sentlichen Details und Unterschiede zu diesem Ansatz dargestellt.

Der Ansatz von [Zün01] beruht auf der Definition eines Framework, welches die Schaltregeln
von Statecharts umsetzen. Das Framework wird mit Story Diagrammen und Story Pattern defi-
niert. Dem zugrunde liegt ein Metamodell für Statecharts. Ein konkretes Statechart wird als Ob-
jektgraph des Metamodells spezifiziert. Dieser Objektgraph ist dann Eingabe für das Framework.
Das Framework überprüft die möglichen zu schaltenden Transitionen und feuert gegebenenfalls,
falls ein Transition schalten kann, Ereignisse nach einer sequentiellen Ausführungssematik.

Neben dem Problem, dass dieser Ansatz keine Zeit, Parametrisierung sowie Synchronisationen
berücksichtigt, ist der Framework Ansatz nicht gut geeignet, um Analysen durchzuführen. Es ist
z. B. nicht ohne weiteres zu erkennen, in welcher Reihenfolge Transitionen ausgeführt wurden,
da das Schalten einer Transition nur durch eine Framework-Methode umgesetzt ist.

Grundlegende Idee der Umsetzung von TIMED STORY CHARTS ist, dass wir für jedes PARAME-
TERIZED REAL-TIME STATECHART Element eine Abbildungsvorschrift bestimmen, wie dieses
Element mit Story Pattern oder einem Story Diagramm (für kompliziertere Konstrukte) spezifi-
ziert wird. Darauf basierend beschreiben wir eine Ausführungssemantik, in dem wir die einzel-
nen Elemente durch ein Story Diagramm verknüpfen. Das Story Diagramm spiegelt dabei die
Ausführungssemantik von PARAMETERIZED REAL-TIME STATECHART wider. Diese Vorge-
hensweise ermöglicht eine einfache Anpassung der Ausführungssemantik durch den vorgeschla-
genen modularen Aufbau. Die einzelnen Elemente (Stories) bleiben dabei unverändert. Anders-
herum lassen sich einzelne Elemente anpassen, ohne Auswirkung auf die Ausführungssemantik.

58

2.6 Timed Story Driven Modeling

Weiterhin ermöglicht dieser Ansatz eine gute Nachvollziehbarkeit der geschalteten Transitionen,
die direkt an den ausgeführten Story Diagrammen abgelesen werden können.

Die Abbildung wird im Rahmen dieser Arbeit auf die Sprachkonstrukte beschränkt, die für das in
Abbildung 1.2 eingeführte Anwendungsbeispiel notwendig sind. Damit werden gemäß [Hir08]
flache PARAMETERIZED REAL-TIME STATECHARTS mit einem hierarchischen Zustand unter-
stützt. Dies ermöglicht allerdings alle bisherigen Protokolle umzusetzen (siehe [May09]). Eine
vollständige Unterstützung aller Sprachkonstrukte ist entsprechend ein Ausblick.

2.6.4.1 Übersicht Abbildung

Der Abbildung von PARAMETERIZED REAL-TIME STATECHARTS in TIMED STORY CHARTS

liegt das in Abbildung 2.27 vorgestellte Metamodell zu Grunde. Zeitbedingungen werden wie be-
reits in Abschnitt 2.6.2 vorgestellt durch ein ClockInstance sowie ClockReset Objekt ermöglicht.
Die Assoziation des ClockInstance Objekts mit dem Statechart und State Objekt ermöglicht die
Spezifikation von Zeitbedingungen für Zustände sowie für das gesamte Statechart. Durch den in
Abschnitt 2.27 vorgestellten Ansatz können zudem Zeitbedingungen für Transitionen spezifiziert
werden. Weitere Merkmale sind, dass wir durch die parameter Attribute eine Parametrisierung
ermöglichen, in dem für unterschiedliche Statechart Instanzen unterschiedliche Parameter ver-
geben werden. Im Folgenden werden wir den Ereignismechanismus erläutern (wir werden dabei
den englischen Begriff Event verwenden) und den Ansatz zusammenfassend diskutieren. Eine
detaillierte Beschreibung der einzelnen Elemente sowie die zusammengesetzte Ausführung der
Elemente erfolgt in Appendix A.

Events Ein Event ist definiert durch ein Event Objekt. Der Name des Events wird über ein na-
me Attribut angegeben. Ein Event Objekt kann über ein Parameter Objekt eine geordnete Menge
von Paramatern zugewiesen werden. Der Wert eines Parameters wird durch eine value Assoziati-
on auf ein Object definiert. Events werden über eine Event-Queue verwaltet. Die Queue ist spezi-
fiziert als eine einfache verkettete Liste, dessen Anfang und Ende mit der Event-Queue assoziiert
sind. Eine Event-Queue ist genau einem Statechart zugeordnet. Dies gilt auch für Instanzen eines
Statecharts.

Abbildung 2.28 zeigt die Abbildung von PARAMETERIZED REAL-TIME STATECHART-Events.
Das Story Diagramm bindet zunächst die Zustände wie in Abschnitt A.1.2 dargestellt. Zusätzlich
wird das erste Event (Event a) aus der Event-Queue des zugehörigen Statecharts gebunden. Wur-
de dieser Graph gebunden, so wird das ausgehende Event mit Namen b erzeugt und der Zustand
gewechselt. Die Details der enqueue und dequeue Methode werden im Folgenden Semantik-
Abschnitt erläutert.

Wie in [GB03] dargestellt, sind für Echtzeitsysteme ein asynchrones Event-Handling Notwen-
dig, um den verteilten Anforderungen der Systeme gerecht zu werden. Die von Harel eingeführte
Mikro-Step- ([Har87]) und Super-Step-Semantik ([HN96]) ist für ein verteiltes Echtzeitsystem
damit nicht praktikabel, da eine Nullzeit-Ausführung der Transitionen und ein unmittelbares

59

Kapitel 2 Mechatronic UML

State
name : String

ClockInstance
id : String
parameter : int
value : double

ActiveState
parameter : int

has
Statechart

active

ComplexState

deleteSyncChannels()

subStatechart

has

1
1..*

10..1

1

Synchronization
parameter : int
name : String

recvSrc
0..1

sendSrc

0..1

EventQueue

enqueue(Event e)
dequeue()

parameter : int
Event

name : String

head

1 0..1

0..11

next
tail

has
1

1
0..1

0..1

has

1

0..*

0..*

ClockReset

reset
1

0..*

Parameter
name : String

1
has

0..*

Object

value

1

1

{ordered}

1..*

1..*

1..*0..*

0..*

0..*

0..*

0..*

Abbildung 2.27: Metamodell für die Abbildung von Realtime Statecharts auf Story Diagramme

A B

State
name = „A“

ActiveState

AB_Statechart::Trans_A_B()

this

State
name = „B“

a / b

eq : EventQueue

e1 : Event
name = „a“

head

e2 : Event
name := „b“

<<++>>

1: dequeue()
2: enqueue(e2)

<<-->> <<++>>
active active

Abbildung 2.28: Schalten einer Transition mit Events

60

2.6 Timed Story Driven Modeling

Konsumieren von Events nicht der Realität entspricht. Daher wurde in [GB03] ein asynchrones
Event-Handling für REAL-TIME STATECHARTS eingeführt auf denen auch PARAMETERIZED

REAL-TIME STATECHARTS basieren. Die konkrete Realisierung, ob z. B. nur das erste Element
einer Queue überprüft wird oder alle Elemente der Queue, ist abhängig von dem konkreten platt-
formspezifischen Netzwerkverhalten. Dies wird typischerweise über Connectoren zwischen den
Strukturelementen, wie Ports, definiert, die wiederum durch ein Statechart-Verhalten implemen-
tiert werden. Hierüber lassen sich dann z. B. Nachrichtenverluste implementieren. Grundsätz-
lich wurde in [GB03] festgelegt, dass unabhängig von dem konkreten Netzwerkverhalten Fifo-
Queues für jedes Statechart definiert werden, die elementar für ein asynchrones Event-Handling
sind. Damit werden die eingegangen Events nacheinander in der Reihenfolge ihres Eingangs
bearbeitet. Die definierten Event und Event-Queue Objekte setzen genau diese Semantik um.

Ein Zustandswechsel ist demnach nur möglich, wenn das Trigger-Event in der Queue enthalten
ist. Wird eine Transition geschaltet und ein Event verschickt, so wird dieses Event in eine ausge-
hende Event-Queue gelegt oder direkt in die eingehende Event-Queue des Statecharts, welches
dieses Event konsumieren soll. Durch die dequeue und enqueue Methode wird das konsumieren
der Events umgesetzt. Eine Transition kann demnach nur schalten, wenn die dequeue Metho-
de das geforderte Event binden kann. Ist dies der Fall wird das Event aus der Queue entfernt
und alle ausgehenden Events (Raised-Events) über die enqueue Methode der entsprechenden
Queue hinzugefügt. Durch die vorgebene eindeutige Struktur, auch im Falle eines Multicast, ist
das Einsortieren der ausgehenden Events einfach möglich (siehe Abschnitt 2.6.1). Dieses ge-
hört zum Statechart des Ports, der mit dem Port des sendenden Statecharts über eine Assembly
verbunden ist. Die Semantik der PARAMETERIZED REAL-TIME STATECHARTS bleibt so offen-
sichtlich erhalten. Im Folgenden wird noch eine Implementierung für die dequeue und enqueue
Methode vorgeschlagen.

Die dequeue Methode versucht das erste Element der Event-Queue zu binden. Ist dies der Fall,
wird dieses Event aus der Queue entfernt6 (siehe Abbildung 2.29). Die erste Story versucht das
erste Element der Event-Queue zu binden. Kann kein Event gebunden werden, wird das Story
Diagramm über die failure Kante verlassen und das Statechart kann die Transition nicht schalten.
Die zweite Story spezifiziert das Entfernen des gebunden Events aus der Event-Queue. Weiterhin
wird der head Zeiger auf das next Element umstrukturiert. Ist dies nicht möglich, befindet sich
nur noch ein Event in der Event-Queue. Damit können beide Links gelöscht werden.

Das Versenden eines Events wird durch die enqueue Methode umgesetzt. Diese Methode fügt
das übergebene Event in die assoziierte Queue ein (siehe Abbildung 2.30). Beim Einfügen des
Events in die Queue wird versucht das Event an die letzte Position einzufügen. Ist dies nicht
möglich, ist die Event-Queue leer und das Element wird als erstes und letztes Element eingefügt.
Andernfalls wird die last Assoziation auf das neue Event e umgesetzt und eine next Assoziation
zwischen dem neuen vorletzten und letzten Element eingefügt.

6Die dargestellte Umsetzung überprüft nur das erste Element. Der Vollständigkeit halber müsste über die gesamte
Queue iteriert werden.

61

Kapitel 2 Mechatronic UML

EventQueue::dequeue()

e1

this

e2 : Event

<<-->>

<<++>>

head

head

<<-->>

next

[failure]

e1

this

<<-->>
head

<<-->>
tail

[success]

<<-->>
e1 : Event

this

head
[success]

[failure]

Abbildung 2.29: Dequeue der Event Handling Queue

62

2.6 Timed Story Driven Modeling

EventQueue::enqueue(Event e)

e1 : Event

this

e

<<-->>

<<++>>

tail

tail

<<++>>

next

e

this

tailhead
<<++>> <<++>>

[failure] [success]

Abbildung 2.30: Enqueue der Event Handling Queue

Diskussion Durch den gemeinsamen Formalismus für das Verhalten und die Strukturanpass-
ungen ermöglicht dieser Ansatz im Vergleich zu dem bisherigen MECHATRONIC UML Ansatz
prinzipiell eine Verifikation von Sicherheits- und Lebendigkeitseigenschaften (siehe Abschnitt
2.4.1 und 2.4.6.1), die sowohl Struktur als auch Verhalten betrachten. Im Rahmen aktueller Ar-
beiten wird dies adressiert [HSJZ10, HHPS10, EHH+11]. Wir werden eine formale Verifikation
von Sicherheits- und Lebendigkeitseigenschaften im Folgenden allerdings nicht näher betrach-
ten, da dies nicht der Fokus dieser Arbeit ist. In Kapitel 3 werden wir eine Wiederverwendung
von modellierten Komponenten vorstellen, in dem wir auf Basis der TIMED STORY CHARTS

eine Verfeinerung definieren und diese anschließend verifizieren.

63

Kapitel 2 Mechatronic UML

64

Kapitel 3

Verfeinerung in hierarchischen
Komponentensystemen

Für die in Abschnitt 2.1 auf Seite 13 vorgestellten Konkretisierungen muss eine Verfeinerung
definiert und überprüft werden, um sicherzustellen, dass die durchgeführten Konkretisierungen
nicht zu einer Verletzung des bereits verifizierten Protokollverhaltens führen. Für die betrachteten
Systeme, ist dies eine Herausforderung, da sowohl die Verifikationsergebnisse, wie auch das nach
außen sichtbare Echtzeitverhalten des übergeordneten (abstrakten) Protokollverhalten erhalten
bleiben müssen, unter Berücksichtigung von kompositionellen Strukturanpassungen.

Wir stellen in diesem Kapitel einen Ansatz vor, der genau diese Anforderungen adressiert. Dar-
über hinaus betrachten wir die Anforderung an eine Verfeinerung möglichst viele Konkretisie-
rungen zuzulassen, um die Wiederverwendung existierender Lösungen zu fördern. Im Vergleich
zu bisherigen Ansätzen (wie [JLS00, GRPS02, Bey02, GTB+03, HT04, Bur06, Gie07, ÖM07])
können wir daher zum einen überhaupt durch die Betrachtung der Strukturanpassungen in Kom-
bination mit Echtzeitverhalten eine Verfeinerungsüberprüfung für selbstoptimierende, mechatro-
nische Systeme durchführen. Zum anderen ermöglicht unsere Verfeinerungsdefinition durch Fo-
kussierung auf die MECHATRONIC UML tatsächlich einen höheren Grad an Wiederverwendung
existierender Lösungen.

Handelt es sich bei der Wiederverwendung um Multielemente, muss eine Verfeinerung für TI-
MED STORY CHARTS definiert werden, da nicht nur das Verhalten, sondern auch die Struktur-
anpassung eine Auswirkung auf die Verfeinerung hat (siehe Kapitel 2.6). Für Einfachelemente
muss nur eine Verfeinerung für das Verhalten, also REAL-TIME STATECHARTS (siehe Abschnitt
2.4.2), definiert werden. Da die Verfeinerung für TIMED STORY CHARTS auf der von REAL-
TIME STATECHARTS aufbaut, definieren wir zuerst eine Verfeinerung für REAL-TIME STATE-
CHARTS in Abschnitt 3.1.1 und anschließend für TIMED STORY CHARTS in Abschnitt 3.1.2. In
Abschnitt 3.2 beschreiben wir eine Verfeinerungsüberprüfung auf Basis dieser Definitionen.

Im Folgenden werden wir zuerst das in Abschnitt 1.2 eingeführte Beispiel konkretisieren, um
hieran die geschilderte Problematik zu verdeutlichen. Die Anforderungen und Voraussetzungen
an die Verfeinerung betrachten wir in dem darauf folgenden Paragraphen auf Seite 67.

65

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

Beispielanwendung Zur Veranschaulichung betrachten wir wieder die Coordinator-
Komponente des RailCab Konvoibeispiels (siehe Abbildung 2.18). Abbildung 3.1 zeigt einen
Ausschnitt des REAL-TIME STATECHARTS der Coordinator-Komponente. Es wird sowohl das
Kommunikationsverhalten der Coordinator-Komponente als auch der eingebetteten PosCalc-
Komponente gezeigt (rechte Spalte der Abbildung). In der linken Spalte wird das Adaptions-
verhalten des Multi-Ports Coordinator, des Multi-Parts PosCalc und der Multi-Delegation ge-
zeigt. Die drei Adaptionsverhalten rufen jeweils die dazugehörige Strukturanpassung auf (siehe
Abbildung 2.18).

Das Kommunikationsverhalten der Multi-Rolle Coordinator wird über das Adaptionsverhal-
ten der Multi-Rolle durch eine next[k]-Synchronisationsnachricht angestoßen. Innerhalb von
fünf Zeiteinheiten verschickt das Kommunikationsverhalten eine parametrisierte update(para)-
Nachricht an den Konvoiteilnehmer k, um diesen die aktuellen Konvoiparameter für dieses Rail-
Cab zu schicken. Innerhalb der Zeitinvariante von c1 ≤ 25 wird eine ack()-Nachricht von dem
Konvoiteilnehmer erwartet. Wurde bereits allen Konvoiteilnehmern eine update(para)-Nachricht
zugeschickt, so wird dem Adaptionsverhalten mitgeteilt, dass alle Teilnehmer aktualisiert wurden
(done-Synchronisationsnachricht). Ist dies nicht der Fall, wird die nächste Portinstanz über die
next[k+1]-Synchronisationsnachricht angestoßen, um den zugeteilten Konvoiteilnehmer eben-
falls aktuelle Konvoiparameter zu zuschicken.

Das Adaptionsverhalten der Coordinator-Multi-Rolle, welches parallel zu dem Kommunikati-
onsverhalten ausgeführt wird, koordiniert die Portinstanziierung sowie die erzeugten Ports un-
tereinander. Initial befindet sich das Adaptionsverhalten im Zustand NoConvoy. Wird die init-
Port-Synchronisationsnachricht empfangen, wird der Seiteneffekt updatePort(1) ausgeführt (sie-
he Abbildung 3.3). Die initPort-Synchronisationsnachricht kann dabei z. B. durch eine Synchro-
nisation mit dem Registry-Port angestoßen werden, wenn ein RailCab über die gleiche Regis-
trierung verwaltet wird und zudem mit diesem RailCab verhandelt wurde, dass ein gemeinsamer
Konvoi gebildet werden soll.

Der updatePort-Seiteneffekt beschreibt zusätzlich zu dem TIMED STORY DIAGRAM in Abbil-
dung 2.18 die Situation, dass noch kein oder nur ein Port angelegt wurde. Die erste Story über-
prüft, ob das CoordPort-Objekt bereits eine Verbindung zu einem CoordMember-Objekt hat.
Das CoordPort-Objekt ist die Stellvertreter-Klasse für das Adaptionsverhalten, um die einzelnen
Port-Klassen, die durch das CoordMember-Objekt repräsentiert werden, zu verwalten. Wurde
noch kein Port angelegt, so wird der (erste) Port angelegt und mit der übergebenen Portposi-
tion initialisiert. Für die Initialisierung des Konvois, wird diese Regel über den updatePort(1)-
Seiteneffekt ausgelöst. Wurden bereits Ports hinzugefügt, so wird überprüft, ob der Vorgänger-,
bzw. Nachfolge-Port bereits eine next-Assoziation zu einem Port hat. Ist dies nicht der Fall,
wird ein neuer Port und eine entsprechende next-Assoziation zu dem direkten Vorgänger-, bzw.
Nachfolger-Port erzeugt. Soll der Port andernfalls zwischen zwei bisherigen Ports eingebunden
werden, wird die letzte Story ausgeführt, wie in Abbildung 2.18 beschrieben.

Ist der erste Port erzeugt, wird gewartet, bis die PosCalc-Rolle eine entsprechende Part-
Komponente erzeugt hat und die Delegation eine Verbindung zwischen diesen anlegt. Dies
wird über die Synchronisationsnachrichten createPort, addPart, portCreated und partCreated

66

erreicht. Ist dies der Fall befindet sich das Adaptionsverhalten der Coordinator-Multi-Rolle ent-
weder in einer Schleife, in der ein weiterer Port hinzugefügt (initialisiert über eine addPort-
Synchronisationsnachricht) oder eine Aktualisierung der Konvoiparameter durch eine next[1]-
Synchronisatonsnachricht ausgelöst wird.

Das Adaptionsverhalten der Rolle PosCalc verhält sich ähnlich zu dem Adaptionsverhalten der
Multi-Rolle Coordinator. Als Seiteneffekt wird die updatePart()-Methode aufgerufen, die, wie
zu Abbildung 2.18 beschrieben, PosCalc-Parts erzeugt.

Das Kommunikationsverhalten der PosCalc-Rolle unterscheidet sich allerdings merklich von
dem Kommunikationsverhalten der Coordinator-Multi-Rolle (siehe Abbildung 3.1). Es unter-
scheiden sich die Anzahl der Zustände, die Zustandsnamen sowie die Zeitintervalle. Der Zu-
stand ComputeParam des PosCalc-Kommunikationsverhaltens bettet zudem eine Steuerung zur
Berechnung der Konvoiparameter ein, die periodisch mit aktuellen Parametern aufgerufen wird
und dessen Ergebnisse mittels der parametrisierten Nachricht update verschickt werden. Um
dies zu ermöglichen, bettet die PosCalc-Komponente ebenfalls auf der strukturellen Ebene die
Steuerung CPController ein (siehe Abbildung 3.2). Es ist nicht nur das Verhalten unterschiedlich
umgesetzt, sondern auch die verwendeten strukturellen Elemente. Zum einen wird eine Multi-
Rolle restrukturiert und zum andern ein Multi-Part.

Das Delegationsverhalten beschreibt eine alternative Umsetzung für das TIMED STORY DIA-
GRAM in Abbildung 2.19. Vorteil ist hier die konsequente Aufteilung in Adaptions- und Kom-
munikationsverhalten. Dies führt wiederum zu einer entkoppelten Spezifikation der Restruktu-
rierungen.

Bisherige Ansätze, wie in Abschnitt 2.4.7 und 7.2 beschrieben (dies beinhaltet auch die Verfeine-
rungsdefinition der MECHATRONIC UML), würden diese Konkretisierung nicht zulassen. Dies
liegt an dem allgemeineren Charakter dieser Ansätze, wodurch keine Relaxierung der Zeit (Zeit-
intervallverschiebungen) erlaubt werden (können). Darüber hinaus wäre grundsätzlich eine Ver-
feinerungsüberprüfung nicht möglich, da keine Strukturanpassungen berücksichtigt werden. Un-
ser Ansatz wird diese Konkretisierung zu lassen, da wir spezifisch für die MECHATRONIC UML
eine Zeitintervallverschiebung in bestimmten Bereichen erlauben können, unter Berücksichti-
gung von Strukturanpassungen. Im Folgenden werden wir die Anforderungen und Voraussetzun-
gen genauer erläutern.

Anforderungen und Voraussetzungen Um die in der Beispielanwendung diskutierte
Konkretisierung zu erlauben, nutzen wir den spezifischen Ansatz der MECHATRONIC UML und
die damit verbundene Anwendungsdomäne aus.

Begrenzte Zeitbedingungen. Der unterlagerte Verhaltensformalismus der MECHATRONIC UML,
die Timed Automata, ermöglichen die Modellierung eines Systems mit anwachsender, nicht be-
schränkter Zeit (Uhren). Dies kann potentiell zu einer nicht Analysierbarkeit des modellierten
Systems führen, bzw. eine nicht Implementierbarkeit des Modells.

Die in dieser Arbeit betrachteten harten Echtzeitsysteme (siehe Abschnitt 2.4) fordern allerdings,
dass die ausgeführten Berechnungen vorhersagbar in einer bestimmten Zeit ein Ergebnis liefern

67

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

SendUpdates

UpdateCreatePort

C
oo

rd
in

at
or

Verhaltensmodell Adaption Verhaltensmodell Kommunikation (Protokoll)

CPController

Idle

[1;1]{c1}

AwaitAck

Complete

[10;10]

[1;1]

[1;1]

[1;1]

done!

[this.parameter < n]

next[k+1]!

next[k]?

[this.parameter == n]

SendUpdate

ack() /

/update(para)

NoConvoy

createPort(1)! updatePort(1)
Side Effects: {c2} [1;1]

next[1]!
done?

[10;10]{c2}
portCreated? [1;1]

{c2} [1;1]

[10;20]

{c2}
Side Effects: updatePort(n)

createPort(n)!

initPort?

addPort(n)?

Idle

[10;10]{c3}

AbsPort RefPart

RefPart

[10;10]

[10;10][1;1]

createDel(pi, pci)

{c3} [1;1]

addPart(n)!

createPort(n)?

partCreated!
portCreated!

{c2}

Update

next[1]!
{c2} [1;1]

done?

{c2}

[1;1]

[10;20]

Side Effects:

Side Effects:

{c2} [10;10]

[1;1]

NoConvoy

partCreated?

updatePart(n)

CreatePart

IdleSendParam

AwaitAck

next[k]?

[1;1]{c1}

ComputeParam

[1;1]

[1;1]

[this.parameter == n]
done! ack() /

ack() /next[k+1]!

[this.parameter < n]

updatePart(1)
addPart(n)?

addPart(n)?

D
el

eg
at

io
n

P
os

C
al

c

c1 ≤ 5

c2 ≤ 6000

c2 ≤ 60c2 ≤ 59

c1 ≤ 200 c1 ≤ 35

c1 ≤ 5 c1 ≤ 25

c2 ≤ 6000

[0 ≤ c2 ≤ 10]

c3 ≤ 6000

c3 ≤ 10

c3 ≤ 20

c3 ≤ 0

[0 ≤ c2 ≤ 10]
RCparam Coparam

[20 ≤ c1 ≤ 50]

[20 ≤ c1 ≤ 50]

/update(Coparam)

c2 ≤ 6000 c2 ≤ 6000

c2 ≤ 59 c2 ≤ 60

c1 ≤ 200

c1 ≤ 20

Abbildung 3.1: Verhaltensmodell Coordinator-Komponente

:PosCalc

:CPController

:Coordinator

Abbildung 3.2: Coordinator-Komponente mit eingebetteten Regler

68

:CoordMember

p1:CoordMember

position = p;

p1 <<++>>

cp <<++>>
member

next

c:ClockInstance
has

member member

<<++>>member

:Active

<−−>

next

:NoUpdate

state

:Active

active

:NoUpdate

state

p1:CoordMember p2:CoordMember

:CoordPort

<++>
next next

<++><++>

p3:CoordMember

position = p;

active

p1:CoordMember

:CoordMember

member

[success] [failure]

cp

p1:CoordMember

position = p;

<<++>>
member

member

cp [p1.position == p−1]

[success] [failure]

next

p1:CoordMember :CoordMember

cp

member

[p1.position == p+1]

[success]p1:CoordMember

position = p;

p1 <<++>>

cp <<++>>
member

next

[failure]

updatePort(p) cp:CoordPort

this

next

[5 ≤ c ∧ c ≤ 10]

p2.position == p+ 1]

[p1.possition == p− 1∧

Abbildung 3.3: Verfeinertes UpdatePort Timed Story Diagramm

69

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

[But05, Kop97]. In der MECHATRONIC UML, wird dies erreicht, in dem Deadlines für die aus-
geführten Berechnungen und Invarianten spezifiziert werden. Hierdurch wird Fortschritt im Sys-
tem erzwungen und ein Wachsen der Zeit über alle Grenzen verhindert. Diese Einschränkungen
führen zu einem endlichen System, welches durch z.B. eine Erreichbarkeitsanalyse auf bestimm-
te Eigenschaften überprüft werden kann (siehe z.B. [Bur06]). Das Problem des Zeno Schaltens,
womit unendlich viele Schaltvorgänge in endlicher Zeit möglich sind, wird hiermit ebenfalls
umgangen, da das Schalten einer Transition einen Fortgang der Zeit erzwingt.

Zeitliche Bedingungen für Strukturanpassungen. Die Strukturanpassungen des Systems werden
ausschließlich als Seiteneffekte von Statecharts aufgerufen (siehe Adaptionsverhalten in Abbil-
dung 3.1). Eine Transition, die einen Seiteneffekt aufruft, spezifiziert die zeitlichen Bedingungen
der Strukturanpassungen.

Dazu muss zusätzlich separat geprüft werden, ob die WCET der Strukturanpassung die Deadline
der Transition einhalten kann ([BBB+09]). Dies gilt auch für Transitionen, die keine Struktur-
anpassung ausführen, da auch deren Ausführung in einem realen System Zeit verbraucht. Diese
Überprüfung wird nicht innerhalb der Verfeinerungsüberprüfung durchgeführt, sondern als ein
explizieter zusätzlicher Schritt (siehe Kapitel 6.1).

Asynchrone Echtzeitkommunikation. Eine asynchrone Echtzeitkommunikation ist nach [Dou02]
implizit (immer) durch ein Watchdog Muster in Kombination mit einem Puffer implementiert.
Ein Watchdog Echtzeitkommunikationsmuster erwartet nach jedem Verschicken einer Nachricht
nach einer bestimmten Zeit eine Antwort von dem Kommunikationspartner, bevor weitere Aktio-
nen ausgeführt werden. Dieses Muster ist damit Elementar für alle REAL-TIME COORDINATION

PATTERNS (siehe auch [May09]). Diese Informationen über den Kommunikationspartner werden
durch unseren Ansatz ausgenutzt, um eine Zeitintervallverschiebung durch eine Konkretisierung
zu erlauben, ohne die Eigenschaften der bisherigen (abstrakten) Kommunikation zu verletzen.

Kontinuierliche Zeit. Die bisherige Verfeinerung der MECHATRONIC UML für Rollenverhalten
basiert auf diskreter Zeit [Gie03, GTB+03]. Für asynchrone Systeme ist ein diskretes Zeitmo-
dell allerdings nicht anwendbar, da im allgemeinen Fall eine Erreichbarkeitsanalyse nicht mög-
lich ist ([CGP00]). Für physikalische Systeme ist zudem ein kontinuierliches Zeitverhalten in
der plattformunabhängigen Modellierungsphase von Vorteil, da eine Taktung zwangsläufig zu
einem komplizierten Modell führt und zudem häufig nicht eindeutig bestimmbar ist, da z.B. re-
gelungstechnische Modelle typischerweise ebenfalls von kontinuierlicher Natur sind. Ein diskre-
tes Zeitsystem führt daher im Allgemeinen zu einem eingeschränkteren plattformunabhängigen
Modell. Eine automatische Diskretisierung erst während der Implementierungsphase bzw. Code-
generierungsphase vorzunehmen erleichtert zudem die Entwicklung dieser Systeme und ist, wie
in [MPS95, AMPS98] vorgestellt, für Timed Automata möglich. Aus diesem Grund verwen-
den wir kontinuierliche Zeit (auch dense-time genannt). Da sich die Eigenschaften von diskreter
Zeit im Vergleich zu kontinuierlicher Zeit stark unterscheiden [AD94], kann die Definition aus
[GTB+03] nicht (einfach) angewandt werden.

Deterministische Modelle. Ein deterministisches Modell ist Voraussetzung für eine Verfeinerung,
da für beliebig nichtdeterministische Automaten die Korrektheit der Verfeinerung nicht über

70

Pfade gezeigt werden kann [AD94]. Dies liegt daran, dass die Auswahl der Pfade im abstrakten
und verfeinerten Verhalten unterschiedlich bestimmt werden können.

Die betrachteten Modelle können grundsätzlich nichtdeterministisches Verhalten aufweisen. Um
das Verhalten aber tatsächlich auf ein reales System umsetzen zu können, muss es eine Abbil-
dung in ein deterministisches Modell geben (da Rechnerarchitekturen deterministisch sind, bzw.
nur deterministisches Verhalten umsetzen können). Wie bereits in [MPS95, AMPS98, Sto02] ge-
zeigt wurde, lassen sich Timed Automata automatisch auf deterministische Automaten abbilden,
wodurch es entsprechend auch eine solche Abbildung für REAL-TIME STATECHARTS gibt.

Die in dieser Arbeit definierte Verfeinerung wird daher direkt für deterministisches Verhalten
beschrieben.

Wohldefinierte Architektur. Für zwei beliebige Strukturen und Verhalten ist es prinzipiell schwie-
rig eine Verfeinerung zu zeigen, wenn keine konkrete Verbindung zwischen den abstrakten und
konkreten Modellen vorliegt.

Durch die wohldefinierte Komponentenstruktur ist eine Verbindung zwischen den Komponen-
ten auf unterschiedlicher Hierarchieebene durch eine Delegation gegeben. Dies kann wiederum
für eine Verfeinerung des Verhaltens und der Strukturanpassung ausgenutzt werden, da die be-
teiligten Strukturen und die dazu gehörigen Verhaltensbeschreibungen eindeutig in Verbindung
stehen.

Anforderungen an die Verfeinerung. Die Merkmale der Anwendungsdomäne haben einen we-
sentlichen Einfluss auf die Verfeinerungsdefinition. In unserem Fall ist besonders hervorzuhe-
ben, dass wir sicherheitskritische Echtzeitsysteme betrachten. Hieraus folgt, dass Zeitbedingun-
gen und der Erhalt von Verifikationsergebnissen eine wichtige Rolle spielen. Zudem gibt es die
Forderung, möglichst viele existierende Lösungen wiederverwenden zu können. Damit ergeben
sich folgende Anforderungen an eine Verfeinerung:

1. Das extern sichtbare Protokoll (die Echtzeit-Nachrichtenkommunikation) des abstrakten
Protokolls muss durch das verfeinerte Protokoll erhalten bleiben.

2. Die auf dem abstrakten Protokoll durchgeführten Verifikationen sollen auch für die Ver-
feinerung gelten. Dies sind für einen kompositionellen Ansatz alle ATCTL Formeln. Das
sind alle TCTL-Formeln (Timed Computation Tree Logic, [ACD93]), die ausschließlich
Allquantoren und keine Negationen vor Allquantoren enthalten (siehe Abschnitt 2.4.6 und
2.4.7).

3. Die Verfeinerungsdefinition soll möglichst viele existierende Lösungen zu lassen, bzw.
möglichst viele Änderungen an dem abstrakten Protokollverhalten erlauben. Hierdurch
soll die Wiederverwendung existierender Lösungen und die Entwicklung von notwendigen
neuen verfeinerten Protokollverhalten vereinfacht werden.

Abbildung 3.4 verdeutlicht die Anforderungen an die Verfeinerung. Das PosCalc Protokollver-
halten soll zum einen das abstrakte Coordinator Protokollverhalten erfüllen und zum anderen
sollen die verifizierten Eigenschaften des Coordinator Protokollverhaltens für das PosCalc Pro-
tokollverhalten erhalten bleiben. Diese beiden Anforderungen lassen sich durch eine restriktive

71

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

Verfeinerung, die keine Änderung des Protokollverhaltens erlaubt, einfach erfüllen. Hiermit wird
allerdings die letzte Anforderung nicht erfüllt. In unserem Beispiel führt dies dazu, wie auch in
Abschnitt Beispielanwendung auf Seite 65 beschrieben, dass das PosCalc Protokollverhalten
keine gültige Verfeinerung des Coordinator Protokollverhaltens ist. Die im Folgenden Abschnitt
beschriebene Verfeinerung zeigt, wie diese kontroversen Anforderungen erfüllt werden können.

SendUpdates

UpdateCreatePort

updatePart(1)
addPart(n)?

addPart(n)?

P
os

C
al

c

Abstraktes Verhaltensmodell

Verfeinertes Verhaltensmodell

CPController

Idle

[1;1]{c1}

AwaitAck

Complete

[10;10]

[1;1]

[1;1]

[1;1]

done!

[this.parameter < n]

next[k+1]!

next[k]?

[this.parameter == n]

SendUpdate

ack() /

/update(para)

NoConvoy

createPort(1)! updatePort(1)
Side Effects: {c2} [1;1]

next[1]!
done?

[10;10]{c2}
portCreated? [1;1]

{c2} [1;1]

[10;20]

{c2}
Side Effects: updatePort(n)

createPort(n)!

initPort?

addPort(n)?

Erfüllung des Protokolls Erhalt verifizierter Eigenschaften

C
oo

rd
in

at
or

{c2}

Update

next[1]!
{c2} [1;1]

done?

{c2}

[1;1]

[10;20]

Side Effects:

Side Effects:

{c2} [10;10]

[1;1]

NoConvoy

partCreated?

updatePart(n)

CreatePart

IdleSendParam

AwaitAck

next[k]?

[1;1]{c1}

ComputeParam

[1;1]

[1;1]

[this.parameter == n]
done! ack() /

ack() /next[k+1]!

[this.parameter < n]

c1 ≤ 5

c2 ≤ 6000

c2 ≤ 60c2 ≤ 59

c2 ≤ 6000

c2 ≤ 59 c2 ≤ 60

c1 ≤ 200

c1 ≤ 20

c1 ≤ 200 c1 ≤ 35

c1 ≤ 5 c1 ≤ 25

c2 ≤ 6000

[0 ≤ c2 ≤ 10]

[0 ≤ c2 ≤ 10]
RCparam Coparam

[20 ≤ c1 ≤ 50]

[20 ≤ c1 ≤ 50]

/update(Coparam)

c2 ≤ 6000

Abbildung 3.4: Anforderungen an die Verfeinerung

3.1 Verfeinerungsdefinition

Zuerst betrachten wir im Folgenden eine Verfeinerung für Einfachelemente, die keine Struk-
turanpassung berücksichtigen. In diesem Fall muss nur eine Verfeinerung für das Verhalten
definiert werden. Für den Modellierungsansatz MECHATRONIC UML muss also eine Verfei-
nerung für REAL-TIME STATECHARTS definiert werden, die wir in Abschnitt 3.1.1 vorstel-
len. Für Multielemente muss nicht nur das Verhalten, sondern auch die Strukturanpassung
berücksichtigt werden. Daher definieren wir eine Verfeinerung für TIMED STORY CHARTS

72

3.1 Verfeinerungsdefinition

in Abschnitt 3.1.2, die genau dies berücksichtigt. Grundlegende Arbeiten hierzu wurden in
[HHG08, Hei09, HHZ09, HHH10, Bre10, HH11] vorgestellt.

3.1.1 Real-Time Statecharts

Die Anforderungen an eine Verfeinerung für REAL-TIME STATECHARTS ergeben sich aus dem
spezifischen Einsatz in der MECHATRONIC UML, wie in Abschnitt Anforderungen und Voraus-
setzungen auf Seite 67 beschrieben. Damit soll durch eine Verfeinerung das nach außen sichtbare
Verhalten und Verifikationsergebnisse erhalten bleiben. Weiterhin soll die Verfeinerung mög-
lichst viele Konkretisierungen zu lassen.

In Abschnitt 2.4.7 haben wir bereits relevante Verfeinerungen für die MECHATRONIC UML vor-
gestellt (die Timed Simulation, Timed Bismulation und Timed Ready Simulation). Diese erfüllen
allerdings nur zum Teil die gestellten Anforderungen. Die auf Simulationen basierenden Verfei-
nerungen erhalten zwar relevante Eigenschaften der Verifikation (≤S), jedoch wird hierdurch
nicht gefordert, dass sämtliches im abstrakten System mögliche Verhalten vom konkreten Sys-
tem ebenfalls unterstützt wird. Eine Timed Simulation erhält zudem die Zeitintervalle TA (≤TS)
der Abstraktion. Die Timed Ready Simulation bezieht sich zusätzlich zur Timed Simulation auf
den Erhalt von urgent-Transitionen (≤TRS). Die auf Bisimulation aufbauenden Verfeinerungen
erfüllen den Erhalt beider Richtungen (≤S und ≥S). Eine Timed Bisimulation erhält zudem die
Zeitintervalle (≤TBS).

All den zeitbehafteten Verfeinerungen ist gemein, dass sie keine Relaxierung der Zeitintervalle
erlauben. Wir werden daher eine relaxierte, zeitbehaftete Bisimulation einführen (Relaxed Timed
Bisimulation, RTBS), die die Voraussetzungen durch die MECHATRONIC UML ausnutzt, um
Zeitintervallverschiebungen zu erlauben. In Abbildung 3.5 haben wir zusammenfassend die Be-
ziehung zwischen der Relaxed Timed Bisumlation und der hiermit in Bezug stehenden (Timed)
Bisimulation dargestellt.

+ vollständige
Einhaltung
+ teilweise

Bisimulation Timed Bisimulation+ Einhaltung

Relaxed
Timed Bisimulation

Einhaltung

TA-Intervalle

TA-IntervalleTA-Intervalle

≈BS ≈TBS

≤RTBS

Abbildung 3.5: Beziehung zwischen RTBS und (Timed) Bisimulation

Um eine Überprüfung der Verfeinerung zu ermöglichen, die wir in Abschnitt 3.2 vorstellen,
betrachten wir im Folgenden eine Definition der Verfeinerung direkt über Clock Zones (siehe
Definition 6). Dies ermöglicht uns eine Implementierung der Verfeinerung über die Difference

73

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

Bound Matrice, die eine effiziente Repräsentation der Clock Zones durch eine Matrix zur Verfü-
gung stellen (siehe Abschnitt 2.4.2.1).

Um die Clock Zones direkt in der Verfeinerung zu berücksichtigen, müssen wir die Pfade des ex-
ternen Echtzeitverhaltens direkt darstellen. Hiermit können wir über die jeweiligen Intervalle und
deren Clock Zone argumentieren. Dies wird über sogenannte Timed Traces [YJ94] ermöglicht,
die wie folgt definiert sind.

Definition 15 (Timed Trace)
Sei M ein Timed Automaton (siehe Definition 1) mit extern sichtbaren Ereignissen (Nachrichten)
A = Ai ∪Ao mit Ai empfangene Nachrichten, Ao gesendete Nachrichten und A ⊆ Σ. Ein Timed
Trace ist ein Ausführungspfad π von M für den gilt:

π = (s0, t0)⇒δ0 (s0, t0 ⊕ δ0)⇒a0 (s1, t1)⇒δ1 (s1, t1 ⊕ δ1)...

wobei⇒δ0 dem Vergehenlassen einer Zeitspanne δ0 entspricht und⇒a0 einem Zustandswechsel
auf Basis einer Nachricht a0 ∈ A.

Ein Zustand eines Traces ist über Zones nach Definition 6 wie folgt definiert:

Definition 16 (Zustände eines Timed Trace)
Sei M ein Timed Automaton. Ein Zustand S eines Timed Trace ξ zu M ist eine Zone 〈s, z〉,
wobei s eine Location aus M und z eine Clock Zone ist. Es bezeichnet S.s die Location des
Timed Automaton und S.z die Clock Zone von S. Es bezeichnet weiterhin z.c die Menge der
Clock Constraints über die Clock c der Clock Zone z.

Die Beschränkung eines Timed Traces auf das extern sichtbare Verhalten führt dazu, dass die
Transitionen eines Timed Traces das interne Verhalten verbergen.

Definition 17 (Transitionen eines Timed Trace)
Seien S, T Zustände eines Timed Trace, ε das intern ausgeführte Verhalten der Transitionen und
di Zeitintervalle, dann gilt:

1. S ⇒a T falls S(⇒ε)
∗ ⇒a (⇒ε)

∗T

2. S ⇒δ T falls S(⇒ε)
∗ ⇒d1 (⇒ε)

∗...(⇒ε)
∗ ⇒dn (⇒ε)

∗T mit δ =
∑n

i=1 di

Mit Hilfe dieser Definition wird es ermöglicht, dass nach jeder extern sichtbaren Transition be-
liebig viele interne Transitionen geschaltet werden können (1.). Interne Transitionen können
z .B. Synchronisationen (wie next[k]) und Seiteneffekte (wie updatePort(n)) ausführen. Dieses
Prinzip wird ebenfalls in der Definition von der Stutter Verfeinerungen nach [BK08] angewandt.
Im Unterschied zu dieser Definition müssen wir das zeitliche Verhalten berücksichtigen.

Das extern sichtbare Zeitverhalten ist nicht nur von den Transitionen beeinflusst, die extern sicht-
bar sind (also die Transitionen eines Timed Trance), sondern auch von den anderen (internen)
Transitionen, die z.B. ein Clock Reset ausführen können. Dies ist z. B. der Fall bei dem Über-
gang des Zustands Idle nach ComputeParam des Kommunikationsverhaltens der PosCalc-Rolle

74

3.1 Verfeinerungsdefinition

(siehe Abbildung 3.1). 2. der Definition 17 stellt sicher, dass die internen Aktionen, die das zeit-
liche Verhalten beeinflussen, ebenfalls durch eine Transition eines Timed Trace berücksichtigt
werden.

Wie einleitend beschrieben, soll die Definition der Verfeinerung direkt über Clock Zones erfol-
gen, da hierdurch direkt der Zusammenhang mit der Implementierung der Verfeinerung ermög-
licht wird. Der in Definition 15 beschriebene Timed Trace angelehnt an der Definition von Yi
und Jonsson [YJ94] beschreibt, wie für die Verfeinerung benötigt, das extern sichtbare Verhal-
ten. Clock Zones werden in dieser Verfeinerung jedoch noch nicht berücksichtigt.

Nachdem die Zustände und Transitionen eines Timed Trace definiert wurden, stellen wir im
Folgenden eine Definition von Timed Traces vor, die auf diesen Definitionen basierend ebenfalls
Clock Zones berücksichtigen [HHH10]. In der Literatur sind zwei Definitionen für Clock Zones
weit verbreitet, die von Bengston und Yi [BY03] und Alur [Alu99]. Wir werden im Folgenden
aus beiden Definition die Elemente verwenden, die eine für Timed Traces einfache Berechnung
der Clock Zones ermöglichen. Wir werden uns daher für die Berechnung der Zones an Bengston
und Yi orientieren und für Clock Resets an der Definition von Alur.
Definition 18 (Timed Trace über Clock Zones)
SeiM ein Timed Automaton mit extern sichtbaren Ereignissen (Nachrichten)A = Ai∪Ao mitAi
empfangene Nachrichten und Ao gesendete Nachrichten, A ⊆ Σ und Z eine Menge von Clock
Zones über die Clocks C des Automaten. Ein Timed Trace ξ = (Sξ, Rξ) ist ein Ausführungspfad
von M mit Zuständen Sξ und Transitionen Rξ für den gilt:

ξ = 〈s0, z0〉 ⇒δ0 〈s0, z
↑
0〉 ⇒a0 〈s1, z1〉 ⇒δ1 〈s1, z

↑
1〉...

mit

1. z↑ = {z + d|z ∈ Z, d ∈ R+}
2. 〈s0, z0〉 ⇒δ0 〈s0, z

↑
0〉 entspricht 〈s0, z0〉 ⇒ 〈s0, z

↑
0∧I(s0)〉mit I(s0) Invariante von Zustand

s0.

3. 〈s0, z0〉 ⇒a0 〈s1, z1〉 entspricht 〈s0, z0〉 ⇒ 〈s1, ((z0 ∧ g)[λ := 0]) ∧ I(s1)〉 mit I(s1)
Invariante von s1, g Time Guard der Transition und λ eine Menge von Clocks λ ⊆ C, die
auf 0 zurückgesetzt werden.

4. ∀s ∈ Sξ : s.z ist nicht leer

Wie in 17 definiert, können die Transitionen eines Timed Trace über Clock Zones entweder Zeit
vergehen lassen (Delay Transition) oder ein Ereignis empfangen bzw. verschicken. Die Berech-
nung der Clock Zones gibt dabei an wann ein Zustand verlassen und betreten werden darf.

Im Fall einer Delay Transition muss für die Berechnung der Clock Zone entsprechend die Inva-
riante (siehe Definition 1) des Zustands berücksichtigt werden. Eine Invariante eines Zustands
gibt dabei für eine Clock eine obere Schranke durch eine Konstante oder eine andere Clock an
(siehe Definition 3 zu Clock Constraints). Die resultierende Clock Zone nach Anwendung der
Invarianten wird berechnet, in dem die Clock Zone des aktuellen Zustands mit den Invarianten
geschnitten wird (siehe Punkt 2 Definition 18).

75

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

Eine Transition die ein Ereignis empfängt oder versendet ist durch mehrere interne Operatio-
nen beschrieben, wie dies der Fall beim Schalten einer Transition eines Timed Automata nach
Definition 1 der Fall ist. Zum Berechnen der Clock Zone müssen folglich die Time Guards der
Transition (welche Schranken gelten für die Transition), die Clock Resets (welche Clocks wer-
den auf 0 zurück gesetzt) sowie die Invarianten des Zielzustands (welche Schranken gelten für
das Betreten des Zustands) berücksichtigt werden. Punkt 3 der Definition eines Timed Trace über
Clock Zones beschreibt dies, in dem zuerst die Clock Zone des aktuellen Zustands mit dem Ti-
me Guard g geschnitten wird, anschließend die Clock Resets λ angewandt werden und dann die
Invarianten des Zielzustands ebenfalls mit der aktuellen Clock Zone geschnitten werden.

Basierend auf der Definition der Timed Traces kann im Folgenden die Verfeinerung eines einzel-
nen Traces definiert werden, die Grundlage für die Verfeinerung von zwei Timed Automata sein
wird. In der Definition setzen wir voraus, dass die Namen der Nachrichten sowie Clocks eines
abstrakten Automaten a und eines verfeinerten Automaten k gleich benannt sind.

Definition 19 (Verfeinerter Trace)
Seien ξa = 〈Sξ,a, Rξ,a〉, ξk = 〈Sξ,k, Rξ,k〉 Timed Traces über Clock Zones (siehe Definition 18)
mit Startzuständen la,0, lk,0 für Timed Automata Ma,Mk. Sei Ω ⊆ Sa × Sk eine Abstraktions-
funktion, die eine Location aus Ma mit einer Location aus Mk assoziiert. Sei weiterhin D(s, c)
eine Relation, die zu einer Zone s und einer Clock c alle Clock Zones seit der letzten Nachricht
vor Zone s liefert, in denen die Clock c zurückgesetzt wurde. ξk ist ein verfeinerter Trace zu ξa,
ξk ≤ ξa, falls:

1. (la,0.s, lk,0.s) ∈ Ω und in la,0.z, lk,0.z sind alle Clocks 0

2. Für jede Transition ti ∈ Rξ,a mit sa ⇒ao s
′
a und Nachricht ao ∈ Ao existiert eine Transition

tj ∈ Rξ,k mit sk ⇒ao s
′
k, wobei (sa.s, sk.s) ∈ Ω, für die gilt

• (s′a.s, s
′
k.s) ∈ Ω

• Für alle Clocks c in s′a.z:
∑
{z|z∈D(s′a,c)} ubound(z.c) + ubound(s′a.z.c) =∑

{z|z∈D(s′k,c)}
ubound(z.c) + ubound(s′k.z.c)

3. Für jede Transition ti ∈ Rξ,a mit sa ⇒ai s
′
a mit ai ∈ Ai existiert eine Transition tj ∈ Rξ,k

mit sk ⇒ai s
′
k, wobei (sa.s, sk.s) ∈ Ω, für die gilt

• (s′a.s, s
′
k.s) ∈ Ω

• Für alle Clocks c in s′a.z:
∑
{z|z∈D(s′a,c)} ubound(z) + ubound(s′a.z) ≤∑

{z|z∈D(s′k,c)}
ubound(z) + ubound(s′k.z)

4. Alle externen Ereignisse (Nachrichten) sind in ξa und ξk über den gleichen Namensraum
definiert.

Die Verfeinerungsdefinition ist so aufgebaut, dass beginnend mit der Startlocation (Bedingung
1.) zu jeder Location des abstrakten Timed Trace eine korrespondierende Location im verfei-
nerten Timed Trace zugeordnet wird (Bedingung 2. und 3). Bedingung 2. und 3. fordern dies
entsprechend für die ein- und ausgehenden Nachrichten. Durch die Bedingung, dass die jeweils

76

3.1 Verfeinerungsdefinition

vorherige Location Teil der Funktion Ω ist, die die Location des abstrakten Trace mit dem verfei-
nerten in Beziehung setzt, wird sukzessive die Relation zwischen den beiden Traces aufgebaut.
Voraussetzung für diese Zuordnung ist, dass die Transitionen die gleichen Nachrichten verarbei-
ten.

Wie zu den Transitionen eines Timed Traces erläutert (siehe Definition 17) ist zwar für das extern
sichtbare Verhalten die Nachrichtenkommunikation der Timed Traces relevant, es müssen jedoch
auch die internen Transitionen berücksichtigt werden, um die Zeitintervalle mit richtiger oberer
Schranke zwischen zwei Zuständen eines Timed Trace zu bestimmen, die durch Clock Resets an
internen Transitionen beeinflusst werden können. ubound in Bedingung 2. und 3. liefert die obe-
ren Schranken der Clock Zones zwischen den Zuständen eines Timed Trace zurück, falls an den
internen Transitionen eine Clock Reset Operation durchgeführt wurde. Ein Timed Trace ist dann
eine gültige Verfeinerung, wenn die oberen Schranken des Sendeintervalls im Bezug zu dem ab-
strakten Timed Trace gleich bleiben (Bedingung 2.) und das Empfangsintervall mindestens die
gleiche obere Schranke besitzt (Bedingung 3.).

Für die Verfeinerung wird das Verhalten des Kommunikationspartners nicht explizit betrachtet.
Bedingung 2. über Clocks beim Versenden ist daher notwendig, da eine kleinere oder größere
obere Schranke dazu führen kann, dass der Kommunikationspartner die Nachricht(en) nicht mehr
rechtzeitig empfangen kann. Grund hierfür ist, dass der Kommunikationspartner potentiell die
obere Schranke beim Empfangen von Nachrichten des abstrakten Timed Trace berücksichtigt.

Zur Veranschaulichung betrachten wir folgende Timed Traces unserer Beispielanwendung aus
Abschnitt Beispielanwendung auf Seite 65:

ξ1
Coordinator = 〈Idle, c1 ≤ 200〉...⇒/update(para) 〈AwaitAck, c1 ≤ 25〉...

und
ξ1
PosCalc = 〈Idle, c1 ≤ 200〉...⇒/update(Coparam) 〈AwaitAck, c1 ≤ 20〉...

. In Ω sind enthalten (Idle, Idle) und (AwaitAck,AwaitAck).∑
{z|z∈D(AwaitAck,C1)Coordinator} ubound(z.c) ergibt 200, da ein Clock Reset zwischen Idle

und SendUpdate durchgeführt wird.
∑
{z|z∈D(AwaitAck,C1)PosCalc} ubound(z.c) ergibt 205,

die sich aus den Clock Resets zwischen Idle und ComputeParam und ComputeParam
und AwaitAck ergeben. Insgesamt ergibt sich damit für ξ1

Coordinator eine Summe von∑
{z|z∈D(AwaitAck,C1)Coordinator} ubound(z.c) + ubound(AwaitAck, C1) = 200 + 25 = 225.

Für ξ1
PostCalc ergibt sich eine Summe von

∑
{z|z∈D(AwaitAck,C1)PostCalc} ubound(z.c) +

ubound(AwaitAck, C1) = 205 + 20 = 225, womit ξ1
PostCalc eine Verfeinerung von ξ1

Coordinator

ist.

Beim Empfangen von Nachrichten ist eine Verkleinerung der oberen Grenze ausgeschlossen, da
der Kommunikationspartner, wie beim Versenden, potentiell das gesamte Intervall des abstrak-
ten Timed Trace ausnutzen kann. Es muss also auch beim Empfangen gefordert werden, dass die
obere Schranke eingehalten wird, wie Bedingung 3. fordert. Zusätzlich wird das Empfangsin-
tervall relaxiert, im dem die obere Schranke durch den verfeinerten Trace überschritten werden
darf. Voraussetzung für die Gültigkeit der Relaxierung ist eine asynchrone Echtzeitkommunika-
tion wie in Abschnitt Anforderungen und Voraussetzungen auf Seite 67 beschrieben. Unter der

77

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

Annahme, dass ein Nachrichtenpuffer mindestens die Größe eins hat und implizit ein Watchdog
Muster bei der Kommunikation implementiert wurde, womit nach dem Verschicken einer Nach-
richt nach einer bestimmten Zeit eine Antwort von dem Kommunikationspartner erwartet wird,
verletzt die Relaxierung nicht die abstrakte Kommunikation.

Zur Illustration für das Empfangen von Nachrichten betrachten wir folgende Timed Traces un-
serer Beispielanwendung:

ξ2
Coordinator = ...〈AwaitAck, c1 ≤ 25〉 ⇒ack()/ 〈Complete, c1 ≤ 35〉...

und
ξ2
PosCalc = ...〈AwaitAck, c1 ≤ 20〉 ⇒ack()/ 〈Idle, c1 ≤ 50〉...

. In Ω sind enthalten (AwaitAck,AwaitAck) und (Complete, Idle).∑
{z|z∈D(Complete,C1)Coordinator} ubound(z.c) ergibt 0, da kein Clock Reset zwischen

AwaitAck und Complete durchgeführt wird.
∑
{z|z∈D(Idle,C1)PosCalc} ubound(z.c)

ergibt ebenfalls 0. Insgesamt ergibt sich damit für ξ2
Coordinator eine Summe von∑

{z|z∈D(Complete,C1)Coordinator} ubound(z.c) + ubound(Complete, C1) = 0 + 35 = 35. Für
ξ2
PostCalc ergibt sich eine Summe von

∑
{z|z∈D(Idle,C1)PostCalc} ubound(z.c)+ubound(Idle, C1) =

0 + 50 = 50. ξ2
PostCalc ist nach Definition 19 eine Verfeinerung von ξ2

Coordinator, da für das
Empfangen die obere Schranke in dem verfeinerten Timed Trace ≥ der oberen Schranke im
abstrakten Timed Trace sein darf.

Abbildung 3.6 verdeutlicht die möglichen Relaxierungen. Um Überschneidungen zu vermeiden,
muss die Obergrenze des Empfangsintervalls kleiner sein als die Untergrenze des Sendeinter-
valls. Unter der Annahme, dass es sich um die oben beschriebene Klasse von Kommunikations-
mustern für Systeme mit harten Echtzeitanforderungen handelt, tritt diese mögliche Verletzung
nicht auf, da sich Senden und Empfangen von Nachrichten immer abwechseln. Genau genom-
men gilt dies auch für mehrere zu empfangende Nachrichten, so lange diese alle durch den Puffer
aufgenommen werden können. Gelten diese Voraussetzungen nicht, so darf die Obergrenze für
das Empfangen von Nachrichten nicht überschritten werden.

ub: Obergrenze Zeitintervall

Empfangsintervall Sendeintervall

lb ubAbstraktion

Verfeinerung

lb ub

muss

beliebig

beliebig

Legende:

lb: Untergrenze Zeitintervall

Abbildung 3.6: Zeitintervall-Verfeinerung

Hieraus kann gefolgert werden, dass je nach verwendetem Protokoll auch unterschiedliche Re-
laxierungen für das Empfangsintervall angewandt werden können. Wir werden im Folgenden
die Relaxierung näher betrachten, in der die Obergrenze für das Empfangen des abstrakten Ver-
haltens auch überschritten werden darf. Die beschriebene Einschränkung lässt sich allerdings

78

3.1 Verfeinerungsdefinition

einfach ableiten, in dem die Obergrenze des Empfangsintervalls des abstrakten Verhaltens nicht
nur verpflichtend ist, sondern auch nicht überschritten werden darf.

Im Folgenden werden wir auf der Grundlage der Verfeinerung eines Timed Traces eine Verfeine-
rung für zwei Timed Automata definieren. Gerade durch Wiederverwendung bereits vorhande-
ner Protokolle, kann es grundsätzlich möglich sein, dass eine Verfeinerung auch mehr externes
Verhalten anbietet als ein abstraktes Verhalten. Daher definieren wir vorab einen Schnittstellen-
beschränkten Automaten basierend auf [Gie03], den wir in der Verfeinerung für zwei Timed
Automata berücksichtigen.

Definition 20 (Schnittstellen-beschränkter Automat)
Sei Mk = (Sk, S

0
k , Tk, Invk, Ak, Ck) ein Timed Automaton mit externen Ereignissen (Nach-

richten) Ak = Ai,k ∪ Ao,k mit Ai,k empfangene Nachrichten und Ao,k gesendete Nachrich-
ten. Sei Ma ein Timed Automaton, der eine abstrakte Schnittstelle über Nachrichten A =
Ai ∪ Ao mit Ai empfangene Nachrichten und Ao gesendete Nachrichten repräsentiert. Falls gilt
Ai ⊆ Ai,k und Ao ⊆ Ao,k, dann kann ein Schnittstellen- beschränkter Automat Int(Mk) =
(Sint, S

0
int, Tint, Invint, Aint, Cint) zu Mk gebildet werden mit:

• Sint = Sk

• S0
int = S0

k

• Aint = A

• Invint = Invk

• Cint = Ck

• Tint = Tk \ {(l, a, g, r, l′)|a ∈ Ak \ A}}

Ein Schnittstellen-beschränkter Automat ist demnach dadurch charackterisiert, dass die Transi-
tionen eines Automaten entfernt werden, die Nachrichten anbieten, die nicht Teil der Schnittstelle
sind.

Als Hilfsmittel definieren wir im Folgenden zudem das extern sichtbare Verhalten über Timed
Traces.

Definition 21 (Extern sichtbares Verhalten)
Das extern sichtbare Verhalten eines Timed Automaton M entspricht der Menge seiner Timed
Traces Trace(M).

Die Verfeinerung für zwei Timed Automata sei damit wie folgt definiert:

Definition 22 (Verfeinerung)
Seien Ma,Mk Timed Automata mit externem Verhalten Trace(Ma) bzw. Trace(Mk). Sei Mint

ein Schnittstellen-beschränkter Automat zu Mk. Mk ist eine Verfeinerung von Ma, Mk ≤ Ma,
falls

1. für jeden Trace ξk ∈ Trace(Mint) ein Trace ξa ∈ Trace(Ma) mit ξk ≤ ξa existiert und

79

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

2. ¬∃ξk ∈ Trace(Mint) : succ(s) = ∅ für einen Zustand s ∈ ξk mit Nachfolgezustand
succ(s) und

3. jeder Trace aus Trace(Ma) überdeckt wurde. Eine Menge von Timed Traces (siehe Defi-
nition 18) ist überdeckt, wenn für jeden Trace zwischen je zwei Nachrichten ein Zustand in
der Menge der korrespondierenden Zustände enthalten ist.

Die Verfeinerung soll nach Abschnitt Anforderungen und Voraussetzungen auf Seite 71 folgende
Anforderungen erfüllen: 1) Erhalt des extern sichtbaren Protokollverhalten, 2) erhalt der Verifi-
kationsergebnisse und 3) möglichst viele Konkretisierungen zu lassen.

Anforderung 1) wird erfüllt, da Bedingung 3. fordert, dass alle Timed Traces des abstrakten
Protokolls durch die Verfeinerung ebenfalls angeboten werden. Durch Bedingung 1. wird zudem
sichergestellt, dass die Schnittstellen-beschränkte Verfeinerung auch nicht mehr Timed Traces
anbietet als dies der Fall für das abstrakte Verhalten ist. Eine Ordnung über die Nachrichten wird
zudem zugesichert.

Lemma 1
Gegeben seien zwei beliebige Timed Traces ξa mit Nachrichtenordnung a1, a2, ..., an und Timed
Trace ξk mit ξk ≤ ξa, dann gilt, dass ξk ebenfalls die Nachrichtenordnung a1, a2, ..., an einhält.

Beweis 1
Die sukzessive Konstruktion einer Verfeinerung zweier Timed Traces nach Definition 19 garan-
tiert, dass in Ω nur korrespondierende Zustandspaare aufgenommen werden, die über die glei-
chen Nachrichtenfolgen erreicht werden. �

Zusammen durch Bedingung 1. und 3. wird eine Bisimulation durch Nutzung einer Weak Tran-
sition Relation definiert [HH11]. Durch eine Weak Transition Relation wird sich auf Transiti-
onsfolgen bezogen, die im Bezug auf das extern sichtbare Verhalten äquivalent sind. Durch eine
Bisumlation wird zum einen verboten, dass eine Verfeinerung zusätzliches Verhalten gegenüber
der Abstraktion anbietet und zum anderen, dass sämtliches mögliches Verhalten der Abstrakti-
on durch die Verfeinerung unterstützt wird. Hierdurch bleiben CTL Formeln erhalten und die für
einen kompositionalen Ansatz erforderlichen ACTL Formeln [CGP00]. Eine Timed Bisimulation
wird für die spätesten Zeitpunkte zu denen eine Nachricht verschickt definiert und damit bleiben
hierfür TCTL Formeln erhalten [TY01] und entsprechend auch ACCTL Formeln [Gie03]. Für
zu empfangende Nachrichten können im Allgemein Zeit-Formeln nicht erhalten bleiben, da die
Schranke hierfür nach oben erhöht werden kann. Um Time Stopping Deadlocks auszuschließen,
wird Bedingung 2. gefordert.

Anforderung 3) wird durch die Definition einer relaxierten Bisimulation adressiert. Hierdurch
wird im Vergleich zu den bisherigen Timed (Bi-) Simulationen eine Verschiebung des Emp-
fangsintervalls erlaubt, ohne dabei den Erhalt des externen Protokollverhaltens zu verletzen.

80

3.1 Verfeinerungsdefinition

3.1.2 Timed Story Charts

Im vorherigen Abschnitt wurde eine Verfeinerung für Protokollverhalten basierend auf REAL-
TIME STATECHARTS vorgestellt, mit denen Ports der Multiplizität eins betrachtet werden kön-
nen. Um Multielemente zu betrachten, die eine dynamische Änderung der Kommunikationss-
truktur ermöglichen, müssen wir neben dem Echtzeitverhalten auch mögliche Strukturanpass-
ungen in einer Verfeinerung berücksichtigen. Dies ist notwendig, da eine korrekte Verfeinerung
des Statechartverhaltens nicht ausreichend ist, wenn die (kompositionale) Strukturanpassung der
Kommunikationsstruktur in der Verfeinerung zu spät ausgeführt wird.

Wir werden in diesem Abschnitt die Verfeinerung für Einfachelemente auf Multielemente er-
weitern. Technisch soll die Verfeinerung von REAL-TIME STATECHARTS auf TIMED STORY

CHARTS (siehe Abschnitt 2.6.4) übertragen werden, die für eine dynamische Änderung der Kom-
munikationsstruktur ausgelegt sind.

Um eine Verfeinerung für TIMED STORY CHARTS zu beschreiben definieren wir Analog zu der
Verfeinerung für REAL-TIME STATECHARTS Timed Traces über Clock Zones für TIMED STO-
RY CHARTS. Die Semantik der TIMED STORY CHARTS wird über zeitbehaftete Graphtransfor-
mationssysteme nach Hirsch [Hir08] beschrieben. Im Folgenden erweitern wir die Definition von
Hirsch für zeitbehaftete Graphtransformationssysteme um die explizite Betrachtung von Clock
Zones. Zuerst beginnen wir mit der Definition eines zeitbehafteten Graphen.

Definition 23 (Zeitbehafteter Graph)
Ein zeitbehafteter Graph Gt := (G,C,Z) ist ein Tripel bestehend aus einem Objektgraphen G,
einer Anzahl von Clock-Instanzen C und einer Menge von Clock Zones Z über die Elemente aus
C.

Die Definition berücksichtigt zum einen direkt Clock Zones und zum anderen wie in Definition
10 beschrieben eine Typisierung der Objektgraphen über ein Klassendiagramm. Die Clock Zones
beschreiben über Clock-Instanzen Bedingungen über die Clocks, wie dies Analog für Zustände
eines Timed Transition Systems der Fall ist. Ein zeitbehaftetes Graphtransformationssystem lässt
sich damit wie folgt definieren.

Definition 24 (Zeitbehaftetes Graphtransformationsystem)
Ein zeitbehaftetes Graphtransformationssystem Gt = (Gt, G

0, TR, IR) besteht aus einer Men-
ge an zeitbehafteten Graphen Gt, einem Startgraphen G0, einer Menge von Schaltregeln TR
und einer Menge von Invariantenregeln IR. Die Menge GRAPHGt beschreibt die Menge aller
zulässiger zeitbehafteter Graphen.

Für die hier betrachteten TIMED STORY CHARTS wird als Typgraph das Metamodell der Kom-
ponenten aus Abbildung 2.20 sowie dessen Statechart Metamodell aus Abbildung 2.27 verwen-
det. Wie in Abschnitt 2.6.4 beschrieben, werden PARAMETERIZED REAL-TIME STATECHARTS

auf TIMED STORY CHARTS abgebildet. Diese Abbildung beschreibt unter anderem, wie Nach-
richten und Clocks auf Objekte der Statechart Metamodell Klasse abgebildet werden. Hierüber

81

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

wird es ermöglicht im Folgenden analog zu der Verfeinerungsdefinition für REAL-TIME STATE-
CHARTS ebenfalls über Nachrichten und Clocks zu argumentieren. Damit ist die Grundlage ge-
schaffen, um zunächst einen Zustand eines Timed Trace für TIMED STORY CHARTS zu definie-
ren.
Definition 25 (Zustand eines Timed Trace für TIMED STORY CHARTS)
Sei Gt = 〈Gt, G

0, TR, IR〉 ein zeitbehaftetes Graphtransformationssystem gemäß Definition 24.
Ein Zustand S eines Timed Trace zu Gt ist eine Zone 〈g, z〉 mit g ∈ GRAPHGt und z die
dazugehörige Clock Zone. Es bezeichnet S.g den Objektgraphen und S.z die Clock Zone von S.
Es bezeichnet weiterhin z.c die Menge der Clock Constraints über die Clock c in z.

Nach Definition 16 werden die Zustände eines Timed Traces ξ eines Timed Automaton M über
eine Zone 〈s, z〉 beschrieben, wobei s eine Location aus M ist und z eine Clock Zone. Im Ver-
gleich hierzu ist ein Zustand eines Timed Trace für TIMED STORY CHARTS über einen Ob-
jektgraphen g ∈ GRAPHGt definiert. Da sich die Definition einer Transition hierdurch nicht
ändert, wird im Folgenden für Transitionen eines Timed Traces Definition 17 benutzt. Weiter-
hin bezeichne im Folgenden A = Ai ∪ Ao, mit Ai empfangene Nachrichten und Ao gesendete
Nachrichten, die extern sichtbaren Nachrichten eines TIMED STORY CHARTS, die über das Me-
tamodell aus Abbildung 2.27 definiert wurden. Ein Timed Trace für TIMED STORY CHARTS ist
damit wie folgt definiert.

Definition 26 (Timed Trace eines Timed Story Charts)
Sei Gt = 〈Gt, G

0, TR, IR〉 ein zeitbehaftetes Graphtransformationssystem gemäß Definition 24
mit extern sichtbaren Ereignissen (Nachrichten) A = Ai ∪ Ao des TIMED STORY CHARTS mit
Ai empfangene Nachrichten und Ao gesendete Nachrichten und Z eine Menge von Clock Zones
über Clock-Instanzen C. Ein Timed Trace ξ = (Sξ, Rξ) ist eine Folge von Regelanwendungen
aus TR mit Zuständen Sξ und Transitionen Rξ für den gilt:

ξ = 〈g0, z0〉 ⇒δ0 〈g0, z
↑
0〉 ⇒a0 〈g1, z1〉 ⇒δ1 〈g1, z

↑
1〉...

mit

• z↑ = {z + d|z ∈ Z, d ∈ R+}
• 〈g0, z0〉 ⇒δ0 〈g0, z

↑
0〉 entspricht 〈g0, z0〉 ⇒ 〈g0, z

↑
0 ∧ I(g0)〉 mit I(g0) ist eine auf g0 an-

wendbare Invariante

• 〈g0, z0〉 ⇒a0 〈g1, z1〉 entspricht 〈g0, z0〉 ⇒ 〈g1, ((z0 ∧ g)[λ := 0]) ∧ I(g1)〉 mit I(g1) ist
eine auf g1 anwendbare Invariante, g ist ein Time Guard der Transition und λ eine Menge
von Clock-Instanzen λ ⊆ C, die auf 0 zurückgesetzt werden.

• ∀s ∈ Sξ : s.z ist nicht leer

Nach Definition 18 ist ein Timed Trace ξ = (Sξ, Rξ) eines Timed Automaton M definiert als
ein Ausführungspfad von M mit Zuständen Sξ und Transitionen Rξ. Im Unterschied zu dieser
Definition wird ein Timed Trace eines TIMED STORY CHARTS über eine Folge von Regelan-
wendungen aus TR definiert, die das Schalten einer Transition und das Vergehen von Zeit be-
schreiben. Zudem wird eine Invariante im Vergleich zu der Definition für Timed Automata in

82

3.1 Verfeinerungsdefinition

Form eines Graphen definiert (siehe Abschnitt A.1.7) und Clock Resets werden über Objek-
te vom Typ ClockReset definiert (siehe Abschnitt A.1.9). Das extern sichtbare Verhalten eines
TIMED STORY CHARTS können wir damit wie folgt beschreiben.
Definition 27 (Extern sichtbare Verhalten)
Das extern sichtbare Verhalten eines zeitbehafteten Graphtransformationssystems G, dessen
Transformationsregeln über ein TIMED STORY CHART beschrieben sind, entspricht der Menge
seiner Timed Traces Trace(G).

In der Definition werden explizit die Transformationsregeln eines TIMED STORY CHARTS be-
rücksichtigt. Da PARAMETERIZED REAL-TIME STATECHARTS auf TIMED STORY CHARTS ab-
gebildet werden können, ist hierdurch direkt ein Bezug zu der Protokollbeschreibung von Mul-
tielementen gegeben. Ein verfeinerter TIMED STORY CHART Trace lässt sich damit wie folgt
definieren.
Definition 28 (Verfeinerter Trace)
Seien ξa = 〈Sξ,a, Rξ,a〉, ξk = 〈Sξ,k, Rξ,k〉 Timed Traces für zeitbehaftete Graphtransformations-
systeme Gat = 〈Ga

t , G
0
a, TRa, IRa〉 und Gkt = 〈Gk

t , G
0
k, TRk, IRk〉. Sei abs : Gkt → Gat eine Ab-

straktionsfunktion, die Objekte aus Gkt mit Objekten aus Gat assoziiert. Sei weiterhin Dreset(s, c)
eine Relation, die zu einer Zone s und einer Clock c alle Clock Zones seit der letzten Nachricht
vor Zone s liefert, in denen die Clock c zurückgesetzt wurde. ξk ist ein verfeinerter Trace zu ξa,
ξk ≤ ξa, falls:

1. G0
a ⊆ abs(G0

k) und in sa,0.z, sk,0.z sind alle Clocks 0

2. Für jede Transition ti ∈ Rξ,a mit sa ⇒ao s
′
a mit Nachricht ao ∈ Ao existiert eine Transition

tj ∈ Rξ,k mit sk ⇒ao s
′
k, wobei sa.g ⊆ abs(sk.g), für die gilt

• s′a.g ⊆ abs(s′k.g)

• Für alle Clocks c in s′a.z:
∑
{z|z∈D(s′a,c)} ubound(z.c) + ubound(s′a.z.c) =∑

{z|z∈D(s′k,c)}
ubound(z.c) + ubound(s′k.z.c)

3. Für jede Transition ti ∈ Rξ,a mit sa ⇒ai s
′
a mit ai ∈ Ai existiert eine Transition tj ∈ Rξ,k

mit sk ⇒ai s
′
k, wobei sa.g ⊆ abs(sk.g), für die gilt

• s′a.g ⊆ abs(s′k.g)

• Für alle Clocks c in s′a.z:
∑
{z|z∈D(s′a,c)} ubound(z) + ubound(s′a.z) ≤∑

{z|z∈D(s′k,c)}
ubound(z) + ubound(s′k.z)

4. Alle externen Ereignisse (Nachrichten) sind in ξa und ξk über den gleichen Namensraum
definiert.

Im Unterschied zu Definition 19 (verfeinerter Trace eines Timed Automaton) wird hier basierend
auf Definition 25 die korrespondenz zwischen zwei Zuständen über eine Abstraktionsfunktion
abs definiert, die die Objekte aus Gkt mit denen der Objekte aus Gat verbindet. Über die Teil-
mengenrelation wird sichergestellt, dass alle strukturellen Elemente, wie Ports oder auch PARA-
METERIZED REAL-TIME STATECHARTS Instanzen, sowohl im abstrakten wie auch konkreten

83

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

Verhalten existieren. Eine strukturelle Verfeinerung über eine Teilmengenrelation zu beschreiben
wurde bereits durch Heckel und Thöne in [HT04, HT05] vorgestellt. Die dort definiert Verfeine-
rung basiert jedoch rein auf der Struktur und der Abfolge der erzeugten Graphen, ohne Betrach-
tung von (Echtzeit-) Verhalten oder den Erhalt von Verifikationsergebnissen.

In der MECHATRONIC UML wird eine Beziehung zwischen den strukturellen Elementen durch
eine Delegation, die Ports der äußeren Komponente mit den Ports der eingebetteten Parts verbin-
det, beschrieben. Da die Rollen der Muster ebenfalls eindeutig in Beziehung mit deren Anwen-
dung durch Komponenten-Ports stehen, wird hier ebenfalls eine Korrespondenz zwischen den
Strukturen beschrieben. Eine gültige Strukturverfeinerung liegt dann vor, wenn zu jedem Port ei-
nes abstrakten Protokolls ein verfeinerter Port existiert. Ein Beispiel zeigt Abbildung 3.7. Nach
der gegeben Definition entspricht damit Instanzsituation (a) einer gültigen Verfeinerung und (b)
nicht.

co:Coordinator

p1:PosCalc

p2:PosCalc

(a) (b)

co:Coordinator

p1:PosCalc

p2:PosCalc

?

Abbildung 3.7: Beispiel für eine Strukturverfeinerung: (a) zeigt eine gültige Strukturverfeine-
rung, (b) eine ungültige

Analog zu der Verfeinerung für REAL-TIME STATECHARTS definieren wir im Folgenden basie-
rend auf der Definition 28 eines verfeinerten Timed Trace eine Verfeinerung für TIMED STORY

CHARTS, die entsprechend über alle Timed Traces argumentiert.

Definition 29 (Verfeinerung)
Seien Gat ,Gkt zeitbehaftete Graphtransformationssysteme mit externem Verhalten Trace(Gat) bzw.
Trace(Gkt). Gkt ist eine Verfeinerung von Gat , Gkt ≤ Gat , falls

1. für jeden Trace ξk ∈ Trace(Gkt) ein Trace ξa ∈ Trace(Gat) mit ξk ≤ ξa existiert und

2. ¬∃ξk ∈ Trace(Gkt) : succ(s) = ∅ für einen Zustand s ∈ ξk mit Nachfolgezustand succ(s)
und

3. jeder Trace aus Trace(Gat) überdeckt wurde.

Verfeinerungsdefinition 29 ist aufgebaut wie die Verfeinerungsdefinition 22 für REAL-TIME

STATECHARTS. Zusammen durch Bedingung 1 und 3 wird ebenfalls eine Bisimulation unter Be-
rücksichtigung einer Weak Transition Relation definiert [HH11]. Ebenfalls analog zu der Verfei-

84

3.1 Verfeinerungsdefinition

nerungsdefinition für REAL-TIME STATECHARTS kann durch Anwendung einer Schnittstellen-
Beschränkung (siehe Definition 20) nicht ausgeschlossen werden, dass Deadlocks entstehen. Es
muss entsprechend sichergestellt werden, dass jeder Zustand im Trace einen Nachfolgezustand
hat. Bedingung 2 stellt dies sicher. Wie zu der Verfeinerungsdefinition für REAL-TIME STATE-
CHARTS argumentiert, werden durch diese Verfeinerung ebenfalls die Anforderungen wie in Ab-
schnitt Anforderungen und Voraussetzungen auf Seite 71 beschrieben erfüllt. Für Details sei der
Leser auf die Diskussion zu Definition 22 auf Seite 79 verwiesen. Darüber hinaus wird durch De-
finition 28 eine strukturelle Verfeinerung beschrieben, womit zudem eine dynamische Änderung
der Kommunikationsstruktur durch die Verfeinerung berücksichtigt wird.

3.1.3 Diskussion

Die in den vorherigen Abschnitten vorgestellte Verfeinerung für REAL-TIME STATECHARTS

und TIMED STORY CHARTS erhält Verifikationsergebnisse des abstrakten Verhaltens sowie das
extern sichtbare Echtzeitkommunikationsverhalten. Bisherige Ansätze unterstützen keine Struk-
turanpssungen (z. B. [JLS00]), keine explizite Zeitbetrachtung (z. B. [JLS00, GRPS02, HT05,
Gie07]) oder ermöglichen nur eine statische Analyse (z. B. [GRPS02, Gie07]), die keine Rela-
xierung ermöglicht. Der vorgestellte Ansatz ermöglicht durch die explizite Betrachtung von Zeit
eine Verfeinerung, in der Zeitintervalle relaxiert werden können. Da der TIMED STORY CHARTS

Formalismus sowohl Zeit, wie auch Strukturanpassungen berücksichtigt, werden die geforderten
Anforderungen selbstoptimierender, mechatronischer Systeme erfüllt. Das Connector-Verhalten
wurde in den Definitionen nicht explizit berücksichtigt. Dies kann jedoch einfach parallel zu dem
Rollenverhalten geschaltet werden, wodurch die Verfeinerungsdefinition nicht beeinflusst wird.

Wie in [ACH94, AD90] beschrieben, ist im allgemeinen Fall die Verifikation der Verfeinerung
über eine Teilmenge der Traces für Timed Automata nicht entscheidbar. Nicht-Determinismus
sowie eine potentiell unendliche Menge an Timed Traces ([AD90, ACH94, YJ94]) sind die
Gründe hierfür. Durch die beschriebenen Voraussetzungen aus dem modellbasierten Ansatz der
MECHATRONIC UML (vgl. Abschnitt Anforderungen und Voraussetzungen auf Seite 67) kann
aber eine Entscheidbarkeit erreicht werden. Nach Voraussetzung gibt es zu einem Automaten
(oder TIMED STORY CHART) mindestens eine gültige deterministische Verfeinerung oder das
abstrakte Verhalten ist deterministisch. Weiterhin ist die Menge (Anzahl) der Timed Traces und
Zustände endlich. Wie in [ACH94, AD90] beschrieben kann unter diesen Voraussetzungen die
Entscheidbarkeit der Verfeinerung gefolgert werden.

In den bisherigen untersuchten Anwendungen des RailCabs (siehe auch [May09]), können die
hier beschriebenen Verfeinerungskonzepte angewendet werden. Hieraus ist aber auch zu erken-
nen, dass es generell nicht die eine „ideale“ Verfeinerung für eine Anwendungsdomäne gibt. In
der Masterarbeit von Christan Brenner [Bre10] wurde daher eine Generalisierung der hier vorge-
stellten Verfeinerungen zu einer parametrisierten Verfeinerung vorgeschlagen. Idealerweise kann
hiermit werkzeuggestützt den konkreten Anforderungen entsprechend eine Verfeinerungsbezie-
hung vorgeschlagen und überprüft werden.

85

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

3.2 Verfeinerungsüberprüfung

Nachdem wir im vorherigen Abschnitt eine Verfeinerung für REAL-TIME STATECHARTS und
TIMED STORY CHARTS definiert haben, werden wir in diesem Abschnitt eine Überprüfung
der Verfeinerung vorstellen. Wie bereits in Abschnitt 3.1.3 diskutiert, wurde die Verfeinerung
möglichst flexibel durch eine Relaxierung von Zeitintervallen ausgelegt, um eine große An-
zahl an Wiederverwendungen zu ermöglichen. Damit ist allerdings auch keine statische Ana-
lyse möglich, wie dies z. B. in [GRPS02] vorgestellt wurde. Für unseren Ansatz müssen wir
den möglichen Konfigurationsraum aufbauen. Dies wird klassisch durch eine Erreichbarkeits-
analyse ermöglicht (siehe z.B. [BK08]), die wir im Folgenden vorstellen. Anschließend werden
in Abschnitt 3.2.2 eine Verifikation der Verfeinerung basierend auf der Erreichbarkeitsanalyse
vorstellen. Im Folgenden werden wir die Verfeinerungsüberprüfung für TIMED STORY CHARTS

zeigen. Diese lässt sich ebenfalls auf die der REAL-TIME STATECHARTS anwenden, da die-
se lediglich den Sonderfall einer eins zu eins Multiplizität zwischen den Strukturen (Ports und
Statechart-Instanzen) darstellen.

3.2.1 Erreichbarkeitsanalyse

Um den möglichen Konfigurationsraum für TIMED STORY CHARTS zu berechnen, nutzen wir
eine Erreichbarkeitsanalyse aus. Da unser Ansatz kompositionale Strukturanpassungen berück-
sichtigt, können wir nicht direkt auf klassische Ansätze für rein zeitbehaftetes Verhalten zurück-
greifen, wie z.B. in [BY03] vorgestellt. In [Hir08] wurde eine Erreichbarkeitsanalyse für zeit-
behaftete Graphtransformationssysteme (Timed Graph Transformation Systems - TGTS) vorge-
stellt, die wir für die Erreichbarkeitsanalyse von TIMED STORY CHARTS anwenden. Dies ist
möglich, da wie in Abschnitt 2.6.4 und 3.1.2 beschrieben TIMED STORY CHARTS auf der Se-
mantik von TGTS basieren.

Ausgangspunkt für die Erreichbarkeitsanalyse ist ein Timed Transition System, welches die er-
reichbaren Zustände unter Berücksichtigung der zeitlichen Bedingungen darstellt. Definition 4
beschreibt dieses für Timed Automata. Hirsch hat dieses Konzept in [Hir08] auf TGTS über-
tragen. Im Folgenden geben wir die notwendigen Definitionen für die Erreichbarkeitsanlyse ba-
sierend auf der von TGTS wieder. Im Unterschied zu der Verfeinerungsdefinition, in der die
Betrachtung des extern sichtbaren Verhalten inhärent ist und dadurch über Timed Traces defi-
niert wurde, bietet sich für die Verfeinerungsüberprüfung die Darstellung des erreichbaren Ver-
haltens über ein Timed Transition System an. Grund hierfür ist, dass im Vergleich zu Timed
Traces isomorphe Zustände, womit bereits identifizierte Zustände identifiziert werden, nur ein-
mal dargestellt werden. Im Folgenden definieren wir zuerst einen Zustand eines zeitbehafteten
Transitionssystems.

Definition 30 (Zustand eines zeitbehafteten Transitionssystems)
Sei Gt = 〈Gt, G

0, TR, IR〉 ein zeitbehaftetes Graphtransformationssystem gemäß Definition
24. Ein Zustand eines zeitbehafteten Transitionssystems zu Gt ist ein Tupel s = 〈g, z〉 mit g ∈
GRAPHTG und einer Clock Zone z.

86

3.2 Verfeinerungsüberprüfung

Um bereits erreichte Zustände zu identifizieren, werden für TGTS isomorphe Zustände definiert.
Dies ist analog zu gleichen Zuständen eines Timed Transition Systems für Timed Automata der
Fall, wenn die Graphen, die eine Konfiguration präsentieren, isomorph sind und sie die gleichen
Clock Zones besitzen.

Definition 31 (Isomorphe Zustände)
Zwei Zustände S1 = 〈G1, Z1〉, S2 = 〈G2, Z2〉 eines zeitbehafteten Transitionssystems sind iso-
morph, gdw. G1 ≡ G2 und Z1 = Z2.

Ein erreichbares Timed Transition System für TGTS ist damit wie folgt definiert.

Definition 32 (Erreichbares zeitbehaftetes Transitionssystem)
Sei Gt = 〈TG,G0, TR, IR〉 ein zeitbehaftetes Graphtransformationssystem gemäß Definition 24
und Z eine Menge von Clock Zones. Das erreichbare zeitbehaftete Transitionssystem ETTS mit
Startzustand s0 zu Gt ist ein 2-Tupel (V,E) mit

• V = {s′ = 〈g, z〉|g ∈ GRAPHTG ∧ s0
∗→ s′, z ∈ Z} ist eine Menge von Zuständen, die

vom Startzustand aus erreichbar sind.

• s0 ∈ V = 〈G0, z0〉, wobei z0 die Clock Zone ist, in der alle Clocks den Wert 0 haben.

• E = {(s1, s2)|s1, s2 ∈ V ∧ s1
r→ s2 ∧ r ∈ TR} ∪ {(s1, s2)|s1, s2 ∈ V ∧ s1

δ→ s2} ist eine
Menge von Transitionen.

Damit kann eine Erreichbarkeitsanalyse analog zu [Hir08] durchgeführt werden. Diese nutzt je-
doch die Definition von Alur [Alu99] aus, um Folgezustände zu berechnen. Hiermit ist es nicht
möglich die Reihenfolge in der Clock Zones erreicht werden bei gleichen Zuständen zu unter-
scheiden (diese werden in einem solchen Fall über Federations vereinigt). Zudem ist es hier-
mit auch nicht möglich explizit zwischen Delay- und Action-Transitionen zu differenzieren. Die
Verfeinerungsdefinition 32 für TIMED STORY CHARTS setzt dies jedoch voraus. Da die Defini-
tion von Bengtsson und weitere [BY03] genau diese Unterscheidungen ermöglichen, nutzen wir
diese im Unterschied zu [Hir08] in der Erreichbarkeitsanalyse für TIMED STORY CHARTS zur
Berechnung von Folgezuständen (Konfigurationen) aus.

Da die Definition der Verfeinerung auf Timed Traces basiert müssen wir folglich noch zeigen,
dass die Menge der Pfade eines Timed Transition Systems für TIMED STORY CHARTS der Men-
ge seiner Timed Traces entspricht.

Theorem 1
Für ein TIMED STORY CHART gilt, dass die Menge der Pfade seines zeitbehafteten Transitions-
systems genau der Menge der Timed Traces entspricht.

Beweis 2
Sei Gt = 〈Gt, G

0, TR, IR〉 ein zeitbehaftetes Graphtransformationssystem gemäß Definition 24.
Ein Timed Trace ξ = (Sξ, Rξ) ist nach Definition 26 eine Folge von Regelanwendungen aus
TR mit Zuständen Sξ und Transitionen Rξ. Nach Definitionen 25 und 30 sind die Zustände

87

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

von Traces und zeitbehafteten Transitionssystemen gleich definiert. Gegeben durch die Definiti-
on einer Transition eines zeitbehafteten Transitionssystems für TGTS mit E = {(s1, s2)|s1, s2 ∈
V ∧ s1

r→ s2 ∧ r ∈ TR} ∪ {(s1, s2)|s1, s2 ∈ V ∧ s1
δ→ s2}, werden alle möglichen Anwendun-

gen von Transformationsregeln auf jeden Zustand berechnet. Damit werden durch ein solches
Transitionssystem alle möglichen Ausführungspfade dargestellt. Ein Timed Trace beschreibt ge-
nau einen Ausführungspfad. Damit entspricht die Menge aller Timed Traces der Menge aller
Ausführungspfade eines zeitbehafteten Transitionssystemens. �

Neben der oben dargestellten Anpassung der Erreichbarkeitsanalyse von Hirsch zur Berechnung
eines Folgezustands (Folgekonfiguration) müssen wir zudem zwischen Graphtransformationen
unterscheiden, 1) die eine Transition eines TIMED STORY CHARTS ausführen und denen, 2)
die Seiteneffekte, Actions oder Hilfsfunktionen ausführen. Hierdurch wird es ermöglicht, wie
nach der Verfeinerungsdefinition für TIMED STORY CHARTS gefordert, dass zum einen durch
1) das Zustandsverhalten überprüft werden kann und dass die Elemente aus 2), die z.B. durch
einen Seiteneffekt eine (kompositionale) Strukturanpassung ausführen können, nur aufgerufen
werden, wenn diese auch tatsächlich in Folge einer Zustandtransformation aus 1) aufgerufen
werden.

Die Folgezustandsberechnung von Hirsch muss zudem von der Berechnung einer Graphtrans-
formationsregel auf mehrere erweitert werden, da TIMED STORY CHARTS durch (Timed) Sto-
ry Diagramme beschrieben werden (siehe Abschnitt 2.6.4), die mehrere Graphtransformationen
durch Stories nacheinander beschreiben können. Der Folgegraph ergibt sich damit aus einer Men-
ge von Graphtransformationen.

3.2.2 Verifikation der Verfeinerung

In diesem Abschnitt stellen wir einen Algorithmus zur Verifikation der Verfeinerung von TI-
MED STORY CHARTS vor. Gemäß der Verfeinerungsdefinition 29 berechnen wir in einem
ersten Schritt die Menge der Traces für das abstrakte (Trace(Gat)) und verfeinerte Verhalten
(Trace(Gkt)). Im nächsten Schritt wird überprüft, ob für jeden Trace ξk ∈ Trace(Gkt) ein Trace
ξa ∈ Trace(Gat) existiert, so dass ξk gemäß Definition 28 eine Verfeinerung von ξa ist. Dies
entspricht Bedingung 1 nach Definition 29. Hierbei wird ebenfalls die Verfeinerung auf Dead-
lockfreiheit überprüft, wie dies durch Bedingung 2 gefordert wird. Als letztes wird überprüft, ob
alle Pfade Trace(Gat) überdeckt wurden, womit Bedingung 3 adressiert wird.

Für die Verfeinerungsüberprüfung wird angenommen, dass die Verifikation des Protokollverhal-
tens erfolgreich war. Das Verhalten des Kommunikationspartners wird daher in der Verfeine-
rungsüberprüfung nicht betrachtet. Um Transitionen auszuführen, die durch eine Nachricht des
Kommunikationspartners aktiviert werden, legen wir eine zusätzliche Transition an, die zu jedem
Zeitpunkt schalten kann, an dem ihre Time Guards erfüllt sind. Weiterhin gehen wir davon, dass
das verfeinerte TIMED STORY CHART nach Definition 20 Schnittstellen-beschränkt ist.

Algorithmus 3.1 zeigt den Pseudocode zum Überprüfen einer Verfeinerung nach Definition 29.
Implementiert ist der Algorithmus in Form einer Tiefensuche. Wie einleitend erläutert startet der

88

3.2 Verfeinerungsüberprüfung

Algorithmus mit der Berechnung der erreichbaren Traces für ein abstraktes und konkretes TI-
MED STORY CHART in Zeile 2 und 3 (siehe hierzu Abschnitt 3.2.1). Anschließend wird in Zeile
4 überprüft, ob eine Strukturverfeinerung für die initialen Strukturen gilt. Durch die Variable
success wird der Zustand der Überprüfung in Form eines Boolean-Wertes (true oder false) im-
plementiert. Die while-Schleife in Zeile 6, die die Tiefensuche zur Überprüfung der Verfeinerung
umsetzt, terminiert entsprechend, wenn eine der notwendigen Überprüfungen für die Verfeine-
rung fehlschlägt, wodurch success == false gilt oder alle Knoten des TIMED STORY CHART

Graphen untersucht wurden. Wurden alle Knoten untersucht, schlägt die Überprüfung auf einen
Nachfolger in Zeile 8 fehl. Innerhalb der while-Schleife wird das nach Abschnitt Anforderungen
und Voraussetzungen auf Seite 67 endliche Transitionssystem des verfeinerten TIMED STORY

CHARTS expandiert (Zeile 9). Da es sich um ein endliches Transitionssystem handelt, bricht die
Schleife irgendwann ab. Für den Fall, dass alle Überprüfungen erfolgreich waren, wird als letzter
Schritt überprüft, ob das abstrakte System überdeckt wurde.

In der while-Schleife wird für jeden Nachfolger n′ des aktuell expandierten Knotens n geprüft,
ob der Knoten bekannt ist. Ist dies nicht der Fall, wird überprüft, ob der Übergang zwischen die-
sen beiden Knoten mit einer Nachricht versehen ist, womit überprüft werden muss, ob es hier-
zu einen korrespondierenden Zustand in dem abstrakten System gibt (siehe Abschnitt 3.2.2.1).
Andernfalls, wird ein Kreis im Transitionssystem geschlossen oder es werden zwei Pfade nach
Definition 31 vereinigt, da die Zustände isomorph sind. Für den Fall das zwischen dem Über-
gang von n nach n′ eine Nachricht annotiert ist, wird analog zu Fall 1 ein korrespondierender
Pfad gesucht. Handelt es sich um einen Kreis, wird dieser auf Wohlgeformtheit überprüft (siehe
Abschnitt 3.2.2.1).

3.2.2.1 Überprüfung von Pfaden

Kann eine Kante des verfeinerten Systems eine Nachricht empfangen oder versenden, so muss
nach Definition der Verfeinerung ein korrespondierender Pfad im Abstrakten System existieren,
der ebenfalls eine solche Nachricht empfangen oder versenden kann. Die Funktion CHECKPATH

(siehe Algorithmus 3.2) überprüft ausgehend von einer Kante (n, n′) des verfeinerten Transi-
tionssystems, die eine Nachricht trägt, auf allen Pfaden beginnend in einem korrespondierend
Zustand, die diese Kante enthalten, ob es hierzu einen korrespondierenden Pfad im abstrakten
Transitionssystem gibt (siehe Zeile 10). Die Überprüfung schlägt fehl, wenn kein Pfad im ab-
strakten Transitionssystem gefunden wird.

Korrespondierende Zustände Für einen abstrakten und konkreten Pfad des Transitions-
systems werden durch die Funktion FINDCORRESPONDINGSTATES die korrespondierenden Zu-
stände ermittelt (siehe Algorithmus 3.3). Durch die Relaxierung der Zeitintervalle durch die in
Abschnitt 3.1.2 eingeführte Verfeinerungsdefinition, müssen wir zwischen gesendeten und emp-
fangenen Nachrichten unterscheiden (Zeile 2). Die Funktion CHECKTIMECONSTRAINTS (siehe
Abschnitt Prüfen der zeitlichen Bedingungen auf Seite 91) überprüft für jeden Teilpfad s und t
nach Definition 28 die oberen Schranken der Clocks. Für jeden dieser Teilpfade wird ebenfalls

89

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

Algorithmus 3.1 Überprüfen der korrekten Verfeinerung
1: function CHECKCORRECTREFINEMENT(TimedStoryChart abs, TimedStoryChart ref)
2: absReach = STARTREACHABILITYANALYSIS(abs)
3: refReach = STARTREACHABILITYANALYSIS(ref)
4: success := CHECKSTRUCTUREREFINEMENT(absReach.initial, refReach.initial)
5: OPEN.PUSH(refReach.initial)
6: while OPEN 6= ∅ ∧ success do . Untersuche alle erreichbaren Knoten
7: n := OPEN.POP()
8: success := refReach.HASSUCCESSOR(n)
9: for all n′ ∈ refReach.EXPAND(n) do

10: if n′ is not known then . Fall 1: Neuer Knoten
11: OPEN.PUSH(n′)
12: if (n, n′) has event e then
13: success := CHECKPATH((n, n′))
14: end if
15: else . Fall 2: Knoten schon bekannt
16: if (n, n′) closed cycle then . a) Kante schließt einen Kreis
17: if (n, n′) has event e then
18: success := CHECKPATH((n, n′))
19: end if
20: success := ISWELLFORMEDCYCLE(n′)
21: else . b) Verschmelzung von zwei Pfaden
22: if (n, n′) has event e then . Identisch zu Fall 1
23: success := CHECKPATH((n, n′))
24: end if
25: end if
26: end if
27: end for
28: end while
29: if success then
30: success := CHECKCOVERAGE(absReach)
31: end if
32: return success
33: end function

90

3.2 Verfeinerungsüberprüfung

Algorithmus 3.2 Pfade überprüfen
1: function CHECKPATH(Transition (n, n′))
2: for all cs ∈ PreceedingCorrespondingStates do
3: Path refPath := (cs⇒ n)
4: Transition (a, b) := getEventTrans(cs, n)
5: if (a, b) 6= null then
6: Path absPath := GETEQUIVALENTPATH(cs, (a, b).event, (n, n′).event)
7: if (absPath = null) then
8: success := false
9: else

10: success := FINDCORRESPONDINGSTATES(absPath, refPath)
11: end if
12: end if
13: if not success then
14: return false
15: end if
16: end for
17: return true
18: end function

nach der Verfeinerungsdefinition eine Struckturverfeinerung überprüft (Funktion CHECKSTRUC-
TUREREFINEMENT, siehe Abschnitt Strukturverfeinerung überprüfen auf Seite 91). Eine Korre-
spondenz zwischen den beiden Zuständen liegt nur dann vor, wenn beide Bedingungen erfüllt
sind.

Prüfen der zeitlichen Bedingungen Zum Überprüfen der zeitlichen Bedingungen müssen
wir gemäß der Verfeinerungsdefinition für TIMED STORY CHARTS (siehe Abschnitt 3.1.2) zwi-
schen Nachrichten unterscheiden, die empfangen oder versendet werden. Der Algorithmus zur
Überprüfung der zeitlichen Bedingung (siehe Algorithmus 3.4) überprüft als erstes, ob der zu
überprüfende Zustand des verfeinerten Pfades über die gleichen Clocks wie der korrespondierte
abstrakte Zustand verfügt. Ist dies nicht der Fall, liegt nach der Verfeinerungsdefinition für TI-
MED STORY CHARTS eine Verletzung vor. Anschließend wird nach Definition 28 für gesendete
und empfangene Nachrichten die Summen über Clock Resets für jede Clock einzeln berechnet.
Nur falls jede der Bedingungen erfüllt sind, ist die Überprüfung erfolgreich.

Strukturverfeinerung überprüfen Eine Strukturverfeinerung muss auf den initialen Struk-
turen des verfeinerten und abstrakten Transitionssystems durchgeführt werden sowie bei der
Überprüfung auf korrespondierende Zustände (siehe Abschnitt Korrespondierende Zustände auf
Seite 89). Der Algorithmus 3.5 basiert auf dem Ansatz nach [HT04] zur Überprüfung von Struk-
turverfeinerungen. Durch Anwendung einer Abstraktionsfunktion (Zeile 3) wird der abstrakte
Graph (Zustand s) in den Namensraum des verfeinerten Graphen (Zustand t) übersetzt. Über

91

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

Algorithmus 3.3 Korrespondierende Zustände überprüfen
1: function FINDCORRESPONDINGSTATES(Path absPath, Path refPath)
2: sent := ISSENTEVENT(refPath.lastEvent)
3: absSubPath := GETSUBPATHBETWEENEVENTS(absPath)
4: refSubPath := GETSUBPATHBETWEENEVENTS(refPath)
5: for s ∈ absSubPath do
6: for t ∈ refSubPath do
7: if !CHECKTIMECONSTRAINTS(s, t, absPath, refPath, sent) then
8: continue
9: end if

10: if !CHECKSTRUCTUREREFINEMENT(s, t) then
11: continue
12: end if
13: MARKCORRESPONDING(s, t) . Struktur und Zeit sind passend
14: return true
15: end for
16: end for
17: return false
18: end function

eine Delegation zwischen abstrakten und verfeinerten Port kann die Bestimmung der Abbildung
automatisch erfolgen. Die Überprüfung der Strukturverfeinerung wird durch das Finden eines
Matchings implementiert (Zeile 4).

Überprüfung von Kreisen Für die in dieser Arbeit betrachteten Systeme enden Pfade eines
zeitbehafteten Transitionssystems eines TIMED STORY CHARTS in einem Kreis (siehe Einlei-
tung Abschnitt 3.2.2). Die Funktion 3.6 zur Überprüfung von Kreisen wird immer dann aufgeru-
fen, wenn zwei Pfade verschmolzen werden können (siehe Algorithmus 3.1). Der Algorithmus
3.6 zur Überprüfung von Kreisen muss sicherstellen, dass zwischen allen Nachrichten des Krei-
ses korrespondierende Zustände zwischen dem abstrakten und verfeinerten Pfad existieren.

Ausgangspunkt für den Algorithmus ist, dass der Kreis bereits einmal durchlaufen wurde (siehe
Zeile 20 von Algorithmus 3.1). Es reicht allerdings nicht aus den Kreis nur durch einen Lauf
zu überprüfen, da auch für alle zukünftigen Ausführungen des Kreises korrespondierende Zu-
stände zwischen aufeinander folgende Nachrichten existieren müssen. Um dies sicherzustellen
überprüfen wir den Kreis ein weiteres mal. Wir können dabei zwischen den in Abbildung 3.8
dargestellten vier verschiedenen Arten von Kreisen unterscheiden, wobei (a) und (b) zulässige
Kreise darstellen und (c) und (d) unzulässige. Die in a und b dargestellten Kreise sind zulässig,
da zwischen jedem auftreten von Nachrichten innerhalb des Kreises korrespondierende Zustän-
de identifiziert wurden (in grau). Die in a dargestellten Kreise betrachten die triviale Situation,
dass keine Nachricht in dem Kreis enthalten ist. Die in c dargestellte Situation ist unzulässig,
da in dem verfeinerten Pfad der korrespondierende Zustand außerhalb der Schleife liegt. Situa-

92

3.2 Verfeinerungsüberprüfung

Algorithmus 3.4 Zeitliche Bedingungen überprüfen
1: function CHECKTIMINGCONSTRAINTS(State s, State t, Path absPath, Path refPath, bool

sent)
2: if ! s.clocks ⊆ t.clocks then
3: return false
4: end if
5: s′ := SUCC(absPath.initial)
6: repeat
7: for all c ∈ s′ do . Summe der Resets für absPath berechnen
8: . Schranke kleiner als im vorherigen Zustand⇒ Reset durchgeführt
9: if ubound(s′.c) < ubound(prev(s′).c) then

10: absUBounds(c) += ubound(prev(s).c)
11: end if
12: end for
13: until (s 6= s′)
14: Gleiche Berechnung für refPath
15: for all (doc ∈ s)
16: if sent ∧ not (absUbounds(c) + ubound(s.c) = refUbounds(c) + ubound(t.c)) then
17: return false
18: end if
19: if not sent ∧ not (absUbounds(c) + ubound(s.c) ≥ refUbounds(c) + ubound(t.c))

then
20: return false
21: end if
22: end for
23: return true
24: end function

Algorithmus 3.5 Strukturverfeinerung überprüfen
1: function CHECKSTRUCTUREREFINEMENT(State s, State t)
2: sCopy := MAKECOPY(s)
3: sCopy := APPLYABS(sCopy)
4: if FINDMATCHING(sCopy, t) then . Berechne Matching von sCopy in t
5: return true
6: else
7: return false
8: end if
9: end function

93

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

Algorithmus 3.6 Kreise überprüfen
1: function ISWELLFORMEDCYCLE(State n)
2: refCycle := refReach.GETCYCLE(n)
3: absCycle := absReach.FINDCORRESPONDINGCYCLE(n, refCycle)
4: correctOrder := HAVESAMEEVENTORDER(absCycle, refCycle)
5: refWellFormed := true
6: for all consecutive events a, b in refCycle do
7: if not ∃ correspondingState between a and b then
8: refWellFormed := false
9: break

10: end if
11: end for
12: absWellFormed := true
13: for all consecutive events a, b in absCycle do
14: if not ∃ correspondingState between a and b then
15: absWellFormed := false
16: break
17: end if
18: end for
19: return correctOrder ∧ refWellFormed ∧ absWellFormed
20: end function

tion d zeigt eine Inkonsistenz, da im abstrakten Pfad kein korrespondierender Zustand zwischen
Nachricht a und b identifiziert wurde. Die for-Schleifen in den Zeilen 6 und 13 des Algorithmus
überprüfen die dargestellten Situationen.

Prüfen der Überdeckung Nachdem alle Pfade des verfeinerten Transitionssystems erfolg-
reich überprüft wurden, muss noch sichergestellt werden, dass alle Pfade des abstrakten Tran-
sitionssystems überdeckt wurden, um die notwendige Bedingung der Bisimulation zu erfüllen
(siehe Bedingung 3 Verfeinerungsdefintion 29 eines TIMED STORY CHARTS). Algorithmus 3.7
zeigt den Pseudocode für die Überprüfung der Pfadüberdeckung. Es wird dabei das gesamte
abstrakte Transitionssystem expandiert. Die for-Schleifen ab Zeile 4 stellen dabei sicher, dass
zwischen zwei Nachrichten ein Zustand als korrespondierend zu einem Zustand des verfeinerten
Transitionssystems identifiziert wurde.

3.2.3 Diskussion

Der vorgestellte Algorithmus ermöglicht die Verifikation der Verfeinerung nach Definition 29
in Form einer Erreichbarkeitsanalyse. Im Rahmen aktueller Arbeiten [Bre10] wird eine Variante
umgesetzt, die das Konzept der Testautomaten nutzt, da hierüber elegant die Verfeinerungsüber-
prüfung zu einer formalen Verifikation von Sicherheits- und Lebendigkeitseigenschaften erwei-

94

3.2 Verfeinerungsüberprüfung

... ...

verfeinert abstrakt

... ...

verfeinert abstrakt

a a

... ...

verfeinert abstrakt

a a

(a) (b)

(c)

verfeinert abstrakt

a

a

(d)

b b

zulässig

unzulässig

Abbildung 3.8: Überprüfung Kreise

Algorithmus 3.7 Überdeckung des abstrakten Systems prüfen
1: function CHECKCOVERAGE(TTS absReach)
2: absReach.FULLEXPAND()
3: success := true
4: for all path ∈ absReach do
5: for all consecutive events a, b on path do
6: if not ∃ correspondingState between a and b then
7: success := false
8: break
9: end if

10: end for
11: end for
12: return success
13: end function

95

Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

tert werden kann. In [ABBL03] wurde bereits ein Ansatz vorgestellt, der aus einer eingeschränk-
ten Klasse von TCTL-Formeln einen Testautomaten synthetisiert, der dann wiederum mit dem
zu überprüfenden Modell parallel geschaltet werden kann. In der Erreichbarkeitsanalyse muss
dann gezeigt werden, dass dieser Zustand erreichbar ist. Damit müssen die Algorithmen nur
hinsichtlich der Testautomaten-Synthese erweitert werden.

96

Kapitel 4

Integration von Altkomponenten

In der industriellen Praxis kann es häufig vorkommen, dass Altkomponenten wiederverwendet
werden, um zum einen den Entwicklungsprozess zu beschleunigen und zum anderen auf bewähr-
te Qualität zurückzugreifen. Die Integration von Altkomponenten in eine MECHATRONIC UML
Architektur stellt einen weiteren Anwendungsfall einer möglichen Konkretisierung dar (siehe
Abschnitt 2.1 auf Seite 13). Unser Ansatz unterstützt eine Integration von Altkomponenten, in-
dem das Verhaltensmodell für die Integration iterativ erlernt wird und auf dessen Basis dann
formal die Integration überprüft werden kann.

Das Protokollverhalten der Komponente, mit welcher die Altkomponente interagieren soll, nen-
nen wir Kontext. Eine Integration ist dann erfolgreich, wenn die Kommunikation zwischen
Kontext und Altkomponente fehlerfrei ist. Dies wird durch Sicherheits- und (begrenzte) Le-
bendigkeitseigenschaften spezifiziert (siehe Abschnitt 2.4.1). Darüber hinaus ist es wichtig zu
überprüfen, dass in Abhängigkeit vom Kommunikationsverhalten das erwartete Reglerverhal-
ten ausgeführt wird. Es wird daher ein Ansatz für hybride Systeme unter Berücksichtigung von
Sicherheits- und begrenzten Lebendigkeitseigenschaften benötigt.

Im Vergleich zu bisherigen Ansätzen (z. B. [HNS03b, BJR06, PVY99]) unterstützen wir eine
Integration unter Berücksichtigung von Sicherheits- und begrenzten Lebendigkeitseigenschaf-
ten. Um dies zu ermöglichen wird iterativ das Modell des Verhaltens für die Integration der
Altkomponente gelernt. Nach jedem Iterationsschritt wird überprüft, ob das erlernte Modell den
Eigenschaften standhält. Der Kontext wird in der Analyse berücksichtigt, um nur die hierfür
spezifischen Kommunikationen zu betrachten.

Zusätzlich zu dem iterativen Erlernen des Zustandsverhaltens integrieren wir die Möglichkeit,
regelungstechnisches Verhalten für einen bekannten Zustand mit Hilfe klassischer Verfahren der
Systemidentifikation zu identifizieren. So wird das Ein-/ Ausgangsverhalten linearer Systeme
etwa durch Übertragungsfunktionen beschrieben [Ise92]. Sind die Übertragungsfunktionen be-
kannt, können auch Rekonfigurationen identifiziert werden.

Dieser Ansatz stellt damit ein Hilfsmittel für den Ingenieur dar, um bereits früh Konflikte auf
Modellebene zu identifizieren. Derzeit wird die Integration von Altkomponenten mit Reglerver-
halten am Ende des Entwicklungsprozesses während der Systemintegrationsphase durchgeführt.
Typischerweise testet dabei der Ingenieur die Altkomponente (nur) in Hardware-In-The-Loop

97

Kapitel 4 Integration von Altkomponenten

Szenarien oder direkt in der realen Anwendung. Hier entdeckte Fehler sind nur unter großem
Ressourceneinsatz zu beheben und daher teuer (z.B. [BN03]).

Anforderungen und Voraussetzungen Zur Veranschaulichung betrachten wir wieder
einen Ausschnitt des einleitenden Konvoi-Beispiels (siehe Abbildung 1.2). Wie bereits in den
Abschnitten 2.3 und 2.6.1 beschrieben, ist die Architektur der MECHATRONIC UML durch
Komponenten (siehe Abbildung 4.1, RailCab und LegacyRailCab), Ports und den Verbindun-
gen zwischen Ports gegeben.

Die Kommunikation zwischen den Komponenten ist definiert durch PARAMETERIZED REAL-
TIME STATECHARTS, bzw. REAL-TIME STATECHARTS (vgl. Abschnitt 2.4.1). Da wir hier ei-
ne konkrete Integrationssituation betrachten, müssen wir im Folgenden auch nur REAL-TIME

STATECHARTS berücksichtigen. In Abbildung 4.1 wird das DistanceCoordination-Muster ge-
zeigt. Die Kommunikationsmuster werden in dem Beispiel durch die Rollen front und rear spe-
zifiziert. Das Kommunikationsverhalten wird mit REAL-TIME STATECHARTS beschrieben. In
Abschnitt 2.4.1 wurden bereits die Rollenverhalten für die front- und rear-Rolle spezifiziert.

Die Integration einer Altkomponente, wie dem LegacyRailCab, ohne eine Zustandsspezifikation
des Kommunikationsverhaltens fordert eine Herleitung eines solchen Modells von der Kompo-
nentenschnittstelle und gegebenenfalls vom Quellcode der Altkomponente, um die benötigten
Analysen für eine Integration durchführen zu können.

In dem in Abbildung 4.1 gezeigten Beispiel ist nur das Verhalten der front-Rolle bekannt.
Es muss gezeigt werden, dass das unbekannte Kommunikationsverhalten der LegacyRailCab-
Komponente mit dem erwarteten Verhalten des DistanceCoordination-Musters die Spezifika-
tion (Sicherheits- und Lebendigkeitseigenschaften, wie front.convoy implies rear.convoy und
Deadlock-Freiheit (A[] not deadlock)) nicht verletzt.

Grundsätzlich muss es sich hierbei nicht um ein Koordinationsmuster handeln. Es ist auch mög-
lich, dass hier ein Protokollverhalten ohne vorherige Musterspezifikation mit einer Altkompo-
nente verbunden wird oder wie Abbildung 2.1 darstellt ein Protokollverhalten an eine eingebet-
tete Altkomponente delegiert wird.

:DistanceCoordination
:LegacyRailCab

:front :rear

:RailCab

A [] not deadlock

front.convoy implies rear.convoy

:Convoy

Abbildung 4.1: Architektur mit LegacyRailCab

Um überhaupt eine Altkomponente modellbasiert integrieren zu können, gehen wir davon aus,
dass einige Informationen der Altkomponente zur Verfügung gestellt werden. Eine Vorausset-

98

zung ist, dass die Altkomponente eine Schnittstelle zur Verfügung stellt, die alle eingehenden
und ausgehenden Nachrichten für die Kommunikation definiert, alle Signale definiert die durch
die eingebetteten Regler benötigt werden sowie alle relevanten Informationen für die Ausführung
spezifiziert (wie z. B. die Ausführungsperiode).

Im Bereich sicherheitskritischer Systeme, sind diese Voraussetzungen keine Einschränkung,
da sie elementar für eine Integration sind (z. B. [HMSN10a]). Ein Automobilhersteller kann
z. B. keine Altkomponente ohne Angabe der Ausführungsperiode, unter der die Altkomponente
die spezifizierten Eigenschaften erfüllt, integrieren.

Die Informationen, die durch eine Altkomponente zur Verfügung gestellt werden können stark
variieren. Grundsätzlich können wir allerdings zwei Fälle unterscheiden. 1) die Altkomponente
bietet zusätzliche Schnittstellenoperationen an, um den aktuellen Zustand zu erfragen1 oder 2)
dies ist nicht der Fall. Für den zweiten Fall können wir zudem unterscheiden zwischen einer a)
Black Box (der Quellcode ist nicht zugreifbar) und b) einer White Box (auf den Quellcode kann
zugegriffen werden). Wir haben entsprechend für diese drei Fälle Algorithmen entwickelt: Gray
Box Checking für Fall 1), Black Box Checking für Fall 2a) und White Box Checking für Fall
2b).

Eine Integration ist dann erfolgreich, wenn die Spezifikation nicht verletzt wird. Dies kann dabei
1) durch eine formale Verifikation der Altkomponente mit dem Kontext (z. B. front-Rolle) ge-
zeigt werden oder 2) durch eine Verifikation der Verfeinerung des abstrakten Rollen Verhaltens
(z. B. rear-Rolle) gegeben durch ein REAL-TIME COORDINATION PATTERN. Es muss also ge-
zeigt werden, dass: Kontext (front Rolle) || erlerntes V erhalten (erlernte rear Rolle) |=
φ (front.convoy implies erlerntes rear.convoy) ∧ ¬δ (Deadlock − Freiheit) für 1) und
erlerntes V erhalten (erlernte rear Rolle) ≤ abstraktes Rollenverhalten (rear Rolle) für
2).

Eine Verfeinerung kann auch durch eine parallele Komposition gezeigt werden, in dem aus dem
abstrakten Rollenverhalten (z. B. front-Rolle) ein Testautomat erstellt wird [JLS00]. Ein Test-
automat wird durch Komplementbildung erstellt. Zusätzlich wird das Verhalten, welches nicht
durch das abstrakte Verhalten erfüllt wird, durch einen extra Fehlerzustand und entsprechenden
Transitionen, die in diesen Fehlerzustand führen, dargestellt. Die Analyse muss dann folglich
zeigen, ob dieser Fehlerzustand erreicht werden kann. Dies wird, wie oben für 1) beschrieben,
durch eine parallele Komposition des Testautomaten mit dem verfeinerten Verhalten erreicht.
Wir werden daher im Folgenden die Integration nur für 1) zu zeigen.

Übersicht Im Folgenden stellen wir als erstes den Gray Box Checking Ansatz vor, da hier der
grundlegende Ansatz des iterativen Erlernens des Kommunikationsverhaltens einer Altkompo-
nente sowie der schrittweisen Überprüfung des erlernten Verhaltens vorgestellt wird. Anschlie-
ßend betrachten wir, wie Zustände im Falle der Black- und White Box erlernt werden können.
Dann diskutieren wir in Abschnitt 4.4, wie wir das regelungstechnische Verhalten zu einem Zu-
stand identifizieren können. Der Gray Box Checking Ansatz wurde grundlegend in den Arbeiten

1AUTOSAR-Komponenten bieten z. B. diese Informationen an.

99

Kapitel 4 Integration von Altkomponenten

[HH07, HH08a, GHH08a, Bre08, BGH+08] vorgestellt. Eine geeignete Testumgebung wurde in
[GHHP07, Pri07] beschrieben. Der Gesamtansatz inklusive des Black- und White Box Checking
wurde in [HBB+09, HMSN10b, HMSN10a, BBB+09, HMS+10] vorgestellt.

4.1 Gray Box Checking

In diesem Abschnitt betrachten wir die Integration von Altkomponenten, deren Schnittstelle
Operationen zur Verfügung stellen, um den aktuellen Zustand der Altkomponente zu erfragen.
Wie bereits in Paragraph Anforderungen und Voraussetzungen auf Seite 98 im übergeordneten
Abschnitt erläutert, bieten einige Klassen von Altkomponenten diese Informationen an. Gera-
de im Bereich sicherheitskritischer Systeme ist die Bereitstellung aktueller Zustandsinforma-
tionen durchaus üblich, um (eindeutig) zu identifizieren, welche Aktionen das System ausführt
[Sto96, Pul01, Dun02].

Eine Reihe von Ansätzen existieren, die entweder einen reinen Black-Box-Ansatz und
Automaten-Lernen verfolgen (z. B. [HNS03a]) oder einen White-Box-Ansatz propagieren, die
ein Modell aus Quellcode extrahieren [DKU06, CDH+00, HS99]. Keiner dieser Ansätze betrach-
tet allerdings Echtzeitsysteme oder nutzt das Wissen eines Kontextes und Komponenten aus, um
auch für größere Systeme skalieren zu können. Weiterhin vermeiden diese Ansätze keine falsch
positive oder falsch negative Ergebnisse. Dies gilt übrigens auch für den gesamten klassischen
Reverse Engineering Bereich, der sich im Wesentlichen auf die Unterstützung der Dokumenta-
tion von Altkomponenten fokussiert (siehe z. B. [MJS+00]). Damit sind all diese Ansätze nicht
für die hier betrachteten sicherheitskritischen Systeme geeignet.

Abbildung 4.2 gibt eine Übersicht über unseren Ansatz. Initial nehmen wir an, dass die Altkom-
ponente in einen Startzustand oder allgemein in einem sogenannten Quiescent Zustand ist (siehe
[KM98, ZC06]). Informationen über die Initialisierung der Altkomponente, die sie in einen sol-
chen Zustand versetzt, nehmen wir als bekannt an.

Unser Ansatz erweitert das aktuelle Wissen über die Altkomponente mit chaotischem Verhalten.
Dieses chaotische Verhalten spezifiziert jedes mögliche Kommunikationsverhalten auf der einen
Seite und auf der anderen Seite, kann die Altkomponente zu jedem Zeitpunkt in einen Deadlock
eintreten. Dieses Verhalten stellt damit eine Überapproximation des Kommunikationsverhaltens
der Altkomponente dar: zu jedem Zeitpunkt wird das mögliche Gesamtverhalten spezifiziert, je-
doch muss nicht das mögliche Gesamtverhalten tatsächlich durch die Altkomponente unterstützt
sein.

Das chaotische Verhalten wird dann in Kombination mit dem Kontextverhalten via Model
Checking formal verifiziert unter Berücksichtigung von Sicherheits- und begrenzten Lebendig-
keitseigenschaften (Schritt 1 und 2 in Abbildung 4.2). Wenn die Überprüfung zu einem Gegen-
beispiel führt, dient dieses als Testeingabe für die Altkomponente (Schritt 3). Wenn das Gegen-
beispiel durch die Altkomponente bestätigt wird, haben wir ein wirkliches Gegenbeispiel gefun-
den. Ist dies nicht der Fall, nutzen wir das beobachtete Verhalten der Altkomponente aus, um das

100

4.1 Gray Box Checking

bisher erlernte Verhalten zu verfeinern (Schritt 4). Dieser Vorgang wird solange fortgesetzt, bis
entweder ein Gegenbeispiel gefunden wird oder alle möglichen Traces des Kontexts betrachtet
wurden.

nente aus

1

3

4synthetisiere

Verhalten

2

[Eigenschaften erüllt] erstelle

Ausgabe

[Gegenbeispiel bestätigt]

beobachtetes Verhalten

überprüfe Kombination

extrahiere Kontext−

Verhalten

(Eingabevektor)

Gegenbeispiel

führe Altkompo−Mcontext Mlegacy

Mlegacy , Mcontext

Abbildung 4.2: Iteratives Lernen und Überprüfen: Gray Box Checking

Im Folgenden stellen wir die Grundlagen für den Lernansatz vor. Anschließend präsentieren wir
in den Abschnitten 4.1.2 und 4.1.3 unseren iterativen Lern- und Überprüfungs-Ansatz.

4.1.1 Formalisierungen

Da eine Implementierung aufgrund der aktuellen Hardwarearchitekturen nur diskret erfolgen
kann, betrachten wir hier entsprechend auch nur diskrete Zeit. Der Kontext muss also in einer
entsprechenden plattformspezifischen Verfeinerung vorliegen (siehe 3.1.1 und 6.1). Dies ist aber
ohnehin notwendig, um eine Ausführung zusammen mit der Altkomponente zu ermöglichen.
Hieraus folgern wir, dass ein Automatenmodell mit diskreter Zeit ausreichend ist, um das Ver-
halten der Altkomponente zu erlernen und um eine kompositionelle Verifikation kombiniert mit
Testen und Beobachtung zu ermöglichen (siehe Anforderungen und Voraussetzungen auf Seite
98).

Die Vereinfachung ist gerechtfertigt mit den folgenden Annahmen, die gültig für die betrachteten
Systeme hat: 1) die Uhren laufen ausreichend synchron. Dies ist gewöhnlich für sicherheitskriti-
sche Systeme und bedeutet, dass die Zeit in den Komponenten gleich schnell verläuft, bzw. eine
Zeitverschiebung bekannt ist (siehe Abschnitt 2.4.6). 2) ein diskretes Zeitmodell ist ausreichend
um alle Zeiteigenschaften zu spezifizieren, da die Infrastruktur nicht unendlich schnell reagieren
kann.

Das vereinfachte Echtzeit-Automatenmodel und dessen Echtzeitverarbeitung ist wie folgt defi-
niert:

Definition 33 (Diskreter Echtzeit-Automat)
Ein diskreter Echtzeit-Automat ist ein 5-Tupel M = (S, I, O, T,Q) mit einer endlichen Menge
S von Zuständen, Eingangs-Nachrichten I , Ausgangs-Nachrichten O, einer Menge von Tran-

101

Kapitel 4 Integration von Altkomponenten

sitionen T ⊆ S × ℘(I) × ℘(O) × S, wobei ℘(x) die Potenzmenge der Eingangs-/Ausgangs-
Nachrichten angibt und Q die initiale Zustandsmenge. Das Schalten einer Transition entspricht
genau einer Zeiteinheit.

Das Verhalten ist charakterisiert durch Ausführungspfade.

Definition 34 (Regulärer- und Deadlock-Ausführungspfad)
Ein regulärer Ausführungspfad ist eine Sequenz von Zuständen si ∈ S und Eingangs-/Ausgangs-
Nachrichten Ai/Bi ∈ I/O mit π = s1, A1/B1, s2, . . . , wobei für jede Nachricht i ≥ 1
eine Transition (si, Ai, Bi, si+1) ∈ T existiert. Ein Deadlock-Ausführungspfad ist eine Se-
quenz von Zuständen si ∈ S und Eingangs-/Ausgangs-Nachrichten Ai/Bi ∈ I/O mit
π = s1, A1/B1, s2, . . . sn, An/Bn, wobei für jede Nachricht 1 ≤ i ≤ n eine Transition
(si, Ai, Bi, si+1) ∈ T existiert und weiterhin 6 ∃sn+1 ∈ S mit (sn, An, Bn, sn+1) ∈ T . [M]
beschreibt alle regulären und Deadlock-Ausführungspfade. Wir schreiben π|I/O, um einen Aus-
führungspfad zu einer beobachtbaren Sequenz einzuschränken und π|S , um die Zustandssequenz
zu beschreiben.

Diese vorgestellte Definition hat Ähnlichkeiten mit dem Konzept von Prozessalgebren. Während
reguläre beobachtbare Sequenzen Ausführungspfade in CSP [Hoa85] oder anderen Prozessalge-
bren sind, sind Deadlock-Sequenzen vergleichbar mit Fehlern in CSP. Prozessalgebren abstra-
hieren allerdings von Zuständen.

Die Zeitsemantik eines Automaten ist dadurch definiert, dass eine Transition genau eine Zeitein-
heit benötigt. Aus Vereinfachungsgründen werden wir allerdings in Beispielen, die in Abschnitt
2.6 benutzte Syntax clock > Konstante verwenden. Mit der hier vorgestellten Zeitseman-
tik müssten entsprechenden der Konstanten viele Zwischen-Transitionen oder ein Zähler über
Selbsttransitionen benutzt werden.

Aus Vereinfachungsgründen bezeichne im Folgenden Si, Ii, Oi, Ti, und Qi Elemente des diskre-
ten Echtzeit-Automatens Mi. Zwei Automaten M und M ′ mit unterschiedlichen Eingabe- und
Ausgabe-Mengen (I∩I ′ = ∅ undO∩O′ = ∅) bezeichnen wir komponierbar (engl. composable).
Wenn zudem I ∩O′ = ∅ und O ∩ I ′ = ∅ gilt, dann sind sie orthogonal zueinander.

Spezifikation von Eigenschaften Eigenschaften werden, wie in Abschnitt 2.4.6 beschrie-
ben, mit Timed CTL (TCTL) Bedingungen (φ) und Invarianten (ψ) spezifiziert. Ein Echtzeit-
Automat M wird um eine Propositionsmenge P erweitert und ein beliebiger Zustand s ∈ S
wird mit allen Propositionen aus P durch eine Markierungsfunktion L : S → ℘(P) annotiert
welche diese erfüllen. Ein Echtzeit-Automat M = (S, I, O, T,Q) wird entsprechend zu einem
6-Tupel M = (S, I, O, T, L,Q) erweitert. Die Markierungsmenge L(M) bezeichnet die Menge
aller Propositionen aus P , die durch die Markierung betrachtet werden.

In den folgenden Formel-Definitionen lassen wir aus Vereinfachungsgründen jegliche syntakti-
schen Details von TCTL wegfallen und schreiben M |= φ wenn ein Automat M eine Bedingung
oder Invariante φ erfüllt.

102

4.1 Gray Box Checking

Das spezielle Symbol δ wird benutzt um auszudrücken, dass ein deadlock erreicht werden kann.
Ein Deadlock ist ein Zustand ohne jegliche ausgehende Transition. M |= ¬δ drückt damit aus,
dass M keinen Deadlock beinhaltet.

Parallele Komposition Werden mehrere Komponenten komponiert, so werden diese paral-
lel ausgeführt. Die Kommunikation wird durch eine synchrone Kommunikation formalisiert, so
dass Senden und Empfangen von Nachrichten innerhalb des gleichen Zeitschritts stattfinden. Da
wir allerdings grundlegend eine asynchrone Nachrichten-Semantik verfolgen, führen wir expli-
zite Nachrichtenpuffer durch einen extra Automaten ein. Diese expliziten Automaten sind zudem
gefordert, um Verbindungscharakteristiken, wie Nachrichten-Ausfall, zu spezifizieren (siehe Ab-
schnitt 2.4).

Die Kombination von zwei komponierten Automaten wird durch eine Verbindung der Eingabe
und Ausgabe-Nachrichten erreicht. Im Unterschied zu Definition 2 stellen wir im Folgenden eine
angepasste parallele Komposition für die diskreten Echtzeit-Automaten vor. Dies ist notwendig,
da Zeit nicht explizit über Clocks, sondern Transitionen kodiert ist.

Definition 35 (Parallele Komposition)
Für zwei diskrete Echtzeit-Automaten M = (S, I, O, T, L,Q) und M ′ = (S ′, I ′, O′, T ′, L′, Q′),
welche komponierbar zueinander sind (I ∩ I ′ = ∅ und O ∩O′ = ∅), definieren wir ihre parallele
Komposition ausgedrückt durch M‖M ′ als Automat (S ′′, I ′′, O′′, T ′′, L′′, Q′′) mit S ′′ = S ×
S ′, I ′′ = I ∪ I ′, O′′ = O ∪ O′, Q′′ = Q × Q′, und ((s1, s

′
1), A′′, B′′, (s2, s

′
2)) ∈ T ′′, wenn

(s1, A,B, s2) ∈ T und (s′1, A
′, B′, s′2) ∈ T ′ existiert mit A′′ = A ∪ A′ und B′′ = B ∪ B′.

Zusätzlich muss (A ∩ O′) = B′ und (A′ ∩ O) = B gelten. Die Markierung L′′ für (s, s′) ∈ S ′′
wird hergeleitet aus L′′((s, s′)) = L(s) ∪ L′(s′).

Eine Transition in T ′′ ist damit eine Kombination von zwei Transitionen in jedem Automaten,
wenn alle benötigten lokalen Eingaben durch den anderen Automaten erfüllt werden ((A∩O′) =
B′ und (A′ ∩O) = B). Die nicht lokalen Eingaben und Ausgaben sind einfach eine Vereinigung
beider Automaten.

Verfeinerung Die Definition einer Verfeinerung ist essentiell, um zu beschreiben, dass ein
Protokollverhalten einer Altkomponente eine korrekte Implementierung eines abstrakten Rollen-
verhaltens ist. Im Unterschied zu der Verfeinerung definiert in Abschnitt 3.1.1 müssen wir hier
Automaten mit diskretem Zeitformalismus betrachten. Die Verfeinerung ist wie folgt definiert.

Definition 36 (Verfeinerung)
Ein diskreter Echtzeit-Automat M = (S, I, O, T, L,Q) ist eine Verfeinerung des diskreten
Echtzeit-Automaten M ′ = (S ′, I ′, O′, T ′, L′, Q′) (M vM ′) wenn gilt:

∀π = . . . s ∈ [M]∃π′ = . . . s′ ∈ [M ′] : π|I/O = π′|I′/O′ ∧ L(s) = L′(s′) (4.1)

∀π = . . . s, A/B ∈ [M]∃π = . . . s′, A/B ∈ [M ′] : π|I/O = π′|I′/O′ (4.2)

103

Kapitel 4 Integration von Altkomponenten

Damit gilt, dass für jeden Pfad in einer Altkomponente M Gleichung 4.1 zusichert, dass es einen
zugehörigen Pfad in dem abstrakten Automaten M ′ existiert. Aus Gleichung 4.2 folgt weiterhin,
dass für jeden Deadlock-Pfad inM ebenfalls ein möglicher Deadlock-Pfad inM ′ existiert. Damit
wird eine Ordnung hergestellt, wie für Simulationsbeziehungen gefordert [CGP00]. Womit gilt,
dass aus v eine Simulationsbeziehung (�) folgt. Entsprechend der Definition bleibt das extern
sichtbare Echtzeitverhalten π|I/O erhalten und zudem aufgrund des Erhalts einer Simulationsbe-
ziehung auch die geforderten Sicherheits- und begrenzten Lebendigkeitseigenschaften [BK08].
π|I/O können wir zudem einfach relaxieren, wie in Abschnitt 3.1.1 beschrieben, um weitere Ver-
feinerungen zu erlauben. Für die folgenden Definitionen und den in den Abschnitten 4.1.2 und
4.1.3 beschriebenen Lernansatz hat das allerdings keine Auswirkung.

Kompositionelle Bedingungen Im Folgenden betrachten wir ausführlicher, welche Klas-
sen von Bedingungen durch Komposition und Verfeinerung für unseren spezifischen diskreten
Echtzeitautomaten erhalten bleiben.

Definition 37 (Kompositionelle Bedingungen)
Eine Bedingung φ ist kompositionell, wenn für jeden diskreten Echtzeit-Automaten M1, M ′

1, und
M2 mit L(M2) ∩ L(φ) = ∅ gilt

(M1 |= φ)⇒ ((M1‖M2 |= φ) ∨ (M1‖M2 |= δ)) und (4.3)

((M1 vM ′
1) ∧ (M ′

1 |= φ))⇒ (M1 |= φ) (4.4)

Allgemein gilt, dass CTL-Formeln durch Bisimulations-Beziehungen erhalten bleiben. ACTL-
Formeln bleiben durch Simulations-Beziehungen erhalten (�) [CGP00]. Die vorgestellte Verfei-
nerung impliziert eine Simulations-Beziehung und erhält daher ACTL-Formeln und zusätzlich
Deadlock-Freiheit.

Lemma 2
Für einen diskreten Echtzeit-Automaten M und M ′ mit M vM ′ gilt M ′ |= ¬δ ⇒M |= ¬δ.

Beweis 3
Bedingung 4.1 sichert zu, dass für jeden Zustand s ∈ S wenigstens ein Zustand s′ ∈ S ′ mit
(s, s′) ∈ Ω existiert. Ist M ′ ohne Deadlock, dann folgt daraus, dass s′ mindestens eine ausge-
hende Transition hat und Bedingung 4.2 stellt sicher, dass dieses auch für s gilt. Damit gilt, dass
auch M frei von einem Deadlock ist.

Invarianten, untere und obere Zeitschranken sowie ACTL-Formeln sind im generellen Bedingun-
gen, die sich nur auf alle möglichen Pfade beziehen. Durch die Bedingung, dass die Zustands-
markierungen disjunkt sind, kann die Anzahl der Zustandssequenzen mit gleicher Markierung
nicht erhöht werden und damit sind diese kompositionell.

Deadlock-Freiheit ist ebenfalls kompositionell. Dies folgt aus Konstruktion von Bedingung 4.3
und durch Lemma 2 für Bedingung 4.4.

104

4.1 Gray Box Checking

Kompositionalität gilt also für Deadlock-Freiheit, obere Schranken für maximale Nachrichten-
Verzögerungen, untere Schranken für die minimale Verzögerung von Nachrichten und für Inva-
rianten. Formeln der Form AG(¬p1 ∨ (AF [1,d] p2)) können damit erfüllt werden. Formeln, die
z. B. Lebendigkeitseigenschaften ohne Zeitbeschränkung definieren, können nicht erhalten wer-
den. Im Allgemeinen ist dies allerdings für harte Echtzeitsysteme nicht notwendig, da zu einer
Bedingung auch immer eine zeitliche Einschränkung per Definition gefordert wird.

Parallele Komposition & Verfeinerung Nun müssen wir noch zeigen, dass die parallele
Komposition unserer diskreten Echtzeit-Automaten auch die Verfeinerung nach Definition 36
erhält.
Lemma 3
Für einen beliebigen diskreten Echtzeit-Automaten M1, einen Automaten M2 und einer Verfeine-
rung M2 vM ′

2 gilt M2 vM ′
2 ⇒ (M1‖M2 vM1‖M ′

2).

Beweis 4
Für M1‖M ′

2 können wir aus der Konstruktion der parallelen Komposition folgern, dass nur
Pfade und Deadlock-Pfade resultieren, die auch in M1‖M2 existieren. Daher sind Bedingung
4.1 und 4.2 durch M1‖M2 und M1‖M ′

2 erfüllt.

Weiterhin müssen wir zeigen, dass kompositionelle Bedingungen und Deadlock-Freiheit erhalten
bleiben.
Lemma 4
Für M1, M2 und M ′

2 mit M2 vI/O
M ′

2, I1 ∩ (O2 − O′2) = ∅, O1 ∩ (I2 − I ′2) = ∅, und L(M1) ∩
(L(M2)− L(M ′

2)) = ∅ und einer beliebigen kompositionellen Bedingung φ gilt

(M1‖M ′
2 |= φ ∧ ¬δ)⇒ (M1‖M2 |= φ ∧ ¬δ) (4.5)

Beweis 5
Da φ und ¬δ kompositionell sind und aus Definition 37 können wir für M ′′

2 = M2|I′2/O′2/L(M ′2)

folgern, dass M1‖M ′′
2 |= φ ∧ ¬δ oder M1‖M ′′

2 |= δ gilt. Durch Lemma 2 und 3 gilt zudem
M1‖M ′′

2 |= φ ∧ ¬δ. Durch I1 ∩ (O2 −O′2) = ∅ und O1 ∩ (I2 − I ′2) = ∅ folgt weiterhin, dass M2

M ′′
2 nur I/O-Nachrichten hinzufügt, welche nicht M1 behindern und daher gilt, dass M1‖M2 die

gleiche erreichbare Zustandsmenge und Transitionen haben, womit M1‖M2 |= ¬δ gilt. Da φ nur
über Zustände interpretiert wird und Markierungen identisch für L(φ) ⊆ L(M ′

2) und φ sind, ist
damit Bedingung 4.5 bewiesen.

Unvollständiger Automat Um inkrementell die Genauigkeit eines Verhaltensmodells zu
verbessern, führen wir das Konzept von unvollständigen Automaten ein.
Definition 38 (Unvollständiger Automat)
Ein unvollständiger Automat ist ein 6-Tupel M = (S, I, O, T, T ,Q) mit M = (S, I, O, T,Q) ist
ein Automat und T ⊆ S × ℘(I)× ℘(O) beschreibt die bekannten nicht unterstützten Kommuni-
kationen. Um sicherzustellen, dass T und T konsistent sind, verlangen wir

¬(∃s, A,B, s′ : (s, A,B, s′) ∈ T ∧ (s, A,B) ∈ T).

105

Kapitel 4 Integration von Altkomponenten

Das Verhalten ist ebenfalls durch Ausführungspfade charakterisiert.

Definition 39 (Unvollständige Ausführungspfade)
Ein regulärer Ausführungspfad eines unvollständigen Automaten ist eine Sequenz von Zustän-
den si ∈ S und Eingangs-/Ausgangs-Nachrichten Ai/Bi ∈ I/O mit π = s1, A1/B1, s2, . . . ,
wobei für jede Nachricht i ≥ 1 eine Transition (si, Ai, Bi, si+1) ∈ T existiert. Ein Deadlock-
Ausführungspfad ist eine Sequenz von Zuständen si ∈ S und Eingangs-/Ausgangs-Nachrichten
Ai/Bi ∈ I/O mit π = s1, A1/B1, s2, . . . sn, An/Bn, wobei für jede Nachricht 1 ≤ i ≤ n eine
Transition (si, Ai, Bi, si+1) ∈ T existiert und weiterhin (sn, An, Bn) ∈ T gilt. [M] beschreibt
alle regulären und Deadlock-Ausführungspfade.

Die Definition der Ausführungssequenz hebt hervor, dass Deadlock-Ausführungspfade eines un-
vollständigen Automaten nur angenommen werden, wenn diese explizit durch T definiert wurden
und nicht implizit, wenn keine Transition in T gegenwärtig ist.

Ein Automat ist deterministisch, wenn für jeden Zustand s sowie Nachrichten A und B gilt,
dass |{(s, A,B, s′) ∈ T}| ≤ 1. Ein unvollständiger Automat ist deterministisch, wenn für jeden
Zustand s sowie Nachrichten A und B gilt, dass |{(s, A,B, s′) ∈ T} ∪ {(s, A,B) ∈ T}| ≤ 1.

Für einen unvollständigen Automaten beschreiben wir einen Vervollständigungsschritt als eine
beliebige Erweiterung von S, T oder T , welche wieder in einen unvollständigen Automaten
resultiert. Letztendlich wird ein unvollständiger Automat vollständig, wenn jede mögliche Kom-
munikation entweder durch T verboten ist oder in T ist:

∀s ∈ S,A ∈ ℘(I), B ∈ ℘(O) : (∃s′ ∈ S : (s, A,B, s′) ∈ T xor (s, A,B) ∈ T).

Chaotischer Automat und Hülle Betrachten wir die Verfeinerungsdefinition 36, können
wir ein maximales Verhalten identifizieren, welches wir durch einen chaotischen Automaten
definieren. Dieser chaotische Automat ist eine Abstraktion von allen möglichen Verhalten, da
jede mögliche Eingabe-Sequenz akzeptiert wird, genauso wie Deadlocks.

Definition 40 (Chaotischer Automat)
Für eine gegebene Eingabe- und Ausgabemenge I und O, wird der chaotische Automat
Mc = (Sc, I, O, Tc, Qc) wie folgt definiert: Die Zustandsmenge Sc ist definiert durch Sc =
{sδ, s∀}. Die Transitionen sind definiert durch Tc = {(s∀, A,B, s∀)|A ∈ ℘(I), B ∈ ℘(O)} ∪
{(s∀, A,B, sδ)|A ∈ ℘(I), B ∈ ℘(O)} und Qc = {sδ, s∀}.

Abbildung 4.3 stellt einen chaotischen Automat nach Definition 40 dar. Aus dieser Abbildung
ist zu sehen, dass s∀ und sδ mögliche initiale Zustände sind. Während sδ jede Kommunikation
blockiert, akzeptiert s∀ jede mögliche Kommunikation. Die möglichen Eingabe- und Ausgabe-
Kombinationen werden mit ’*’ gekennzeichnet.

Wenn zudem Bedingungen relevant sind, fügen wir weitere Zustände s∀ und sδ für jede mögliche
Bedingung P ′ von P ein. Es ist jedoch effizienter s∀ und sδ mit einer neuen Proposition p′ zu
markieren, da hierdurch keine weiteren Zustände eingeführt werden müssen. Weiterhin müssen

106

4.1 Gray Box Checking

*

*

s∀

sδ

Abbildung 4.3: Maximal chaotisches Verhalten: der chaotische Automat

dann alle Propositionen p ∈ P in denen p auftritt durch (p∨ p′) ersetzt werden, genauso wie alle
¬p durch (¬p ∨ p′) ersetzt werden.

Da wir an einer sicheren Abstraktion des Protokollverhaltens der Altkomponente interessiert
sind, führen wir eine besondere Vervollständigung ein, die sogenannte chaotische Vervollständi-
gung. Die chaotische Vervollständigung resultiert in einen willkürlichen chaotischen Verhalten.

Definition 41 (Chaotische Hülle)
Gegeben sei ein unvollständiger Automat M = (S, I, O, T, T ,Q), dann leiten wir die dazugehö-
rige chaotische Hülle M ′ = (S ′, I, O, T ′, Q′) wie folgt ab:

1. verdoppele die Zustandsmenge und berücksichtige den chaotischen Automaten: S ′ = (S×
{0})] (S × {1})] Sc und

2. passe die Transitionsmenge der Verdoppelung so an, dass alle nicht spezifizier-
ten Kommunikationen entweder nicht unterstützt werden oder in den hinzugefügten
chaotischen Automaten führen: T ′ = {((s, 0), A,B, (s′, 0)|(s, A,B, s′) ∈ T}]
{((s, 0), A,B, (s′, 1)|(s, A,B, s′) ∈ T}] {((s, 1), A,B, (s′, 0)|(s, A,B, s′) ∈ T}]
{((s, 1), A,B, (s′, 1)|(s, A,B, s′) ∈ T}] {((s, 1), A,B, s∀)|s ∈ S, a ∈ ℘(I), B ∈
℘(O), (s, A,B) 6∈ T}] {((s, 1), A,B, sδ)|s ∈ S, a ∈ ℘(I), B ∈ ℘(O), (s, A,B) 6∈
T}] Tc.

Wir beschreiben die chaotische Hülle von M mit chaos(M).

In dieser Konstruktion gilt: Q′ = {(s, 0)|s ∈ Q}] {(s, 1) ∈ Q}. Die Zustände (s, 0) reprä-
sentieren den Fall, dass keine Erweiterung angenommen wird, welche in einen Deadlock führt.
Die Zustände (s, 1) repräsentieren den Fall, dass alle möglichen Erweiterungen angenommen
werden, welche entsprechend in das Chaos führen. Dies wird repräsentiert durch sδ und s∀. Aus
dieser Definition ist zudem ersichtlich, dass das chaotische Verhalten (hochgradig) nichtdetermi-
nistisch ist, während das reale Altkomponenten-Verhalten deterministisches Verhalten aufweist.

Beobachtungs-Konformität & Verfeinerung

Definition 42 (Beobachtungs-Konformität)
Ein unvollständiger Automat M ist beobachtungs-konform bezüglich eines Automaten Mr, wenn
[M] ⊆ [Mr].

107

Kapitel 4 Integration von Altkomponenten

In unserem Fall haben wir die Beobachtung über Zustände definiert. Typischerweise wird dies
über Pfade definiert. Für den hier betrachteten Gray-Box-Checking-Ansatz ist das allerdings
unpraktisch, da wir die Zustände der Altkomponente kennen.

Theorem 2
Wenn M ein beobachtungs-konformer unvollständiger Automat bezüglich einer konkreten deter-
ministischen Altkomponente Mr ist, dann gilt, dass Mr v chaos(M).

Beweis 6
Aus der Verfeinerungs-Bedingung 4.1 folgt direkt [M] ⊆ [Mr], da sδ und s∀ alle positiven und
negativen Propositionen durch die diskutierten Anpassungen der Formeln erfüllen. Bedingung
4.2 ist erfüllt, da die chaotische Hülle per Konstruktion garantiert, nur zusätzliches Verhalten
hinzuzufügen, welches immer in einen Deadlock führen kann. �

4.1.2 Initiale Verhaltenssynthese

Gegeben sei ein konkreter Kontext M c
r mit abstrakten Modell M c

a , für das gilt, dass der konkre-
te Kontext eine Verfeinerung des abstrakten ist (M c

r v M c
a). Weiterhin sei eine konkrete Alt-

komponente Mr mit versteckten internen Details gegeben. Die generelle Frage, die unser Gray-
Box-Checking-Ansatz zu beantworten hat ist, ob eine gegebene Bedingung φ so wie Deadlock-
Freiheit (¬δ) erfüllt sind.

Da wir sicherheitskritische Systeme betrachten, muss unser Ansatz entweder eine Garantie ge-
ben, dass beide Eigenschaften erfüllt sind oder ein Gegenbeispiel liefern, welches eine Verlet-
zung der Bedingungen aufweist. Allerdings kann gewöhnlich nicht der gesamte Zustandsraum
von Mr traversiert werden, da der Zustandsraum der parallelen Ausführung mit M c

a‖Mr zu groß
ist, um vollständig alle Eigenschaften zu überprüfen.

Um dieses Problem zu lösen, erstellen wir eine Serie von Abstraktionen M i
a von Mr. Es handelt

sich hierbei um sichere Abstraktionen (siehe Definition 41), um entsprechend zuverlässige Veri-
fikationsergebnisse zu ermöglichen. Die Abstraktionen werden nach und nach akkurater, so dass
letztendlich gezeigt werden kann, dass entweder die Integration korrekt ist oder ein entsprechen-
des Gegenbeispiel gefunden wurde. Dabei ist immer die folgende Relation erfüllt:

Mr vM i
a (∀i ≥ 0). (4.6)

Unser Ansatz startet mit der initialen Synthese eines Modells der Altkomponente basierend auf
den bekannten Schnittstellen-Informationen. Wir gehen dabei davon aus, dass die ausgetauschten
Nachrichten entweder direkt zueinander passen oder eine Abbildung, die z.B. den Namensraum
oder auch die Typen aufeinander abbildet, bekannt ist.

In einem ersten Schritt erstellen wir einfach M0
a basierend auf den bekannten Informationen der

Schnittstelle von Mr. M0
l wird erstellt durch Bestimmung des initialen Zustands s0 von Mr und

durch Herleitung eines Automaten: M0
l = ({s0, I, I, ∅, {so}). Wie in Paragraph Anforderungen

108

4.1 Gray Box Checking

und Voraussetzungen auf Seite 98 beschrieben, setzen wir voraus, dass die Altkomponente Initial
in einem wohldefinierten Zustand ist.

Unter Ausnutzung der chaotischen Hülle (siehe Definition 41) leiten wir eine erste Approxima-
tion her: M0

a = chaos(M0
l). Mit Theorem 2 stellen wir sicher, dass M0

a eine sichere Abstraktion
von Mr ist (Mr vM0

a).

Lemma 5
Für das initiale Modell M0

a = chaos(M0
l) für M0

l erstellt für den initialen Zustand s0 von Mr

ausgedrückt durch den Automat M0
l = ({s0, I, I, ∅, {so}) gilt Mr vM0

a .

Beweis 7
Aufgrund des Theorems 2 können wir folgern, dass M0

a eine sichere Abstraktion von Mr ist, da
M0

l beobachtungs-konform zu Mr ist. �

(a)

noConvoy::default

(b)

* noConvoy::default

noConvoy::default

*

* s∀

sδ

Abbildung 4.4: Trivialer initialer Automat, der den bekannten initialen Zustand berücksichtigt
(4.4(a)) und das initiale Verhalten einer Altkomponente (4.4(b))

In Abbildung 4.4(a) wird der initiale, triviale Automat dargestellt. Der Automat besteht aus ei-
nem initialen Zustand noConvoy::default.

Der resultierende Automat nach Anwendung der chaotischen Hülle auf den trivialen unvollstän-
digen Automaten dargestellt in Abbildung 4.4(a), welcher nur den bekannten initialen Zustand
noConvoy::default darstellt, ist in Abbildung 4.4(b) dargestellt. Die Abbildung verdeutlicht, dass
der initiale Zustand verdoppelt wurde und das einer dieser Zustände verbunden ist mit jeglichen
möglichen Kommunikationen durch die beiden chaotischen Zustände s∀ and sδ. Wie bereits wei-
ter oben erläutert, stellt ’*’ alle möglichen Eingabe- und Ausgabekombination dar.

Abbildung 4.5 zeigt das bekannte Kontextverhalten, die front-Rolle, die wir im Folgenden für
die iterative Verhaltenssynthese berücksichtigen. Da der hier beschriebene Gray-Box-Checking-
Ansatz aus Vereinfachungsgründen nicht für hierarchisches Kontextverhalten definiert wurde,
beschreibt 4.5 im Wesentlichen nur eine flache Repräsentation des front-Rollenverhaltens (siehe
Abschnitt 2.4.2). Dies stellt keine Einschränkung für die Einsatzmöglichkeit des Ansatzes dar.
Die Automaten können lediglich komplexer werden, da Hierarchien durch mehrere Zustände und
Transitionen flach ausgedrückt werden.

Der Startzustand des Statecharts ist der noConvoy-Zustand. Der Automat verweilt in diesem Zu-
stand bis eine convoyProposal-Nachricht empfangen wird. Danach wird in den answer-Zustand
gewechselt. In diesem Zustand entscheidet der Automat nichtdeterministisch die Konvoianfrage

109

Kapitel 4 Integration von Altkomponenten

/breakConvoy

noConvoy::default
/convoyProposalRejected

convoyProposal/

noConvoy::answer

convoy::default

/startConvoy

convoy::break
breakConvoyProposal/

/breakConvoyRejected

Abbildung 4.5: Bekanntes Kontextverhalten

abzulehnen (convoyProposalRejected) oder den Konvoi zu starten (startConvoy). Ist letzteres der
Fall, schaltet der Automat in den convoy-Zustand und verweilt dort, so lange eine breakConvoy-
Proposal-Nachricht empfangen wird. Der Automat entscheidet dann wieder nichtdeterministisch
diese Anfrage anzunehmen oder abzulehnen.

4.1.3 Iterative Verhaltenssynthese

Auf Basis der initialen Verhaltenssynthese (siehe Abschnitt 4.1.2), beschreiben wir in diesem
Abschnitt unseren iterativen Verhaltenssynthese-Ansatz. Als erstes überprüfen wir, ob die ge-
gebenen Bedingungen für das initial synthetisierte Verhalten erfüllt sind. Ist dies nicht der Fall,
testen wir die Altkomponente basierend auf dem Gegenbeispiel, welches die Verletzung der Be-
dingung aufzeigt. Während der Testdurchführung beobachten wir die Altkomponente. Wenn das
Gegenbeispiel durch die Altkomponente bestätigt wird, ist die Integration fehlgeschlagen. An-
dernfalls verwenden wir den beobachteten Trace, um das Verhalten zu erlernen. Das neu synthe-
tisierte Verhalten ist dann der Startpunkt für die nächste Iteration.

Formaler Verifikationsschritt Die iterative Verhaltenssynthese startet mit der Überprüfung
der hergeleiteten Abstraktion aus der initialen Verhaltenssynthese (siehe Abschnitt 4.1.2). Über-
prüft wird, ob ein Gegenbeispiel für die geforderte Bedingung φ existiert. Wir überprüfen daher
für i ≥ 0

M c
a‖M i

a |= φ ∧ ¬δ. (4.7)

Wenn die Überprüfung erfolgreich ist, haben wir tatsächlich bewiesen, dass die Bedingungen
auch für M c

a‖Mr und M c
r‖Mr gelten müssen.

Lemma 6
Gegeben sei ein konkreter Kontext M c

r mit abstrakten Modell M c
a und eine konkrete Altkompo-

nente Mr mit hergeleiteter Abstraktion M i
a, so dass der konkrete Kontext eine Verfeinerung des

110

4.1 Gray Box Checking

abstrakten Kontextes ist (M c
r v M c

a) und das M i
a eine gültige Abstraktion der Altkomponente

Mr ist (Mr vM i
a), dann gilt für jede kompositionelle Bedingung φ:

M c
a‖M i

a |= φ ⇒ M c
r‖Mr |= φ. (4.8)

Beweis 8
Wie in Abschnitt 4.1.1 gezeigt, bleibt eine Verfeinerung (v) durch eine parallele Komposition (‖)
erhalten. Wenn also M c

r vM c
a gilt, dann können wir daraus schließen, dass M c

r‖M i
a vM c

a‖M i
a

ebenso gilt. Gilt Mr v M i
a, dann können wir damit ebenso folgern, dass M c

r‖Mr v M c
a‖M i

a

gilt. Da die Verfeinerung die Bedingung φ erhält, können wird aus M c
a‖M i

a |= φ folgern, dass
M c

r‖Mr |= φ ebenfalls gilt. �

Wenn die Überprüfung allerdings nicht erfolgreich ist, wird ein Gegenbeispiel erstellt. Das Ge-
genbeispiel ist ein Pfad π für M c

a‖M i
a, welcher eine Verletzung aufzeigt, dass φ nicht für die

Abstraktion erfüllt ist. Dieses Gegenbeispiel eingeschränkt auf M i
a wird benutzt, um die Alt-

komponente zu testen.

Beobachtung 4.1 zeigt das Gegenbeispiel der Überprüfung des initialen chaotischen Verhaltens.
Das Gegenbeispiel ist relativ lang bezogen auf die Größe des initialen Automaten. Als erstes
schickt die chaotische Hülle eine convoyProposal-Nachricht dem Kontext zu. Danach schickt
der Kontext eine convoyProposalReject-Nachricht. Dann schickt die Hülle wieder eine convoy-
Proposal-Nachricht und der Kontext entscheidet sich einen Konvoi zu erstellen, in dem er eine
startConvoy-Nachricht verschickt. Nachdem der Konvoi erstellt wurde, versucht der Kontext den
Konvoi aufzulösen, während die Hülle in den sδ Zustand wechselt und damit ein Deadlock ma-
nifestiert ist.

Beobachtung 4.1: Initiales Gegenbeispiel
1 rc1.noConvoy, legacyRC.s_all,
2 legacyRC.convoyProposal!, shuttle1.convoyProposal?
3 rc1.answer, legacyRC.wait,
4 rc1.convoyProposalRejected!, legacyRC.convoyProposalRejected?
5 rc1.noConvoy, legacyRC.s_all
6 legacyRC.convoyProposal!, shuttle1.convoyProposal?
7 rc1.answer, legacyRC.wait
8 rc1.startConvoy!, legacyRC.startConvoy?
9 rc1.convoy, legacyRC.s_all

10 legacyRC.breakConvoyProposal!, rc1.breakConvoyProposal?
11 rc1.break, legacyRC.s_delta

Testschritt Wenn der Test der Altkomponente mit dem Gegenbeispiel aufdeckt, dass der Pfad
π auch in der Altkomponente möglich ist, können wir daraus schließen, dass wir einen Fehler in
der Integration gefunden haben.

111

Kapitel 4 Integration von Altkomponenten

Lemma 7
Gegeben sei ein konkreter KontextM c

r mit abstrakten ModellM c
a und eine AltkomponenteMr mit

abgeleiteter Abstraktion M i
a, so dass der konkrete Kontext den abstrakten verfeinert (M c

r vM c
a)

und dass die Abstraktion der Altkomponente gültig ist (Mr vM0
a), dann gilt:(

M c
a‖M i

a, π 6|= φ ∧ π ∈M c
r‖Mr

)
⇒ M c

r‖Mr 6|= φ (4.9)

Beweis 9
Da π eine Verletzung von ¬φ nachweist und φ ein Ausführungspfad von M c

r‖Mr ist, können wir
daraus folgern, dass M c

r‖Mr 6|= φ gilt. �

Im Folgenden wenden wir unsere Vereinfachungen an, um die Bedingungen P ′ anzupassen, an-
statt diese über die chaotische Hülle auszudrücken, welche alle möglichen unterschiedlichen
Teilmengen der atomaren Bedingungen P unterscheiden würde (siehe Definition 40). Unter An-
wendung dieser Vereinfachung müssen wir nur φ auf M c

r‖Mr, π auswerten, um zu überprüfen,
dass das Gegenbeispiel durch die Altkomponente bestätigt wird. Dies kann nur passieren, wenn
π Zustände in der chaotischen Hülle (s∀ or sδ) aufsucht.

Daher ist garantiert, dass in diesen Fällen π nicht ein realer Ausführungspfad von M c
r‖Mr ist,

da die konkreten Zustände niemals Zustände der chaotischen Hülle beinhalten. Dies ist notwen-
dig, da ansonsten durch die künstlichen Deadlocks ermöglicht durch die chaotische Hülle, um
Verhalten zu lernen, keine sichere Abstraktion gewährleistet wäre.

In dem hier betrachteten Fall von Gray Box Checking, wo wir die konkreten Zustände der Alt-
komponente beobachten können, können wir davon ausgehen, dass für Ausführungspfade die
Kodierung (s, i) mit i ∈ {0, 1} äquivalent zu einem Zustand s sind (siehe Definition 41). Damit
sind Ausführungspfade, die nur diese Zustände besuchen, auf Ausführungspfade der Altkompo-
nente abbildbar. Diese Ausführungspfade können damit reale Gegenbeispiele auffinden.

Wenn der Ausführungspfad nicht durch Testen der Altkomponente bestätigt wird, nutzen wir die
beobachtete Differenz zwischen π und der Beobachtung π′ der Altkomponente, um ein verbes-
sertes M i+1

a herzuleiten.

Wenn wir die Altkomponente in unserem Beispiel basierend auf dem Gegenbeispiel in Beobach-
tung 4.1 mit Hilfe der Techniken beschrieben in Abschnitt 6.1.1 testen, beobachten wir den Pfad
dargestellt in Beobachtung 4.2.

Die in Abschnitt 6.1.1 beschriebenen Techniken ermöglichen uns während der Testausführung
einer Altkomponente nur die relevanten Ereignisse aufzunehmen, die Notwendig für eine deter-
ministische Wiederholung sind. Dies ist für die betrachteten Systeme wichtig, da hiermit eine
gleichbleibende Instrumentierung realisiert wird, die einen sogenannten Probe-Effekt für Echt-
zeitsysteme verhindern kann.

Ein Probe-Effekt kann zu unterschiedlichen Verhalten während der Test und realen Ausführung
der Altkomponente führen, da sich durch die Instrumentierung z.B. das zeitliche Verhalten ver-
ändern kann. Unser Ansatz ermöglicht eine deterministische Wiederholung auf Basis der Be-

112

4.1 Gray Box Checking

obachtung der ausgehenden Nachricht convoyProposal an Port rearRole und der eingehenden
Nachricht convoyProposalRejected am gleichen Port.

Wenn wir detaillierter das Verhalten der Altkomponente während der deterministischen Wieder-
holung beobachten, mit allen relevanten Instrumentierungen für die Beobachtung der Zustände
und Zeit, zeigt der Pfad einen Konflikt mit dem erwarteten Verhalten basierend auf dem initialen
Gegenbeispiel (siehe Beobachtung 4.3).

Im nächsten Abschnitt werden wir zeigen, wie wir einen Konflikt manifestieren, während wir
das synthetisierte Verhalten basierend auf den beobachteten Pfaden überprüfen.

Beobachtung 4.2: Beobachtete relevante Ereignisse für die deterministische Wiederholung: blo-
ckierender Zustand

1 [Message] name="convoyProposal", portName="rearRole", type="outgoing"
2 [Message] name="convoyProposalRejected", portName="rearRole", type=

incoming

Beobachtung 4.3: Beobachtung aller relevanter Ereignisse: blockierender Zustand
1 [CurrentState] name="noConvoy"
2 [Message] name="convoyProposal", portName="rearRole", type="outgoing"
3 [Timing] count=1
4 [CurrentState] name="convoy",
5 [Message] name="convoyProposalRejected", portName="rearRole", type=

incoming

Lernschritt In dem hier gezeigten Lernschritt wenden wir die beobachtete Differenz zwi-
schen π und dem beobachteten Verhalten der Altkomponente π′ an, um ein verbessertes M i+1

l

herzuleiten.M i+1
a wird wieder aus chaos(M i+1

l) hergeleitet. Durch Theorem 2 gilt per Konstruk-
tion:

Mr vM i+1
a . (4.10)

Dies gilt, da π′ ein beobachtbares Verhalten von Mr ist und alle weiteren Verhalten von M i+1
l

auch in M i
l vorhanden sind.

Für das Lernen können wir zwei Schritte unterscheiden. Zum einen kann ein noch nicht beob-
achtetes Verhalten π′ aufgenommen worden sein. Dann können wir wie folgt vorgehen:

Definition 43 (Lernen)
Gegeben sei ein unvollständiger deterministischer Automat M = (S, I, O, T, T ,Q) und ein re-
gulärer Ausführungspfad π, dann können wir den deterministischen unvollständigen Automaten
M ′ = (S ′, I, O, T ′, T ,Q′) herleiten, welcher sich aus dem Lernen von π (beschrieben durch
learn(M,π)) wie folgt ergibt: S ′ = S ∪{s 6∈ S|π = . . . s . . . }, T ′ = T ∪{(s, A,B, s′) 6∈ T |π =
. . . s(A,B)s′ . . . }, und Q′ = Q ∪ {s 6∈ Q|π = s . . . }.

113

Kapitel 4 Integration von Altkomponenten

Zum anderen können wir den Fall betrachten, dass der Test blockiert wird. In diesem Fall haben
wir einen Deadlock-Ausführungspfad π der Form . . . s(A,B) mit (A,B) wurde in Zustand s
blockiert. Das Lernen wird dann wie folgt ermöglicht:

Definition 44 (Lernen - Deadlock)
Gegeben sei ein deterministischer unvollständiger Automat M = (S, I, O, T, T ,Q) und ein
Deadlock-Ausführungspfad π = . . . s(A,B), wobei die letzte Kommunikation blockierend ist.
Wir leiten dann den deterministischen unvollständigen Automaten M ′ = (S, I, O, T, T

′
, Q) her.

Dieser resultiert aus dem Lernen auf Basis von π (bezeichnet durch learn(M,π)) wie folgt:
T
′
= T ∪ {(s, A,B)}.

In beiden Fällen ist das erlernte Verhalten eine sichere Abstraktion, wie im folgenden Lemma
beschrieben.

Lemma 8
Gegeben sei ein konkreter Kontext M c

r mit abstrakten Modell M c
a und einer konkreten Altkompo-

nente Mr mit abgeleiteter Abstraktion M i
a. Weiterhin sei der konkrete Kontext eine Verfeinerung

des abstrakten Kontext (M c
r v M c

a) und das erlernte Verhalten sei gültig (M0
a ist beobachtungs-

konform zu Mr), dann gilt für jeden möglichen Ausführungspfad π von M c
r‖Mr:

Mr vM i+1
a für M i+1

a = chaos(learn(M i
l , π)). (4.11)

Beweis 10
Es folgt aus der Konstruktion, dass learn(M i

l , π) wie M i
l beobachtungs-konform zu Mr ist.

Durch Theorem 2 folgt die Verfeinerung für chaos(learn(M i
l , π

′)). �

Um in der Lage zu sein einen Pfad zu erstellen, der die Abstraktion verbessert, nutzen wir aus,
dass die Implementierung Mr deterministisch ist, während M i

a möglicherweise Nichtdetermi-
nismen beinhaltet. Dies ist keine Einschränkung für sicherheitskritische Systeme, da hier Nicht-
determinismen oder pseudo Nichtdeterminismen nicht erlaubt sind. Ansonsten würden wichtige
Eigenschaften dieser Systeme, wie Vorhersagbarkeit, verletzt werden.

Bezogen auf unser Beispiel, zeigt Abbildung 4.6 das synthetisierte Verhalten. Zuerst ist die Alt-
komponente in Zustand noConvoy::default. Nachdem die Nachricht convoyProposal verschickt
wurde, wechselt die Altkomponente in Zustand noConvoy::wait.

noConvoy::defaultnoConvoy::default
/convoyProposal

Abbildung 4.6: Synthetisiertes Verhalten: Konflikt mit der Umgebung

114

4.1 Gray Box Checking

Mehrfache Iterationen Mit dem in den vorherigen Paragraphen vorgestellten Vorgehen,
können wir systematisch eine Serie von Abstraktion M0

a , M1
a , . . . , Mn

a herleiten, so dass wir
schrittweise unser Wissen über die Altkomponente Mr verbessern. Im Unterschied zu bisherigen
Lernansätzen garantiert die Serie von Abstraktion immer eine gültige Verfeinerung, so dass unser
Verfahren terminiert, sobald wir ein erstes n gefunden haben mit M c

a‖Mn
a |= φ. Diese Aussage

impliziert, dass φ zudem für das reale System, die Altkomponente, gilt (M c
r‖Mr |= φ). Wenn, im

Gegensatz, wir ein n erreichen, für welches das zugehörige Gegenbeispiel πn zudem in der rea-
len Implementierung M c

r‖Mr festgestellt werden kann, weist das Gegenbeispiel auf einen realen
Konflikt in der Integration hin.

Theorem 3
Gegeben sei ein konkreter Kontext M c

r mit abstrakten Modell M c
a , so dass der konkrete Kontext

eine Verfeinerung des abstrakten ist (M c
r v M c

a) und eine konkrete Altkomponente Mr mit einer
Reihe von hergeleiteten Abstraktionen {M i

a|0 ≤ i ≤ n}. Diese Abstraktionen seien konstruiert,
wie unter Lemma 8 vorgestellt. Hieraus können wir entscheiden, ob eine Bedingung φ fürM c

r‖Mr

gilt oder wir können die Serie der Abstraktionen fortsetzen.

Beweis 11
Wir können via Induktion zeigen, dassM i

l beobachtungs-konform zuMr∀0 ≤ i ≤ n ist. Der erste
Schritt der Induktion ist (Induktionsanfang): Lemma 5 garantiert, dass wir immer wenigstens
ein erstes Element M0

l in der Serie der Abstraktion finden. Daher ist die Bedingung für n = 0
gegeben. Der Induktionsschritt wird mit Hilfe von Lemma 8 gezeigt. Es gilt, dass wenn eine Serie
von Abstraktionen für i fortgesetzt werden kann, Lemma 8 garantiert, dass die Bedingungen auch
für i+ 1 gelten.

Wenn wir die Serie nicht fortsetzen können, dann haben wir entweder bewiesen, dass φ für
M c

a‖Mn
a gilt oder wir haben gezeigt, dass das Gegenbeispiel πn auch in M c

r‖Mr enthalten ist.
Durch Lemma 6 haben wir bewiesen, dass die Bedingung φ für M c

r‖Mr gilt. Lemma 7 garantiert
zudem, dass die Bedingung φ stets durch M c

r‖Mr verletzt wird.

Daher garantiert unser Ansatz entweder die Reihe von Abstraktionen fortzusetzen oder wir haben
einen Beweis, dass die Bedingung φ erfüllt oder nicht erfüllt ist. �

Für Altkomponenten mit endlich vielen Zuständen, können wir zudem garantieren, dass der
Lernprozess terminiert. Gehen wir also davon aus, dass die Altkomponente eine endliche Anzahl
an Zuständen und Transitionen hat sowie deterministisches Verhalten aufweist. Hierfür können
wir zeigen, dass jedes Mal wenn wir ein Gegenbeispiel nicht in der Testphase beobachten kön-
nen, chaotisches Verhalten durch vorher unbekannte Zustände und Transitionen ersetzt werden.
Daher ist die Anzahl der noch nicht bekannten Zustände und Transitionen mit jeder Iterationsrun-
de strikt monoton abnehmend. Da die Anzahl nicht kleiner Null sein kann, ist eine Terminierung
garantiert.

Im Folgenden zeigen wir einen weiteren Iterationsschritt an unserem Beispiel. Basierend auf
dem synthetisierten Verhalten gezeigt in Abbildung 4.6, berechnen wir eine chaotische Hülle und
überprüfen diese mit dem Kontext. Beobachtung 4.4 zeigt das Gegenbeispiel. Die Bedingung A[]
not (rearRole.Convoy and frontRole.noConvoy) ist verletzt. Der Pfad zeigt, dass die Verletzung

115

Kapitel 4 Integration von Altkomponenten

nur im synthetisierten Teil des Modells ist. Damit haben wir bewiesen, dass die Altkomponente
im Konflikt mit dem Kontext ist. Darüber hinaus zeigt dieses Beispiel, dass unser Ansatz in der
Lage ist, schnell, nach wenigen Iterationsschritten, einen Fehler in der Integration aufzudecken.

Beobachtung 4.4: Gegenbeispiel mit Konflikt im synthetisierten Verhalten
1 shuttle1.noConvoy, shuttle2.noConvoy
2 shuttle2.convoyProposal!, shuttle1.convoyProposal?
3 shuttle1.answer, shuttle2.convoy

Der Ansatz unterstützt neben einer schnellen Konflikterkennung zudem eine systematische und
gleichzeitig automatische Vorgehensweise, um alle relevanten Eingabekombinationen in Bezug
auf den Kontext und den gestellten Bedingungen zu testen. Die Eingabe für das Testen ist die
gleiche, wie durch das Gegenbeispiel dargestellt in Beobachtung 4.5. Der Beobachtungspfad
zeigt, dass alle Kommunikationen durch die Altkomponente ausgeführt wurden, wie durch die
Testeingabe erwartet. Das in Abbildung 4.7 gezeigte synthetisierte Verhalten bestätigt diese Be-
obachtung. Die Überprüfung des synthetisierten Verhaltens zusammen mit der chaotischen Hül-
le manifestiert einen Deadlock in der chaotischen Hülle und nicht nur in dem synthetisierten
Verhaltensteil. Daher können wir das Gegenbeispiel in der nächsten Iteration für Testeingaben
ausnutzen.

Beobachtung 4.5: Erfolgreicher Lernschritt: Beobachtung aller relevanter Ereignisse
1 [CurrentState] name="noConvoy::default"
2 [Message] name="convoyProposal", portName="rearRole", type="outgoing"
3 [Timing] count=1
4 [CurrentState] name="noConvoy::wait"
5 [Message] name="convoyProposalRejected", portName="rearRole", type=

incoming
6 [Timing] count=2
7 [CurrentState] name="noConvoy"
8 [Message] name="convoyProposal", portName="rearRole", type="outgoing"
9 [Timing] count=3

10 [CurrentState] name="noConvoy::wait"
11 [Message] name="startConvoy", portName="rearRole", type=incoming
12 [Timing] count=4
13 [CurrentState] name="convoy"

4.2 Black Box Checking

Im vorherigen Abschnitt haben wir gezeigt, wie wir für Altkomponenten ein Verhalten iterativ
erlernen und überprüfen können, wenn der aktuelle Zustand des Systems beobachtbar ist. Gene-
rell können wir nicht voraussetzen, dass der aktuelle Zustand des Systems beobachtbar ist. Wie

116

4.2 Black Box Checking

convoyProposalRejected/

noConvoy::default

/convoyProposal

noConvoy::wait

convoy::default

startConvoy/

Abbildung 4.7: Korrekt synthetisiertes Verhalten in Bezug auf den Kontext

in Paragraph Anforderungen und Voraussetzungen auf Seite 98 erläutert, betrachten wir daher in
diesem Abschnitt zudem den Fall, dass der Zustand nicht beobachtbar ist und auch nicht auf den
Quellcode zurückgegriffen werden kann. Im Folgenden Abschnitt 4.3 betrachten wir den Fall,
dass wir auf den Quellcode zugreifen können.

Wie unter anderem in Abschnitt 4.1.1 erläutert, können wir die betrachtete Klasse an Altkompo-
nenten auf deterministische Systeme eingrenzen. Wie in Definition 33 gezeigt, müssen wir daher
einen deterministischen Automaten der Altkomponente erlernen.

In Abschnitt 4.1 haben wir diskutiert, dass im Allgemeinen Lernalgorithmen für deterministische
endliche Automaten nicht für die hier betrachteten sicherheitskritischen Systeme geeignet sind,
da diese keine Korrektheitsaussagen treffen können. Wir zeigen im Folgenden, wie wir den L*
Algorithmus von Angluin [Ang87] erweitern können, damit dies doch ermöglicht wird.

Wir werden im Folgenden zeigen wie wir eine kompositionelle Analyse für die Betrachtung
von Black-Box-Komponenten durchführen können. Generelle Idee ist dabei das Verfahren von
[Ang87] für die Domäne mechatronischer Systeme anzupassen. Das heißt insbesondere, dass wir
ein- und ausgehende Nachrichten, Kontextverhalten und Zeit berücksichtigen.

Der Ansatz erweitert im Wesentlichen den Gray-Box-Checking-Ansatz um das zusätzliche Er-
lernen eines Zustands. Dazu führen wir nach [Ang87] so genannte Zugehörigkeitsanfragen (engl.
Membership Queries) und Äquivalenzanfragen (engl. Equivalence Queries) ein, die wir im Fol-
genden Abschnitt näher erläutern. Weiterhin verwenden wir einen Konformitätstest nach Vasi-
levskii und Chow [Vas73, Cho78], der eine Korrektheitsaussage einer Äquivalenzanfrage unter-
stützt. Der Black-Box-Checking-Ansatz besteht damit aus folgenden Schritten (siehe Abbildung
4.8):

1. lernen eines Kandidaten des Protokollverhaltens der Altkomponente (mit erweitertem
Angluin Ansatz),

2. kompositionelle Überprüfung des Kandidaten aus 1. unter Berücksichtigung des Kontext-
verhaltens und Sicherheits-/Lebendigkeitseigenschaften an die Integration.

a) Wenn aus 2. ein Gegenbeispiel erfolgt, dann wird überprüft, ob dieses Gegenbeispiel
durch die Altkomponente bestätigt wird. Ist dies der Fall, ist die Integration fehler-

117

Kapitel 4 Integration von Altkomponenten

haft. (Das Verhalten kann und sollte trotzdem vollständig erlernt werden, um eine
Anpassung des Kontextes zu ermöglichen.). Ist dies nicht der Fall, wird mit 1. unter
Berücksichtigung des Gegenbeispiels fortgefahren.

b) Folgt aus 2. kein Gegenbeispiel, dann wird überprüft, ob das erlernte Verhal-
ten äquivalent zur Altkomponente ist (Konformitätstest mit Vasilevskii und Chow
[Vas73, Cho78]).

3. Folgt aus der Äquivalenzprüfung (2.(b)), dass der Automat äquivalent ist, ist die Lernpha-
se abgeschlossen und die Integration korrekt. Ist dies nicht der Fall, wird auf Basis der
Ergebnisse der Äquivalenzprüfung mit 1. fortgefahren.

Der Black-Box-Checking-Ansatz führt damit, wie der Gray-Box-Checking-Ansatz ebenfalls, ite-
rativ ein Lernen und Überprüfen durch. Der wesentliche Unterschied ist, dass zum einen ein Ler-
nansatz integriert werden muss, um auch Zustände zu identifizieren, die im Gray-Box-Checking-
Ansatz an der Schnittstelle beobachtbar waren. Ein weiterer Unterschied ist der Konformitätstest,
der eine Äquivalenz zwischen erlernten Verhalten und Altkomponente durchführt.

In [HNS03b] wurde der Ansatz von Angluin um Mealy-Automaten erweitert. Entsprechend ist
die grundlegende Idee, die Eingaben und Ausgaben auf einen akzeptierenden Automaten ab-
zubilden nicht neu. Zeit, Sicherheits- und Lebendigkeitseigenschaften sowie Kontextverhalten
werden durch den Ansatz allerdings nicht betrachtet.

Alt−
komponente

erweiterter L*

Algorithmus

erlernter Automat überprüfe Kombination

führe Altkompo−

nente aus

(Eingabevektor)

Gegenbeispiel

[Eigenschaften erüllt]

tätstest aus

führe Konformi−

[äquivalent]

[reproduziert]

Gegen−
beispiel

erlernter
Automat

Gegenbeispiel

automat
Kontext−

Mlegacy , Mcontext

Abbildung 4.8: Iteratives Lernen und Überprüfen: Black Box Checking

118

4.2 Black Box Checking

4.2.1 L* Lernalgorithmus

Ein Problem vieler Lernalgorithmen ist, dass diese selbst für einen deterministischen endli-
chen Automaten nicht polynomielle Laufzeiten aufweisen, wie Gold in [Gol78] gezeigt hat.
Pitt [Pit89] hat zudem gezeigt, dass diese Klasse von Automaten auch nicht in polynomieller
Laufzeit lösbar ist, wenn Äquivalenzanfragen benutzt werden. Äquivalenzanfragen nehmen dem
Lernalgorithmus die Überprüfung ab, ob der erlernte Automat äquivalent zur Black Box (Alt-
komponente) ist. Erst mit der Einführung von zusätzlichen Zugehörigkeitsanfragen, wie dies
Angluin [Ang87] gezeigt hat, können Algorithmen in polynomieller Laufzeit für das Lernen
eines deterministischen endlichen Automaten beschrieben werden.

In [Ang87] beschreibt Angluin einen Algorithmus, der einen Automaten zu einer regulären Spra-
che mit Hilfe von Anfragen und Gegenbeispielen konstruiert. Dieser Algorithmus wird unter dem
Namen L* eingeführt. Ausgabe dieses Ansatzes ist ein minimaler deterministischer endlicher
Automat.

Voraussetzung für den Algorithmus ist die Möglichkeit Anfragen stellen zu können. Es muss also
geprüft werden können, ob ein vom Algorithmus gegebenes Wort in der Sprache der Altkompo-
nente enthalten ist. Des Weiteren muss eine Äquivalenzprüfung durchgeführt werden können.
Dabei muss geprüft werden, ob die Sprache, die durch einen vorläufigen erlernten Automaten,
auch Kandidat genannt, repräsentiert wird, äquivalent zu der gesuchten Sprache ist. Sollte dies
nicht der Fall sein, so muss ein Gegenbeispiel zurückgeliefert werden. Im Allgemeinen wird das
Erlernen eines deterministischen endlichen Automaten aus einer Altkomponente mit regulärer
Inferenz bezeichnet.

Reguläre Inferenz Reguläre Inferenz betrachtet das System als Black Box. Es wird ange-
nommen, dass die betrachtete Black-Box-Altkomponente durch einen endlichen deterministi-
schen Automaten modelliert werden kann. Das sich daraus ergebende Problem ist die Identifi-
zierung der regulären Sprache L(M) der AltkomponenteM.

Ein Lerner, der zu Beginn nur das Alphabet Σ∗ vonM kennt, versucht die Sprache L(M) da-
durch zu erlernen, dass er Anfragen an einen Lehrer und an ein Orakel stellt. L(M) wird durch
Zugehörigkeitsanfragen (membership queries) an den Lehrer erlernt. Es wird überprüft, ob eine
Zeichenkette w ∈ Σ∗ in L(M) enthalten ist.

Weiterhin ist zum Erlernen der Sprache noch eine Äquivalenzanfrage (equvalence query) not-
wendig. Diese fragt das Orakel, ob der erlernte Automat A korrekt ist. Dies ist der Fall, wenn
L(A) = L(M). Ansonsten wird ein Gegenbeispiel gegeben. Typischerweise fragt der Lerner
eine Sequenz von Zugehörigkeitsanfragen und nutzt die Antworten, um einen vermuteten Auto-
maten (Kandidat) zu erstellen. Ist der Kandidat stabil (verändert sich nicht gegenüber vorherigen
Iterationen), wird eine Äquivalenzanfrage an das Orakel gestellt, um herauszufinden, ob das
Verhalten dem der Black-Box-Altkomponente entspricht. Ist dies der Fall, terminiert der Algo-
rithmus. Andernfalls wird ein Gegenbeispiel zurückgegeben, um A zurückzuweisen. In diesem

119

Kapitel 4 Integration von Altkomponenten

Fall werden weitere Zugehörigkeitsanfragen gestellt, bis der nächste mögliche Automat erstellt
ist und so weiter.

Der reguläre Inferenzalgorithmus von Angluin organisiert die Informationen, die durch Anfragen
und Antworten erlangt werden, in einer so genannten Beobachtertabelle. Die in dieser Tabelle
gespeicherten Zeichenketten bestehen dabei aus einem Präfix und einem Suffix. Die Präfixe sind
Indizes für die Reihen, während die Suffixe die Spalten der Tabelle indizieren. Ein Präfix ist eine
Zeichenkette, der zu einem Zustand des Systems führt. Ein Suffix wird genutzt, um die Präfixe
auseinanderzuhalten, die zu verschiedenen Zuständen führen.

Zusätzlich führen wir noch den Konkatenationsoperator · für Wörter ein: S · T = {s · t : s ∈
S, t ∈ T}.
Darüber hinaus führen wir zwei Mengen S und E ein. Die Menge S wird Präfix-Menge genannt.
E heißt Suffix-Menge. S und E werden jeweils mit dem leeren Wort ({ε}) initialisiert.

Nun können wir die Beobachtungstabelle an sich definieren.

Definition 45 (Beobachtungstabelle)
Wir bezeichnen eine Beobachtungstabelle mit T . Die Zeilen werden aus der Menge S ∪ S · A
gebildet, die Spalten aus E. Die Einträge der Zellen geben an, ob die Konkatenation des Zeilen-
und des Spalten-Wortes in der gesuchten Sprache enthalten ist. Wir definieren also T (s, e) = 1
wenn s · e ∈ L(M), sonst 0.

Um eine Zeile der Tabelle zu bezeichnen, führen wir noch die row-Funktion ein. row(s) bezeich-
net dabei das Tupel aus allen Werten der Tabelle in der Zeile zu s. Wenn zwei Zeilen (s1 und s2)
die gleichen Werte enthalten gilt also row(s1) = row(s2).

Konstruktion eines Automaten Auf Basis der Definition der Beobachtungstabelle be-
trachten wir im Folgenden, wie wir einen Automaten aus dieser Tabelle bilden können.

Der grundlegende Ansatz von Angluin beschreibt dies für akzeptierende Automaten, wie im
Folgenden definiert. In Abschnitt 4.2.2 werden wir diesen entsprechend für die in Definition 33
beschriebenen einfachen Echtzeit-Automaten erweitern.

Definition 46 (Akzeptierender Automat)
Ein endlicher akzeptierender Automat M wird als 5-Tupel (Q, q0, A,Σ, δ) definiert. Q ist eine
Menge von Zuständen. q0 ∈ Q ist der Start-Zustand. A ⊆ Q ist die Menge der akzeptierenden
Zustände. Σ ist das Eingabe-Alphabet und δ ist die Übergangsfunktion mit Q× Σ×Q.

Unseren Automaten definieren wir nun aus der Beobachtungstabelle wie folgt:

Definition 47 (Akzeptierender Automat abgeleitet aus Beobachtungstabelle)
• Q = {row(s) : s ∈ S}
• q0 = row(ε)

• δ(row(s), a) = row(s · a)

120

4.2 Black Box Checking

• F = {row(s) : s ∈ S, T (s) = 1}

Dieser Automat ist wohldefiniert, wenn die Voraussetzung erfüllt ist, dass er abgeschlossen und
konsistent ist.

Abgeschlossenheit In der Übergangsfunktion wird als Funktionsterm row(s ·a) verwendet.
Nach der Definition für die Zustände Q = {row(s) : s ∈ S} ist jedoch nicht garantiert, ob ein
passender Zustand existiert. Es muss also ein Element t ∈ S geben, für das die row-Funktion den
gleichen Funktionswert hat wie row(s · a). Diese Bedingung wird Abgeschlossenheit genannt.

Definition 48 (Abgeschlossenheit)
Eine Tabelle T ist genau dann abgeschlossen, wenn gilt:
∀s ∈ S, a ∈ A : ∃t ∈ S : row(t) = row(s · a).

Konsistenz Aus der Definition der Übergangsfunktion folgt aber noch ein weiteres Problem.
Nach den bisherigen Definitionen könnte sie für einen Kombination aus row(s), amehrere Funk-
tionswerte haben, wenn zwei unterschiedliche Werte für s existieren, für die die row-Funktion
aber den gleichen Wert ergibt. Dies folgt aus der Konkatenation mit einem beliebigen, aber festen
Element a eingesetzt in die row-Funktion, die dann entsprechend zwei unterschiedliche Werte
ergibt. Dann würde der zu row(s) zugehörige Zustand mit der Eingabe a Transitionen auf meh-
rere unterschiedliche Zustände haben und wäre nicht mehr deterministisch. Wir definieren also
als Bedingung, dass dieses nicht auftreten darf und nennen diese Bedingung Konsistenz.

Definition 49 (Konsistenz)
Eine Tabelle T ist genau dann konsistent, wenn gilt:
∀s1, s2 ∈ S, a ∈ A : row(s1) = row(s2)⇒ row(s1 · a) = row(s2 · a).

Lernansatz Der Lern-Algorithmus geht iterativ vor (siehe Algorithmus 4.1). In jedem Durch-
lauf wird zunächst die Konsistenz und Abgeschlossenheit sichergestellt. Dabei wird die Tabelle
gegebenenfalls um neue Zeilen oder Spalten ergänzt, die mit Hilfe von Zugehörigkeitsanfragen
an den Lehrer gefüllt werden.

Ist die Tabelle nicht abgeschlossen, so existiert offenbar ein s ∈ S und ein a ∈ A, für das kein
t ∈ S existiert, für das gilt: row(t) = row(s · a). Um das zu verhindern, wird das Wort s · a zu
der Menge S hinzugefügt. Damit können wir einfach t = s · a wählen und die Bedingung der
Abgeschlossenheit ist zumindest für das gewählte s und a wieder hergestellt.

Wenn die Tabelle nicht konsistent ist, muss es nach der Definition ein s1 ∈ S, ein s2 ∈ S
und ein a ∈ A geben, für die gilt: row(s1) = row(s2), aber nicht row(s1 · a) = row(s2 · a).
Da sich die Zeilen unterscheiden, muss es mindestens einen unterschiedlichen Eintrag in einer
Spalte geben. Das zur Spalte gehörende Suffix e ∈ E wird ausgewählt. Damit wissen wir, dass
T (s1 · a · e) 6= T (s2 · a · e).

121

Kapitel 4 Integration von Altkomponenten

Nun können wir die Voraussetzung row(s1) = row(s2) vermeiden, in dem wir die Suffix-Menge
E um a · e erweitern. Dadurch enthalten beide Zeilen row(sn) die Werte T (sn · a · e), von denen
wir eben gezeigt haben, dass sie ungleich sind. Damit gilt auch row(s1) 6= row(s2) und die
Konsistenz ist für diesen Fall wiederhergestellt.

Ist die Tabelle dann sowohl konsistent als auch abgeschlossen, so kann ein Automat konstruiert
werden. Dieser so konstruierte Automat akzeptiert alle bereits gelernten Wörter. Da er aber noch
nicht zwangsweise genau die gesuchte Sprache akzeptiert, wird eine Äquivalenzanfrage an das
Orakel gestellt. Wenn das Orakel die Äquivalenz bestätigt, haben wir einen Automaten gefunden,
der die Sprache akzeptiert. Andernfalls wird ein Gegenbeispiel erzeugt, um das wir die Tabelle
erweitern. Dann wird mit dem nächsten Durchlauf begonnen.

Algorithmus 4.1 L*
1: loop
2: repeat
3: if T ist nicht konsistent then
4: Ergänze E um gefundenes a · e
5: Fülle neue Spalten mit Hilfe des Lehrers
6: end if
7: if T ist nicht abgeschlossen then
8: Ergänze S um gefundenes s · a
9: Fülle neue Zeilen mit Hilfe des Lehrers

10: end if
11: until T ist abgeschlossen und konsistent
12: Erzeuge Automat
13: Prüfe mit dem Orakel, ob der Automat korrekt ist
14: if Automat ist korrekt then
15: Beende äußere Schleife und gebe den Automaten zurück
16: else
17: Füge Gegenbeispiel und alle seine Präfixe zu der Menge S hinzu
18: end if
19: end loop

Die Komplexität des L∗ Algorithmus ist wie folgt. Die obere Grenze für die Anzahl der Äquiva-
lenzanfragen beträgt n (n ist die Anzahl der Zustände vonM). Die obere Grenze für die Anzahl
der Zugehörigkeitsanfragen beträgt O(|Σ|n2m).

Beispiel Angluin Um den Algorithmus zu demonstrieren, wählen wir als ein einfaches Bei-
spiel einen Ausschnitt des REAL-TIME COORDINATION PATTERNS Convoy aus. Wir betrach-
ten den Fall, dass eine ConvoyRequest-Nachricht verschickt wird und auf eine Antwort ge-
wartet wird. Das Warten wird durch eine spezielle Nachricht simuliert, wie in Abschnitt 4.2.2
vorgestellt. Das Schalten einer Transition entspricht einem Zeitschritt. Für jeden zu warteten-
den Zeitschritt wird eine solche Nachricht verschickt. Konkret ergibt sich damit die Sprache

122

4.2 Black Box Checking

U = convoyRequest, ε∗t . Um die Beobachtungstabellen möglichst klein zu halten ersetzen wir
convoyRequest durch a und εt durch b. Das Eingabealphabet ist damit A = {a, b}. Wie oben
beschrieben werden die Mengen S und E jeweils mit {ε} initialisiert2. Der initiale Zustand ist
also folgender:

• A = {a, b}
• U = ab∗

• S = {ε}
• E = {ε}

Die Beobachtungstabelle sieht damit wie folgt aus:

T0 ε
ε 0
a 1
b 0

Diese Tabelle ist zwar konsistent, aber offensichtlich nicht abgeschlossen, da es für die Konka-
tenation aus ε · a kein Element s ∈ S gibt, für das row(ε · a) = row(s) gilt. Daher ergänzen wir
die Menge S um eben dieses Element ε · a = a.

Damit ist nun S = {ε, a}. Wenn wir die Tabelle damit erweitern und die neuen Zeilen mit Hilfe
des Lehrers füllen, sieht sie wie folgt aus:

T1 ε
ε 0
a 1
b 0
aa 0
ab 1

Diese Tabelle ist nun sowohl abgeschlossen, als auch konsistent. An dieser Stelle wird also ein
vorläufiger Automat konstruiert und dann auf Äquivalenz zu der gesuchten Sprache überprüft.
Der konstruierte Automat sieht wie folgt aus:

q0 q1

a

b

a

b

2Im Vergleich zu der bisherigen visuellen Syntax von Zuständen in dieser Arbeit (siehe z. B. Abbildung 2.5),
werden wir im Folgenden, wie dies üblich für akzeptierende Automaten ist, die Zustände als Kreise und nicht
als Rechtecke mit abgerundeten Ecken darstellen.

123

Kapitel 4 Integration von Altkomponenten

Offensichtlich ist er jedoch nicht äquivalent mit der gesuchten Sprache L. Das Orakel wird daher
ein Gegenbeispiel zurückliefern. Dieses könnte z.B. das Wort ba sein, dass der Automat akzep-
tiert, aber nicht in der Sprache L enthalten ist.

Daher erweitern wir die Menge S um das Gegenbeispiel und alle seine Präfixe, in diesem Fall
{ba, b}. Nun ist also S = {ε, a, b, ba}. Die neue (und wieder über den Lehrer gefüllte) Beobach-
tungstabelle sieht wie folgt aus:

T2 ε
ε 0
a 1
b 0
ba 0
aa 0
ab 1
bb 0
baa 0
bab 0

Diese Tabelle ist nun zwar abgeschlossen, aber nicht konsistent. Als Gegenbeispiel können wir
row(ε) = row(b) finden, da row(ε·a) 6= row(b·a). Der Unterschied besteht in der bisher einzigen
Spalte ε, also ergänzen wir die Menge E um ε · a · ε = a. Also ist E = {ε, a}. Die um die neue
Spalte erweiterte Tabelle sieht nun so aus:

T0 ε a
ε 0 1
a 1 0
b 0 0
ba 0 0
aa 0 0
ab 1 0
bb 0 0
baa 0 0
bab 0 0

Da diese Tabelle nun wieder abgeschlossen und konsistent ist, wird wieder ein Automat erzeugt.
Dieser sieht nun so aus:

124

4.2 Black Box Checking

q0 q1

q2

a

b a

b

a, b

Dieser akzeptiert nun genau die Sprache L, das Orakel wird also die Äquivalenz bestätigen und
der Algorithmus terminiert.

4.2.2 L* für mechatronische Systeme

Zum einen müssen wir jetzt noch zeigen, wie wir den grundlegenden Algorithmus von Angluin
für einfache diskrete Echtzeit-Automaten, wie in Definition 33 beschrieben, erweitern. Zum an-
deren müssen wir die Zugehörigkeitsanfragen und Äquivalenzanfragen umsetzen, da diese nicht
durch den Angluin Ansatz vorgegeben sind.

Erweiterung von L* für diskrete Echtzeitautomaten Die beschriebenen diskreten Echt-
zeitautomaten unterscheiden sich von den akzeptierenden Automaten in der Hinsicht, dass diese
Eingangs-Nachrichten I und Ausgangs-Nachrichten O empfangen, bzw. verschicken können,
durch das Schalten einer Transition.

Eine Transition eines akzeptierenden Automaten ist markiert durch ein Wort aus Σ. Offensicht-
lich können wir daher eine Kombination aus Eingaben und den korrespondierenden Ausgaben
durch ein Wort aus Σ darstellen. Entsprechend muss für jede Kombination von Eingaben und
Ausgaben ein Wort spezifiziert werden.

Dies führt zum einen zu einer höheren Laufzeit des Angluin Ansatzes, da die Anzahl der Wör-
ter durch die Kombinationen ansteigt. Aufgrund der Zeitsemantik von den diskreten Echtzeit-
Automaten, wo das Schalten einer Transition einen Zeitschritt (Tick) entspricht, ist die Darstel-
lung einer Eingabe/Ausgabe-Kombination an einer Transition für die betrachteten Echtzeitsyste-
me nicht realistisch, da nicht in Nullzeit Nachrichten gleichzeitig empfangen und verschickt wer-
den können. Daher stellen wir Eingabe/Ausgabe-Kombination durch aufeinander folgende Tran-
sitionen, getrennt durch einen Zustand, mit entsprechenden Wörtern aus Σ dar, die die Eingabe-
und Ausgabe-Nachrichten repräsentieren.

Um die Zeitsemantik von diskreten Echtzeit-Automaten vollständig zu berücksichtigen, führen
wir zudem spezielle Leere-Wörter εt ein, die ein Zeitvergehen repräsentieren, wie wir dies Be-

125

Kapitel 4 Integration von Altkomponenten

reits schon in der Beispielanwendung illustriert haben (siehe Paragraph 4.2.1 auf Seite 122). Für
den Lernalgorithmus führt dies ebenfalls zu keiner Veränderung, da die Wörter für den Algo-
rithmus nicht gesondert betrachtet werden müssen. Lediglich die Testumgebung muss für jede
geschaltete Periode ein Leeres Wort εt als ausgehende Nachricht der Altkomponente erstellen.
Im Folgenden definieren wir den erweiterten akzeptierenden Automat für den Lernansatz:

Definition 50 (Erweiterter akzeptierender Automat)
Ein endlicher erweiterter akzeptierender Automat M ist ein akzeptierender Automat mit
(Q, q0, A,Σin,Σout, ε

t, δ). Q, q0 sowie A ist definiert wie in Definition 46 gezeigt. Die Menge
Σin beschreibt das Eingabealphabet, Σout das Ausgabealphabet und εt ist eine spezielle Nach-
richt, die einen Zeittick darstellt. δ ist die Übergangsfunktion mit Q× (Σin ⊕ Σout ⊕ εt)×Q.

Um den Algorithmus weiterhin terminieren zu lassen, muss eine obere Grenze für die Anzahl
der zu warteten Transitionen bekannt sein. Dies lässt sich aus der bekannten Ausführungsperiode
herleiten, da typischerweise pro Periode eine Transition geschaltet wird. Weiterhin müssen wir
von der Altkomponente die Information erhalten, wie lange/wie viele Perioden auf eine Antwort
gewartet werden muss. Unter diesen Voraussetzungen, ermöglicht das hier vorgestellte Verfahren
einen minimalen deterministischen Echtzeit-Automaten zu erlernen.

Zugehörigkeitsanfragen Wie in Abschnitt 4.2.1 dargestellt, beantwortet der Lehrer Zuge-
hörigkeitsanfragen (-tests) an die Altkomponente und stellt Gegenbeispiele zur Verfügung, wenn
die Äquivalenz nicht gegeben ist. Zugehörigkeitsanfragen werden allgemein durch Testen des
Systems realisiert. Die durch den L* Algorithmus ermittelten Eingabefolgen dienen entspre-
chend als Testeingaben für die Altkomponente.

Um die Anzahl der Zugehörigkeitsanfragen möglichst gering zu halten, können wir zudem aus-
nutzen, dass die betrachteten Systeme Präfix-Abgeschlossen sind. Dies gilt im Allgemeinen für
reaktive Systeme, zu denen auch mechatronische Systeme gehören.

Ist daher ein Wort α in der Sprache enthalten und β ist ein Präfix von α, dann ist auch β Element
der Sprache. Damit werten wir jeden Präfix eines Eintrags der Beobachtungstabelle ebenfalls
mit true aus, wenn denn ein entsprechender Eintrag mit true ausgewertet wurde und damit Teil
der Zielsprache ist: ∃o′ ∈ prefix(o) ∧ T (o) = 1 ⇒ T (o′) = 1. Andersherum können wir
auch die Anfragen ausschließen, für die wir bereits gezeigt haben, dass ein Präfix false ist:
∃o′ ∈ prefix(o) ∧ T (o′) = 0⇒ T (o) = 0.

Wir erweitern zudem Angluin’s Algorithmus um Gegenbeispiele des Model Checking, des
schrittweise erlernten Verhaltens der Altkomponente mit dem Kontext.

Wenn ein Gegenbeispiel durch die Altkomponente bestätigt wird, ist die Integration fehlerhaft.
Andernfalls nutzen wir dieses Gegenbeispiel, um den folgenden Kandidaten zu erlernen. Die
Berücksichtigung des Kontextes ermöglicht uns gezielter das relevante zu erlernende Verhalten
zu ermitteln und frühzeitig Fehler in der Integration zu ermitteln.

Abbildung 4.8 stellt dieses Vorgehen dar. Die Formalisierung sowie die Terminierung im Fehler-
fall ist identisch zu dem in Abschnitt 4.1 vorgestellten Gray-Box-Checking-Ansatz. Womit der

126

4.2 Black Box Checking

Black-Box-Checking-Ansatz ebenfalls iterativ das Verhalten überprüfen kann und reale Fehler
identifizieren kann.

Falls die Überprüfung des Kontextes mit dem Kandidaten der Altkomponente ergibt, dass die
gestellten Sicherheits- und Lebendigkeitseigenschaften erfüllt sind, müssen wir, wie in Abschnitt
4.2.1 beschrieben, noch eine Äquivalenzprüfung durchführen. Diese beschreiben wir im nächsten
Abschnitt.

Im Idealfall muss damit eine Äquivalenzprüfung nur einmal durchgeführt werden. Wir ermögli-
chen mit diesem Ansatz daher nicht nur eine frühe Fehlererkennung, sondern auch im Vergleich
zu bisherigen Lernansätzen eine Vermeidung der Äquivalenanfragen, die vergleichsweise zu den
Zugehörigkeitsanfragen und dem Model Checking teuer ist.

Äquivalenzanfragen Das beschriebene Lernverfahren benötigt ein Orakel, welches über-
prüft, ob der erlernte Kandidat äquivalent zu der Black-Box-Altkomponente ist. Ist dies nicht der
Fall, wird ein Gegenbeispiel angegeben.

Der Konformitätstest ist ein weitverbreiteter Ansatz, um die Äquivalenz zu überprüfen. Kon-
formitätstests bieten ein systematisches Verfahren an, um Antworten für Äquivalenzanfragen zu
ermitteln. [PVY99] oder [Ber06] sind z.B. Lernansätze die hierauf basieren.

Wie auch diese Ansätze, basieren die meisten Konformitätstest-Ansätze auf dem Verfahren von
Vasilevskii und Chow [Vas73, Cho78], aufgrund der guten Laufzeiteigenschaften.

Entsprechend Vasilevskii und Chow existiert eine obere Grenze für die Gesamtlänge einer Test-
sequenz. Diese istO(k2l|Σ|l−k+1). Die Laufzeit ergibt sich damit quadratisch aus der Anzahl der
Zustände k, aus der Anzahl der erlernten Zustände l sowie aus der exponentiellen Differenz der
Anzahl der Zustände k des Systems und des erlernten Kandidaten l über dem Alphabet.

Falls in unserem Fall das Model Checking kein Gegenbeispiel liefert, wird eine Äquivalenzan-
frage mittels des Verfahrens von Vasilevskii und Chow durchgeführt. Eingabe in das Verfahren
ist der Kandidat der Altkomponente M = (S, σ(I/O), T,Q), die Altkomponente Mr sowie die
obere Anzahl an erwarteten Zuständen der Altkomponente k. Der Algorithmus bestätigt entwe-
der die Äquivalenz oder gibt ein Gegenbeispiel zurück, welches wiederum als Eingabe für den
erweiterten L* Algorithmus verwendet werden kann (siehe Abbildung 4.8).

Um eine Äquivalenz zu bestimmen, wird ein Spannbaum für M und seinen korrespondierenden
Pfaden π bestimmt. In einem ersten Schritt wird auf Basis eines solchen Spannbaums beginnend
von dem initialen Zustand jeder Zustand durch eine abgeleitete Sequenz aus dem Spannbaum
erreicht. Im Folgenden wird iterativ versucht auf Basis dieses Spannbaums, dem Eingabealphabet
sowie einer Separations-Funktion sf ein Gegenbeispiel zu finden. Die Funktion garantiert dabei
Pfade zu finden, die in Mr und nicht in M sind, wenn Mr Zustände enthält, die noch nicht in M
enthalten sind [GPY02].

Unter der Annahme, dass eine obere Schranke für die Zustände bekannt ist, kann durch das vor-
gestellte Verfahren tatsächlich sichergestellt werden, dass entweder ein Fehler in der Integration

127

Kapitel 4 Integration von Altkomponenten

festgestellt wird oder die Integration unter Berücksichtigung der Sicherheits- und Lebendigkeits-
eigenschaften durch die oben beschriebene iterative Überprüfung korrekt ist.

Ein Problem des beschriebenen Black-Box-Checking-Ansatzes ist, dass die obere Anzahl an
Zuständen typischerweise nicht bekannt ist. Um die obere Anzahl an Zuständen zu ermitteln,
können wir uns, aufgrund der Eigenschaften der betrachteten Systeme, an dem Kontextverhalten
orientieren. Grund hierfür ist, dass die betrachteten Systeme häufig eine Art Watchdog-Muster in
dem Kommunikationsverhalten implementieren (siehe Kapitel 3 auf Seite 67). Die damit gefor-
derten Sende - und Empfangs-Sequenzen lassen auf einen Zustand jeweils zwischen dem Senden
und Empfangen schließen. Eine sichere obere Anzahl an Zuständen ist damit natürlich nicht ge-
geben. Eine Möglichkeit, um sicher zu sein, dass eine passende obere Grenze gefunden wurde,
ist das Mehrfachausführen des Black-Box-Checking mit unterschiedlichen Obergrenzen. Da der
ermittelte Automat ein minimaler ist, folgt aus einem gleichen erlernten Verhalten, dass die klei-
nere Obergrenze ausreichend ist.

Der Black-Box-Checking-Ansatz wurde im Rahmen der Projektgruppe ReCab [BBB+09] durch
die FRiTSCab Tool Suite umgesetzt. Hierbei wurden zum einen Anwendungsbeispiele aus dem
RailCab Projekt umgesetzt [BBB+09, HBB+09] sowie auch ein Beispiel aus der industriellen
Praxis [HMSN10a, HMSN10b, HMS+10]. Detaillierter werden wir die Umsetzung sowie die
Evaluierungen in Abschnitt 6.3.1.3 betrachten.

4.3 White Box Checking

Im Vergleich zu dem Gray-Box-Checking-Ansatz und Black-Box-Checking-Ansatz, beschreiben
wir für den hier vorgestellten White-Box-Checking-Ansatz keine expliziten Iterationen, um das
Verhalten zu erlernen und zu überprüfen. Dies liegt im Wesentlichen daran, dass bereits eine
Reihe von Ansätzen für Quellcode-Analysen existieren, die grundsätzlich gut anwendbar sind,
da diese bereits iterative Ansätze umsetzen. Unterliegend basieren diese Verfahren ebenfalls auf
der Idee einer Abstraktion, die nach und nach durch Gegenbeispiele konkretisiert wird.

Ziel unseres White-Box-Verifikationsverfahrens ist es, die Kommunikation zwischen einer Alt-
komponente, für die Quellcode aber kein Modell vorliegt und einer mit MECHATRONIC UML
entwickelten Komponente zu verifizieren. Dazu wird zunächst C-Code für die als Modell vorlie-
gende Komponente (den Kontext des Altsystems) generiert. Dieser wird zusammen mit dem des
Altsystems in ein spezielles Framework eingebettet, welches Scheduling, Nachrichtenaustausch
und Zeitverhalten simuliert. Das resultierende Gesamtsystem schließlich wird mittels (Quellco-
de) Model Checking verifiziert.

Aufgabe des Verifikationsframeworks ist es, ein generisches Kommunikationsszenario zwischen
den beiden Komponenten zu beschreiben, in dem bestimmte Abläufe als unsicher identifiziert
werden können. Um diese Abläufe zu finden, verwenden wir vorhandene Quellcode-Model Che-
cker. Diese unterstützen jedoch weder die Verifikation von Echtzeitverhalten noch eine parallele
Ausführung der beiden Komponenten. Beides wird allerdings von den betrachteten Systemen

128

4.3 White Box Checking

gefordert. Aus diesem Grund werden Zeit und parallele Ausführung explizit durch das Frame-
work simuliert, wodurch indirekt eine Berücksichtigung derartigen Verhaltens durch den Model
Checker ermöglicht wird.

Die Aufgaben des Frameworks sind die periodische Ausführung der für die Kommunikation re-
levanten Prozeduren innerhalb jeder Periode jeweils für die Altkomponente und dessen Kontext.
Dabei werden Perioden und Zeit aktualisiert und die ausgetauschten Nachrichten zum passenden
(virtuellen) Zeitpunkt vom Sendepuffer der sendenden in den Empfangspuffer der empfangenden
Komponente verschoben. Die übrige Funktionalität, wie die Verwaltung dieser Puffer, die Simu-
lation von Zeit innerhalb der Perioden sowie die Betrachtung von Zeitbedingungen wird über
Funktionen bereitgestellt, die durch die Komponenten (Altkomponente und Kontext) aufgerufen
werden.

Hauptaufgabe für unseren Ansatz ist es folglich, die zur Verfügung stehenden Informationen
geeignet in die Eingaben der möglichen Modell Checker zu transformieren, ohne die Semantik
unserer Modelle zu verletzen. Dies ist notwendig, da ansonsten die Analysen nicht gültig sind.
Im Besonderen müssen wir daher eine Simulation der Zeit, der Perioden sowie eine geeignete
Nachrichtenkommunikation auf Quellcode-Ebene umsetzen.

Wir werden im Folgenden zwei Ansätze diskutieren, die einen iterativen Analysansatz auf
Quellcode-Ebene unterstützen. Anschließend werden wir einen Ansatz einer Verifikationsumge-
bung diskutieren. Vorher werden wir noch auf einige Voraussetzungen und Annahmen eingehen.

Voraussetzungen und Annahmen Für die Durchführung der Verifikation werden neben
dem C-Quellcode der Altkomponente auch die Namen der durch das Framework aufzurufenden
Funktionen (Initialisierung, periodisch auszuführende Haupt-Prozedur) benötigt. Dies beinhaltet
die aufzurufenden Funktionen zum Nachrichtenaustausch sowie die Funktionen zum Ermitteln
der Systemzeit. Weiterhin muss eine Zuordnung der Nachrichten im Kontext zu der entsprechen-
den internen Codierung auf der Seite der Altkomponente gegeben sein.

Um den Zeitbedarf von Prozeduren im Altsystem berücksichtigen zu können, müssen diese zuvor
instrumentiert werden: Bei Ausführung jeder Prozedur mit Zeitbedarf muss die Funktion „con-
sumeLegacyTime(int BCET, int WCET)“ mit passenden Werten für Best- und für Worst-Case
Ausführungszeiten aufgerufen werden. Sind diese Werte nicht vorab bekannt, müssen diese zu-
nächst durch eine WCET Analyse der Altkomponente beispielsweise mittels Bound-T3 ermittelt
werden.

Quellcode-Analysewerkzeuge BLAST (Berkeley Lazy Abstraction Software Verification
Tool4) ist ein Werkzeug, welches eine Gegenbeispiel-getriebene Verifikation auf Basis eines vor-
liegenden Programmcodes in C durchführt [HJMS03].

3http://www.tidorum.fi/bound-t/
4http://mtc.epfl.ch/software-tools/ blast/

129

Kapitel 4 Integration von Altkomponenten

Als interne Repräsentation des Quellcodes wird zunächst ein Kontrollflussautomat (CFA) kon-
struiert. Zu dieser ersten Abstraktion wird ein mit Prädikaten und den entsprechenden Knoten-
namen des CFA annotierter Erreichbarkeitsbaum konstruiert. Durch eine Erreichbarkeitsanalyse
wird in diesem ein Fehlerpfad gesucht. Wird auf diese Weise ein Fehler gefunden, so gibt eine
symbolische Ausführung des entsprechenden Codefragments Aufschluss darüber, ob dieser dem
Quellcode nach möglich ist, oder ob es sich um eine Fehlererkennung aufgrund einer zu unge-
nauen Abstraktion handelt. Während bei einem echten Fehler die Analyse abgebrochen werden
kann, muss bei einem falsch-positiven Fehler eine Verfeinerung der Abstraktion durchgeführt
werden.

Um die hierzu erforderlichen zusätzlichen Prädikate zu ermitteln, wird ein Theorembeweiser
eingesetzt. Anschließend wird erneut ein Fehlerpfad gesucht. Das durch Blast umgesetzte Prin-
zip wird als „Counterexample Guided Abstraction Refinement“ (CEGAR), also gegenbeispiel-
getriebene Abstraktionsverfeinerung bezeichnet.

Bei CBMC und SATABS handelt es sich um zwei White-Box-Verifikationswerkzeuge zur Ana-
lyse von C- und C++-Programmen, die an der Carnegie Mellon Universität (teilweise in Zu-
sammenarbeit mit der ETH Zürich und IBM) entwickelt wurden. Beide werden auch unter der
Bezeichnung CPROVER zusammengefasst und sind in der Verwendung ähnlich.

Beide Werkzeuge wurden als Alternative zu Blast in Betracht gezogen, weil sie eine bessere Un-
terstützung einiger C-Programmkonstrukte (insbesondere von Arrays) bieten und sie zusätzlich
zu C auch C++ unterstützen.

CBMC (C Bounded Model Checker5) ist ein Werkzeug für Bounded Model Checking, einer Va-
riante des Model Checking, bei der die Schleifen eines Programms nur endlich oft durchlaufen
werden [CKL04]. Für die Anzahl an durchzuführenden Iterationen kann eine obere Grenze spezi-
fiziert werden. Programme, die Schleifen enthalten, welche öfter als erlaubt durchlaufen werden,
werden daher von CBMC nur unvollständig analysiert. Es ist also im Vergleich zu anderen Mo-
del Checking Varianten zu beachten, dass die Abwesenheit von Fehlern nur bei Vorhandensein
und Kenntnis besagter oberer Grenze gezeigt werden kann.

SATABS6 führt ähnlich wie Blast eine gegenbeispiel-getriebene Verifikation mit iterativer
Abstraktionsverfeinerung durch [CKSY05]. Dieses Werkzeug kann also vollständiges Model
Checking durchführen. Wie bei Blast müssen dazu aber geeignete Prädikate gefunden werden,
um eine Verfeinerung auf Basis eines Gegenbeispiels durchführen zu können. Werden keine Prä-
dikate gefunden, so kann die Verifikation fehlschlagen.

Bei der Anwendung von Blast auf praxisorientierte Beispiele wurde festgestellt, dass das Werk-
zeug Arrays im untersuchten Programm nicht korrekt behandelt. Da Arrays in vielen Program-
men vorkommen, beispielsweise in Form von Sende- oder Empfangspuffern, ist dieses Problem
gravierend. Noch problematischer ist der ergebnislose Abbruch des Werkzeugs SATABS bei Be-
rücksichtigung von Zeitbedingungen durch unser Framework.

5http://www.cprover.org/cbmc/
6http://www.cprover.org/satabs/

130

4.3 White Box Checking

Beide Werkzeuge weisen zudem eine teilweise mangelhafte Stabilität auf und haben für die un-
tersuchten Szenarien eine im Vergleich zu CBMC oft deutlich längere Laufzeit selbst bei kleinen
Beispielen. Da alle zwei Werkzeuge in der Verwendung recht ähnlich sind, werden neben CBMC,
SATABS und Blast in unserer Implementierung zumindest teilweise ebenfalls unterstützt. Sie ist
allerdings für CBMC optimiert und müsste für eine vollständige Anwendbarkeit der übrigen
Model Checker teilweise modifiziert werden.

Die für uns interessanten Funktionalitäten, die CBMC und SATABS anbieten, sind praktisch
identisch. Auch die Syntax der Kommandozeilenparameter und die Formatierung der Program-
mausgabe ist sehr ähnlich, da beide Werkzeuge an derselben Universität (und teilweise von den-
selben Personen) entwickelt wurden. Mit minimalem Zusatzaufwand können daher beide Werk-
zeuge, statt nur einem, verwendet werden.

CBMC und SATABS bieten jeweils die Möglichkeit an, Assertions zu spezifizieren, also An-
nahmen über die Gültigkeit eines booleschen Ausdrucks über Programmvariablen an einer be-
stimmten Stelle im Programmablauf. Bei Ungültigkeit der Formel wird die jeweilige Stelle im
Quellcode als ein Fehlerzustand behandelt, nach dem der Model Checker sucht.

Nichtdeterministisches Verhalten im Programm kann jeweils über spezielle Funktionen definiert
werden: Für alle in C verfügbaren Datentypen für primitive Variablen existiert eine Prozedur, die
nichtdeterministisch einen beliebigen Wert im jeweiligen Wertebereich zurückgeben kann. Zu-
sätzlich kann dieser durch Annahmen eingeschränkt werden; dies sind Garantien an den Model
Checker, dass für einzelne Variablen bestimmte Ausdrücke gelten.

Blast kann Spezifikationen von Korrektheitsbedingungen auf verschiedenen Ebenen nutzen.
Letztendlich werden diese jedoch immer auf eine Erreichbarkeitsanalyse zurückgeführt, bei der
nach Fehlerzuständen gesucht wird.

Die einfachste Möglichkeit, diese Zustände zu spezifizieren ist, sie direkt durch Definition einer
bestimmten Markierung im C-Quelltext des untersuchten Programmes anzugeben. Ebenfalls im
Quelltext lassen sich, ähnlich wie bei CBMC und SATABS, Assertions angeben. Dies entspricht
damit einer zu UPPAAL (siehe Abschnitt 2.4) sehr ähnlichen Vorgehensweise, da die Analysen
ebenfalls auf reine Erreichbarkeitsprobleme eines Fehlerzustands reduziert werden [JLS00].

Eine abstraktere Variante zur Definition fehlerhaften Verhaltens bietet Blast’s Spezifikationsspra-
che [BCH+04]. Diese besteht aus zwei Ebenen: Zum einen können so genannte Beobachterauto-
maten spezifiziert werden, durch die temporale Abhängigkeiten zwischen Programmereignissen
überprüft werden können. Zum anderen können in einer speziellen Scriptsprache relationale An-
fragen („relational queries“) formuliert werden, die sich auf diese Automaten beziehen.

Eine in dieser Sprache definierte Spezifikation kann mit einem zu Blast gehörenden Werkzeug
automatisch in eine entsprechende Instrumentierung des untersuchten Programms umgewandelt
werden.

Die einzigen Varianten, die in unserer Implementierung verwendet werden, sind Fehlermarkie-
rungen und Assertions.

131

Kapitel 4 Integration von Altkomponenten

Wie CBMC und SATABS unterstützt auch Blast die Formulierung nichtdeterministischen Ver-
haltens im Quellcode durch Definition einer bestimmten Variablen. Die Möglichkeiten, die Blast
hier anbietet sind allerdings gegenüber denen der beiden CPROVER Werkzeuge eingeschränkt:
Die spezielle Variable BLAST NONDET kann nur zur Modellierung von binären Entscheidun-
gen eingesetzt werden. Über den Umweg einer Schleife lässt sich allerdings auch eine nichtde-
terministische Auswahl aus einem größeren Wertebereich realisieren.

Simulationsumgebung und Codegenerierung Analog zum Gray Box- und Black Box
Checking sind wir besonders daran interessiert, das Kommunikationsverhalten der Altkompo-
nente mit dem entwickelten Kontext auf Fehler zu untersuchen. Dabei liegt das Altsystem als
C-Code vor, der mit dem C-Model-Checker direkt analysiert werden kann. Der Kontext anderer-
seits ist jedoch als REAL-TIME STATECHART gegeben, also in einer Form, die diesem Werkzeug
nicht zugänglich ist.

Somit ist es erforderlich, das durch das Modell definierte Verhalten in eine Form zu transformie-
ren, die dem C-Model-Checker als Eingabe dienen kann. Dies wird durch die Erzeugung von
C-Quellcode aus dem Modell realisiert. Für die Verifikation genügt, zumindest für eine Überprü-
fung des Kommunikationsprotokolls ohne Berücksichtigung von Zeit, eine einfache Abbildung
von Zuständen und Transitionen des Modells auf Variablen und Kontrollstrukturen eines entspre-
chenden C-Programms.

Schnittstelle zwischen Kontext und Altkomponente sind dabei die beiden als bekannt angenom-
mene Funktionen „sendMsg(Message m)“ und „receiveMsg():Message“, die das Senden und
Empfangen von Nachrichten ermöglichen. Es wird also eine komplett nachrichtengekoppelte
Kommunikation ohne Zugriff auf einen gemeinsamen Speicher vorausgesetzt. Durch geeigne-
te Implementierung dieser Funktionen kann das Kommunikationsverhalten des Kontexts dem
C-Model-Checker gegenüber sichtbar gemacht werden.

Kommunikation Die Möglichkeiten zur Erkennung von Fehlern im Kommunikationsverhal-
ten sind abhängig vom verwendeten Kommunikationsmodell. Daher werden im Folgenden der
Fall der synchronen und der der asynchronen Kommunikation getrennt behandelt.

Wie bei dem Gray Box und Black Box Checking kann bei synchroner Kommunikation jedes
Empfangen einer Nachricht, für die kein Verhalten definiert ist, als Fehler betrachtet werden.
Das kann bereits auf Modellebene durch Transitionen für nicht definierte Nachrichten von je-
dem anderen Zustand aus zu einem speziellen Fehlerzustand F ausgedrückt werden. Für jeden
Zustand Z, Z! = F , mit ausgehenden Transitionen für die Eingangsnachrichten m1,m2, . . .
werden also Transitionen für die Nachrichten ∗ \ {m1,m2, . . . } von Z zu F angelegt.

Durch eine ähnliche Konstruktion lässt sich das Komplement des erlaubten Verhaltens einer Rol-
le bilden (siehe Paragraph Anforderungen und Voraussetzungen auf Seite 98). Durch Verifikation
der Kommunikation mit einem Altsystem kann dann überprüft werden, ob letzteres eine gültige
Verfeinerung dieser Rolle ist.

132

4.3 White Box Checking

Dieser Fehlerzustand muss dem C-Model-Checker gegenüber als solcher bekannt gemacht wer-
den. Da der C-Model-Checker jedoch nur Zustände im Code (bzw. dem entsprechenden CFA)
kennt, muss bei der Codegenerierung der Code für jede Transition in den Fehlerzustand als feh-
lerhaft markiert werden. Dies kann bei allen zwei Werkzeugen durch Spezifikation von Asserti-
ons geschehen. Bei Blast kann auch ein Label „ERROR“ einen Fehler markieren.

Alternativ kann in Blast mittels der Blast-Spezifikationssprache eine derartige Transition durch
ein passendes Muster erkannt werden. Voraussetzung ist allerdings, dass der entsprechende
Quellcode mittels dieses Musters von dem zu anderen Transitionen gehörigen unterschieden wer-
den kann.

Anstatt einen Fehlerzustand bereits auf Modellebene einzuführen, kann auch ein zum Kon-
textmodell passender Blast-Beobachterautomat erzeugt werden, der prüft, dass Nachrichten nur
durch die in diesem Modell definiertem Verhalten eintreffen können. Konkret muss dazu (auto-
matisch) für jede Nachricht ein Ereignis mit zum generierten Code passendem Muster definiert
werden, das diesen Code erkennt und den Zustand des Beobachterautomaten passend umschal-
tet. Weiterhin muss für dieses Ereignis ein Guard definiert werden, der prüft, dass der aktuelle
Zustand in der Menge von Zuständen enthalten ist, in denen diese Nachricht empfangen werden
darf.

Eine solche Spezifikation muss nicht notwendigerweise aus demselben Modell erzeugt werden,
wie der C-Quellcode. Beides lässt sich prinzipiell entkoppeln, solange die Muster im Modell
zum erzeugten Code passen. Vorteil dieser Generierung von Spezifikationen aus Automaten ist
möglicherweise eine höhere Flexibilität (bei Entkopplung von der Codesynthese); Nachteil sind,
zumindest bei der hier beschriebenen Art der Verifikation, Redundanzen zur Codesynthese.

Aufgrund der Bevorzugung von CBMC vor Blast wird in unserer Implementierung von den
Blast-Beobachterautomaten kein Gebrauch gemacht. Auch die Spezifikation von Fehlern auf
Modellebene wurde nicht weiter betrachtet.

Bei asynchroner Kommunikation können Deadlocks nicht direkt festgestellt werden, wie bei
synchroner Kommunikation. Sie manifestieren sich hier über Invarianten oder Deadlines. Da
diese nicht für die Altkomponenten festgelegt werden können, können Deadlocks in diesem nur
indirekt über den Kontext festgestellt werden.

Zeitbedingungen Die Berücksichtigung von Zeitbedingungen in der Verifikation ist einer-
seits für die von uns betrachteten echtzeitkritischen Systeme sehr wichtig, wird andererseits aber
von keinem C-Model-Checker unterstützt. Um das Werkzeug selbst nicht verändern zu müssen,
stellen wir daher ein Framework sowie eine Codegenerierung zur Verfügung, die diese Anforde-
rungen erfüllen.

Um Zeit in die Verifikation einbeziehen zu können, ist es erforderlich, diese zu simulieren. Dazu
kann die aktuelle Zeit in einer Variablen erfasst werden, die bei Ausführung von Funktionsaufru-
fen oder primitiven Anweisungen um die entsprechende Ausführungszeit erhöht wird. Diese ist
nicht nur von der Art der Anweisung abhängig, sondern auch von Parametern, globalen Variablen
oder anderen Einflussgrößen.

133

Kapitel 4 Integration von Altkomponenten

Die maximale Ausführungszeit von Funktionen lässt sich für eine gegebene Plattform durch
eine WCET-Analyse (z.B. Bound-T) ermitteln. Der addierte Wert muss also zwischen eins (bzw.
einer ermittelten minimalen Ausführungszeit) und der WCET liegen. Diese kann bei allen drei
betrachteten Werkzeugen durch Konstrukte im C-Quellcode realisiert werden.

Die Verwendung dieser Möglichkeit macht allerdings eine Instrumentierung des untersuchten
Programms erforderlich: In jeder Funktion muss (z.B. am Anfang oder am Ende) eine eigene
spezielle Prozedur aufgerufen werden, die die erwähnte Erhöhung der simulierten Zeit durch-
führt. Da der Zeitbedarf der durch die Instrumentierung eingefügten Operationen selbst nicht
berücksichtigt wird, kann dadurch kein „Probe Effect“ auftreten; das analysierte Systemverhal-
ten kann lediglich durch die explizit simulierte Zeit beeinflusst werden.

Durch diese simulierte Zeit kann zeitabhängiges Verhalten des Kontextes, das durch Guards und
Invarianten im Modell spezifiziert wird, umgesetzt werden. Zeitabhängiges Verhalten innerhalb
der Altkomponente andererseits ist nicht derart explizit formuliert und lässt sich nur unter be-
stimmten Voraussetzungen berücksichtigen. Dazu gehören ein diskretes Zeitmodell und die Ab-
wesenheit von Verhalten, welches von der absoluten Systemzeit abhängt. Auch für die Kommu-
nikation kann durch entsprechende Anpassung der receive- und send-Funktionen einfach Zeit
simuliert werden.

Unter der Voraussetzung, dass die Altkomponente nur durch eine einzelne, bekannte Funktion
die Zeit aktualisiert, kann auch diese Zeit simuliert werden. Dazu kann diese Funktion durch eine
eigene Variante ersetzt werden, die die virtuelle Zeit zurückliefert.

Diese Simulation von Zeit erhöht zunächst generell die Genauigkeit der Verifikation, da die Ab-
hängigkeit des Verhaltens von Kontext und Altkomponente von Echtzeitbedingungen berück-
sichtigt wird. Die Verifikation von zeitabhängigen Systemen wäre ohne diese Simulation zwangs-
läufig fehlerhaft bzw. ungenau (falsche Positive und/oder falsche Negative). Es ist zu beachten,
dass durch die Kommunikationsbeziehung zwischen Kontext und Altkomponente das Verhal-
ten beider Systeme abweichen kann, wenn auch nur eines davon zeitabhängig ist und dies nicht
berücksichtigt wird (oder werden kann).

Durch eine solche Simulation von Zeit lassen sich aber auch Korrektheitsbedingungen mit di-
rektem Bezug zur Zeit überprüfen, beispielsweise die Forderung, dass Zustände (des Kontextes)
nach einer bestimmten Zeit verlassen werden müssen oder dass nach Empfangen einer Nachricht
nur ein maximaler Zeitraum bis zum Senden der Antwort vergehen darf. Die Überprüfung sol-
cher Bedingungen ist durch Vergleich der virtuellen Zeit mit den entsprechenden Einschränkun-
gen möglich. Die Bedingungen müssen, wie oben diskutiert, in Code bzw. Assertions übersetzt
werden.

Die Genauigkeit bei der Überprüfung von Zeitschranken hängt von der Genauigkeit der ermittel-
ten WCET Zeiten und davon ab, ob das zeitabhängige Verhalten sowohl von Kontext als auch von
der Altkomponente korrekt simuliert wird. Selbst wenn sich die Echtzeitbedingung nur auf eines
der Systeme bezieht und das unberücksichtigte Zeitverhalten im anderen liegt, kann die Verifi-
kation der Bedingung dadurch fehlerhaft werden, aufgrund indirekter Verhaltensabhängigkeiten
über die Kommunikation.

134

4.3 White Box Checking

Parameter Das durch das Framework beschriebene Szenario kann teilweise durch Parame-
ter definiert werden. Diese können den Umfang des verifizierten Verhaltens maßgeblich beein-
flussen. Dadurch können die Laufzeit des Verfahrens einerseits und die Einschränkungen, unter
denen das System korrekt ist, andererseits gesteuert werden.

Das Zeitverhalten beider Komponenten kann jeweils an zwei Stellen beeinflusst werden (siehe
Abbildung 4.9): Zum einen kann die Ausführung des Systems um einen nichtdeterminstisch
ausgewählten Wert in einem wählbaren Bereich verzögert werden. Zum anderen kann auch für
die Verzögerung der Ausführung der Hauptprozedur innerhalb einer Periode ein solcher Bereich
angegeben werden. Die nichtdeterministische Auswahl kann dann in jeder Periode eine andere
sein. Je größer diese Bereiche gewählt werden, umso mehr mögliche Abläufe muss der Model
Checker berücksichtigen, was zu einer inakzeptabel langen Laufzeit des Verfahrens führen kann.

Zeit Kontext-Komponente

0 10 20 30 40 50

sendMsg(m)

sendMsg(m)receiveMsg()

Globale Systemzeit

0 10 20 30 40 50

0 10 20 30 40 50

Zeit Altkomponente

receiveMsg()

: Verzögerung
: Task Altkomponente

: Task Kontext-Komponente

Legende:

Periode

Abbildung 4.9: Parameter White Box Checking

Für den Kontext lässt sich neben der FIFO-Queue eine weitere Queue hinzuschalten, aus der
nicht zwangsläufig die erste, sondern die erste im aktuellen Zustand behandelbare Nachricht ent-
nommen wird. Dadurch wird ein Blockieren des Komponentenverhaltens aufgrund nicht behan-
delbarer Nachrichten verhindert. Letzteres wird bei Verwendung reiner FIFO-Queues als Dead-
lock erkannt. Bei Verwendung der nicht-FIFO-Variante ist dieses Kriterium aber nicht gültig.
Deadlocks können hier jedoch indirekt über verletzte Invarianten festgestellt werden.

Neben diesen beschriebenen Voraussetzungen muss eine Quelle-Codegenerierung zur Verfügung
gestellt werden, die die Ausführungssemantik nicht verletzt. Da unsere Modelle auf REAL-TIME

135

Kapitel 4 Integration von Altkomponenten

STATECHARTS basieren können wir auf den grundlegenden Ansatz von [Bur06] zurückgreifen,
der eine Abbildung der wesentlichen Modellelemente diskutiert hat.

4.4 Identifikation von Reglerverhalten

Neben dem Kommunikationsverhalten sind auch die verschiedenen Reglerverhalten (-modi) für
ein mechatronisches System von hoher Wichtigkeit. Das Verhalten des Systems / der Altkom-
ponente ist maßgeblich von dem Reglerverhalten abhängig. Es ist daher wichtig zu identifizie-
ren, welches Reglerverhalten in welchem Zustand aktiv ist. Erfüllen die Protokollverhalten die
geforderten Sicherheitseigenschaften, lässt sich daher noch nicht darauf schließen, ob das Reg-
lerverhalten tatsächlich den Anforderungen entspricht. Es kann z.B. sein, dass sich ein hinterher
fahrendes RailCab im Convoy befindet, jedoch der Distanz-Regler nicht aktiv ist.

Systemidentifikation [Gra72, Ise92, FPW98, Lju98] ist das Verfahren, mit dem es möglich ist,
kontinuierliche Systeme zu identifizieren. Als Systemidentifikation wird der Ansatz bezeichnet,
welcher es ermöglicht aus beobachteten Ein- und Ausgangswerten eines Reglers, bzw. Systems,
Rückschlüsse auf das Verhalten zu schließen. Das kontinuierliche Verhalten kann als mathema-
tisches Modell durch eine Übergangsfunktion beschrieben werden. Das Modell stellt eine Ab-
straktion des realen Systems dar und beschreibt für die Problemstellung hinreichend die Prozesse
oder das Verhalten des Systems. Durch Techniken der Systemidentifikation kann ein Modell er-
stellt oder die Parameter eines Modells eingestellt werden. Das Modell des Systems ermöglicht
es, zukünftige Ausgangssignale vorherzusagen und das dynamische Verhalten des Systems durch
Simulationen zu untersuchen.

Das (diskrete) Protokollverhalten und das (kontinuierliche) Reglerverhalten führen zu einem hy-
briden System. Hybride Systemidentifikationsansätze sind in der Regelungstheorie bekannt; auf-
grund ihrer schlechten Laufzeiten und der schlechten Erkennungsgenauigkeiten des Verhaltens
sind sie allerdings im Allgemeinen nicht gut anwendbar [Lju10].

Unser Ansatz adressiert dieses Problem, indem das hybride Systemidentifikationsproblem redu-
ziert wird auf ein lineares Systemidentifikationsproblem. Hierzu teilen wir die Identifikation in
zwei Schritte auf. Der erste Schritt ist die Identifikation des Protokollverhaltens basierend auf den
beschriebenen Ansätzen. Der zweite Schritt ist die Identifikation des Reglerverhaltens innerhalb
der erkannten Zustände des Protokollverhaltens.

Eine solche Aufteilung ist nur für Komponenten möglich, die durch Zustandsverhalten gesteuert
werden. Dies ist z.B. für viele Anwendungen im Bereich der Automobil-Bordelektronik der Fall.
Handelt es sich allerdings um eine Komponente, die primär eine regelungstechnische Aufgabe
erfüllt, unabhängig von einem Zustandsverhalten, lässt sich dieses Verfahren nicht anwenden.
Beispiele hierfür können Motorregelungen sein.

Der AUTOSAR-Standard zeigt allerdings, dass z.B. für die Automobilindustrie diskret gesteu-
erte Systeme von hoher Relevanz sind, da die Spezifikation der Schnittstelle von Komponenten
sogenannte Modi unterstützen, die den aktuellen Zustand der Komponente repräsentieren. Im

136

4.4 Identifikation von Reglerverhalten

Fall der Motorregelungen ist zudem auch anzumerken, dass mittlerweile moderne Automatik-
Motorregelungen unterschiedliche Zustände je nach Benutzerprofil besitzen und damit der hier
vorgestellte Ansatz ebenfalls Anwendung finden kann. Im Rahmen dieser Arbeit wurde aller-
dings keine Evaluierung durchgeführt, wie weitreichend der hier skizzierte Ansatz tatsächlich
Anwendung findet.

Die Systemidentifikation erfolgt durch Simulation des Systems. Wir führen dabei das System
in die einzelnen Zustände, indem wir jeden Pfad, der den Zustand erreicht, ausführen, da un-
terschiedliche Pfade zu unterschiedlichen Reglerverhalten führen können. Die konkrete Eingabe
für die Systemidentifikation ist eine spezifizierte Testtrajektorie oder eine realistische Ausfüh-
rung des Systems in seiner Umgebung.

Als Testtrajektorien können z.B. Sprungantworten oder Impulsantworten genutzt werden. Eine
Sprungantwort beschreibt die Reaktion eines Systems (einer Altkomponente) am Ausgang auf
eine angelegte Sprungfunktion am Eingang. Eine Impulsantwort eines Systems beschreibt die
Reaktion des Systems (der Altkomponente) am Ausgang auf einen angelegten Impuls.

Basierend auf dem ein- und ausgehenden Verhalten wird dann z.B. eine Übergangsfunktion für
lineare Systeme ermittelt. Wenn alle Übergangsfunktionen bekannt sind, können Rekonfigura-
tionen durch unterschiedliche Übergangsfunktionen in aufeinander folgenden Zuständen erkannt
werden.

Umsetzung Zur Erstellung der Modelle, wird das System zunächst einer Diagnose unterzo-
gen. Die Aufzeichnung der kontinuierlichen Werte wird manuell vom Benutzer durchgeführt.
Dies geschieht in einem externen Werkzeug, in dem die Altkomponente ausgeführt und über-
wacht werden kann.

Dieser Prozess ist je nach Anwendungsfall und Domäne sehr unterschiedlich und muss von ei-
nem Domänenxperten in einem ihm bekannten Werkzeug durchgeführt werden. Der hier vorge-
stellte Ansatz unterstützt den Import einer MATLAB Datei (*.mat). Diese muss die kontinuierli-
chen Eingangs-, Ausgangs- und Zeitdaten des zu identifizierenden Verhaltens enthalten.

Um aus den zeitlich gemessenen Ein- und Ausgangssignalen zu einem Modell zu gelangen muss
eine gute Modellstruktur gefunden werden, die das beobachtete Verhalten möglichst gut wider
gibt. Es gibt eine Vielzahl von Modellstrukturen für die Identifikation linearer Modelle. Bei-
spielsweise gibt es das lineare Autoregressionsmodell (AR) oder das Moving-Average-Modell
(MA) [Lju98].

Eine konkrete Evaluierung des Ansatzes ist durch Integration der Matlab System Identification
Toolbox erfolgt7. Die Systemidentifikation versucht dabei mittels der Methode “Minimierung
des Vorhersagefehlers” die Modellparameter für unbekannte Gesetzmäßigkeiten zu bestimmen.
Es werden nur Daten im Zeitbereich unterstützt. Der Grad des Modells wird automatisch aus
dem Bereich 1-10 gewählt. Die Modellstrukturen AR sowie ARMA (eine Addition aus AR und
MA) werden ebenfalls unterstützt. Mit Hilfe dieser Werkzeugunterstützung war es uns möglich

7http://www.mathworks.com/products/sysid/

137

Kapitel 4 Integration von Altkomponenten

unterschiedliche Regler in unserem Convoy Beispiel mit einer Altkomponente zu identifizieren,
womit wir auch Rekonfigurationen erkennen konnten [BGH+08, BBB+09, HBB+09, BBB+09].

Der Systemidentifikationsansatz hat, trotz der Werkzeugintegration, immer noch eine sehr hohe
Abhängigkeit zu Entwicklern aus der Regelungstechnik, da die Systemidentifikation an sich trotz
vieler Forschungsaktivitäten immer noch ein hochgradiger manueller Akt ist, der entsprechendes
Expertenwissen benötigt.

4.5 Diskussion

In diesem Kapitel haben wir eine Synthese des Kommunikationsverhaltens für mechatronische
Altkomponenten durch Kombination von einer kompositionellen Verifikation, modellbasierten
Testen und Lernansätzen vorgestellt. Diese Ansätze ermöglichen eine kontextspezifische Kon-
flikterkennung in frühen Lernschritten. Weiterhin ermöglichen wir dem Ingenieur das regelungs-
technische Verhalten und Rekonfigurationen zu identifizieren. Im Vergleich zu klassischen An-
sätzen, die erst in der Integrationsphase eine Integration von Altkomponenten ermöglichen, sind
wir damit insgesamt in der Lage früh Konflikte zu erkennen und Kosten zu sparen.

Die präsentierten X-Box-Checking-Ansätze decken einen großen Bereich an Techniken ab, um
Altkomponenten mit unterschiedlichen zur Verfügung stehenden Informationen in ein Kompo-
nentenmodell zu integrieren. Unsere Evaluierungen in Kooperation mit der Industrie und dem
RailCab-Projekt bestätigen diese Aussage [HMSN10a, HMSN10b, HMS+10].

Nach Möglichkeit versuchen wir für die Verhaltenserkennung den Gray-Box-Checking-Ansatz
zu verwenden, da dieser die besten Laufzeiteigenschaften aufweist. Dies ist allerdings nur mög-
lich, wenn der Zustand der Altkomponente sicher erkannt werden kann. Ist dies nicht der Fall,
wird je nach Informationsstand der White-Box-Checking- oder Black-Box-Checking-Ansatz an-
gewandt.

138

Kapitel 5

Synthese von Komponentenverhalten

Die in den Kapiteln 3 und 4 vorgestellten Ansätze unterstützen die Komposition und Wieder-
verwendung von Komponenten in dem modellgetriebenen Entwicklungsansatz MECHATRO-
NIC UML durch eine Definition und Überprüfung einer Verfeinerung in hierarchischen Kom-
ponentensystemen und durch Integration von Altkomponenten. Bei der Komposition kann zu
dem die Anforderung entstehen, dass Abhängigkeiten zwischen den verschiedenen Kompositio-
nen berücksichtigt werden müssen. In diesem Abschnitt stellen wir einen Ansatz vor, der kon-
struktiv durch eine formale Abhängigkeitsbeschreibung das Synchronisationsverhalten (gesamte
Komponentenverhalten) synthetisieren kann. Hiermit betrachten wir den letzten Anwendungsfall
einer Konkretisierung nach Abschnitt 2.1 auf Seite 13.

Um die Komplexität bei der Entwicklung eines Systems zu beherrschen ist eine Dekomposition
des Systems in separate Einheiten eines der weitverbreitetsten Paradigmen in der Softwaretech-
nik [Dij76]. Hierdurch werden Software-Entwicklungsziele wie Wartbarkeit, Adaptierbarkeit,
Erweiterbarkeit und Wiederverwendung gefördert. In der MECHATRONIC UML wird dies durch
eine Dekomposition des Systems in Komponenten und Kommunikationen zwischen Komponen-
ten, die das Protokollverhalten beschreiben, erreicht (siehe z.B. Abschnitt 2.4.1). Die Kommuni-
kationen werden dabei durch Muster (REAL-TIME COORDINATION PATTERNS) spezifiziert, die
die Kommunikation strukturell in Rollen und einem Konnektor zwischen diesen aufteilen. Die
Rollen, an denen eine Komponente beteiligt ist, beschreiben das Verhalten einer Komponente.

Eine der wesentlichen Aufgaben, um eine solche getrennte Entwicklung zu unterstützen,
ist die komponentenspezifische Komposition separater, womöglich abhängiger Rollen (Pro-
tokolle) [TOHS99]. Für die hier zu betrachtende Verhaltenskomposition werden Ansätze in
[Mil89, GV06] vorgestellt. Die Komplexität von mechatronischen Systemen fordert über diese
Ansätze hinaus die Betrachtung von Echtzeitbedingungen sowie von Sicherheits- und begrenzten
Lebendigkeitseigenschaften für die Komposition (siehe Abschnitt 2.4.1 und 2.4.6.1).

Aktuelle komponentenbasierte Ansätze, wie die MECHATRONIC UML (siehe Abschnitt 2.4.2)
oder der Ansatz von Gössler und Sifakis [GS03], unterstützen diesen Entwicklungsschritt, indem
manuell Abhängigkeiten durch einen zusätzlichen Beobachterautomaten oder Synchronisations-
automaten spezifiziert werden (siehe Abbildung 2.9). Dies ist allerdings schon allein für eine
einfache Abhängigkeit schwierig umzusetzen. Ein Entwickler muss, um protokollübergreifende
Anforderungen einer Komponente zu implementieren, folgendes berücksichtigen:

139

Kapitel 5 Synthese von Komponentenverhalten

• das Gesamtverhalten der beteiligten Rollen (Produktautomat von Registree und Rear),

• die gestellten Anforderungen (unregistered-Zustand der Rolle Registree und convoy-
Zustand der Rolle Rear dürfen nicht gleichzeitig aktiv sein),

• das eingeschränkte Verhalten muss eine Verfeinerung der jeweiligen Rollen sein.

Eine Anforderung selbstoptimierender Systeme ist zudem, dass das Verhalten möglichst flexibel
auf unterschiedliche Szenarien zur Laufzeit reagieren soll, damit zwischen Alternativen (z.B. im
Konvoi fahren oder nicht) optimiert werden kann. Das bedeutet wiederum, dass das Verhalten
der Rollen nur so wenig wie möglich eingeschränkt werden sollte.

Um nur die beschriebene einfache Anforderung an die Komposition der Rollen Registree und
Rear umzusetzen, muss der Entwickler an den richtigen Stellen in den jeweiligen Protokol-
len Synchronisationen (z.B. die notInConvoy-Synchronisation aus Abbildung 2.9) mit einem
ebenfalls zusätzlich zu spezifizierenden Synchronisationsautomaten einführen. Damit werden
bestimmte Pfade oder Zustände eingeschränkt. Da der Entwickler nicht weiß, ob damit die An-
forderung an die Komposition erfolgreich umgesetzt wurde, muss er zudem eine Überprüfung
durchführen. Die Überprüfung kann vorzugsweise durch einen Model Checker (in unserem Fall
Uppaal) durchgeführt werden. Es muss also zudem die gestellte Anforderung in Form einer
Sicherheits- oder Lebendigkeitseigenschaft für den Model Checker spezifiziert werden. Wer-
den Fehler festgestellt, so muss manuell, mit Hilfe der Gegenbeispiele, das Verhalten angepasst
werden. Der Entwickler weiß allerdings zu keinem Zeitpunkt während der Entwicklung, ob die
Anforderung überhaupt realisierbar ist. Vielleicht findet der Entwickler ein Verhalten, welches
die Anforderung umsetzt, jedoch keine gültige Verfeinerung darstellt, die auch überprüft werden
muss. Wurden all diese Schritte erfolgreich durchgeführt, so ist immer noch unbekannt, ob mehr
Verhalten eingeschränkt wurde als notwendig. Das eigentliche Ziel der Dekomposition, nämlich
eine Wiederverwendung von Protokollen zu ermöglichen, ist durch eine manuelle Umsetzung
damit fraglich.

Wir stellen einen Syntheseansatz vor (siehe Abschnitt 5.2), der eine wohldefinierte automati-
sche Komposition von Protokollverhalten unter Berücksichtigung von Kompositionsregeln (sie-
he Abschnitt 5.1), die die Abhängigkeiten zwischen den Protokollen beschreiben, unterstützt.
Die definierten Kompositionsregeln erhalten Sicherheitseigenschaften. Dies ist eine wesentliche
Voraussetzung für sicherheitskritische Systeme. Die Komposition berücksichtigt zudem eine Ver-
feinerungsbeziehung, die wir Rollen-Konformität nennen (siehe Abschnitt 5.3). Auf diese Weise
bleiben Lebendigkeitseigenschaften erhalten. Mit unserem Ansatz kann der Entwickler expli-
zit eine verbotene Situation spezifizieren, ohne zusätzliches Verhalten für eine Beobachtung zu
beschreiben und ohne eine Instrumentierung der Protokollverhalten vorzunehmen. Zudem kann
der Entwickler die einzelnen Abhängigkeiten getrennt voneinander spezifizieren, da die Abhän-
gigkeiten automatisch durch den Synthesealgorithmus aufgelöst werden. Der Entwickler muss
folglich manuell nur noch eine Spezifikation der Abhängigkeiten durchführen.

Nach dem wir den Ansatz in den Abschnitten 5.1 bis 5.3 vorgestellt haben, werden wir weite-
re Anwendungsfälle des Ansatzes in Abschnitt 5.4 betrachten und Abschließend in Abschnitt
5.5 den Beitrag diskutieren. Bevor wir mit den Details beginnen, werden wir die Anforderun-

140

gen und Voraussetzungen unseres Ansatzes im Folgenden Anhand des RailCab Anwendungsbei-
spiels beschreiben. Hierzu werden wir uns dem Konvoi-Szenario bedienen und eine Einbettung
des Beitrags in die MECHATRONIC UML skizzieren.

Anforderungen und Voraussetzungen Im Folgenden verdeutlichen wir unseren Ansatz,
in dem wir das Konvoi-Beispiel aus Abbildung 2.17 um eine Basisstation (siehe Abbildung 5.1)
erweitern. Die Basisstation ist für die Energieversorgung sowie für das Management der Rail-
Cabs auf einem dedizierten Streckenabschnitt zuständig. RailCabs nutzen diese Information, um
Unfälle zu vermeiden und um Konvois zu bilden.

Wir spezifizieren das System mit zwei REAL-TIME COORDINATION PATTERNS (siehe Ab-
schnitt 2.4.1) Registration und DistanceCoordination sowie zwei Komponenten BaseStation und
RailCab (siehe Abbildung 5.2). Für die Kommunikation und die Komponenten gelten die in Ab-
bildung 2.1 gezeigten Eigenschaften bzgl. der Verfeinerungs- und Synthesebeziehung sowie die
Bestimmung des Gesamtverhaltens.

Convoy BS

Abbildung 5.1: Beispiel Konvoirestrukturierung mit Basisstation

In Abbildung 5.2 sind die beteiligten Rollen des REAL-TIME COORDINATION PATTERNS Re-
gistration dargestellt (registrar und registree). Die Rollen des DistanceCoordination-REAL-TIME

COORDINATION PATTERNS sind front und rear. Das Verhalten der Rollen wird durch REAL-
TIME STATECHARTS spezifiziert (siehe Abschnitt 2.4.2).

Abbildung 5.3 und 5.4 zeigen stark vereinfachte Protokollverhalten der rear-Rolle und der regis-
tree-Rolle. Die Vereinfachung wird lediglich eingeführt, um die Synthese anschaulich an einem
Beispiel zu illustrieren. Wir gehen zudem auch nicht näher auf die Gegenstücke der Rollen, dies
sind die front-Rolle und die registrar-Rolle, ein.

Initial befindet sich die rear-Rolle in dem Zustand noConvoy und sendet eine startConvoy-
Nachricht. Die Uhr cr wird auf null zurückgesetzt, bevor der convoy-Zustand betreten wird.
Im Intervall zwischen 200 und 1000 Zeiteinheiten kann die breakConvoy-Nachricht empfangen
werden, da die Invariante des Zustands convoy cr ≤ 1000 und der Time Guard der ausgehenden

141

Kapitel 5 Synthese von Komponentenverhalten

rear frontregistree registrar

Registration

BaseStation

 RailCabregistree registrar

Registration

 rear

front

Distance-
Coordination

Distance-
Coordination

Abbildung 5.2: Kombination von separaten Protokollen in der MECHATRONIC UML

Transition cr ≥ 200 ist. Andernfalls kann im Zeitintervall 400 bis 1000 periodisch eine upda-
te-Nachricht verschickt werden. Falls beide Transitionen gleichzeitig schaltbar sind, erfolgt die
Entscheidung nichtdeterministisch.

Die Rolle registree ist Initial im Zustand unregistered, sendet eine register-Nachricht und setzt
die Uhr zurück. Im Intervall zwischen 800 und 2000 Zeiteinheiten wird periodisch eine life-
tick-Nachricht verschickt oder im Intervall von 500 bis 2000 Zeiteinheiten eine unregistered-
Nachricht verschickt. Um beide Entscheidungen in der abstrakten Rolle zu ermöglichen, ist die
Entscheidung nichtdeterministisch.

/update

{cr}

cr >= 200

breakConvoy/

cr <= 400

{cr}

noConvoy convoy
cr <= 1000

/startConvoy

Abbildung 5.3: Vereinfachte rear-Rolle

/unregister

/lifetick

/register

unregistered registered
{ce}

{ce}
ce <= 2000

ce >= 800

ce >= 500

Abbildung 5.4: Vereinfachte Registree-Rolle

Um das Verhalten einer Komponente zu bestimmen, werden später im Entwicklungsprozess,
die separat entwickelten REAL-TIME COORDINATION PATTERNS (bzw. ihre Rollen) angewandt
(siehe Abbildung 5.2). Die Dekomposition hat auf der einen Seite dazu geführt, das System be-
herrschbar zu machen. Auf der anderen Seite führt dies zu dem Problem, dass das Verhalten der
unabhängig entwickelten Protokolle Abhängigkeiten aufweisen kann, die während der Entwick-
lung von REAL-TIME COORDINATION PATTERNS (bzw. ihren Rollen) nicht betrachtet werden.
Während des Prozesses der Verhaltensbeschreibung einer Komponente, muss daher zusätzlich

142

zu den separat entwickelten Rollen, die durch eine Komponente angewandt werden sollen, Ab-
hängigkeiten zwischen den Rollen betrachtet werden.

In unserem RailCab Beispiel (Figure 5.2) wendet die RailCab-Komponente die REAL-TIME

COORDINATION PATTERNS Registration und DistanceCoordination an. Während die beiden
Muster unabhängig voneinander entwickelt wurden, muss für die gleichzeitige Anwendung bei-
der Muster gelten:

Im Konvoi-Modus muss jeder Teilnehmer des Konvois an einer Basisstation regis-
triert sein.

Dies ist eine (typische) Anforderung, die möglicherweise gewollt während der Entwicklung der
Rollen nicht berücksichtigt wurde, um die Muster möglichst abstrakt und damit weitreichend
einsetzen zu können. Hiermit werden eine Erhöhung der Wiederverwendung der einzelnen Rol-
len und gleichzeitig eine Verringerung der Komplexität erreicht. Wie in [TOHS99] beschrieben
kann es aber auch vorkommen, dass Abhängigkeiten zwischen separaten Teilen im System erst
durch Anforderungen entstehen, die später im Entwicklungsprozess bekannt werden.

Entsprechend dieser Anforderung, besteht eine Abhängigkeit zwischen den Rollen rear und re-
gistree, wenn sie durch die RailCab-Komponente angewandt werden. Um diese Abhängigkeit zu
beschreiben, muss das Verhalten der registree-Rolle und das Verhalten der rear-Rolle verfeinert
und miteinander synchronisiert werden.

Allgemein können wir zwischen mehreren unterschiedlichen Synchronisations-
Anwendungsfällen unterscheiden (siehe Abbildung 5.5). Der 1. Fall betrachtet eine Syn-
chronisation auf gleicher Hierarchieebene. Das Gesamtverhalten abhängiger Protokollverhalten
(MC

1,1, MC
1,2 und MC

j,k) ergibt sich dabei durch ein gemeinsames Synchronisationsverhalten
(MS

1). Im Fall einer Synchronisation auf unterschiedlichen Hierarchieebenen ergibt sich das
Gesamtverhalten zudem aus dem Verhalten eingebetteter Komponenten (M r

1,1 und M r
1,2). Der

dritte Fall ergänzt die ersten beiden um einen Multi-Port.

Diese drei Anwendungsfälle betrachten eine lokale Synchronisation einer (hierarchischen) Kom-
ponente. Darüber hinaus kann eine Synchronisation auch verteilt auf Musterebene stattfinden. Da
der 1. Fall grundlegend die Synchronisation zwischen abhängigen Protokollverhalten betrachtet,
werden wir im Folgenden vertiefend diesen Fall betrachten. Anschließend werden wir diskutie-
ren, wie die anderen Fälle ebenfalls abgedeckt werden können.

Eine wesentliche Aufgabe der Synthese ist es, dass neben dem Einhalten der Kompositionsre-
geln, die Eigenschaften der Rollenverhalten1 nicht verletzt werden. Entsprechend muss für den
Ansatz eine geeignete Verfeinerungsdefinition für zeitkontinuierliche Echtzeitsysteme beschrie-
ben werden. Zusammen mit den Kompositionsregeln, einer Verfeinerungsdefinition sowie den
Rollenverhalten ermöglichen wir eine automatische Synthese des Komponentenverhaltens.

Zur Beschreibung der Verfeinerungsdefinition werden wir auf die in Abschnitt 3.1 diskutierte
Verfeinerung zurückgreifen. Im Rahmen dieser Arbeit haben wir uns für eine implementierungs-
nahe (operationale) Definition einer Verfeinerung entschieden. Hiermit wird es uns im Vergleich

1Ohne Einschränkung des Ansatzes bezeichnen wir die separaten Protokolle mit Rollenverhalten.

143

Kapitel 5 Synthese von Komponentenverhalten

mit Multi−Port
1. Synchronisation
auf gleicher
Hierarchie−Ebene

2. Synchronisation
auf unterschiedlich−
en Hierarchie−Ebenen

3. Synchronisation

MC
j,kMC

1,2MC
1,1 MC

j,kMC
1,2MC

1,1 MC
j,kMC

1,2MC
1,1

M r
1,1

M s
1M s

1

M r
1,1

M s
1

M r
1,2 M r

1,2

Abbildung 5.5: Synchronisationsverhalten Komponente: Anwendungsfälle

zu deklarativen Ansätzen (siehe z.B. [AB11]) ermöglicht, die nur über Mengen und nicht über
die Ordnung von Nachrichten sprechen, einen Algorithmus (einfach) umzusetzen. Dies führt
allerdings dazu, dass wir die beschriebene Verfeinerung aus Abschnitt 3.1 nicht direkt eins zu
eins übernehmen können, sondern diese um die hier betrachteten Modelle anpassen müssen. Das
bedeutet im Speziellen, dass wir hier mehrere abstrakte Modelle betrachten müssen (potentiell
mehrere Rollenverhalten) und als Konkretisierung ein parallel Produkt dieser Rollenverhalten.
Die Eigenschaften der Verfeinerung verändern sich dadurch nicht.

Eingabe in den Algorithmus sind Kompositionsregeln und die separaten Rollenverhalten (siehe
Abbildung 5.6). Wenn die Synthese möglich ist, ohne das extern sichtbare Verhalten zu verlet-
zen, dann ist die Ausgabe ein parallel komponiertes Komponentenverhalten, welches die Ein-
gabeverhalten sowie die Kompositionsregeln kombiniert. Wenn die Synthese nicht möglich ist,
wird eine Konfliktbeschreibung zurückgegeben. Grundlegende Arbeiten des Ansatzes wurden in
[HSG08, HGH+09, Eck09, EH09, EH10a] vorgestellt.

5.1 Kompositionsregeln

Mit Kompositionsregeln können Abhängigkeiten zwischen Rollenverhalten spezifiziert werden.
Aufgrund des unterliegenden Timed Automata Formalismus ermöglichen wir die Beschreibung
von Abhängigkeiten zwischen Zuständen und Nachrichten bzw. Sequenzen von Nachrichten, die
jeweils auch zeitlich über die definierten Uhren ausgeprägt sein können. Damit kann über alle
Elemente des Formalismus eine Abhängigkeit beschrieben werden.

Wir teilen Kompositionsregeln in Zustands-Kompositionsregeln und Nachrichten-
Kompositionsregeln ein. Zustands-Kompositionsregeln ermöglichen entsprechend die Syn-

144

5.1 Kompositionsregeln

[Rollenkonform]

synthetisiere

Synthese Komponentenverhalten

Kompositionsregeln

Separate Rollen-

verhalten

Konfliktbeschreibung

komponiertes Kompo-
nentenverhalten

Komponenten-
verhalten

Abbildung 5.6: Ansatz Komponentenverhaltenssynthese

chronisation zwischen abhängigen Zustandskombinationen zu beschreiben. Nachrichten-
Kompositionsregeln beschreiben mögliche Synchronisation zwischen Ereignissen und
Sequenzen von Ereignissen. Beide Formalismen beinhalten zudem die Spezifikation von
Zeitinformationen für die Synchronisation.

Um den Anforderungen der betrachteten Systeme gerecht zu werden, müssen zudem Kompositi-
onsregeln allgemein Sicherheits- und begrenzte Lebendigkeitseigenschaften ausdrücken können
(siehe z.B. Abschnitt 2.4 oder [Lam77, Hen92]).

Sicherheitseigenschaften können durch Zustands-Kompositionsregeln spezifiziert werden, indem
verbotene Zustandskombinationen der parallel ausgeführten Rollenverhalten definiert werden.
Nachrichten-Kompositionsregeln können Sicherheitseigenschaften ausdrücken, indem zusätzli-
che Zeitbedingungen bestimmten Transitionen hinzugefügt werden.

Lebendigkeitseigenschaften können durch Zustands-Kompositionsregeln und Nachrichten-
Kompositionsregeln ausgedrückt werden, indem weitere Zeitbedingungen Zustandsinvarianten
von Zustands-Kombinationen der parallelen Ausführung der Rollen hinzugefügt werden.

Im Folgenden werden wir diese beiden Formalismen genauer vorstellen.

5.1.1 Zustands-Kompositionsregeln

Wenn Rollen anwendungsspezifisch durch Komponenten angewandt werden, kann es sein, dass
einige Zustandskombinationen der parallel geschalteten Rollen aufgrund von Systemanforderun-
gen nicht erlaubt sind. Entsprechend wird ein Formalismus benötigt, der durch Synchronisation
der beteiligten Rollenverhalten bestimmte Zustandskombinationen einschränkt. Darüber hinaus
stellen wir die Anforderung an den Formalismus, dass er für den Systementwickler einfach zu
benutzen ist, ohne einen neuen Formalismus zu erlernen.

Um diese Anforderungen zu erfüllen, werden die Zustands-Kompositionsregeln direkt über
die Zustände der separaten Rollenverhalten definiert. Die gestellte Anforderung aus Para-

145

Kapitel 5 Synthese von Komponentenverhalten

graph Anforderungen und Voraussetzungen auf Seite 141 kann z.B. wie folgt mit Zustands-
Kompositionsregeln ausgedrückt werden:

r1 = ¬((unregistered, true) ∧ (convoy, true)).

Syntaktisch besteht eine Zustands-Kompositionsregel aus einer Menge von Zustands-Prädikaten,
die auf einen Booleschen-Wert (wahr oder falsch) abgebildet werden, die alle zusammen von ei-
ner Negation umgeben sind. Die Prädikate sind zudem über eine Verundung oder Veroderung
miteinander verbunden. Ein Zustands-Prädikat spezifiziert einen Zustand in Kombination mit ei-
ner Menge an Uhr-Bedingungen. Die Uhr-Bedingungen werden dabei nur über bereits bekannte
Uhren der Rollenverhalten definiert. In der Zustands-Kompositionsregel r1 sind die Zustands-
Prädikate (unregistered, true) und (convoy, true) jeweils mit einem true verbunden. Das be-
deutet, dass für alle Uhr-Bewertungen, die Zustandskombination von unregistered und convoy
nicht erlaubt ist.

Im Folgenden wollen wir noch eine entschärfte Anforderung betrachten, die Aussagt, dass die
Zustandskombination von unregistered und convoy erlaubt ist, allerdings nicht länger als 50
Zeiteinheiten. Diese Anforderung beschreibt damit eine begrenzte Lebendigkeitseigenschaft, da
dieser Zustand eventuell betreten werden kann, aber innerhalb von 50 Zeiteinheiten wieder ver-
lassen werden muss. Die Folgende Zustands-Kompositionsregel beschreibt diese Eigenschaft:

r2 = ¬((unregistered, true) ∧ (convoy, cr > 50)).

Damit können Zustandskombinationen auch nur für bestimmte Zeitintervalle verboten werden.

Im Folgenden definieren wir erst die erlaubten Uhr-Bedingungen für Zustands-Prädikate. Hier-
mit wird es möglich sein, Zustandsinvarianten einzuschränken. Eine Anforderung ist, dass die
Eigenschaften der unterliegenden Timed Automata nicht verletzt werden dürfen, da ansonsten
ein Automat synthetisiert werden könnte, der die Semantik der Timed Automata verletzen könn-
te. Damit ist es nicht erlaubt, die Untergrenze der Invarianten zu verändern, da Invarianten nur die
obere Grenze der Verweildauer in einem Zustand begrenzen (siehe Abschnitt 2.4.2 und [Alu92]).
Dies wird über nach oben geschlossenen Uhr-Bedingungen erreicht.

Definition 51 (Nach oben geschlossene Uhr-Bedingungen)
Sei eine Menge C von Uhren gegeben, die Menge Φuc(C) ⊂ Φ(C) von nach oben geschlossenen
Uhr-Bedingungen ist induktiv definiert durch

ϕ ::= x ∼ n | x− y ∼ n | ϕ ∧ ϕ | true,

mit x, y ∈ C, ∼∈ {≥, >}, n ∈ N.

Nach oben geschlossene Uhr-Bedingungen erlauben nur Uhr-Bedingungen oder Vereinigun-
gen von Uhr-Bedingungen zu beschreiben, die eine Untergrenze für eine Uhr oder die Dif-
ferenz zwischen zwei Uhren betrachten. Durch die einbezogene Negation einer Zustands-
Kompositionsregel wird damit das Uhr-Intervall nach oben eingeschränkt. In Kompositionsregel

146

5.1 Kompositionsregeln

r2 bedeutet das Zustands-Prädikat (convoy, cr > 50) durch die umgreifende Negation, dass die
Zustandsinvariante von cr ≤ 1000 auf cr ≤ 50 eingeschränkt wird.

Damit können wir Zustands-Prädikate wie folgt definieren.

Definition 52 (Zustands-Prädikate)
Für einen Timed-Automata A = (L, l0,Σ, C, I, T), einen Zustand (Location) l ∈ L und ei-
ne nach oben geschlossene Uhr-Bedingung ϕ ∈ Φuc(C), ist die Menge Γ(A) von Zustands-
Prädikaten γ = (l, ϕ) definiert durch:

Γ(A) = L× Φuc(C).

Wie schon in den Beispielen r1 und r2 gezeigt, besteht ein Zustands-Prädikat aus einer Kom-
bination von einem Zustand und nach oben geschlossenen Uhr-Bedingungen für einen Timed
Automata A. Damit werden verbotene Uhr-Intervalle ϕ für einen Timed Automata Zustand l be-
schrieben. Wenn alle Uhr-Intervalle verboten werden sollen, wird dies durch (l, true) für einen
Zustand l ausgedrückt, da true ∈ Φuc(C).

Auf Basis dieser Definitionen können wir Zustands-Kompositionsregeln im Folgenden definie-
ren.

Definition 53 (Zustands-Kompositionsregel)
Für zwei Timed Automata A1 = (L1, l

0
1,Σ1, C1, I1, T1) und A2 = (L2, l

0
2,Σ2, C2, I2, T2), ist die

Menge RS(A1, A2) von möglichen Zustands-Kompositionsregeln ρ definiert durch die folgende
Grammatik:

ρ ::= ¬(ργ)

ργ ::= (ργ) ∧ (ργ) | (ργ) ∨ (ργ) | γ

mit γ ∈ Γ(A1) ∪ Γ(A2) (siehe Definition 52).

Zustands-Kompositionsregeln kombinieren mehrere Zustands-Prädikate für zwei verschiedene
Timed Automata. Die Prädikate werden explizit als verboten gekennzeichnet durch die Negation.
Beispiele hierfür sind die Kompositionsregeln r1 und r2.

In Abschnitt 5.2 werden wir zeigen, wie wir Zustands-Kompositionsregeln automatisch
auf separate Rollenverhalten anwenden können. Im Folgenden werden wir Nachrichten-
Kompositionsregeln definieren.

5.1.2 Nachrichten-Kompositionsregeln

Um auf Basis von Nachrichten und Sequenzen von Nachrichten die separaten Rollenverhal-
ten zu synchronisieren, beschreiben wir im Folgenden Nachrichten-Kompositionsregeln. Für die

147

Kapitel 5 Synthese von Komponentenverhalten

Nachrichten-Kompositionsregeln gilt wie auch für die Zustands-Kompositionsregeln die Anfor-
derung an den Formalismus, dass er für den Systementwickler einfach zu benutzen ist, ohne
einen neuen Formalismus zu erlernen.

Daher beschreiben wir die Nachrichten-Sequenzen ebenfalls in der Syntax von Timed Au-
tomata. Um das extern sichtbare Echtzeitverhalten der Rollen nicht zu verletzen, fügen
Nachrichten-Kompositionsregeln keine weiteren Nachrichten dem Verhalten hinzu. Nachrichten-
Kompositionsregeln können allerdings den beobachteten Nachrichten-Sequenzen weitere Zeit-
Bedingungen hinzufügen. Dies wird sowohl in Form von Time Guards wie auch Zustands-
Invarianten ermöglicht, womit sowohl Sicherheits-, wie auch begrenzte Lebendigkeitseigen-
schaften spezifiziert werden können.

Für unsere Rollen rear und registree (siehe Abbildung 5.3 und 5.4) nehmen wir noch eine weitere
Anforderung an. Ein RailCab muss an einer Basisstation mindestens 2500 Zeiteinheiten regis-
triert sein, bevor ein Konvoi gestartet werden kann. Da diese Anforderung mehr als ein Rollen-
verhalten betrifft, muss die Anforderung als ein Synchronisationsverhalten beschrieben werden,
um das Verifikationsergebnisse bzw. das extern sichtbare Verhalten nicht zu verletzen. Offen-
sichtlich kann diese Anforderung auch nicht durch eine Zustands-Kompositionsregel umgesetzt
werden, da als Voraussetzung die startConvoy-Nachricht empfangen werden muss. In Abbildung
5.7 ist entsprechend die Nachrichten-Kompositionsregel eca1 spezifiziert.

Der Nachrichten-Kompositionsregel-Automat eca1 schaltet von Zustand ec_initial nach Zustand
ec_registered, wenn die Nachricht register von der registree-Rolle verschickt wird. Beim Schal-
ten der Transition wird ebenfalls die Uhr ec_c1 zurückgesetzt. Aus dem Zustand ec_registered
wird entweder zurück in den Zustand ec_initial gewechselt, wenn die Rolle registree die Nach-
richt unregister verschickt oder es wird in Zustand ec_registeredConvoy geschaltet, wenn
die Nachricht startConvoy von der rear-Rolle verschickt wird. Die Transition von Zustand
ec_registered nach ec_registeredConvoy ist zudem mit dem Time Guard ec_c1 >= 2500 an-
notiert. Damit wird erreicht, dass der korrespondierende Zustand des Rollenverhaltens erst 2500
Zeiteinheiten in dem entsprechenden Zustand verweilen muss, bevor ein Konvoi gebildet werden
kann. Der Zustand ec_registeredConvoy wird verlassen, wenn die registree-Rolle eine unregis-
ter-Nachricht verschickt. Damit wird insgesamt die Anforderung spezifiziert.

/register

/startConvoy/unregister

/unregister

ec_c1 >= 2500

{ec_c1}
ec_initial ec_registered

ec_registeredConvoy

Abbildung 5.7: Nachrichten-Kompositionsregel eca1

148

5.1 Kompositionsregeln

Nachdem nun informal Nachrichten-Kompositionsregeln eingeführt wurden, definieren wir diese
im Folgenden formal.

Definition 54 (Nachrichten-Kompositionsregeln)
Seien A1 = (L1, l

0
1,Σ1, C1, I1, T1) und A2 = (L2, l

0
2,Σ2, C2, I2, T2) zwei Timed Auto-

mata. Eine Nachrichten-Kompositionsregel AE ∈ RA(A1, A2) ist ein Timed Automaton
(LE, l

0
E,ΣE, CE, IE, TE), mit

• LE ist eine endliche, nicht-leere Menge an Zuständen,

• l0E ⊆ L ist der initiale Zustand,

• ΣE ⊆ Σ1 ∪ Σ2 ist eine endliche Menge an beobachtbaren Nachrichten,

• I : L→ Φdc(CE) weist jedem Zustand eine nach unten geschlossene Zeitbedingung zu,

• CE ist eine endliche Menge an Uhren, mit CE ∩ (C1 ∪ C2) = ∅,

• TE ⊆ LE × ΣE × Φ(CE) × 2CE × LE ist eine endliche Menge von Transitionen t =
(l, e, g, r, l′) ∈ TE , mit

– l ∈ LE ist der Quellzustand,

– e ∈ ΣE ist die beobachtete Nachricht,

– g ∈ Φ(CE) ist der Time Guard,

– r ⊆ CE ist eine Menge von Uhren, die zurückgesetzt werden sollen, und

– l′ ∈ LE ist der Zielzustand.

Nachrichten-Kompositionsregeln sind damit über Nachrichten der beteiligten Rollenverhalten
A1 und A2 definiert, womit kein weiteres externes Echtzeitverhalten hinzugefügt werden kann.
Damit beobachten Nachrichten-Kompositionsregeln lediglich die beteiligten Rollenverhalten.

Eine weitere Einschränkung ist, dass die Menge der Uhren disjunkt mit den beteiligten Rollen-
verhalten ist. Auf diese Weise wird garantiert, dass die Nachrichten-Kompositionsregeln nicht
die Zeitintervalle der Nachrichten-Sequenzen der Rollenverhalten verletzen. Andernfalls wäre es
möglich, dass vorher verifizierte Deadlines der Rollenverhalten nicht mehr eingehalten werden
können.

Zusammenfassend können damit Nachrichten-Kompositionsregeln eine Sequenz von Nachrich-
ten beobachten und möglicherweise weitere Zeitbedingungen den korrespondierenden Transitio-
nen und Zuständen hinzufügen.

In dem nächsten Abschnitt werden wir betrachten, wie Nachrichten-Kompositionsregeln auto-
matisch durch unsere Synthese angewandt werden.

149

Kapitel 5 Synthese von Komponentenverhalten

5.2 Synthese

In diesem Abschnitt stellen wir eine Synthese von Statecharts für das Komponentenverhalten vor.
Eingaben in die Synthese sind Kompositionsregeln sowie Rollenverhalten, die über die Kom-
positionsregeln eingeschränkt werden sollen (siehe Abbildung 5.6). Aus Vereinfachungsgrün-
den werden wir im Folgenden nur zwei separate Rollenverhalten betrachten. Der Ansatz kann
allerdings einfach auf beliebige Anzahlen an separaten Automaten erweitert werden, in dem
die Definitionen, die zwei Eingabe-Automaten betrachten einfach auf eine Menge von Eingabe-
Automaten erweitert werden.

Die Syntheseaktivität „synthetisiere Komponentenverhalten“ teilen wir in vier verschiedene Ak-
tivitäten auf, welche wir im Folgenden näher betrachten. Als erstes wird die parallele Kom-
position berechnet (siehe Abschnitt 5.2.1). Auf diesen parallel komponierten Rollenverhal-
ten werden die Kompositionsregeln angewandt. Die verbotenen Zustands-Kombinationen der
Zustands-Kompositionsregeln werden dabei entfernt (siehe Abschnitt 5.2.2) und die spezifizier-
ten Nachrichten-Kompositionsregeln werden in das parallel komponierte Verhalten integriert
(siehe Abschnitt 5.2.3). Da die Anwendung der Kompositionsregeln zu einer Verletzung der
Eigenschaften der Rollenverhalten führen kann, wird im letzten Schritt überprüft, ob die Eigen-
schaften nicht verletzt wurden (siehe Abschnitt 5.3).

5.2.1 Parallele Komposition

Wie wir schon in Definition 2 für Timed Automata gezeigt haben, führt die parallele Komposition
zu einem expliziten Modell der parallelen Ausführung der separaten Verhalten. Diese parallele
Komposition ist Voraussetzung, um die Kompositionsregeln anzuwenden, da die Kompositions-
regeln für die parallele Ausführung der separaten Rollenverhalten ausgelegt sind. Die parallele
Komposition der vereinfachten Rollenverhalten rear und registree ist in Abbildung 5.8 darge-
stellt. An dem Beispiel ist zu sehen, dass die nebenläufige Umsetzung der Nachrichten immer
noch zu einer parallelen Ausführung von unterschiedlichen Nachrichten führt, da die Transitio-
nen eines Timed Automata in Nullzeit schalten und Zeit nicht unbedingt in Zuständen verbraucht
werden muss.

Ein möglicher Pfad in diesem Automaten ist z.B. von register von (noConvoy,unregistered)
nach (noConvoy,registered), gefolgt durch startConvoy von (noConvoy,registered) nach (con-
voy,registered), während alle Uhrenwerte Null bleiben. Damit treten register und startConvoy
parallel auf.

5.2.2 Anwendung von Zustands-Kompositionsregeln

Zustands-Kompositionsregeln, wie in Abschnitt 5.1.1 definiert, beschreiben Sicherheits- und
Lebendigkeitseigenschaften, die durch die parallele Anwendung der separaten Rollenverhalten
nicht verletzt werden dürfen. Ziel ist es, im Vergleich zum reinen Model Checking, nicht nur zu

150

5.2 Synthese

{cr}

cr >= 200

cr >= 400

{cr}
/update

(noConvoy,unregistered) (convoy,unregistered)

/startConvoy

breakConvoy/

cr <= 1000

{cr}

cr >= 200

cr >= 400

{cr}
/update

(noConvoy,registered) (convoy,registered)

/startConvoy

breakConvoy/

cr <= 1000 && ce <= 2000

/register/unregister
ce >= 500 {ce}

{ce}
/lifetickce >= 800

{ce}
/lifetickce >= 800

ce <= 2000

/register
{ce}

/unregister
ce >= 500

Abbildung 5.8: Beispiel eines parallelen Kompositionsautomaten (Rollen rear und registree)

überprüfen, dass diese Eigenschaften erfüllt sind, sondern automatisch das Modell so anzupas-
sen, dass keine Verletzung dieser Eigenschaften eintritt. Entsprechend muss der im vorherigen
Abschnitt definierte parallele Kompositionsautomat von separaten Rollenverhalten, um diese Ei-
genschaften angepasst werden, so dass z.B. bestimmte Zustandskombinationen verboten werden.

Verdeutlichen können wir dies durch Anwendung der Kompositionsregeln r1 und r2 (siehe Ab-
schnitt 5.1.1) auf den im vorherigen Abschnitt gezeigten parallelen Automaten (siehe Abbildung
5.8).

Als erstes wenden wir r1 = ¬ ((unregistered, true) ∧ (convoy, true)) an. Hiermit wird spezifi-
ziert, dass für jeden Zeitbereich die Zustandskombination unregistered und convoy nicht erlaubt
sind. In unserem Beispiel trifft dies nur für den kombinierten Zustand (convoy,unregistered) zu.
Der resultierende Automat ist in Abbildung 5.9 gezeigt.

Wenden wir stattdessen die relaxierte Kompositionsregel r2 an, so ist der kombinierte Zustand
(convoy,unregistered) für das Zeitintervall cr ≤ 50 gültig. Abbildung 5.10 beinhaltet ent-
sprechend die Zustandskombination (convoy,unregistered). Das bisherige Intervall cr ≤ 1000
wurde entsprechend durch das kleinere cr ≤ 50 ersetzt, da dies aus der Auswertung von
cr ≤ 1000 ∧ cr ≤ 50 folgt. Diese Einschränkung führt dazu, dass die Nachrichten update
sowie breakConvoy nicht in diesem Zustand verarbeitet werden können da beide einen Time
Guard besitzen, dessen untere Schranke größer 50 ist. Die extern sichtbaren Echtzeiteigenschaf-
ten bleiben allerdings erhalten, da im Folgenden kombinierten Zustand (convoy,registered) diese
Nachrichten verarbeitet werden können.

Verallgemeinert gilt damit als erster Schritt für einen gegeben parallel komponierten Zustand l
und einer gegeben Zustandsregel r, zu überprüfen, ob die Invarianten von l durch r beeinflusst
wird.

151

Kapitel 5 Synthese von Komponentenverhalten

(noConvoy,unregistered)

{cr}

cr >= 200

cr >= 400

{cr}
/update

(noConvoy,registered) (convoy,registered)

/startConvoy

breakConvoy/

cr <= 1000 && ce <= 2000

{ce}
/lifetickce >= 800

{ce}
/lifetickce >= 800

ce <= 2000

/register
{ce}

/unregister
ce >= 500

Abbildung 5.9: Anwendung von Zustands-Kompositionsregel r1

{cr}

cr >= 200

cr >= 400

{cr}
/update

(noConvoy,unregistered) (convoy,unregistered)

/startConvoy

breakConvoy/

cr <= 50

{cr}

cr >= 200

cr >= 400

{cr}
/update

(noConvoy,registered) (convoy,registered)

/startConvoy

breakConvoy/

cr <= 1000 && ce <= 2000

/register/unregister
ce >= 500 {ce}

{ce}
/lifetickce >= 800

{ce}
/lifetickce >= 800

ce <= 2000

/register
{ce}

/unregister
ce >= 500

Abbildung 5.10: Anwendung von Zustands-Kompositionsregel r2

152

5.2 Synthese

Definition 55 (Zustands-Prädikat-Evaluierung)
Gegeben seien zwei Automaten A1 = (L1, l

0
1,Σ1, C1, I1, T1) und A2 = (L2, l

0
2,Σ2, C2, I2, T2)

sowie ihre parallele Komposition AP = A1 ‖ A2 = (LP , l
0
P ,ΣP , CP , IP , TP), ein korrespondie-

render parallel komponierter Zustand (Location) lp = (l1, l2), ein Zustands-Prädikat γ = (l, ϕ)
mit l ∈ L1∪L2 und ϕ ∈ Φuc(C1)∪Φuc(C2). Die Zustands-Prädikat-Evaluierung ist eine Funktion
γ : LP → Φuc(CP) ∪ {false}, definiert durch:

γ(lp) =

{
ϕ, iff (l = l1) ∨ (l = l2),

false, else.

Die Zustands-Prädikat-Evaluierung gibt die verbotenen Zeitbereiche in Form von Zeitbedingun-
gen für einen parallel komponierten Zustand (l1, l2) und ein gegebenes Zustands-Prädikat (l, ϕ)
zurück. Wenn einer der Zustände referenziert in dem komponierten Zustand gleich l ist, dann ist
die verbotene Menge an Zeitbereichen genau durch ϕ beschrieben. Wenn keiner dieser Zustand
gleich l ist, so ist ϕ nicht anwendbar und wird damit durch false beschrieben. Dies bedeutet,
dass für den Zustand (l1, l2) kein Zeitbereich durch das Zustands-Prädikat (l, ϕ) restriktiert wird.

Beispielhaft wird dies durch das Zustands-Prädikat γ1 = (convoy, cr > 50) und die Zustände
(noConvoy, unregistered) und (convoy, registered) in der folgenden Gleichung gezeigt:

γ1((noConvoy, unregistered)) = false,

γ1((convoy, registered)) = cr > 50.

Jede Zustands-Kompositionsregel besteht aus einer Negation der Zustands-Prädikate oder ei-
ner Konjunktion und Disjunktion der Zustands-Prädikate. Die Evaluierung einer Zustands-
Kompositionsregel muss entsprechend diese Fälle auch betrachten.

Die Negation einer Zustands-Kompositionsregel wird einfach durch die Negation des Ergebnis-
ses der nicht-negierten Regel evaluiert. Dies ist einfach durch Anwendung Boolescher-Algebra
möglich. Die Negation einer nach oben geschlossen Zeitbedingung wird durch Invertierung des
Relationalen-Operators> nach≤ und≥ nach < erreicht. Die Konjunktion und Disjunktion wird
evaluiert durch die Anwendung der korrespondierenden Booleschen Operatoren auf die Evalu-
ierung der Regeln. Atomare Zustands-Prädikate werden wie oben beschrieben evaluiert (siehe
Definition 55).

Beispielhaft zeigen wir durch folgende Gleichung die Evaluierung der Zustands-
Kompositionsregel r1 für die komponierten Zustände (convoy, unregistered):

r1((convoy, unregistered))

= ¬((unregistered, true) ∧ (convoy, true))

= ¬(true ∧ true)
= ¬true
= false.

153

Kapitel 5 Synthese von Komponentenverhalten

Da die Evaluierung von r1((convoy, unregistered)) false ergibt und die Invariante
I((convoy, unregistered)) ebenfalls false ergibt, wird der Zustand (convoy, unregistered)
aus dem parallel komponierten Automaten entfernt.

Auf Basis dieser Definitionen beschreiben wir im Folgenden die Definition der Zustands-
Kompositions-Konformität eines Timed Automata.

Definition 56 (Zustands-Kompositions-Konformität)
LasseAP = A1 ‖ A2 = (LP , l

0
P ,ΣP , CP , IP , TP) die parallele Komposition von Timed Automata

A1 und A2 sein. Weiterhin sei RS
1 ⊆ RS(A1, A2) eine Menge von Zustands-Kompositionsregeln

spezifiziert über A1 und A2. Der zustands-kompositions-konforme, parallel komponierte Timed
Automaton ASC = (LSC , l

0
SC ,ΣSC , CSC , ISC , TSC) ist definiert durch:

• LSC = LP \ LR, mit LR = {lp | lp ∈ LP and ∀ ρ1, . . . , ρn ∈ RS
1 : I(lp) ∧ ρ1(lp) ∧ . . . ∧

ρn(lp) = false},
• l0SC = l0P ⇔ l0P ∈ LSC ,

• ΣSC = ΣP ,

• ISC : LSC → Φ(CSC) mit ISC(lp) = IP (lp) ∧ ρ1(lp) ∧ . . . ∧ ρn(lp),∀ ρ1, . . . , ρn ∈ RS
1 ,

• CSC = CP ,

• TSC ⊆ LSC×ΣSC×Φ(CSC)×2CSC ×LSC , mit (lp, e, g, r, lp
′) ∈ TSC ⇔ (lp, e, g, r, lp

′) ∈
TP ∧ lp, lp′ ∈ LSC .

Für eine gegebene Menge an Zustands-KompositionsregelnRS
1 , wird der zustands-kompositions-

konforme Timed Automaton definiert als ein Timed Automaton, für den gilt, dass jede der Kom-
positionsregeln ρ ∈ RS

1 auf jeden Zustand angewandt wurde lP ∈ LP .

Die Menge an zustands-kompositions-konformen Zuständen LSC , ist die Menge von Zuständen
LP , ohne den Zuständen in LR, welche durch die Zustands-Kompositionsregeln eingeschränkt
wurden. Die eingeschränkten Zustände LR sind entsprechend die Zustände, wo die Invariante
IP (lp) in Konjunktion mit jeder der Zustands-Kompositionsregeln mit ρn(lp) als false evaluiert
wurden.

Der initiale Zustand l0SC des zustands-kompositions-konformen Automaten ist der gleiche als der
des parallel komponierten Automaten, so lange wie dieser nicht durch Anwendung von Zustands-
Kompositionsregeln entfernt wurde. Die Menge an Ereignissen und die Menge an Uhren ist die
gleiche.

Die Invariante jedes Zustands ISC(lp) ist definiert durch die Konjunktion der ursprünglichen
Invariante IP (lp) mit jeder Evaluierung der Zustands-Kompositionsregel ρn(lp).

Die Menge an Transitionen TSC eines zustands-kompositions-konformen Timed Automaton, ist
die Menge an Transitionen TP des parallel komponierten Timed Automaton, ohne die Transi-
tionen, welche eingehende oder ausgehende Transition einer verbotenen Zustandskombination
sind.

154

5.2 Synthese

Nachdem wir in diesem Abschnitt beschrieben haben, wie wir Zustands-Kompositionsregeln
anwenden, werden wir im nächsten Abschnitt die Anwendung von Nachrichten-
Kompositionsregeln betrachten.

5.2.3 Anwendung von Nachrichten-Kompositionsregeln

Im letzten Abschnitt haben wir beschrieben, wie wir Zustands-Kompositionsregeln anwen-
den. In diesem Abschnitt betrachten wir die Anwendung von Nachrichten-Kompositionsregeln.
Nachrichten-Kompositionsregeln spezifizieren zusätzliches Synchronisationsverhalten für die
parallel komponierten Rollenverhalten (siehe Abschnitt 5.1.2). Entsprechend beschreiben wir
in diesem Abschnitt wie Nachrichten-Kompositionsregeln auf einen parallel komponierten,
zustands-kompositions-konformen Automaten angewandt werden.

Ähnlich wie die parallele Komposition definiert für die parallele Ausführung von Rollenverhal-
ten (siehe Abschnitt 5.2.1), ist die Anwendung von Nachrichten-Kompositionsregeln vergleich-
bar mit der Komposition in der Prozessalgebra [Mil89] oder dem vernetzten Timed Automata-
Formalismus [YPD94]. Der wesentliche Unterschied ist, dass die Nachrichten-Kompositions-
Automaten nur Synchronisationsnachrichten betrachten und keine weiteren externen Nachrich-
ten Hinzufügen. Entsprechend ist das Ergebnis ein Produktautomat, wobei die Zustände der par-
allelen Komposition mit den Zuständen des Nachrichten-Kompositions-Automaten multipliziert
werden. Weiterhin werden die Transitionen des Nachrichten-Kompositions-Automaten mit den
Transitionen des Automaten der parallelen Komposition synchronisiert. Diese Synchronisati-
on verändert nicht das externe Verhalten, da der Nachrichten-Kompositions-Automat nur eine
Beobachtung durchführt. Dies stellt ebenfalls einen Unterschied zu der Komposition der Pro-
zessalgebra und der vernetzten Timed Automata dar. Diese Einschränkung ist notwendig, wie in
Abschnitt 5.1.2 definiert, um gerade das externe Rollenverhalten nicht zu verletzten, da das für
die betrachteten Systeme nicht erlaubt ist.

Durch einen Nachrichten-Kompositions-Automaten kann die Menge an Uhren-Zurücksetzungen
der synchronisierten Transitionen verändert werden, sowie die Time Guards der synchronisierten
Transitionen und die Zustands-Invarianten der korrespondierenden parallel komponierten Zu-
stände. Die hinzugefügten Uhren sind dabei disjunkt von denen des parallel komponierten Auto-
maten. Auf diese Weise wird erreicht, dass die zusätzlichen Zeitbedingungen nicht die Zeitinter-
valle des parallel komponierten Automaten verletzen. Damit bleiben die Verifikationsergebnisse,
die Deadlines der Rollenverhalten betrachten, immer noch erhalten.

Im Folgenden wenden wir die Nachrichten-Kompositionsregel eca1 (siehe Abbildung 5.7) auf
die parallele Komposition der vereinfachten Rollenverhalten an (siehe Abbildung 5.8). Die Zu-
standskompositionsregel r1 wurde bereits angewandt (siehe Abbildung 5.9).

Dies resultiert in den in Abbildung 5.11 gezeigten Timed Automaton. Jeder Zustand des Auto-
maten bezieht sich auf die Zustände der Rollenautomaten sowie die Zustände der Nachrichten-
Kompositionsregel. Weiterhin sind nur die Zustände in dem Automaten enthalten, die von dem
Startzustand des Kompositionsautomaten (noConvoy, unregistered, ecinitial) durch synchro-

155

Kapitel 5 Synthese von Komponentenverhalten

nisierte Transitionen erreichbar sind. Der Zustand (noConvoy, unregistered, ecregistered)
kann beispielsweise nicht von dem Startzustand aus erreicht werden und ist daher nicht in dem
Automaten enthalten.

Informell ist der Aufbau wie folgt. Ausgehend von dem Startzustand
(noConvoy, unregistered, ecinitial), gilt für jede ausgehende Transition des parallelen
Zustands, dass der Nachrichten-Kompositionsautomat ebenfalls seinen Zustand wechselt,
falls der Nachrichten-Kompositionsautomat genau die gleichen Nachrichten referenziert. In
diesem Fall sind die Time Guards und Clock Resets des Nachrichten-Kompositionsautomat
in den Synchronisations-Transitionen der parallelen Komposition integriert. Dies ist der
Fall für die /register-Transition von (noConvoy,unregistered) nach (noConvoy,registered)
in dem parallel komponierten Timed Automaton und von ec_initial nach ec_registered in
dem Nachrichten-Kompositionsautomaten. Das Clock Reset ec_c1 wurde der Transition
hinzugefügt. Der Time Guard ec_c1 >= 2500, der Transition /startConvoy von (noCon-
voy,registered,ec_registered) nach (convoy,registered,ec_registeredConvoy), wurde ebenfalls
hinzugefügt. Zudem können Zustandsinvarianten durch Konjunktion hinzugefügt werden, wie
für die Zustands-Kompositionsregeln beschrieben.

Weiterhin ist anzumerken, dass ein Zustand eines Nachrichten-Kompositionsautomaten nur
wechselt, wenn der Nachrichten-Kompositionsautomat tatsächlich die gleichen Nachrich-
ten referenziert, wie der entsprechende Zustand des Kompositionsautomaten. Ein Beispiel
hierfür ist die breakConvoy/-Transition von Zustand (convoy,registered,ec_registeredConvoy)
nach (noConvoy,registered,ec_registeredConvoy). In diesem Fall wechselt der Nachrichten-
Kompositionsautomat nicht den Zustand, da ec_registeredConvoy keine ausgehende Transition
für die Nachricht breakConvoy/ referenziert.

breakConvoy//startConvoy
cr >= 200

{ce}

(noConvoy,unregistered,
ec_initial)

{cr}

cr >= 200

cr >= 400

{cr}
/update

(noConvoy,registered,
ec_registered)

(convoy,registered,
ec_registeredConvoy)

/startConvoy

breakConvoy/

cr <= 1000 && ce <= 2000
{ce}

/lifetickce >= 800
{ce}

/lifetickce >= 800

ce <= 2000

/register
{ce}

/unregister
ce >= 500

(noConvoy,registered,
ec_registeredConvoy)

{ce}

/lifetick

ce <= 2000
/unregister

Abbildung 5.11: Anwendung von Nachrichten-Kompositionsregel eca1

Die beschriebene Anwendung von Nachrichten-Kompositionsregeln zeigt wie Zeitbedingungen
an Transitionen und Zustandsinvarianten hinzugefügt werden. Dies wird erreicht durch eine Syn-

156

5.2 Synthese

chronisation zwischen dem parallelen komponierten Timed Automaton und dem Nachrichten-
Kompositionsautomaten, ohne Instrumentierung des parallel komponierten Timed Automaton.
Dies hat damit den Vorteil gegenüber klassischen Beobachterautomaten, dass der zu beobachten-
de Automat (in unserem Fall der parallel komponierte Timed Automaton) nicht durch zusätzliche
Synchronisations-Nachrichten verändert wird.

Im Folgenden stellen wir die formale Definition des nachrichten-kompositions-konformen Timed
Automaton vor, welcher ein zustands-kompositions-konformer, parallel komponierter Timed Au-
tomaton ist, auf den ein Nachrichten-Kompositions-Automat angewandt wurde.

Definition 57 (Nachrichten-Kompositions-Konformität)
Lasse ASC = (LSC , l

0
SC ,ΣSC , CSC , ISC , TSC) ein zustands-kompositions-konformer, par-

allel komponierter Timed Automaton sein, welcher aus den Timed Automaton A1 =
(L1, l

0
1,Σ1, C1, I1, T1) und A2 = (L2, l

0
2,Σ2, C2, I2, T2) mit C1 ∩ C2 = ∅ und Σ1 ∩ Σ2 = ∅

entstanden ist. Weiterhin lasse AE = (LE, l
0
E,ΣE, CE, IE, TE) ∈ RA(A1, A2) ein Nachrichten-

Kompositions-Automat für A1 und A2 sein. Wir definieren den nachrichten-kompositions-
konformen und zustands-kompositions-konformen, parallel komponierten Timed Automaton
AEC = (LEC , l

0
EC ,ΣEC , CEC , IEC , TEC) mit

• LEC ⊆ L1 × L2 × LE , mit (l1, l2, le) ∈ LEC iff (l1, l2) ∈ LSC und ISC((l1, l2)) ∧ IE(le) 6=
false) and (l1, l2, le) ist erreichbar durch TEC ,

• l0EC = (l01, l
0
2, l

0
e), iff (l01, l

0
2, l

0
e) ∈ LEC ,

• ΣEC = Σ1 ∪ Σ2,

• IEC : LEC → Φ(C1) ∪ Φ(C2) ∪ Φ(CE) mit IEC((l1, l2, le)) = ISC((l1, l2)) ∧ IE(le),

• CEC = C1 ∪ C2 ∪ CE ,

• TEC ⊆ LEC × ΣEC × Φ(CEC)× 2CEC × LEC , mit

– ((l1, l2, le), e1, g1, r1, (l1
′, l2, le)) ∈ TEC ⇔

((l1, l2), e1, g1, r1, (l1
′, l2)) ∈ TSC ∧

∀ le′ ∈ LE : (le, e1, ge, re, le
′) /∈ TE ,

– ((l1, l2, le), e2, g2, r2, (l1, l2
′, le)) ∈ TEC ⇔

((l1, l2), e2, g2, r2, (l1, l2
′)) ∈ TSC ∧

∀ le′ ∈ LE : (le, e2, ge, re, le
′) /∈ TE ,

– ((l1, l2, le), e1, g1 ∧ ge, r1 ∪ re, (l1′, l2, le′)) ∈ TEC ⇔
((l1, l2), e1, g1, r1, (l1

′, l2)) ∈ TSC ∧ (le, e1, ge, re, le
′) ∈ TE ,

– ((l1, l2, le), e1, g1 ∧ ge, r1 ∪ re, (l1, l2′, le′)) ∈ TEC ⇔
((l1, l2), e2, g2, r2, (l1, l2

′) ∈ TSC ∧ (le, e2, ge, re, le
′) ∈ TE .

Der nachrichten-kompositions-konforme Automat bildet das explizite Modell für die parallele
Ausführung der Rollenautomaten. Dabei berücksichtigt der Automat die spezifizierten Zustands-
Kompositionsregeln und die Nachrichten-Kompositionsregeln.

157

Kapitel 5 Synthese von Komponentenverhalten

Die Zustände des nachrichten-kompositions-konformen Automaten LEC sind eine Untermen-
ge des Kreuzprodukts von L1 × L2 × LE . Es werden nur solche Zustände berücksichtigt, die
zustands-kompositions-konform sind, deren Invariante IEC((l1, l2, le)) = ISC((l1, l2)) ∧ IE(le)
nicht gleich false ist und welche erreichbar durch die Transition TEC dieses Automaten sind.

Die Invarianten eines nachrichten-kompositions-konformen Zustands (l1, l2, le) werden durch
Konjunktion der Invariante des zustands-kompositions-konformen Zustands ISC(l1, l2) und der
Invariante des nachrichten-kompositions-konformen Zustands IE(le) erstellt.

Die Definition der Transition TEC von AEC können wir in vier Fälle unterscheiden. Die ersten
beiden Fälle beschreiben die Transitionen, welche nicht zwischen ASC und AE synchronisiert
werden. Dabei wird unterschieden, ob A1 oder A2 den Zustand wechselt. In beiden Fällen gibt
es keine korrespondierende Transition in TE , welche synchronisiert werden könnte. Die anderen
beiden Fälle beschreiben, dass eine Synchronisation zwischen ASC und AE stattfindet. Dabei
wird ebenfalls unterschieden, ob A1 oder A2 seinen Zustand wechselt.

Zusammengesetzte Transitionen, welche eine Transition te ∈ TE des Nachrichten-
Kompositions-Automaten referenzieren, aber nicht eine Transition tsc ∈ TSC des zustands-
konformen Automaten, werden nicht berücksichtigt. Dies liegt daran, dass die Transitionen
te ∈ TE nicht mit den Transitionen des zustands-konformen Automaten synchronisiert werden
können. Diese Transitionen können also immer dann existieren, wenn eine Anwendung einer
Zustands-Kompositions-Regel die Nachrichten aus A1 oder A2 entfernt, die die Nachrichten-
Kompositions-Regel beobachtet. Da die Regeln unabhängig von der Anwendung der Regeln
spezifiziert werden, kann ein Entwickler der Regeln dies nicht berücksichtigen.

Im Folgenden bezeichnen wir einen zustands-kompositions-konformen und nachrichten-
kompositions-konformen, parallel komponierten Timed Automaton mit kompositions-konform.

In diesem und im vorherigen Abschnitt haben wir vorgestellt, wie wir Kompositionsregeln spe-
zifizieren und automatisch anwenden können. Durch das Hinzufügen von Zeitbedingungen und
das Entfernen von Zustandskombinationen schränkt die Anwendung von Kompositionsregeln
das Zeitverhalten der parallelen Rollenautomaten ein. Es kann daher passieren, dass relevantes
Verhalten entfernt wird, wenn ein Zeitintervall gleich Null ist oder wenn ein einzelner Zustand
einer Rolle vollständig entfernt wird. Damit kann eine Verletzung der Eigenschaften der Rol-
lenautomaten, welche vor der Anwendung der Kompositionsregeln verifiziert wurden, nicht ver-
hindert werden. Im folgenden Abschnitt werden wir daher einen Ansatz vorstellen, der solche
Verletzungen der Eigenschaften entdeckt.

5.3 Erhalt von Rollenverhalten

Die in den beiden vorherigen Abschnitten vorgestellten Kompositionsregeln sind so einge-
schränkt, dass eine Verletzung von (zeitlichen) Sicherheitsanforderungen der Rollenverhalten
verhindert werden kann. Es kann jedoch nicht vermieden werden, dass die Anwendung von ei-
ner Kompositionsregel zu einer Verletzung des sichtbaren Echtzeitverhaltens führt.

158

5.3 Erhalt von Rollenverhalten

Die Anwendung der Kompositionsregel r4 = ¬((registered, true) ∧ (convoy, cr > 100))
auf den komponierten Timed Automaton aus Abbildung 5.8 resultiert in einer neuen Zustands-
Invariante (cr<=100 && ce<=2000) für den Zustand (convoy,registered,ec_registeredConvoy).
Eine Konsequenz aus dieser Anwendung ist, dass die ausgehende Nachricht breakConvoy/ der
Transition nicht mehr aktiviert werden kann, da der Time Guard cr>=200 nicht mehr mit
true ausgewertet werden kann. Das resultierende Verhalten ist entsprechend nicht mehr in dem
kompositions-konformen Automaten enthalten.

Gerade wenn mehrere Kompositionsregeln spezifiziert werden, sind die Verletzungen der Rolle-
neigenschaften nicht einfach durch einen Entwickler zu erkennen. Die alleinige Anwendung von
Regel r4 auf den ursprünglichen parallel komponierten Automaten (siehe Abbildung 5.8) würde
zum Beispiel nicht die Ausführbarkeit der breakConvoy/-Transition verhindern, da der Auto-
mat in den Zustand (unregistered,convoy) wechseln kann und dort die Transition breakConvoy/
ausführen kann.

Um dieses Problem zu adressieren, definieren wir in diesem Abschnitt auf Basis der Verfeine-
rungsdefinition in Abschnitt 3.1 die Rollenkonformität (siehe Abschnitt 5.3.1)). Hiermit wird
überprüft, ob die Verfeinerungsbeziehung zwischen dem ursprünglichen parallel komponierten
Timed Automaton und den kompositions-konformen Timed Automaton eingehalten wird. Da wir
hier zusätzlich explizit das parallele Verhalten aller beteiligter Rollen an der Synthese berück-
sichtigen müssen, können wir nicht die Verfeinerungsüberprüfung aus Abschnitt 3.2 anwenden.
Die zu erhaltenen Eigenschaften der Verfeinerungsdefinition ändern sich hierdurch jedoch nicht.
In Abschnitt 5.3.2 beschreiben wir zudem, wie ein kompositions-konformer Automat angepasst
werden kann, falls ein Deadlock bei der Überprüfung der Rollenkonformität identifiziert wurde.

5.3.1 Rollenkonformität

Aufgrund der kontinuierlichen Zeitsemantik implizieren Timed Automata einen unendlichen Zu-
standsraum. Eine geeignete diskrete Abstraktion der Timed Automata wird daher benötigt, um
eine Analyse zu ermöglichen. Der Zone Graph (siehe Definition 6) ist ein weitverbreitetes Ver-
fahren, um den unendlichen Zustandsraum der Timed Automata in endlich viele Zustände zu
abstrahieren.

Der Ansatz zur Überprüfung der Rollenkonformität ist daher wie folgt aufgebaut: (1) der Zone
Graph für den zustands- und nachrichten-kompositions-konformen Produktautomaten wird er-
stellt. (2) Es wird überprüft, ob der aus (1) erstellte Zone Graph eine Verfeinerung der einzelnen
Rollen-Automaten ist.

Der erste Schritt des Ansatzes ist die Konstruktion des Zone Graphen, um das Modell aller er-
reichbaren Transitionen, unter Berücksichtigung des zeitlichen Verhaltens, zu erhalten. Ein Aus-
schnitt2 des Zone Graphen konstruiert aus dem kompositions-konformen Automaten der rear-

2Wir zeigen hier nur einen Ausschnitt des Zone Graphen, da der vollständige Graph 186 Zone Zustände und 396
Transitionen besitzt.

159

Kapitel 5 Synthese von Komponentenverhalten

Rolle, der registree-Rolle und der Kompositionsregeln r1 and eca2 (siehe Abbildung 5.11) zeigt
Abbildung 5.12.

Der Ausschnitt beinhaltet den initialen Zone Zustand ((noConvoy,unregistered,ec_initial),cr==ce
& ce==ec_c1 & ec_c1==0) sowie einen direkten und neun indirekte Nachfolger. Der Pfad /re-
gister, /lifetick, /lifetick, /startConvoy, /lifetick, breakConvoy/, /unregister zeigt zum Beispiel einen
Ablauf, in dem jeder Zustand mindestens einmal besucht wurde.

noConvoy,unregistered,ec_initial
(cr==ce & ce==ec_c1 & ec_c1==0)

noConvoy,registered,ec_registered
(ce==ec_c1 & ec_c1==0)

register!,true,{ce,ec_c1}

noConvoy,unregistered,ec_initial
(ce<=2000 & ce<=cr & ce==ec_c1)

unregister!,true,{}

noConvoy,registered,ec_registered
(ce==0 & ec_c1<=2000 & ec_c1<=cr)

lifetick!,true,{ce}register!,true,{ce,ec_c1}

noConvoy,unregistered,ec_initial
(ce<=2000 & ce<=ec_c1 & ec_c1<=cr & ec_c1-ce<=2000)

unregister!,true,{}

noConvoy,registered,ec_registered
(ce==0 & ec_c1<=cr)

lifetick!,true,{ce}startConvoy!,(ec_c1>=2500),{cr}

register!,true,{ce,ec_c1}

lifetick!,true,{ce}

convoy,registered,ec_registeredConvoy
(2500<=ec_c1 & cr==0 & ce<=2000)

startConvoy!,(ec_c1>=2500),{cr}

noConvoy,unregistered,ec_initial
(ce<=2000 & ce<=ec_c1 & ec_c1<=cr)

unregister!,true,{}

convoy,registered,ec_registeredConvoy
(cr<=1000 & cr-ec_c1<=-2500 & ce==0) lifetick!,true,{ce}

noConvoy,registered,ec_registeredConvoy
(200<=cr & cr<=1000 & cr-ec_c1<=-2500 & ce<=cr)

breakConvoy?,(cr>=200),{}

lifetick!,true,{ce}

noConvoy,registered,ec_registeredConvoy
(200<=cr & cr<=1000 & cr<=ce & cr-ec_c1<=-2500 & ce<=2000)

breakConvoy?,(cr>=200),{}

lifetick!,true,{ce}startConvoy!,true,{cr} unregister!,true,{}lifetick!,true,{ce}

startConvoy!,true,{cr}

unregister!,true,{}

register!,true,{ce,ec_c1}

Abbildung 5.12: Ausschnitt eines Zone Graphen des Konvoi-Beispiels (siehe Abbildung 5.11)

In einem rollen-konformen, kompositions-konformen Timed Automaton ist jeder Pfad der ur-
sprünglichen parallelen Komposition des Rollen-Automaten ebenfalls unter Berücksichtigung
von Zeitverzögerungen und internen Verhalten enthalten. Um dies in einem gegebenen Zone
Graphen herauszufinden, müssen wir überprüfen, ob jeder Zone Zustand immer noch alle Nach-
richten des korrespondierenden Timed Automaton-Zustands anbietet. Für den Zone Zustand
((noConvoy,unregistered,ec_initial),cr==ce & ce==ec_c1 & ec_c1==0) müssen wir zum Beispiel
überprüfen, ob die Nachrichten /register und /startConvoy angeboten werden, da dies die Nach-
richten der ausgehenden Transition des Zustands (noConvoy,unregistered) des ursprünglichen
parallel komponierten Automaten sind (siehe Abbildung 5.11).

160

5.3 Erhalt von Rollenverhalten

Die Überprüfung des angebotenen Verhaltens, muss explizit berücksichtigen, dass beliebig viele
Nachrichten-Transitionen der anderen parallelen Rolle dazwischen sein können. Diese sogenann-
ten transitiven Delay-Transitionen werden inhärent durch Zone Graphen berücksichtigt. Problem
ist allerdings, dass dabei keine transitiven Transitionen der anderen Rollen betrachtet werden.
Damit müssen diese explizit in der Überprüfung berücksichtigt werden.

Um diesen Ansatz beispielhaft zu zeigen, inspizieren wir den initialen Zone Zustand ((noCon-
voy,unregistered,ec_initial),cr==ce & ce==ec_c1 & ec_c1==0), ob dieser die Nachrichten /re-
gister und /startConvoy anbietet. /register wird direkt durch den Zone Zustand angeboten. Die
/startConvoy-Nachricht müssen wir suchen, indem wir nur Transitionen mit Nachrichten der re-
gistree-Rolle verfolgen, da /startConvoy eine Nachricht der rear-Rolle ist. Diese Transition kann
auf dem Pfad /register, /lifetick, /startConvoy gefunden werden sowie auf dem Pfad /register,
/lifetick, /lifetick, . . . , /startConvoy. Entsprechend bietet der initiale Zone Zustand die gleichen
Nachrichten wie der korrespondierende Timed Automaton-Zustand an. Wir bezeichnen einen
solchen Zustand mit konsistent.

Für zu sendende Nachrichten ist dieser Ansatz ausreichend. Für zu empfangende Nachrichten
muss zusätzlich überprüft werden, ob der letzte Zeitpunkt der ursprünglichen Transition durch
diesen Zustand eingehalten wird. Wir zeigen dies am Beispiel der ausgehenden breakConvoy/-
Transition des Zone Zustands ((convoy,registered,ec_registeredConvoy), 2500<=ec_c1 & cr==0
& ce<=2000). Das Zeitintervall, in dem die breakConvoy/-Transition aktiviert wird, wird wie
folgt berechnet (siehe Definition 6): (1) lasse Zeit auf der Zone des Start-Zustands vergehen,
(2) schneide die resultierende Zone aus Schritt (1) mit der Invariante des korrespondierten,
kompositions-konformen Timed Automaton-Zustands und (3) schneide die resultierende Zone
aus Schritt (2) mit den Time Guards der korrespondierten, kompositions-konformen Timed Au-
tomaton Transition.

Dieses Zeitintervall muss mit dem Zeitintervall des ursprünglichen parallel komponierten Ti-
med Automaton verglichen werden. Das ursprüngliche Zeitintervall wird auf die gleiche weiße
mit den Zustands-Invarianten und Time Guards des ursprünglichen Timed Automaton erstellt.
Bei dem Vergleich beider Zeitintervalle, muss berücksichtigt werden, dass das kompositions-
konforme Zeitintervall auch später starten kann. Es müssen also nur die oberen Grenzen mitein-
ander verglichen werden.

Um zu überprüfen, ob die Clock Zones gleich sind, subtrahieren wird die kompositions-konforme
Zone von der ursprünglichen Zone. Wenn das Ergebnis eine leere Zone ist, sind beide Intervalle
gleich und die betrachtete Transition des Zone Graphen bietet das Verhalten der breakConvoy/-
Nachricht an. Wenn das Ergebnis eine nicht-leere Zone ist, muss nach einer anderen Transition
gesucht werden (wobei, wie oben beschrieben, wieder nur Transitionen der registree-Rolle ver-
folgt werden). Wird keine Transition gefunden, wird der Zone Zustand als inkonsistent markiert.

Die gesamte Prozedur überprüft jeden Zone Zustand des Zone Graphen, ob er konsistent ist. Die
inkonsistenten Zustände und korrespondierende eingehende und ausgehende Nachrichten wer-
den entfernt. Nachdem all diese Zone Zustände entfernt wurden, müssen nochmal alle anderen
Zone Zustände überprüft werden, da sich das angebotene Verhalten durch die Entfernung der

161

Kapitel 5 Synthese von Komponentenverhalten

Transitionen verändert haben kann. Wenn zu jeder Zeit alle Zone Zustände konsistent sind und
der initiale Zone Zustand nicht entfernt wurde, ist der resultierende Timed Automaton rollen-
konform.

Durch das Entfernen von Zone Zuständen entspricht der rollen-konforme Timed-Automaton
nicht mehr dem korrespondierenden Zone Graphen, da einige Pfade, die in einen Deadlock füh-
ren, entfernt wurden. Dies kann allerdings durch Hinzufügen von Time Guards wieder behoben
werden, wie in Abschnitt 5.3.2 beschrieben.

Wir fahren fort mit der Formalisierung des Ansatzes. Wie oben beschrieben, müssen wir zwi-
schen zu sendenden und zu empfangenden Nachrichten unterscheiden, da die zu empfangenden
Nachrichten die oberen Grenzen des ursprünglichen Zeitintervalls berücksichtigen müssen. Wei-
terhin müssen wir zwischen dem angebotenen Verhalten eines Timed Automaton-Zustands, der
parallelen Komposition der Rollen-Automaten und dem angebotenen Verhalten eines Zone Zu-
stands, des kompositions-konformen Timed Automaton, unterscheiden. Wir fangen an mit der
Definition des angebotenen Verhaltens eines Timed Automaton-Zustands. Hiermit wird das an-
gebotene Verhalten eines Timed Automaton-Zustands berechnet.

Definition 58 (Angebotenes Sendeverhalten (Timed Automaton Zustand))
Für einen Timed Automaton A = (L, l0,Σ, C, I, T) ist das angebotene Verhalten eines Zustands
(einer Location) l ∈ L und einer Clock Zone ϑ ∈ Ψ(C) definiert durch die Funktion offers :
L×Ψ(C)→ 2Σ, mit

offers!(l, ϑ) = {/e|∃ (l, /e, g, r, l′) ∈ T : (ϑ⇑ ∧ I(l) ∧ g) 6= false)}.

Das angebotene Sendeverhalten eines gegebenen Timed Automaton-Zustands l und einer Clock
Zone ϑ ist gegeben durch alle zu sendenden Nachrichten, die von dem Zustand l ausgehend von
der Zone ϑ erreichbar sind. Das sind im Wesentlichen all die Nachrichten, die als ausgehende
Nachrichten des Zustands l markiert sind. Zudem muss allerdings überprüft werden, ob die Tran-
sition ausgehend von der gegeben Zone aktiviert werden kann. Entsprechend müssen wir (1) auf
der Eingabe Zone ϑ Zeit vergehen lassen, (2) diese mit der Invariante des Zustands l schneiden
und (3) die Zone mit dem Time Guard der Transition schneiden. Auf diese weiße finden wir
heraus, ob die korrespondierende Nachricht für eine ausgehende Transition in dem gegebenen
Intervall ϑ angeboten wird oder nicht.

Beispielhaft zeigen wir dies an dem Zustand ((convoy,unregistered),cr<=50) des zustands-
konformen Automaten (siehe Abbildung 5.10). Wir nehmen zudem an, dass die ausgehende
breakConvoy/-Transition mit einer eingehenden Nachricht /breakConvoy markiert wurde. Die
Eingangs Zone ist gegeben mit (cr = 0 ∧ ce ≥ 0). Die folgende Berechnung zeigt, ob die
/breakConvoy-Nachricht angeboten wird:

(cr = 0 ∧ ce ≥ 0)⇑ ∧ (cr ≤ 50) ∧ (cr ≥ 200)

= (cr ≤ ce) ∧ (cr ≤ 50) ∧ (cr ≥ 200)

= (cr ≤ ce ∧ cr ≤ 50) ∧ (cr ≥ 200)

= false.

162

5.3 Erhalt von Rollenverhalten

Da das Ergebnis false ist, ist die einzige angebotene Nachricht des Zustands
((convoy,unregistered),cr<=50) /register, da:

offers!((convoy, unregistered), cr ≤ 50), (cr = 0 ∧ ce ≥ 0)) = {/register}.

Wir fahren fort mit der Definition des angebotenen Empfangsverhaltens eines Timed Automaton-
Zustands. Das angebotene Empfangsverhalten muss die obere Grenze des ursprünglichen Inter-
valls berücksichtigen und kann von dem unterem Intervall abstrahieren. Entsprechend muss die
untere Grenze aus den Clock Zones entfernt werden. Dies nennen wir schwächste Verzögerungs-
Vorbedingung (siehe auch schwächste Vorbedingung in [BY03, p. 106]) und ist wie folgt defi-
niert.

Definition 59 (Schwächste Verzögerungs-Vorbedingung auf Clock Zones)
Für eine Clock Zone ϑ ∈ Θ(C) ist die schwächste Verzögerungs-Vorbedingung, beschrieben mit
ϑ⇓, definiert durch:

ϑ⇓ = {ν | ∀ ν ′ ∈ ϑ,∀ c ∈ C, ∀ δ ∈ R+ :

(∀ c ∈ C : δ ≤ ν ′(c))⇒ ν(c) = ν ′(c)− δ}.

Die schwächste Verzögerungs-Vorbedingung auf einer Clock Zone entfernt alle unteren Schran-
ken in der Zone. Dabei müssen Bedingungen über Clock-Differenzen berücksichtigt werden.
Entsprechend müssen alle möglichen Werte δ von jeder Clock Zone subtrahiert werden, so lan-
ge wie die Bewertung nicht negativ wird. Für eine gegebene Clock-Bewertung ν ′ müssen al-
le Clock-Werte größer oder gleich Null nach der Subtraktion von delta sein. Die schwächste
Verzögerungs-Vorbedingung wird während der Berechnung des angebotenen Empfangsverhal-
tens angewandt.

Definition 60 (Angebotenes Empfangsverhalten (Timed Automaton Zustand))
Für einen gegebenen Timed Automaton A = (L, l0,Σ, C, I, T) ist das angebotene Verhalten
eines Zustands (einer Location) l ∈ L und einer Clock Zone ϑ ∈ Ψ(C) definiert durch die
Funktion offers : L×Ψ(C)→ 2Σ, mit

offers?(l, ϑ) = {(e/, ϑe) | ∃ (l, e/, g, r, l′) ∈ T, ϑe = (ϑ⇑ ∧ I(l) ∧ g)⇓ :

ϑe 6= false)}.

Im Unterschied zu dem angebotenen Sendeverhalten ist das angebotene Empfangsverhalten eine
Menge von Nachrichtenpaaren e/ und einer Clock Zone ϑe. Die Berechnung, ob eine korrespon-
dierende Transition der Nachrichten aktiviert ist, ist die gleiche wie für die zu empfangenden
Nachrichten. Allerdings wird hier das resultierende Zeitintervall genutzt, um die Zone zu re-
präsentieren, wo die Nachricht e/ aktiv ist. Die unteren Grenzen werden wie oben beschrieben
entfernt.

Beispielhaft zeigen wir dies an dem Zustand ((convoy,registered),cr<=1000 && ce <=2000)
und der ausgehenden breakConvoy/-Transition (siehe Abbildung 5.10). Die Berechnung der

163

Kapitel 5 Synthese von Komponentenverhalten

korrespondierenden Clock Zone ϑe wird im Folgenden vorgestellt, wobei die Eingabe Zone
(cr ≤ 50 ∧ ce = 0) gegeben ist durch:

ϑbreakConvoy/

= ((cr ≤ 50 ∧ ce = 0)⇑ ∧ (cr ≤ 1000 ∧ ce ≤ 2000) ∧ (cr ≥ 200))⇓

= ((cr − ce ≤ 50 ∧ ce ≤ cr) ∧ (cr ≤ 1000 ∧ ce ≤ 2000) ∧ (cr ≥ 200))⇓

= ((cr − ce ≤ 50 ∧ ce ≤ cr ∧ cr ≤ 1000) ∧ (cr ≥ 200))⇓

= (cr − ce ≤ 50 ∧ ce ≤ cr ∧ cr ≤ 1000 ∧ cr ≥ 200)⇓

= cr − ce ≤ 50 ∧ ce ≤ cr ∧ cr ≤ 1000.

Bis hier her haben wir die Berechnung des angebotenen Verhaltens eines Timed Automaton-
Zustands definiert. Im Folgenden definieren wir das angebotene Verhalten von Zone Zuständen
von kompositions-konformen, parallel komponierten Timed Automaton. Wir müssen dabei be-
rücksichtigen, dass für eine gegebene Nachricht, Nachrichten von anderen Rollen als internes
Verhalten der korrespondierenden Komponente aufgefasst werden können. Wir definieren daher
eine transitive Transitionsbeziehung für den Zone Graphen, um das angebotene Verhalten eines
Zone Zustands zu berechnen.

Definition 61 (Transitive Transitionsbeziehung (Zone Graph))
Für einen Zone Graphen ZA = (SΘ, s

0,Σ, C, TΘ), erstellt aus einem kompositions-konformen
Timed Automaton A = (L, l0,Σ, C, I, T), welcher wiederum aus dem Timed Automata A1 =
(L1, l

0
1,Σ1, C1, I1, T1) und A2 = (L2, l

0
2,Σ2, C2, I2, T2) zusammengesetzt ist, definieren wird die

Menge von transitiven Transitionen Tτ durch:

Tτ = {((s, e, s′), spre) | ((s, e, s′), spre) ∈ Tτ1 ∨ ((s, e, s′), spre) ∈ Tτ2}

mit

Tτ1 = {((s, e1, s
′), spre) | ∃ e1 ∈ Σ1 : (s, e1, s

′) ∈ TΘ, spre = s ∨
(∃ e2 ∈ Σ2 : (s, e2, s

′′) ∈ TΘ, spre = s′′ ∧
∃ e1 ∈ Σ1 : ((s′′, e1, s

′), spre) ∈ Tτ1)}
Tτ2 = {((s, e2, s

′), spre) | ∃ e2 ∈ Σ2 : (s, e2, s
′) ∈ TΘ, spre = s ∨

(∃ e1 ∈ Σ1 : (s, e1, s
′′) ∈ TΘ, spre = s′′ ∧

∃ e2 ∈ Σ2 : ((s′′, e2, s
′), spre) ∈ Tτ2)}.

Eine transitive Verzögerung wird damit nicht explizit berücksichtigt, wie dies typischerweise
der Fall ist für transitive Transitionsbeziehungen für zeitbehaftete Transitionssysteme [WL97,
TY01], sondern implizit durch die Konstruktion des Zone Graphen. Zudem berücksichtigen wir
explizit den Zone Zustand spre durch Annotation an jeder transitiven Transition. Hierdurch wird
direkt eine Transition mit der korrespondierenden Nachricht angeboten, womit ein Vergleich
der Zeitintervalle der empfangenden Nachrichten ermöglicht wird. Der Zone Zustand spre wird
letzter Vorgänger genannt.

164

5.3 Erhalt von Rollenverhalten

Beispielhaft zeigen wir die transitive Transitionsbeziehung an dem Zone Zustand ((noCon-
voy,unregistered,ec_initial),cr==ce & ce==ec_c1 & ec_c1==0) des Zone Graphen aus Abbildung
5.12. Nehmen wir an das Tτ−s1−registree die Menge der transitiven Transitionen für die registree-
Rolle repräsentiert und das Tτ−s1−rear die für die rear-Rolle repräsentiert. Es werden nur die
ausgehenden transitiven Transitionen des initialen Zone Zustands betrachtet. Da die erste und
einzige ausgehende Transition des initialen Zone Zustands mit register annotiert ist, ist die einzi-
ge transitive Transition in Bezug auf die Nachrichten der registree-Rolle die /register-Transition:

Tτ−s1−registree = {((s1, /register, s2), s1)},

mit

s1 = ((noConvoy, unregistered, ec_initial), cr = ce = ec_c1 = 0) und
s2 = ((noConvoy, registered, ec_registered), ce = ec_c1 = 0).

Für die rear-Rolle müssen wir die /startConvoy-Transition untersuchen, indem wir den Pfad /re-
gister, /lifetick, /startConvoy and /register, /lifetick, /lifetick, /startConvoy betrachten. Die Menge
Tτ−rear enthält entsprechend zwei transitive Transitionen:

Tτ−s1−rear = {((s1, /startConvoy, s5), s3), ((s1, /startConvoy, s6), s4)}

mit

s3 = ((noConvoy, registered, ec_registered),

ce = 0 ∧ ec_c1 ≤ 2000 ∧ ec_c1 ≤ cr),

s4 = ((noConvoy, registered, ec_registered), ce = 0 ∧ ec_c1 ≤ cr) und
s6 = ((convoy, registered, ec_registeredConvoy),

ec_c1 ≥ 2500 ∧ cr = 0 ∧ ce ≤ 2000).

s5 wurde nicht dargestellt. Die Menge aller ausgehender transitiven Transitionen Tτ−s1 von s1, ist
die Vereinigung der Menge Tτ−s1−rear und Tτ−s1−registree: Tτ−s1 = Tτ−s1−registree ∪ Tτ−s1−rear.
Die transitive Transitionsbeziehung wird in der Berechnung des angebotenen Verhaltens eines
Zone Zustands angewandt. Im Folgenden werden wir das angebotene Verhalten definieren. Wir
beginnen mit der Definition des angebotenen Sendeverhalten.

Definition 62 (Angebotenes Sendeverhalten (Zone Zustand))
Für einen Zone Graphen ZA = (SΘ, s

0,Σ, C, TΘ) eines kompositions-konformen Timed Auto-
maton A = (L, l0,Σ, C, I, T) (erstellt aus den Timed Automata A1 = (L1, l

0
1,Σ1, C1, I1, T1) und

A2 = (L2, l
0
2,Σ2, C2, I2, T2)), ist das angebotene Verhalten eines Zone Zustands (l, ϑ) definiert

durch die Funktion: offers : L×Ψ(C)→ 2Σ mit

offers!(s) = {/e | ((s, /e, s′), spre) ∈ Tτ}.

165

Kapitel 5 Synthese von Komponentenverhalten

Das angebotene Sendeverhalten eines Zone Zustands bestimmt die Menge der sendenden Nach-
richten eines bestimmten Zone Zustands s. Diese Nachrichten sind all die Nachrichten welche
erreichbar sind durch transitive Transitionsbeziehung ausgehend von s. Da für das Senden von
Nachrichten das Zeitintervall in welchem die Nachricht aktiviert wird nicht relevant ist, wird
der Zone Zustand spre nicht betrachtet. Die Menge der angebotenen zu versendenden Nachrich-
ten für den initialen Zone Zustand ((noConvoy,unregistered,ec_initial),cr==ce & ce==ec_c1 &
ec_c1==0) des Zone Graphen aus Abbildung 5.12 wurde im vorherigen Beispiel berechnet und
ist entsprechend {/register, /startConvoy}. Wir fahren mit der Definition des angebotenen
Empfangsverhalten fort.
Definition 63 (Angebotenes Empfangsverhalten (Zone Zustand))
Für einen Zone Graphen ZA = (SΘ, s

0,Σ, C, TΘ) eines kompositions-konformen Timed Automa-
ton A = (L, l0,Σ, C, I, T), welcher aus den Timed Automata A1 = (L1, l

0
1,Σ1, C1, I1, T1) und

A2 = (L2, l
0
2,Σ2, C2, I2, T2) zusammengesetzt wurde, ist das angebotene Verhalten eines Zone

Zustands (l, ϑ) definiert durch die Funktion offers : L×Ψ(C)→ 2Σ mit

offers?(s) = {(e/, ϑe) | ∃ ((s, e/, s′), (l, ϑ)) ∈ Tτ ,∃ (l, e/, g, r, l′) ∈ T,
ϑe = (ϑ⇑ ∧ I(l) ∧ g)⇓ : ϑe 6= false}.

Ähnlich zu dem angebotenen Empfangsverhalten eines Timed Automaton-Zustands (siehe De-
finition 60), besteht das angebotene Empfangsverhalten eines Zone Zustands aus Tupeln von
empfangenden Nachrichten e/ und korrespondierenden Clock Zones ϑe. Die Clock Zones reprä-
sentieren das Zeitintervall in dem die Nachricht angeboten wird. Für dieses Zeitintervall wird der
letzte Vorgänger der transitiven Transitionsbeziehung berücksichtigt. Dies wird benötigt, da sich
die Clock Zone möglicherweise entlang der Transitionen und den Zuständen dazwischen verän-
dern kann. Daher wird die Clock Zone direkt vor der Transition, die die Nachricht e/ anbietet,
benötigt, um das Zeitintervall für das Ereignis zu bestimmen. Das Zeitintervall wird genauso
berechnet, wie zu dem angebotenen Empfangsverhalten eines Timed Automaton-Zustands be-
schrieben (siehe Definition 60). Ein Beispiel für die Berechnung des angebotenen Verhaltens
wurde bereits in diesem Abschnitt zur Beschreibung der transitiven Transitionsbeziehung ge-
zeigt.

Um zu verifizieren, ob ein Zone Zustand, welcher aus dem kompositions-konformen Automa-
ten abgeleitet wurde, konsistent ist, muss überprüft werden, ob die Menge von angebotenen
Nachrichten äquivalent zur Menge der angebotenen Nachrichten der ursprünglichen parallelen
Komposition der Rollenautomaten ist. Für die zu sendenden Nachrichten ist es ausreichend zu
überprüfen, ob die Menge der erreichbaren Nachrichten äquivalent ist. Für die zu empfangen-
den Nachrichten müssen zudem die Zeitintervalle berücksichtigt werden, in welchen die korre-
spondierenden Transitionen aktiviert wurden. Da die untere Grenze von beiden Zeitintervallen
entfernt wurde, muss für den Vergleich nur eine Clock Zone von der anderen subtrahiert werden
(siehe folgende Definition).
Definition 64 (Subtraktion auf Clock Zones)
Für zwei Clock Zones ϑ1, ϑ2 ∈ Θ(C) ist die Subtraktion ϑ2 − ϑ1 definiert durch

ϑ2 − ϑ1 = {ν | ν ∈ ϑ2 ∧ ν /∈ ϑ1}.

166

5.3 Erhalt von Rollenverhalten

Die Subtraktion auf Clock Zones ist ebenso definiert wie die Subtraktion auf Mengen, da eine
Clock Zone aus einer Menge von Clock-Bewertungen besteht (siehe Definition 6). Wenn also
eine Clock Zone ϑ1 von einer Clock Zone ϑ2 subtrahiert wird, dann entfernen wir einfach alle
Clock-Bewertungen, die in ϑ1 und ϑ2 enthalten sind von ϑ2. Das Ergebnis ist die modifizierte
Menge ϑ2. Wenn die resultierende Menge leer ist, dann sind ϑ1 und ϑ2 äquivalent. Diese Eigen-
schaft wird ausgenutzt, um die Gleichheit von Clock Zones für die Überprüfung der Konsistenz
zwischen dem kompositions-konformen Automaten und der ursprünglichen parallelen Kompo-
sition zu bestimmen.

Auf Basis dieser Definition können wir im Folgenden die Rollen-Konformität definieren.

Definition 65 (Rollen-Konformität)
Lasse A = (L, l0,Σ, C, I, T) ein kompositions-konformer, parallel komponierter Timed
Automaton sein, welcher aus den Timed Automata A1 = (L1, l

0
1,Σ1, C1, I1, T1) und

A2 = (L2, l
0
2,Σ2, C2, I2, T2) und den nachrichten-kompositions-konformen Automaten AEC =

(LEC , l
0
EC ,ΣEC , CEC , IEC , TEC) erstellt wurde. Weiterhin lasse ZA = (SΘ, s

0,Σ, C, TΘ) den
korrespondierenden Zone Graphen sein und lasse AP = (LP , l

0
P ,ΣP , CP , IP , TP) die parallele

Komposition A1 ‖ A2 sein. Wir definieren A als rollen-konform wenn,

∃ Z ′A = (S ′Θ ⊆ SΘ, s
0,Σ, C, T ′Θ ⊆ TΘ)

und

∀ ((l1, l2, le), ϑ) ∈ S ′Θ :

offers!(((l1, l2, le), ϑ)) = offers!((l1, l2), ϑ) ∧
offers?(((l1, l2, le), ϑ)) ⊇ offers?((l1, l2), ϑ),

mit (l1, l2) ∈ LP und
(e/, ϑe) ∈ offers?(((l1, l2, le), ϑ)) = (ep/, ϑep) ∈ offers?((l1, l2), ϑ)⇔
e/ = ep/ ∧ ϑep − ϑe = false.

Ein kompositions-konformer Timed Automaton A ist rollen-konform zu der parallelen Kompo-
sition AP = A1 ‖ A2 der ursprünglichen Rollenautomaten A1 und A2, wenn ein korrespondie-
render Zone Graph Z ′A existiert, wobei jeder Zone Zustand konsistent ist. Der Zone Graph kann
dabei möglicherweise weniger Zone Zustände und korrespondierende Transitionen als die ur-
sprünglichen Automaten aufweisen. Es gilt daher, dass jeder Zone Zustand ((l1, l2, le), ϑ) ∈ Z ′A
ausgehend von der Zone ϑ das gleiche Verhalten anbietet wie der korrespondierende Zone Zu-
stand (l1, l2) ∈ AP . Weiterhin gilt, dass ein Zone Zustand das gleiche Verhalten anbietet, wenn
die Menge der zu sendenden Nachrichten gleich ist und wenn die Menge der zu empfangen-
den Nachrichten des Zone Zustands alle (e/, ϑe) Tupel des ursprünglichen Automaten enthält.
Es können also auch mehr Tupel enthalten sein, da empfangende Nachrichten angeboten sein
können, deren Zeitintervall kleiner als das ursprüngliche ist.

Die Analyse des gesamten Beispiels ergibt, dass der kompositions-konforme Timed Automa-
ta rollen-konform ist. Um zudem zu zeigen, dass dieser auch eine korrekte Verfeinerung der

167

Kapitel 5 Synthese von Komponentenverhalten

Rollenautomaten ist, müssen wir zudem z.B. mit UPPAAL überprüfen, dass der kompositions-
konforme Timed Automata keine Time Stopping Deadlocks enthält. Dies ist für unser Beispiel
der Fall, womit der Automat eine korrekte Verfeinerung der Rollenautomaten ist.

Da die Definition der Rollenkonformität nicht verlangt, dass der ursprüngliche Zone Graph ZA
des synthetisierten kompositions-konformen Automaten äquivalent zu Z ′A ist, kann es sein, dass
die Time Stopping Deadlock Analyse fehlschlägt, obwohl der kompositions-konforme Automat
rollen-konform ist. Um dieses Problem zu beheben müssen die Zone Zustände des ursprüngli-
chen Zone Graphen ZA, welche nicht konsistent sind, entfernt werden, um die Situationen zu
vermeiden in denen der Timed Automaton Transitionen ausführt, die in einen Deadlock führen.
Im Folgenden Abschnitt stellen wir vor, wie dies erreicht werden kann.

5.3.2 Erhalt von Deadlock Freiheit

Für einen rollen-konformen, kompositions-konformen Timed AutomatonA ist nicht zugesichert,
dass es einige Pfade gibt, die nicht korrekt das Verhalten der korrespondierenden Rollenautoma-
ten verfeinern. Dies liegt daran, dass der Zone Graph Z ′A des rollen-konformen Automaten weni-
ger Zone Zustände haben kann als der Zone Graph ZA des kompositions-konformen Automaten.
Hierdurch kann es Zone Zustände in Z ′A geben, die in einen Time Stopping Deadlock führen. Im
Folgenden stellen wir einen Ansatz vor, der automatisch durch Anpassung des Zone Graphen an
diesen kritischen Stellen die Deadlock Freiheit erhält. Hierdurch kann ein manuelles eingreifen
des Entwicklers zum Teil verhindert werden.

Um den Ansatz beispielhaft darzustellen, passen wir die Rollen rear und registree an, wie in
Abbildung 5.13 und Abbildung 5.14 dargestellt. Beide Automaten können nun höchstens eine
Zeiteinheit in jedem Zustand verweilen. Weiterhin müssen sie wenigstens eine Zeiteinheit in
den Zuständen convoy und registered verweilen. Wenn die Automaten zurück in den initialen
Zustand wechseln, wird die korrespondierende Uhr zurückgesetzt.

noConvoy convoy

breakConvoy/

{cr}

{cr}

/startConvoy

cr >= 1
cr <= 1 cr <= 1

Abbildung 5.13: Modifizierte einfache rear-
Rolle

/unregister

/register

unregistered registered
{ce}

ce <= 1
ce >= 1

ce <= 1

{ce}

Abbildung 5.14: Modifizierte einfache regis-
tree-Rolle

Wir wenden nun auf der parallelen Komposition dieser Automaten die Zustands-
Kompositionsregel r1 = ¬((unregistered, true) ∧ (convoy, true)) an. Der resultierende kom-
ponierte Automat ist kompositions-konform (siehe Abbildung 5.15).

Um nun festzustellen, ob der Automat rollen-konform ist, erstellen wir den korrespondieren-
den Zone Graphen (siehe Abbildung 5.16). Bis auf der Zustand ((convoy,registered),cr-ce==-1

168

5.3 Erhalt von Rollenverhalten

(noConvoy,unregistered)

{cr}

cr >= 1

(noConvoy,registered) (convoy,registered)

/startConvoy

breakConvoy/

cr <= 1 && ce <= 1

/register

{ce}

/unregister
ce >= 1

{ce}

cr <= 1 && ce <= 1

cr <= 1 && ce <= 1
{cr}

Abbildung 5.15: Kompositions-konformer Automat der vereinfachten Rollenautomaten

& ce==1), welcher keine ausgehenden Transitionen besitzt und damit in einen Deadlock führt,
ist jeder Zone Zustand dieses Zone Graphen konsistent. Wenn wir diesen Zustand entfernen,
erhalten wir einen Zone Graphen, indem jeder Zone Zustand die benötigten Ereignisse des ur-
sprünglichen Rollenautomaten anbietet. Dann ist der kompositions-konforme Timed Automaton
auch rollen-konform.

Der Zone Graph enthält damit Pfade, welche nicht die benötigten Nachrichten der ein-
zelnen Rollenautomaten korrekt anbieten. Dies sind all die Pfade, welche in den Zustand
((convoy,registered),cr-ce==-1 & ce==1) über die startConvoy-Transition führen. Daher müssen
wir diese Transition entfernen, um einen Timed Automaton zu erhalten, indem keine Ausfüh-
rung einer Transition in einen Deadlock führt. Im Folgenden definieren wir das Entfernen solcher
Transitionen.
Definition 66 (Entfernen einer Transition eines Zone Graphen)
Gegeben sei ein Zone Graph ZA = (SΘ, s

0,Σ, C, TΘ) eines kompositions-konformen Timed Au-
tomaton A = (L, l0,Σ, C, I, T), eine Timed Automaton Transition t = (l, e, g, r, l′) ∈ T , ein
initialer Zone Zustand s = (l, ϑ) ∈ SΘ und eine Zone Graph Transition tΘ = (s, e, s′). Die
Transition tΘ wird von dem Timed Automaton A entfernt, und daher auch von dem Zone Gra-
phen ZA, durch ersetzen des Guards g der Transition t mit dem Guard gr, definiert durch:

gr = g ∧ (true− (ϑ⇑ ∧ I(l))).

Um also diese Zone Graphen Transitionen von dem korrespondierenden Timed Automaton zu
entfernen, ersetzen wir den Time Guard der Transition t durch den modifizierten Time Guard
gr. Dieser Time Guard teilt den ursprünglichen Time Guard g mit dem Intervall, welches nicht
beschränkt ist. Dieses Intervall wird durch Subtraktion des beschränkten Intervalls des initialen
Zone Zustands von der universellen Menge von Clock-Bewertungen mit true berechnet. Das
Ergebnis ist ein Guard gr, welcher die Clock-Bewertungen des ursprünglichen Guards g beinhal-
tet und die Clock-Bewertungen des Guards entfernt, welche die Transition in dem betroffenen
Zustand l aktiviert.

169

Kapitel 5 Synthese von Komponentenverhalten

noConvoy,unregistered
(cr==ce & ce==0)

noConvoy,registered
(cr<=1 & ce==0)

register!,true,{ce}

noConvoy,unregistered
(cr==1 & cr-ce==1 & ce==0)

unregister!,(ce>=1),{ce}

convoy,registered
(cr==0 & ce<=1)

startConvoy!,true,{cr}

noConvoy,registered
(cr==1 & cr-ce==1 & ce==0)

register!,true,{ce}

noConvoy,registered
(cr-ce==-1 & ce==1)

breakConvoy?,(cr>=1),{cr}

unregister!,(ce>=1),{ce}

convoy,registered
(cr-ce==-1 & ce==1)

startConvoy!,true,{cr}

convoy,registered
(cr==ce & ce==0)

startConvoy!,true,{cr}

breakConvoy?,(cr>=1),{cr}

Abbildung 5.16: Zone Graph des vereinfachten kompositions-konformen Timed Automaton (sie-
he Abbildung 5.14)

170

5.3 Erhalt von Rollenverhalten

Für den Guard der /startConvoy-Transition des kompositions-konformen Timed Automaton, er-
gibt die Berechnung den in Abbildung 5.17 dargestellten Guard. Beachte, dass der Guard eine
Disjunktion beinhaltet, die nach Definition der Clock Constraints nicht erlaubt ist (siehe Defini-
tion 3). Dies kann durch Aufteilung der Transition in zwei Transitionen mit den gleichen Nach-
richten und Clock Resets aufgelöst werden. Die Time Guards werden von den unterschiedlichen
Bedingungen des ursprünglichen disjunktiven Time Guards bestimmt. Aus Vereinfachungsgrün-
den haben wird das nicht in dem Beispiel gezeigt.

(noConvoy,unregistered)

{cr}

cr >= 1

(noConvoy,registered) (convoy,registered)

/startConvoy

breakConvoy/

cr <= 1 && ce <= 1

/register

{ce}

/unregister
ce >= 1

{ce}

cr <= 1 && ce <= 1

cr <= 1 && ce <= 1
{cr}

 (ce-cr < 1) | (ce > 1 & cr-ce <= -1)

Abbildung 5.17: Modifizierter rollen-konformer Automat aus Abbildung 5.15

Der Zone Graph für die modifizierten rollen-konformen Automaten zeigt Abbildung 5.18. Je-
der Pfad dieses Zone Graphen verfeinert das Verhalten der beteiligten Rollenautomaten korrekt.
Entsprechend haben wir erfolgreich die Transition entfernt, die in einen Deadlock führt.

Es ist allerdings auch möglich, dass Time Stopping Deadlocks existieren, die nicht nur durch
Analyse der ausgehenden Transitionen der Zone Zustände gefunden werden können. Trotz unse-
rer Analyse muss entsprechend immer noch mittels eines Model Checkers nach Time Stopping
Deadlocks gesucht werden.

In unserem Beispiel hat UPPAAL einen Deadlock über folgenden Pfad entdeckt: (/register, ce =
cr = 0), (/startConvoy, ce = cr > 0), (deadlock, ce > 0 ∧ cr = 0). Dies ist ein Deadlock, da der
Zeit Guard der einzigen ausgehenden Transition des Zustands (convoy,registered) wenigstens für
eine Zeiteinheit in dem Zustand verweilen muss. Aufgrund der Zustandsinvariante und dem Wert
von ce, der größter als Null ist, ist dies allerdings nicht möglich.

Eine Konsequenz hieraus ist, dass der Entwickler diese Deadlocks manuell entfernen muss. Bei
der Anpassung dürfen keine Zeitintervalle verletzt werden, da hierdurch die Simulationsbezie-
hung zwischen der ursprünglichen parallelen Komposition und dem kompositions-konformen
Automat verletzt würde. Nachdem die Deadlocks entfernt wurden muss der Timed Automaton
noch einmal auf Rollenkonformität überprüft werden. Ist dieser Test erfolgreich, ist der resultie-
rende Timed Automaton eine korrekte Verfeinerung der beteiligten Rollen.

171

Kapitel 5 Synthese von Komponentenverhalten

noConvoy,unregistered
(cr==ce & ce==0)

noConvoy,registered
(cr<=1 & ce==0)

register!,true,{ce}

noConvoy,unregistered
(cr==1 & cr-ce==1 & ce==0)

unregister!,(ce>=1),{ce}

convoy,registered
(cr==0 & ce<=1)

startConvoy!,(ce-cr<1)|(1<ce & cr-ce<=-1),{cr}

noConvoy,registered
(cr==1 & cr-ce==1 & ce==0)

register!,true,{ce}

noConvoy,registered
(cr-ce==-1 & ce==1)

breakConvoy?,(cr>=1),{cr}

unregister!,(ce>=1),{ce}

convoy,registered
(cr==ce & ce==0)

startConvoy!,(ce-cr<1)|(1<ce & cr-ce<=-1),{cr}

breakConvoy?,(cr>=1),{cr}

Abbildung 5.18: Deadlock-freier Zone Graph des modifizierten Automaten aus Abbildung 5.17

Offensichtlich können auch diese komplizierteren Deadlocks automatisch entfernt werden, in
dem ganze Pfade angepasst werden, die in einen Deadlock führen können. Dies führt dazu, dass
die in UPPAAL entwickelten Algorithmen zur Deadlock-Erkennung größtenteils nachimplemen-
tiert werden müssten, um eine automatische Anpassung zu ermöglichen. Im Rahmen dieser Ar-
beit wurde hierauf verzichtet.

5.4 Weitere Anwendungsfälle

Wie zu Abbildung 5.5 beschrieben, können wir weitere Anwendungsfälle von abhängigen Rol-
lenverhalten betrachten. Es ist möglich, dass eine Synchronisation auf unterschiedlichen Hierar-
chieebenen stattfindet. Damit ist gemeint, dass die abhängigen Verhalten zum Teil durch eine ein-
gebettete Komponente umgesetzt sind, die in der Synchronisation berücksichtigt werden müssen.
Ein weiterer Fall sind Multi-Ports, deren Verhalten erst zur Laufzeit durch Strukturanpassung-
en ausgeprägt wird. Neben diesen lokalen Abhängigkeiten, können auch Abhängigkeiten direkt
auf Muster-Ebene entstehen, wenn diese allgemein, komponentenunabhängig, aufgelöst werden
sollen. Im Folgenden diskutieren wir, wie der vorgestellte Ansatz mit diesen Anwendungsfällen
umgehen kann.

172

5.4 Weitere Anwendungsfälle

Synchronisation auf unterschiedlichen Hierarchieebenen Wenn wir gezeigt haben,
dass die eingebettete(n) Komponenten(n) eine korrekte Verfeinerung der übergeordnete(n) Kom-
ponente(n) ist, bzw. sind, müssen wir in der Synthese lediglich das Portverhalten der eingebet-
teten Komponente(n) berücksichtigen. Die Delegation zum übergeordneten Port kann einfach
über das synthetisierte Verhalten erfolgen, wie in Abbildung 5.5 dargestellt. Es muss dabei, wie
für den schnittstellen-beschränkten Automaten definiert (siehe Definition 20), eine Filterung der
Ereignisse durchgeführt werden, damit nur die für einen Port relevanten Ereignisse weiterge-
leitet werden. Durch eine eindeutige Bezeichnung der Nachrichten durch die Schnittstelle des
übergeordneten Ports ist dies einfach realisierbar.

Synchronisation von Multi-Ports Als grundlegender Formalismus wurde für die Synthe-
se Timed Automata verwendet. Daher können grundsätzlich keine Strukturanpassungen in der
Synthese berücksichtigt werden, wie dies durch ein Adaptionsverhalten ermöglicht wird.

Für den Fall, dass das Adaptionsverhalten alle Abhängigkeiten berücksichtigt, kann eine Syn-
chronisation mit dem Adaptionsverhalten durchgeführt werden. Nach der grundlegenden Idee
der Adaptionsverhalten wie in [HHG08] präsentiert, gilt dies für PARAMETERIZED REAL-TIME

COORDINATION PATTERN.

Wurde ein PARAMETERIZED REAL-TIME STATECHART allerdings nicht nach diesen Kriterien
umgesetzt, so kann eine Synthese nur durchgeführt werden, wenn die Obergrenze der Anzahl
der Instanzen bekannt ist. So kann für die gesamte Anzahl der Portinstanzen ein gemeinsames
Verhalten synthetisiert werden.

Verteilung von Verhalten Wenn Anforderungen über mehrere Rollen unterschiedlicher
Muster definiert werden, so ergibt die Synthese ein Verhalten, welches potentiell verteilt von
mehreren Komponenten ausgeführt werden kann. Da die Synthese ein Gesamtverhalten synthe-
tisiert, muss, um ein verteiltes ausführen zu ermöglichen, dass Verhalten wieder zurück in die
einzelnen Rollen verteilt werden. Ausgehend von den bekannten Rollenverhalten müssen die
einzelnen Zustände der jeweiligen Rollen identifiziert werden und die Konkretisierungen, wie
z.B. Synchronisation zwischen den Rollen, berücksichtigt werden.

Im Allgemeinen ist dies das gleiche Problem wie Standard Syntheseansätze beschreiben, die le-
diglich einen globalen „Controller“ synthetisieren (z.B. [HKP05]). Eine einfache Möglichkeit
dieses Problem generell zu lösen ist, dass jeder der Rollenverhalten das Gesamtverhalten anwen-
det. Die Synchronisationsnachrichten werden dann verteilt verschickt. Es muss dabei berücksich-
tigt werden, dass die Synchronisation zusätzlich Zeit durch die vernetzte unterliegende Struktur
benötigt. Um das Verhalten lokal möglichst klein zu halten, kann zudem das nicht benötigte
Verhalten der anderen Rolle aus dem Gesamtverhalten geschnitten werden.

173

Kapitel 5 Synthese von Komponentenverhalten

5.5 Diskussion

Mit dem hier vorgestellten Ansatz bieten wir eine Unterstützung zur Beschreibung von Abhän-
gigkeiten zwischen Rollen, die eine Komponente anwendet, an und ermöglichen unter Berück-
sichtigung der abhängigen Rollen eine automatische Synthese des Komponentenverhaltens. Die-
ser Ansatz ist grundsätzlich auf beliebige abhängige Timed Automata anwendbar, womit die
skizzierten Szenarien aus Abbildung 2.1 umgesetzt werden können.

Gibt es Anforderungen, die beliebig strukturelle Abhängigkeiten zwischen Multi-Ports erfordern,
so ist eine effiziente Umsetzung allerdings nicht gegeben. Dies liegt daran, dass explizit die
Automaten aller Portinstanzen, deren obere Anzahl bekannt sein muss, berücksichtigt werden
müssen. Ein Ausblick für weiterführende Arbeiten ist daher, TIMED STORY CHARTS direkt als
unterliegenden Formalismus für die Synthese zu betrachten.

Wie in der Einleitung gefordert, unterstützt der vorgestellte Syntheseansatz den Entwickler bei
der Berücksichtigung von Abhängigkeiten. Bis auf die Formalisierung der Abhängigkeit in Form
von Kompositionsregeln, automatisiert die Synthese alle weiteren Schritte.

Nachdem die Synthese erfolgreich war, kann prinzipiell aus dem synthetisierten Modell Code
generiert werden. Da es sich hier immer noch um einen Timed Automaton handelt, kann die
Codegenerierung der MECHATRONIC UML nur genutzt werden, wenn das Modell zurück in ein
REAL-TIME STATECHART oder HYBRID RECONFIGURATION CHART geführt wird. Im Rah-
men dieser Arbeit wurde dies allerdings nicht weiter betrachtet.

Muss der synthetisierte Automat noch weiter um spezifische Seiteneffekte oder plattformspezi-
fische Informationen, wie eine WCET (siehe Abschnitt 2.4.2), erweitert werden, so ist dies auf
Grund der Größe des parallel komponierten Automaten ungünstig. Im Idealfall werden daher die-
se anwendungsspezifischen Informationen vor der Synthese den Rollenautomaten hinzugefügt.
Die Zurückführung des synthetisierten Verhalten zu separaten Rollenverhalten, wie in Abschnitt
5.4 diskutiert, stellt eine alternative hierzu dar, falls die Informationen zu Beginn der Synthese
noch nicht vorhanden sind. Allerdings beinhaltet dieses Modell immer noch den notwendigen
Synchronisationsanteil.

174

Kapitel 6

Werkzeugunterstützung

Diese Arbeit stellt nicht nur die Konzepte zur Entwicklung hierarchischer Komponentensyste-
me vor, in deren Mittelpunkt die Wiederverwendung von Komponenten und Kommunikationen
zwischen Komponenten steht, sondern auch eine Werkzeugunterstützung. Wir werden dabei im
Besonderen in Abschnitt 6.1 die Unterstützung für eine Codegenerierung und Laufzeitumgebung
erläutern, um tatsächlich auch werkzeugtechnisch einen modellgetriebenen Ansatz zu unterstüt-
zen. In Abschnitt 6.2 wird die Umsetzung des Werkzeugs vorgestellt und dabei deren grobe
Architektur erläutert. Abschließend werden wir eine Validierung des Ansatzes in Abschnitt 6.3
vorstellen.

6.1 Ausführung

In Abschnitt 2.1 haben wir unseren Ansatz zur Modellierung und Analyse hierarchischer Kom-
ponentensysteme vorgestellt. Um selbstoptimierende, mechatronische Systeme zu adressieren,
unterstützt der Ansatz kompositionelle Strukturanpassungen. Hiermit wird es ermöglicht, kom-
plexe Systeme durch einen modularen Aufbau und notwendige Erzeugungen zu beschreiben.

Ein offensichtliches Problem ist allerdings, dass wir für eine konkrete Umsetzung die Anforde-
rungen eingebetteter Echtzeit-Systeme berücksichtigen müssen. Insbesondere müssen wir daher
die Ressourcen-Beschränkungen von Mikrocontrollern betrachten. Damit dürfen die beschrie-
benen Erzeugungen nur in den gegebenen Ressourcen-Beschränkungen des Speichers und der
CPU-Kapazität ausgeführt werden.

Wir verfeinern daher unsere Modelle plattformspezifisch durch die Berücksichtigung von
Ressourcen-Beschränkungen. Unser Ansatz ermöglicht es, ebenso wie bisherige Ansätze, vor-
hersagbar die Ressourcen einzuhalten. Zudem erlauben wir flexible Ressourcen-Anpassungen
zur Laufzeit, die prinzipiell wieder beliebige Erzeugungen ermöglichen.

Für HYBRID RECONFIGURATION CHARTS kann die Codegenerierung unverändert zu der von
Burmester [Bur06] genutzt werden, deren Umsetzung wir in [BGH+07] gezeigt haben. Speziell
müssen wir hier die Codegenerierung und Laufzeitanalyse der Seiteneffekte betrachten, die die
Erzeugungen mit Story Diagrammen beschreiben (siehe Abschnitt 6.1.2). Darüber hinaus stellen
wir im Folgenden vor, wie wir eine geeignete Laufzeitumgebung auf Basis der in [Bur06] vor-

175

Kapitel 6 Werkzeugunterstützung

gestellten anbieten können, um auch als Verifikations- und Simulations-Umgebung zu dienen,
wie dies durch die beschriebenen Integrations-Ansätze für Altkomponenten benötigt wird (siehe
Abschnitt 6.1.1).

6.1.1 Laufzeitumgebung

Die Laufzeitumgebung erweitert die Implementierungssprache um Konzepte der Modellierungs-
sprache MECHATRONIC UML. Grundlegend ist die Laufzeitumgebung wie eine offene Archi-
tektur aufgebaut, die architektonische und mechanistische Entwurfsmuster unterstützt, wie Kom-
ponentenmanagement, Komponenteninteraktion und Nachrichtenverteilung [Dou99, Gom00,
Dou02].

Zusätzlich unterstützt diese Laufzeitumgebung eine Integration des IPANEMA-Frameworks
[Hon98], um eine Codegenerierung für hybride Systeme zu unterstützten [Bur06, BGH+07].
Für Details des IPANEMA-Frameworks sei auf [Bur06] verwiesen.

Im Folgenden werden wir auf die notwendigen Konzepte der Laufzeitumgebung eingehen, um
eine Simulationsumgebung für die Integrationsverfahren (siehe Abschnitt 4) beschreiben zu kön-
nen. Die grundlegenden Konzepte der Laufzeitumgebung wurden in [GH06a] auf Basis von
[Hen05] vorgestellt.

Die Laufzeitumgebung (siehe Abbildung 6.1) kapselt den Anwendungsentwickler vor betriebs-
systemspezifischer Programmierung. Sie dient als eine Abstraktionsschicht, um die Modellse-
mantik im Kontext einer spezifischen Programmiersprache zu unterstützen. Integriert in die mo-
dellbasierte Entwicklung mit der Fujaba Real-Time Tool Suite wird damit eine Schnittstelle für
die automatische Codegenerierung angeboten.

Durch die vorgegebene offene Architektur wird dem Entwickler durch Spezialisierung ermög-
licht, benutzerspezifische Anforderungen zu realisieren. Konkret werden abstrakte Komponen-
ten und Ports angeboten, die durch Spezialisierung benutzerspezifisch erweitert werden können.
Hierdurch wird eine Infrastruktur zur Ausführung der Komponenten bereitgestellt.

TimesysLinux

Network

Abstract operating system

Mechatronic UML models
Generated Code for

PortComponent

Abbildung 6.1: Schichtenarchitektur der Laufzeitumgebung

176

6.1 Ausführung

Die Kommunikation findet via Nachrichten statt. Durch das Proxy- und Nachrichtenschlangen-
sowie Broker-Entwurfsmuster wird eine Entkopplung zwischen den Kommunikationspartnern
erreicht. Um den Einsatz im Echtzeitbereich zu gewährleisten, wird das Pool-Allokations-
Entwurfsmuster angewandt. Für die Details zu den Mustern verweisen wir auf [Dou02].

Für den Echtzeitbetrieb teilt sich die Initialisierungsphase von Komponenten in init, lookup und
register auf. Während der Initialisierungsphase wird der benötigte Speicher allokiert. Während
der Registerphase werden angebotene Rollen bekannt gemacht (LookupService) und anschlie-
ßend benötigte Rollen während der Lookupphase durch Anfrage an den LookupService aufge-
sucht. Falls der Ort des Kommunikationspartner a priori bekannt ist, kann die Registrierung und
der Lookup via dem LookupService umgangen werden, um statisch eine Kommunikation aufzu-
bauen.

Komponentenschicht Die Basis-Klassen der Komponentenschicht sind in Abbildung 6.2
gezeigt. Die Klasse Komponente basiert auf der RealtimeThread-Klasse und die Klasse Realti-
meThread erbt von der Thread-Klasse.

RealtimeThreadThread

+providedUnidirectionalRegister(Skeleton)
+requiredUnidirectionalRegister(Proxy)
+providedBidirectionalRegister(Skeleton)
+requiredBidirectionalRegister(Proxy)
+serviceIsUsedRequest(Proxy)
+serviceIsUsedAnswer(Proxy): Message

+lookup(RTInterface, RTEntry, Integer)
+register(RTInterface, RTEntry, Boolean, Proxy, Skeleton)

Component
+Component(SchedulingParameters, PeriodicParameters)
+initInteraction()

+lookupService()
+control()

+init()
+registerService()

Abbildung 6.2: Basis-Klassen der Komponentenschicht

Wir bieten zudem eine einfache Schedulable-Klasse an, die es ermöglicht spezifische Scheduler
zu implementieren. Die Component-Klasse erbt entsprechend von dieser Klasse.

Eine Komponente wird immer periodisch ausgeführt (siehe Abbildung 6.3). Der RealtimeThread
führt die Component aus, welche periodisch ConcreteComponent durch die Methode control
aufruft. Die periodische Synchronisation mit dem Scheduler wird durch den Aufruf der Methode
waitForNextPeriod ermöglicht.

177

Kapitel 6 Werkzeugunterstützung

t: Clock
P: Period in t
J: Jitter

:Component :ConcreteComponent

control()

:RealtimeThread

execute()

t+P+J

waitForNextPeriod()

control()
waitForNextPeriod()

t=now

waitForNextPeriod()

Abbildung 6.3: Ausführungssequenz einer Komponente

Portschicht Die Interaktion zwischen Komponenten basiert auf einer nicht-blockierenden
Kommunikation via Nachrichten. Die Komponenteninteraktion wird durch das Proxy-Muster
kombiniert mit einem Nachrichten-Schlangen-Muster [Dou02] umgesetzt. Um die Echtzeitei-
genschaften der betrachteten Domäne zu adressieren, wird zusätzlich das Pool-Allokations-
Muster angewandt, um ein Speicher-Management zu ermöglichen.

Die Schnittstelle der Portschicht ist in Abbildung 6.4 gezeigt. Ein Skeleton ist ein Rollenanbie-
ter und ein Proxy ist ein Rollennutzer. Ein Port erbt von der Proxy-Klasse, wenn der Port eine
Bedarfsschnittstelle implementiert (required-Schnittstelle, siehe Abschnitt 2.3), andernfalls wird
von der Skeleton-Klasse geerbt. Es ist natürlich auch möglich von beiden Klassen zu erben. Die
Schnittstelle des Proxy und Skeleton bietet einfach ein senden und empfangen von Nachrichten
an.

Proxy Skeleton

+portSend(Message)
+Connection(Integer, Integer)

+portReceive(): Message

Connection

Abbildung 6.4: Basis-Klassen der Portschicht

Eine Sequenz von interagierenden Komponenten wird in Abbildung 6.5 gezeigt. In der Abbil-
dung wird gezeigt, wie eine Komponente mit einem Port (Proxy oder Skeleton) verbunden ist

178

6.1 Ausführung

und wie die Netzwerkschicht mit der Portschicht verbunden ist. Das senden einer Nachricht
(send(Message)) wird ausgelöst durch die ConcreteComponent. Die Nachricht wird dann durch
den Framework-Port zur SendQueue weitergeleitet. Die Netzwerkschicht überprüft periodisch
ob sich eine Nachricht in der SendQueue befindet. Ist dies der Fall, wird die Nachricht über das
Netzwerk der ReceivingQueue des Kommunikationspartners zugeschickt. Im Falle einer lokalen
Kommunikation wird die Nachricht direkt in die Empfangsschlange gelegt.

read(SerializeContainer)

copy()

copy()

write(Message)

demarshalling()

read()

portSend(Message) marshalling()

portReceive()receive()

:ConcreteComponent :ConcreteProxy :Connection :SendQueue

send(Message)

:ReceiveQueue :NetworkSend :NetworkReceive

write(Message)

copy()

copy()

send
network

receive
network

Abbildung 6.5: Eine Nachrichtensequenz

Simulations- und Verifikationsumgebung Die Anforderungen an die Simulations- und
Verifikationsumgebung ergeben sich im Wesentlichen aus den in Abschnitt 4 vorgestellten Inte-
grationsverfahren. Die Umgebung muss daher in der Lage sein, eine deterministische Wieder-
holung zu unterstützen, um die benötigten Mehrfachausführungen der Integrationsverfahren zu
ermöglichen. Hierzu gehört auch, dass ein Scheduling sowie Zeit simulativ unterstützt werden
muss.

Um eine deterministische Wiederholung für MECHATRONIC UML Modelle zu ermöglichen,
müssen wir in der Lage sein 1) alle relevanten Ereignisse für eine deterministische Wiederholung

179

Kapitel 6 Werkzeugunterstützung

zu beobachten und 2) die Ausführung der Komponenten und Ports während der Wiederholung
zu kontrollieren (siehe Abbidildung 6.6).

Observe
Control

Scheduling
Simulation

Time Events

Comp

Abbildung 6.6: Beobachtung und Kontrolle der Ausführung einer MECHATRONIC UML
Komponentenarchitektur

Um dies zu ermöglichen, führen wir eine Diagnoseschicht ein, welche für die Anwendung trans-
parent ist (siehe Abbildung 6.7). Über diese Diagnoseschicht können alle relevanten Ereignisse
beobachtet werden, ohne den Quellcode der Anwendung anzupassen. Die Schicht ermöglicht
eine Kontrolle und Beobachtung aller Interaktionen der Komponente mit der Umgebung. Ei-
ne Interaktion besteht aus allen externen Nachrichten, Scheduling-Ereignisse (Aktivierung, Ver-
drängung, ...) und allen Zeitereignissen der Komponente.

TimesysLinux

Network

Diagnosis Layer

Abstract operating system

Mechatronic UML models
Generated Code for

Component Port

Abbildung 6.7: Laufzeitumgebung mit Simulationsschicht

Im Folgenden betrachten wir zuerst, welche Ereignisse für eine deterministische Wiederholung
relevant sind. Anschließend betrachten wir den Wiederholungsansatz unter Berücksichtigung
von Einflüssen durch eine zusätzliche Instrumentierung des Systems.

Relevante Ereignisse Eine elementare Erkenntnis für die deterministische Wiederholung
von MECHATRONIC UML Komponenten ist, dass es ausreicht, die Komponenten mit exakt den
gleichen eingehenden Nachrichten periodenspezifisch zu wiederholen, um das gleiche funktio-
nale Verhalten wiederzugeben.

180

6.1 Ausführung

Im allgemeinen muss auch das Scheduling identisch wiederholt werden. Damit die implemen-
tierten Komponenten allerdings eine korrekte Verfeinerung der Modelle sind, müssen diese für
ein eingehendes Echtzeitverhalten auch das gleiche ausgehende Verhalten wiedergeben (siehe
Abschnitt 3.1).

Grundlage für die korrekte Abbildung der Modelle ist, dass aus den möglicherweise nichtdeter-
ministischen plattformunabhängigen Modellen deterministische Modelle generiert werden kön-
nen, wie in [AMPS98] für Timed Automata gezeigt wurde. Ein einfaches Beispiel ist, dass „non-
urgent“ Transitionen, die irgendwann schalten können, durch die Codegenerierung als „urgent“
Transitionen umgesetzt werden, die sofort schalten, wenn alle notwendigen Bedingungen erfüllt
sind. In [Bur06] wurde eine entsprechende Abbildung aller relevanter Verhaltenselemente ge-
zeigt.

Aufgrund dieser Eigenschaften müssen für eine deterministische Wiederholung der Komponen-
ten nur die eingehenden Nachrichten sowie der Zeitpunkt der Nachrichten korrekt in der gleichen
Periode wiedergeben werden1 (siehe Abbildung 6.8).

Comp
p1 p2 p3 p1.e1

p2.e3
p1.e2

p2.e4
p3.e5

e1−e5: events

time t

Abbildung 6.8: Externe Ereignisse einer Komponente

Da das Verhalten einer Komponente nicht nur von den externen Ereignissen, sondern auch von
internen Zeitabfragen abhängig ist, müssen wir zudem generell alle Zeitanfragen während der
Wiederholung identisch wiedergeben. Durch die Diagnoseschicht ist dies einfach möglich.

Durch Beobachtung der eingehenden Nachrichten, Zeitereignisse sowie der Periode können wir
damit eine Komponente unabhängig von dem unterliegenden Scheduling deterministisch wie-
derholen. Dies sind auch die relevanten Informationen, die wir für die Integration von Altkom-
ponenten benötigten (siehe Abschnitt 4).

Wiederholung Abbildung 6.9 zeigt neben der Beobachtung einer Komponente, auch die kon-
trollierte Ausführung der Komponente während der deterministischen Wiederholung. Die Simu-
lation, bzw. deterministische Wiederholung, ist insofern einfach, da wir lediglich die aufgezeich-
neten relevanten Ereignisse wiederholen müssen, unabhängig von der Plattform. Die korrekte
Ordnung der Ereignisse wird durch die Diagnoseschicht erreicht. In der simulierten Interaktion
wird dies durch das Connection-Objekt implementiert (siehe Abbildung 6.9)

1In [GH06a] haben wir zudem beschrieben, wie wir mit parallel ausgeführten Verhalten umgehen können, wenn die
ausgehenden Ereignisse nicht eindeutig voneinander unterschieden werden können sowie nichtdeterministischen
Verhalten. Für die hier betrachteten Systeme sind diese Fälle allerdings nicht notwendig.

181

Kapitel 6 Werkzeugunterstützung

:NetworkReceive:NetworkSend:ReceiveQueue:SendQueue:Connection:ConcreteProxy:ConcreteComponent

message is received
Wait until expected
Check message

copy()

copy()

demarshalling()

read()

portReceive()receive()

receive
network

write(Message)

Unchainged task

Modified task

Abbildung 6.9: Nachrichtensequenz einer deterministischen Wiederholung

Minimierung der Ereignisaufnahme Da die Aufnahme gerade der Nachrichten einen ho-
hen Zeitaufwand und Speicherverbrauch bedeuten kann, ist es wichtig die Aufnahme zu mini-
mieren.

Die oben beschriebenen relevanten Ereignisse können allerdings nicht minimiert werden, da die-
se das Verhalten der Komponente beeinflussen.

Eine Möglichkeit den Aufwand zu reduzieren, ist das Eliminieren des Nachrichteninhalts. Wäh-
rend der Wiederholung kann dieser dann wieder reproduziert werden, indem die vollständige
Interaktion mit Nachrichteninhalt aufgezeichnet wird.

Aufnahme Eine einfache Möglichkeit die Daten aufzunehmen ist die Verwendung eines extra
Threads, mit niedrigerer Priorität als die der implementierten Komponente (z.B. [TFCB90]).
Hierüber ist es dann auch möglich, die notwendigen Daten auf eine zusätzliche externe Festplatte
zu speichern, ohne das System zu beeinflussen.

Dies führt allerdings zu dem Problem, dass eventuell Daten verloren gehen, da das Schreiben
der Daten im Vergleich zur realen Ausführung lange dauern kann [Zam99]. Dieses Problem
kann grundsätzlich nicht umgangen werden, jedoch können die auftretenden Aufnahmefehler
ebenfalls notiert werden. Eine deterministische Wiederholung ist dann nicht mehr vollständig
möglich.

Vermeidung des Probe Effects Durch eine software-basierte Beobachtung wird zusätzli-
cher Quellcode für die notwendige Instrumentierung des Systems benötigt. Typischerweise än-
dert sich die Instrumentierung während der Entwicklung und dem finalen System. Durch diese

182

6.1 Ausführung

unterschiedliche Instrumentierung kann das System unterschiedlich beeinflusst werden, wodurch
auch unterschiedliches Verhalten auftreten kann.

In unserem Fall ist dies insofern problematisch, da die Aufnahmen für die deterministische Wie-
derholung typischerweise nicht während des normalen Betriebs ständig durchgeführt werden.
Kann eine gleichbleibende Aufnahme nicht gewährleistet werden, so kann folglich auch ein Pro-
be Effect auftreten [Fid96].

Dieses Problem können wir nur umgehen, indem wir eine minimale notwendige Instrumentie-
rung auch während des normalen Betriebs durchführen. Dies muss nicht zwangsläufig dazu füh-
ren, dass diese Daten auch auf einen externen Speicher geschrieben werden. Die Speicherung
der Daten, durch einen zusätzlichen Thread, muss nicht zu einer Beeinflussung führen, da diese
unabhängig von der eigentlichen Instrumentierung durchgeführt werden kann. Damit kann für
den Fall, dass die Komponente deterministisch wiederholt werden soll, ein zusätzlicher Thread
aktiviert werden, der die Daten auf eine externe Festplatte schreibt. Unter der Annahme, dass ein
Echtzeitscheduling durch Hinzunahme des weiteren Threads mit niedriger Priorität, die höher
prioritisierten Threads weiterhin vorhersagbar ausführt, tritt kein zusätzlicher Probe Effect auf.

Handelt es sich um eine Altkomponente kann dies nur erreicht werden, indem die Ausführung
im beschriebenen Anwendungsszenario stets mit dem hier beschriebenen Framework umgesetzt
wird.

Eine Evaluierung der deterministischen Wiederholung in einer Eclipse Debugging Umgebung
haben wir in [GH06a] vorgestellt.

6.1.2 Codegenerierung und Laufzeitanalyse

Aufgrund der engen Verzahnung zwischen der Codegenerierung und der Laufzeitanalyse be-
trachten wir die Verfahren in diesem Abschnitt zusammen. Ohne vorherige Codegenerierung
kann keine Laufzeitanalyse durchgeführt werden. Wegen den in diesem Kapitel einleitend disku-
tierten Anforderungen, dass eine Laufzeitanalyse auch zur Laufzeit durchgeführt werden muss,
da die Strukturanpassungen a priori nicht alle vorausgedacht werden können, muss die Codege-
nerierung ebenfalls den Anforderungen der Laufzeitanalyse genügen.

Die Codegenerierung basiert grundlegend auf der von Burmester [Bur06], deren Umsetzung wir
in [BGH+07] gezeigt haben. Grundlegende Arbeiten zu den Erweiterungen der Codegenerierung
und zur Laufzeitanalyse wurden in [GHH06b, Ric08, GHH08b, HBB+09, GHH11, HOGS10,
HOGS12] vorgestellt.

Abbildung 6.10 veranschaulicht die unterliegende OCM-Mikroarchitektur für die hier be-
trachteten mechatronischen Systeme. Mit den hier vorgestellten Techniken können Software-
Komponenten für den reflektorischen Operator entwickelt werden. Aus der Abbildung wird zu-
dem die grundlegende Idee der Umsetzung einer Codegenerierung und Laufzeitanalyse ersicht-
lich.

183

Kapitel 6 Werkzeugunterstützung

Um die plattformspezifischen Informationen geeignet zu berücksichtigen, wird eine Schnittstelle
zwischen dem reflektorischen Operator und der Laufzeitumgebung zur Verfügung gestellt. Durch
Profil-Informationen, mit denen Ressourcenattribute wie eine WCET oder der Speicherbedarf
beschrieben werden können, wird der Austausch zwischen dem Betriebssystem, welches die
Ressourcen verwaltet, und der Anwendung ermöglicht.

Durch eine Profilbeschreibung kann eine Anwendung zur Laufzeit dem Betriebssystem neue
Anforderungen mitteilen. Um dies zu ermöglichen wurde in [BGGO04a] ein Ansatz beschrie-
ben, der Profilbeschreibungen in HYBRID RECONFIGURATION CHARTS berücksichtigt. In
[HBB+09, BBB+09] haben wir diesen Ansatz erweitert, um parametrisierte Profile zu beschrei-
ben, die zur Laufzeit erweitert werden können. Dies ist die Basis, um Strukturanpassungen zur
Laufzeit flexibel den Umweltbedingungen optimal anzupassen.

(Control algorithms)

Cognitve Operator

Reflective Operator

ControllerH
a
rd

 R
T

S
o
ft
 R

T

behavior)

Operating System
P

ro
fi
le

 i
n
fo

rm
a
ti
o
n
 /
 −

tr
ig

g
e
r

(Reactive, state−based

(Learning, Planning)

Abbildung 6.10: Integration plattformspezifischer Informationen

Im Folgenden werden wir relevante Ausschnitte des Konvoibeispiels einführen. Hieran werden
wir die notwendigen Erweiterungen an der Codegenerierung sowie Laufzeitanalyse verdeutli-
chen. In Abschnitt 6.1.2.1 werden wir dann die flexible Profilverwaltung einführen und forma-
lisieren. Hierauf aufbauend werden wir in Abschnitt 6.1.2.2 unsere WCET-Analyse für dyna-
mische Strukturen einführen. In Abschnitt 6.1.2.3 werden die Erweiterungen an der Codegene-
rierung vorgestellt und in Abschnitt 6.1.2.4 werden die für die Codegenerierung notwendigen
Evaluierungsreihenfolgen hybrider Systeme mit Strukturanpassungen diskutiert. Abschließend
diskutieren wir den Ansatz in Abschnitt 6.1.2.5.

Beispiel Wir betrachten hier wieder das Beispiel der Konvoirestrukturierung aus Abbildung
2.17. Im Folgenden gehen wir davon aus, dass für eine Menge von RailCabs innerhalb eines
Streckenabschnitts überprüft werden soll, ob diese bereits an einem Konvoi teilnehmen. Ist dies
nicht der Fall, soll ein ConvoyCoordinationPattern zwischen den RailCabs angelegt werden.

Abbildung 6.11 zeigt ein einfaches Adaptionsverhalten, welches die Koordination zwischen den
RailCabs initiiert, immer dann wenn ein neues RailCab den Streckenabschnitt betritt. Wird eine
newParticipant-Nachricht empfangen, dann wird als Seiteneffekt initiateCoordination ausgeführt.
Eine solche Nachricht kann z.B. durch eine Streckenabschnittskontrolle verschickt werden (siehe
Abschnitt 5). Für das betrachtete Szenario ist das allerdings irrelevant.

184

6.1 Ausführung

newParticipant
/initiateCoordination(){c1}

normal

0 ≤ c1 ≤ 8000

Abbildung 6.11: Einfaches Adaptionsverhalten zur Erzeugung einer Musterbeziehung

Abbildung 6.12 zeigt das Story Diagramm, welches durch den Seiteneffekt aufgerufen wird. Das
Story Diagramm besteht aus drei Story Pattern. Der coordinator (siehe Abbildung 1.2) erzeugt
zwischen allen RailCabs in dem Abschnitt ein ConvoyCoordinationPattern. Der Vollständigkeit
halber müssten anschließend auch entsprechende Portinstanzen erzeugt (wie in Abschnitt 3 ge-
zeigt) und gelöscht werden. Hierauf wird im Folgenden verzichtet.

this
trackSection;
TrackSection

in >

rc1:
RailCab trackSection

in >

this rc1

existingCoord:ConvoyCoordinationPattern

convoyCoord:ConvoyCoordinationPattern

++

initiate participate

RailCab::initiateCoordination(): Void

initiate participate

< <
< <

[each time]

[end]

Abbildung 6.12: Story Diagram zur Beschreibung des initiateCoordination Seiteneffekts

Das unterliegende Klassendiagramm ist in Abbildung 6.13 gezeigt. Das Klassendiagramm be-
steht aus den Klassen TrackSection, RailCab, ConvoyCoordinationPatern und Track. Die Klasse
Track wird in dem Story Diagramm nicht direkt verwendet. Da eine TrackSection allerdings aus
einer Menge von Tracks besteht, werden entsprechend diese Objekte ebenfalls berücksichtigt.

Das Klassendiagramm verdeutlicht die beschriebene Problematik für eingebettete Echtzeitsys-
teme. Prinzipiell können auf Modellierungsebene einer TrackSection beliebig viele Tracks und
RailCabs assoziert werden. Ein RailCab kann wiederum mit beliebig vielen RailCabs einen Kon-
voi eingehen. Auf der Modellierungsebene ist diese Beschreibung legitim und sinnvoll, da platt-
formspezifische Einschränkungen bzgl. der Oberschranke der Kardinalität der Assoziation dazu
führen, dass das Modell und die Analysen auch nur für diese Plattformen gültig sind. Eine Fest-
legung der Kardinalität führt zudem dazu, dass es zur Laufzeit auch nicht möglich ist, eine bzgl.
der Umgebung optimale Auslastung zu finden, da die Ressourcen a priori eingeschränkt wurden.

185

Kapitel 6 Werkzeugunterstützung

Wir werden daher im Folgenden einen Ansatz vorstellen, der zum einen die Vorhersagbarkeit des
umgesetzten Modells für eine bestimmte Plattform garantiert und zum anderen aber flexibel die
Ressourcen verteilen kann, so dass zur Laufzeit unterschiedliche Ressourcenbelegungen ermög-
licht werden, ohne vorherige Einschränkung auf eine fixe obere Kardinalität. Voraussetzung für
den Ansatz ist, dass die Anwendung mit der MECHATRONIC UML umgesetzt wird.

initiate

TrackSection

0..1

0..n

Track

hashas

0..1

0..2

RailCab

0..1

0..n

has

has

0..1 0..1

initiateCoordination(): Void

ConvoyCoordinationPattern

0..1

0..n

0..1

0..n

participate

Abbildung 6.13: Unterliegendes Klassendiagramm des initiateCoordination Seiteneffekts

6.1.2.1 Flexible Ressourcenverwaltung

Der Standard-Ansatz, um ein vorhersagbares Verhalten für Multi-Prozessoren eines Echtzeitsys-
tems zu garantieren, ist die Allokation der maximal benötigten Ressourcen im Voraus [But05].
Dieser Ansatz ermöglicht die zeitliche Ausführung der Prozesse, führt allerdings zu einer
schlechten Ressourcennutzung und ist kaum anwendbar für dynamische Strukturen.

Die flexible Ressourcenverwaltung (FRM) [LO08] wurde entwickelt, um die Ressourcennutzung
zu verbessern. Jede Anwendung (z.B. Konvoi oder Feder/Neige-Modul) wird zusätzlich mit einer
Menge von Profilen und Transitionen zwischen diesen beschrieben. Jedes Profil beinhaltet Infor-
mationen über die maximale und minimale Ressourcenanforderung, Umschaltbedingungen und
der Profilqualität. Die Profilqualität beschreibt, welche Anwendung bevorzugt behandelt wer-
den soll. Dies kann z.B. übergeordnet durch einen Lernalgorithmus im kognitiven Operator zur
Laufzeit berechnet werden und/oder a priori von dem Entwickler vorgegeben werden. Für ein
fixe Anzahl an Profilen wurde in [BGGO04a] ein semi-automatischer Algorithmus beschrieben.

Der größte Nutzen entsteht durch das FRM, wenn mehrere Profile je Anwendung spezifi-
ziert werden. Für mechatronische Systeme bietet es sich häufig an, die einzelnen Regler-
Konfigurationen als ein Profil zu beschreiben oder Verhalten, deren Struktur angepasst wird in
mehrere Profile zu unterteilen. Für unser Konvoi-Beispiel kann z.B. ein Profil festgelegt wer-
den mit einer kleinen Anzahl an Konvoiteilnehmern und einer größeren Anzahl. Das FRM kann
zur Laufzeit die Ressourcennutzung unter Berücksichtigung der Qualitäten der Anwendungen
optimieren.

186

6.1 Ausführung

Dynamische WCET Eine Veränderung der WCET führt zu einer Veränderung der Prozesso-
rauslastung U = WCET

T
des betroffenen Profils (T gibt die Periode der Hauptfunktion des Profils

an). Im Fall der CPU verwaltet das FRM die Prozessorauslastung. Daher wird eine Anpassung
der Profilgrenzen der WCET als eine Ressourcenanfrage behandelt (wie z.B. eine Speicheran-
frage).

Der FRM-Ansatz erlaubt eine Ressourcenallokation nur in den spezifizierten Grenzen des aktiven
Profils der Anwendung. Eine WCET-Anfrage über die maximale Ressourcenverwendung hinaus,
ist entsprechend nicht erlaubt. Durch die in Abschnitt 6.1.2.2 vorgestellte WCET-Analyse und
Codegenerierung wird dies verhindert.

Das FRM berechnet für die aktuellen Profile einen einfachen Plan, der angibt, wie die Profile in
eine gültige Konfiguration rekonfiguriert werden können, so dass alle Ressourcenanfragen unter
Berücksichtigung der Qualität aufgelöst werden können.

Der Schedulability-Test des FRM stellt sicher, dass so ein Plan ohne Verletzung einer Deadline
ausgeführt werden kann [LO08].

Eine Veränderung der WCET kann allerdings zu einer Verletzung der vorliegenden Pläne führen.
Für jede Veränderung der WCET muss der vorliegende Plan überprüft werden. Falls aufgrund der
WCET-Veränderung kein gültiger Plan erstellt werden kann, wird die Veränderung abgelehnt.
Die Anwendung darf also nicht mit mehr Ressourcen als den aktuellen im Profil ausgeführt
werden.

Die Berechnung, ob ein Schedule für einen neuen Plan gefunden werden kann, wird im Hin-
tergrund ausgeführt, ohne zeitliche Begrenzungen. Dies führt zu keinen Einschränkungen der
Sicherheit, da eine Profilanpassung lediglich zu einer Optimierung führt.

Eine Konsequenz aus der strikten Ressourcenvergabe innerhalb der Profilgrenzen ist, dass die
Änderung einer WCET dem FRM mitgeteilt werden muss, bevor die Anwendung tatsächlich
diese Ressourcen verwendet. In den folgenden Abschnitten werden wir beschreiben, wie eine
Anwendung zur Laufzeit dynamisch Profile anpassen kann. Hierfür werden wir parametrisierte
Profile einführen.

Formalisierungen In diesem Abschnitt stellen wir eine Formalisierung des Profilkonzepts
vor. Hierunter fällt auch die dynamische Erzeugung und Zerstörung von Profilen, die benötigt
wird, um eine Anpassung des Ressourcenbedarfs zur Laufzeit zu ermöglichen. Eine Anpassung
des Ressourcenbedarfs ist Voraussetzung, um strukturelle Anpassungen realistisch umzusetzen.
Die hier gezeigte Formalisierung ist notwendig, um präzise das Zusammenspiel zwischen dem
FRM und einer Anwendung zu beschreiben.

Tasks und Konfigurationen Bevor wir das Profilkonzept vorstellen, definieren wir einige
relevante Begriffe. Ein System besteht aus einer Menge von periodischen Tasks Γ, wie in Defi-
nition 67 gezeigt. Diese Tasks werden angemessen durch den Scheduler des FRM ausgeführt, so
dass keine Deadline-Verletzungen auftreten.

187

Kapitel 6 Werkzeugunterstützung

Definition 67 (Periodischer Task)
Ein periodischer Task τi ∈ Γ ist ein 3-Tupel τi = (Bi,Si,Pi) mit: einer Menge von möglichen
Verhalten (Seiteneffekten) Bi = {b1

i , . . . , b
n
i }, einer Menge von Zuständen Si = {s1

i , . . . , s
n
i } und

eine Menge von möglichen Profilen Pi = {p1
i , . . . , p

n
i }, in denen der Task ausgeführt werden

kann. S(τi) : Γ→ S ist der aktuelle Zustand des Tasks τi zur Laufzeit. B(τi, s
j
i) : (Γ× S)→ B

ist eine Menge von möglichen Verhalten durch einen gegeben Task τi und einen Zustand sji ∈ Si.
C(τi) : Γ→ C ist die aktuelle Konfiguration eines Tasks τi. P(τi) : Γ→ P ist das aktuelle Profil
eines Tasks.

Jeder Task τi hat eine Identität zur Laufzeit, die sich mit der Ausführung eines Seiteneffekts
bji ∈ Bi ändert. Die Identität eines Tasks kann daher durch die Funktion S(τi), B(τi, s

j
i), C(τi)

und P(τi) beschrieben werden. Die aktuelle Konfiguration C(τi) bestimmt die aktuelle Situation
der Ressourcen eines Tasks.

Eine Konfiguration beschreibt die aktuelle Instanzsituation eines Tasks (siehe Definition 68).
Grundsätzlich kann ein anderer Task direkt die Instanzsituation beeinflussen. Dies führt aller-
dings zu nicht ganz unerheblichen Nebeneffekten.

Die gegenseitige Beeinflussung kann zu einer inkonsistenten Instanzsituation führen, in dem die
Konfiguration über eine mögliche maximale Ressourcenbelegung eines Tasks steigt. Um dieses
Problem aufzulösen muss jeder Task zusätzlich die möglichen Konfigurationen der abhängigen
Tasks betrachten.

Die bisher untersuchten Anwendungen haben allerdings keinen Bedarf an dieser engen Verzah-
nung zwischen Tasks gezeigt. Aus der Sicht eines sicherheitskritischen Systems ist dies zudem
fraglich, da hierdurch ein modularer Entwurf und damit auch eine (effiziente) Analyse verhindert
wird. Im schlimmsten Fall müssten daher alle Seiteneffekte zusammen hinsichtlich der geforder-
ten Eigenschaften analysiert werden. Daher treffen wir im Folgenden die Annahme, dass jeder
Task eine eigene Instanzrepräsentation der Umgebung besitzt, die nicht durch andere Tasks direkt
verändert werden kann.
Definition 68 (Konfiguration)
Eine Konfiguration Ci ∈ C ist definiert durch Ci = (c1

i , . . . , c
n
i) mit cji : T (cji) → N0 ist die

Anzahl der aktullen Instanzen des Typs T (cji). C beschreibt alle möglichen Konfigurationen des
Systems.

Profile Zur Laufzeit wird ein Task immer in einem Profil ausgeführt. Die Hauptcharakteris-
tiken eines Profils sind die maximale Konfiguration, welche die maximalen Ressourcengrenzen
definiert und die Qualität, welche das FRM nutzt, um das System angemessen zu schedulen. Ein
Profil ist damit wie folgt definiert.

Definition 69 (Profil)
Ein Profil pi ∈ P ist ein 4-Tupel pi = (ωi,mi, Ĉi, qi) mit ωi ∈ N0 ist die WCET, die ein Task in
dem Profil nicht überschreiten soll, mi ∈ N0 ist der maximal benötigte Speicherbedarf, die ein
Task in dem Profil nutzen darf, Ĉi ∈ C ist die maximale Konfiguration des Profils und qi ist die
Qualität des Profils.

188

6.1 Ausführung

Für einen gegebenen Task τi = (Bi,Si,Pi) definieren wir weiterhin für die Profile pk ∈ Pi und
pl ∈ Pi, dass das Profil pk sicher durch das Profil pl entfernt werden kann, wenn Ĉk ≤ Ĉl gilt.

Definition 70 (Konfigurationsordnung)
Eine Konfiguration Ci ∈ C dominiert eine Konfiguration Cj ∈ C, ausgedrückt durch Cj ≤ Ci,
wenn ∀cki : cki ≤ ckj .

Das FRM verwaltet die verschiedenen Tasks durch die Betrachtung der verschiedenen Profile.
Die Beziehung zwischen den Profilen wird durch einen Profilgraph ausgedrückt.

Definition 71 (Profilgraph)
Ein Profilgraph ist ein 3-Tupel Gp = (V,E, l) mit: einer Menge von Knoten V = {v1, . . . , vn},
einer Kante (vi, vj) ∈ E und einer Markierungsfunktion l(vi) : V → (P1× · · · ×Pm), die einen
Knoten vi ∈ V mit einem m-Tupel von Profilen verbindet. Pi ist die Menge der Profile des Tasks
τi.

Um das System sicher zu initialisieren, wird ein Worst-Case-Profil pmaxi für jeden Task τi ange-
legt. Diese Profile werden entsprechend Offline definiert und garantieren, dass das System Initial
in einem sicheren Zustand startet. Da wir a priori die oberen Grenzen für eine Konfiguration
kennen, können wir das Worst-Case-Profil bestimmen.

Die Strategie für die Erzeugung von neuen Profilen kann sehr mannigfaltig sein. Da diese Stra-
tegie allerdings für die WCET-Analyse, der hier betrachteten Anwendungen, die sich im reflek-
torischen Operator wieder finden, nicht relevant ist, verweisen wir auf [OZKV08] für geeignete
Strategien. Die Strategien zur Profilverbesserung werden typischerweise im kognitiven Operator
umgesetzt (siehe Abbildung 6.10).

Wenn ein neues Profil erzeugt wird, müssen wir die maximale Konfiguration des Profils pi be-
stimmen, um die Ressourcengrenzen festzulegen. Um eine maximale Konfiguration für ein neues
Profil zu bestimmen, nehmen wir an, dass wir eine Menge von möglichen Verhalten innerhalb
einer einzelnen Periode betrachten müssen. Die maximale Konfiguration für ein neues Profil lässt
sich damit wie folgt definieren.

Definition 72 (Maximal resultierende Konfiguration)
Für einen gegebenen Task τi = (B,S,P) und B′ = B(τi,S(τi)) ist die Menge des möglichen
Verhaltens in einen Zustand S(τi), die maximal resultierende Konfiguration eines Verhaltens
bj ∈ B′, definiert durch

−→C maxbj
: C → C mit:

∀k = {1, . . . , n} : C = (Ik · c∆,k
1 + c1, . . . , Ik · c∆,k

m + cm).

C∆,k = (c∆,k
1 , . . . , c∆,k

m) ist der Konfigurationsunterschied, der bestimmt, wie sich eine indivi-
duelle Konfiguration durch Anwendung von Seiteneffekten, die durch Story Diagramme umge-
setzt werden, verändert. Ik ∈ N ist die WCNI (Worst Case Number of Iterations) des Story
Diagramms, welche abhängig ist von der aktuellen Konfiguration C. Ik muss für jedes Story
Diagramm berechnet werden (siehe Abschnitt 6.1.2.2). Die maximal resultierende Konfiguration−→C maxB′ = {cmax1 , . . . , cmaxm } mit ∀cmaxl : cmaxl = max{clb1 , . . . , clbn}.

189

Kapitel 6 Werkzeugunterstützung

Da ein Task immer in einem Profil läuft, können wir die maximal resultierende Konfiguration
eines neuen Profils mittels der Story Diagramm Laufzeitanalyse bestimmen (siehe Abschnitt
6.1.2.2).

Das Hinzufügen eines neuen Profils führt zu einer Aktualisierung des Profilgraphen. Wie in
Abschnitt 6.1.2.1 beschrieben, gilt für zwei beliebige Profile, dass eine Transition von pj nach
pk angelegt ist, wenn entweder gilt, dass Ĉj ≤ Ĉk (für jedes Element) oder es existiert ein i, so
dass mrcfbi(Ĉj) ≤ Ĉk, mit mrcfbi berechnet die maximal resultierende Konfiguration für bi.

Dieser Test muss für alle Transitionen durchgeführt werden, an denen das neue Profil beteiligt
ist. Wenn zudem Zustände Sj für ein Profil pj und Sk für ein Profil pk relevant sind, muss zudem
für jeden Zustand s ∈ Sj die obige Bedingung gelten. Entweder muss im ersten Fall s ∈ Sk
gelten oder es muss im zweiten Fall ein angemessenes bi existieren, welches es ermöglicht von s
nach s′ mit s′ ∈ Sk zu gehen.

Um ein Profil zu entfernen, können wir die gleichen Techniken anwenden, wie für das Hinzu-
fügen. Eine Voraussetzung für das Entfernen ist, dass sich die Anwendung nicht in dem Profil
befindet. Der resultierende Profilgraph muss wieder, wie oben beschrieben, stark zusammenhän-
gend sein.

Der Aufwand, um einen Profilgraphen zu aktualisieren ist O(1), wenn die Veränderung nicht
die untere oder obere WCET-Grenze beeinträchtigt. Andernfalls muss ein erneutes Scheduling
durchgeführt werden, wie in Abschnitt Dynamische WCET auf Seite 186 beschrieben.

6.1.2.2 WCET-Analyse für dynamische Strukturen

Klassische WCET-Analyse-Werkzeuge unterstützen nur sehr eingeschränkt dynamische Objekt-
strukturen mit Schleifen. Für unsere Modelle wird durch solche Ansätze keine Analyse unter-
stützt. Um dieses Problem zu umgehen und trotzdem die bisherigen Werkzeuge für plattforms-
pezifische Analysen auszunutzen, stellen wir einen Ansatz vor, der auf der Modellebene bereits
Analysen durchführt. Konkret berechnen wir auf Basis der wohldefinierten Modelle maximale
Schleifendurchläufe. Diese Berechnungen geben wir dann WCET-Analyse-Werkzeugen mit, so
dass für die betrachteten Systeme eine WCET-Berechnung ermöglicht wird.

Durch geeignete Parametrisierung der Modelle ermöglichen wir zudem eine Anpassung der In-
stanzsituation zur Laufzeit unter Berücksichtigung von Ressourcenschranken. Dabei unterstüt-
zen wir für deterministische Plattformen eine Laufzeit-WCET-Analyse, ohne extra ein WCET-
Analyse-Werkzeug anzustoßen, wodurch eine effiziente WCET-Berechnung ermöglicht wird.
Verhält sich die Plattform unregelmäßig (nicht vorhersehbar), so muss eine vollständige WCET-
Analyse durchgeführt werden.

WCET-Analyse Um eine (dynamische) WCET-Analyse von Story Diagrammen (siehe Ab-
schnitt 2.4.5.4) zu unterstützen, beschreiben wir im Folgenden deren möglichen WCET, bzw.
WCNI, Ausführungspfade. Wir definieren ein Story Diagram durch ein n-Tupel d = (d1, . . . , dn)

190

6.1 Ausführung

mit di = (((ι11, . . . , ι
1
n), p1), . . . , ((ιm1 , . . . , ι

m
n), pm)), definiert einen Pfad von einer Startaktivität

zu einer Stopaktivität.

Zwischen diesen Aktiviäten sind Story Pattern pi, welche innerhalb eines Pfades ausgeführt wer-
den. Jeder mögliche Pfad eines Story Diagramms di wird Offline, während der Systementwick-
lung berechnet.

Ein Pfad di eines Story Diagramms beinhaltet Schleifeninformationen für jedes individuelle Sto-
ry Pattern, ausgedrückt durch ein n-Tupel von Story Pattern-Indizes (pιi1, . . . , pι

i
n). Jeder Index

des Tupels ist eine Referenz auf ein Story Pattern. Die Ordnung der Indizes gibt die Ordnung der
Story Pattern an, wie sie in einem Pfad ausgeführt werden. Wenn also ein Story Pattern das erste
Pattern in einer Schleife ist, hat es den Index, welcher der Initiator der Schleife ist.

Die WCET eines Story Diagramms d kann dynamisch durch ω(d) = max(ω(d1), . . . , ω(dn))
berechnet werden. Wir nehmen also die WCET eines Story Diagramm-Pfades, welche die Maxi-
male ist. Die WCET eines Story Diagramm-Pfades di wird durch die WCNI (Worst Case Number
of Iterations) und der WCET ω wie folgt berechnet:

ω(di) =
n∑
i=1

m∏
j=1

ψ(pιij) · ω(pi),

mit

ψ(pιij) :=
i∏

k=1

cmaxk ,

für eine verschachtelte (For-Each) Schleife.

Ein Story Pattern p ist definiert als ein n-Tupel p = ((o1, (oι
1
1, . . . , oι

1
n), . . . , (on, (oι

n
1 , . . . , oι

n
n))),

mit 4-Tupel (oi, (oι
i
1, . . . , oι

i
n), η, ζ). Hierbei sind oi Operationen, (oιi1, . . . , oι

i
n) ist ein n-Tupel

von Operationen-Indizes, die Schleifeninformationen für jede Assoziation beinhalten, η ist ei-
ne Menge von ausgelassenen Operationen, welche durch negative Anwendungsbedingungen
(NACs) benötigt werden und ζ bestimmt, ob die Operation zur rechten Hand-Seite (RHS) (ζ
ist gleich dem Index der Operation) oder zur linken Hand-Seite (LHS) (ζ ist 1) gehört.

Wie für einen Story Diagramm-Pfad di definieren wir einen Story Pattern-Pfad pi, welcher eben-
falls Offline berechnet wird. Jeder Index im Tupel der Operationen-Indizes ist eine Referenz
zu einer Operation. Die Ordnung der Indizes gibt die Reihenfolge wider, in der die Operation
ausgeführt werden.

Die WCNI einer Operation oi definieren wir durch:

ψ(oi) :=
i∏

j=1

cmaxj .

191

Kapitel 6 Werkzeugunterstützung

cmaxj ist die maximale Konfiguration einer Operation oi (siehe Abschnitt 6.1.2.1). Die Gesamt-
WCET eines Story Pattern p ist definiert durch:

ω(p) :=
n∑
i=1

i∏
j=ζi,ηi\j=ηi

WCNI(oj) · ω(oi).

Die WCET der Operationen oi kann Offline durch ein Standard-WCET-Analysewerkzeug (z.B.
Bound-T) bestimmt werden. Die bestimmte Ausführungszeit ist zu jeder Operation eindeutig
referenziert und wird zur Laufzeit benötigt, wenn die aktuelle WCET eines Story Diagramms
bestimmt wird.

Komplexität Die Berechnung ωspi(Ĉ) und ψspi(Ĉ) für alle Story Pattern kann zur Laufzeit
für eine bestimmte Konfiguration sehr teuer sein, da alle möglichen Pfade mit ihrer Konfiguration
betrachtet werden müssen. Allerdings müssen wir nur maximale Konfigurationen Ĉj betrachten.
Damit ist die Komplexität der WCET und WCNI AnalyseO(|V |) undO(|V |+|E|). Zur Laufzeit
wird diese Analyse im Hintergrund ausgeführt, da eine verzögerte Antwort keine Auswirkungen
auf die Sicherheit des Systems hat.

Beispiel Beispiel 6.12 zeigt ein Story Diagramm d = (d1) mit drei Story Pattern RTSP p1, p2

und p3 (durchnummeriert von oben nach unten). Das Story Diagramm besteht aus einem Story
Diagramm-Pfad d1 = (((), p1), ((), p2), ((2), p3)), wobei der Index 2 auf das zweite Story Pattern
p2 verweist.

Für dieses Beispiel nehmen wir eine initiale Situation an mit 50 TrackSection-Instanzen, 20 Rail-
Cab-Instanzen und einer einzelnen ConvoyCoordinationPattern-Instanz (siehe Beispiel 6.14).

Story Pattern p1 = ((3, 1, ∅, 1)) zeigt ein Match einer trackSection-Instanz durch den this-Zeiger.
Die Ausführungszeit der Operation ist 3 und die WCNI ist 1. Die Ausführungszeit haben wir mit
Bound-T ermittelt.

Story Pattern p2 = ((17, 20, ∅, 1)) ist das Matching der gebundenen trackSection und einer
RailCab-Instanz. Da es möglicherweise 20 RailCab-Instanzen geben kann, ist die WCNI die-
ses Story Pattern 20.

Story Pattern p3 = ((40, 1, ∅, 1), (6, 1, ∅, 1), (21, 1, {1, 2}, 3), (30, 1, {1, 2}, 4), (30, 1, {1, 2}, 5))
besteht aus einer Sequenz an Operationen. Die erste Operation ist das Matching einer existing-
Coord-Instanz mit einer initiate-Assoziation zum this-Zeiger. Die zweite Operation ist die Über-
prüfung, ob eine RailCab-Instanz an diesem existingCoord-Muster teilnimmt. Die WCNI dieser
Operation ist 1, da die existingCoord-Instanz höchstens eine RailCab-Instanz als Teilnehmer ha-
ben kann. Operation drei ist die Erzeugung einer convoyCoord-Instanz. In diesem Fall ist ζ de-
finiert als der Index der Sequenz der Operationen, da diese Operation teil der rechten Regelseite
ist. η dieser Operation ist {1, 2}, da diese Operationen teil einer negativen Anwendung ist. Die
vierte Operation besteht aus dem Hinzufügen eines Links von dem this-Zeiger zu der erzeugten

192

6.1 Ausführung

convoyCoord-Instanz und die fünfte Operation fügt ebenfalls einen Link zwischen der RailCab-
Instanz und der convoyCoord-Instanz hinzu. Die WCNI dieser beiden Operationen ist 1, da in
diesem Fall die existingCoord-Instanz die erste Instanz im System ist.

newParticipant
/initiateCoordination(){c1}

normal

P3((70,20), 0,7)
P2((50,20), 0,6)
P1((20,20), 0,4)Profiles:

RailCabs, Tracks, Quality

Füge Teilnehmer hinzu, solange aktuelle WCET ≤ WCET

0 ≤ c1 ≤ 8000

Abbildung 6.14: Parametrisiertes Profil

Auf Basis der WCNI können wir die WCET für jedes Story Pattern berechnen und anschließend
die des Story Diagramms durch die oben beschriebenen Berechnungen. ω(p1) = 3, ω(p2) = 340,
ω(p3) = 127 und ω(d1) = 3 + 340 + (20 · 127) = 2883 Zeiteinheiten, welches die WCET des
Story Diagramms d ist.

Für unser Beispiel haben wir Initial zwei Profile umgesetzt. Eins mit 20 RailCabs und das
andere mit 50 RailCabs. Während der Laufzeit haben wir unterschiedliche Konvoisituatio-
nen simuliert, mit unterschiedlichen Anzahlen an möglichen Konvoiteilnehmern (siehe Abbil-
dung 6.14). Diese Anpassungen führen zu Anpassungen des Profilgraphen. Wie aber in die-
sem Abschnitt beschrieben, müssen wir nur für jeden Story Diagramm-Pfad einmal die WCET
neu berechnen. In unserem Fall müssen wir entsprechend für eine neues Profil mit z.B. 70
Konvoi-Teilnehmern einfach in der obigen Formel die Anzahl der RailCab Instanzen anpassen:
ω(d1) = 3 + 340 + (70 · 127) = 9233.

Wie in Abschnitt 6.1.2.1 kann ein Schalten in ein Profil mit mehr Ressourcen ermöglicht werden,
indem eine andere Anwendung in ein Profil mit weniger Ressourcen durch das FRM geschaltet
wird [OZKV08]. Wie in [BGGO04a] beschrieben wäre hier ein Zusammenspiel mit dem Feder-
/Neigemodul des RailCabs möglich, da dieses ebenfalls über drei unterschiedliche Ressourcen
verfügt. Für ausführliche Evaluierungen diesbezüglich sei an dieser Stelle auf die Arbeiten von
Oberthür verwiesen (z.B. [OZL10]).

Anzumerken ist, dass diese Form von Laufzeitanpassung eine Voraussetzung für die betrachteten
selbstoptimierenden, mechatronischen Systeme ist. Klassische WCET und Scheduling-Ansätze
müssen im Vergleich die Berechnungen vor der Inbetriebnahme durchführen. Für Situationen,
wo das System nicht mit allen maximalen Ressourcen ausgelegt werden kann, müssen die klas-
sischen Ansätze einen Kompromiss finden, der allerdings eine zur Laufzeit optimale Lösung
verhindert.

193

Kapitel 6 Werkzeugunterstützung

6.1.2.3 Codegenerierung und Profilaktualisierung

Die Codegenerierung basiert auf der Codegenerierung für die sogenannten eingebetteten Story
Diagramme [Sei05] (für Details sei auf diese Arbeit verwiesen). Es werden dabei Story Diagram-
me analysiert, um eine optimierte Graphmatching-Sequenz (siehe Abschnitt 2.4.5.2) für eine be-
stimmte Instanzsituation für jedes Story Pattern zu berechnen. Die Graphmatching-Sequenzen
werden anschließend durch Schleifen und Container im Quellcode abgebildet.

Um die verwendeten Ressourcen einer Komponente verwalten zu können, wurde die Codegene-
rierung um das Pool-Allokations-Muster (Factories) erweitert (siehe Abschnitt 6.1.1). Die Fac-
tories unterstützen die Möglichkeit, die Anzahl der von Ihnen erzeugten Objekte anzupassen.
Diese Funktion wird genutzt, um sicher zu stellen, dass eine Komponente nicht mehr Ressour-
cen beansprucht als ihr bereitgestellt wird.

Zusätzlich erhält jede Factory eine Methode, die als gemeinsame Schnittstelle zum Setzen
von Instanzgrenzen verwendet werden kann. Das Setzen von Instanzgrenzen einer Facto-
ry bietet damit die Möglichkeit spezifizierte Profile und die damit verbundenen Ressourcen-
Einschränkungen für eine Komponente auf Implementierungs-Ebene umzusetzen.

Ein Story Diagramm wird nur innerhalb der Instanzgrenzen des Profils ausgeführt. Wenn ei-
ne Anwendung nun durch eine bestimmte Strategie lernt (siehe Abschnitt 6.1.2.1), dass mehr
Ressourcen benötigt werden, da z.B. kein weiteres RailCab im Konvoi aufgenommen werden
kann, kann die Anwendung die Qualität der Ressourcen erhöhen oder ein Profil (siehe Abschnitt
6.1.2.1) mit den benötigten Ressourcen anlegen (siehe Abschnitt 6.1.2.1).

Eine Profilaktualisierung oder die Instanziierung eines neuen Profils ist nur erlaubt, wenn die ak-
tualisierte WCET keine Deadline der übergeordneten Statecharts verletzt. Die relevante Deadline
eines Story Diagramms ist die der Transition, die das Story Diagramm als Seiteneffekt aufruft.
Hierdurch bleiben die formalen Analysen auf Modellebene weiterhin erhalten.

6.1.2.4 Evaluierungsreihenfolge hybrider Systeme mit Strukturanpassungen

Die parallele (verteilte) Ausführung eines hybriden Systems impliziert, dass einzelne hybride
Komponenten oder Teile von Komponenten getrennt voneinander ausgeführt werden und Nach-
richten sowie Signale austauschen, um ihre jeweiligen Funktionen bearbeiten zu können.

Problematisch ist dies gerade aus regelungstechnischer Sicht, unter Berücksichtigung von Re-
konfigurationen. Hierdurch wird gefordert, dass einzelne Blöcke oder Zusammenschlüsse von
Blöcken ausgetauscht werden können. Durch eine grobgranulare Aufteilung der einzelnen re-
gelungstechnischen Blöcke, kann allerdings eine Verklemmung nicht vermieden werden (siehe
Abbildung 6.15).

Abbildung 6.15 a) zeigt ein Beispiel für eine abstrakte Konfiguration. Wird diese zu grob granu-
lar, wie Abbildung 6.15 b) zeigt, partitioniert, dann tritt eine Verklemmung auf, da die oberste
Eingabe des Blocks nd5 eine Abhängigkeit zur Ausgabe des Blocks hat. Abbildung 6.15 c) zeigt

194

6.1 Ausführung

eine gültige Partitionierung. Eine Verklemmung tritt nicht auf, da die Schleife durch sequentielle
Ausführung von nd8 und nd7 aufgelöst werden kann.

Für die verteilten Ausführungen werden daher die regelungstechnischen Modelle partitioniert.
Aufgrund dieser Aufteilung kann eine verklemmungsfreie Ausführungsreihenfolge bestimmt
werden.

nd3

nd4

v1

v2

u1

u2

u3

u4

nd2

nd0

nd1

a) Abstrakte Konfiguration

nd5

b) Unpassende Partitionierung

nd7

nd8

nd6

c) Passende Partitionierung

Abbildung 6.15: Abstraktes Partitionierungsbeispiel [Bur06]

Grundsätzlich gibt es zwei unterschiedliche Verfahren, um mögliche Ausführungsreihenfolgen
(Evaluierungsreihenfolgen) zu bestimmen. Dies ist die sogenannte White-Box-Integration und
die Black-Box-Integration [Hon98].

Die White-Box-Integration ermöglicht die Berücksichtigung der inneren Teilmodelle einer
Blockstruktur zur Bestimmung der Evaluierungsreihenfolge. Durch diese enge Verzahnung der
blockinternen Teilmodelle können einfach Verklemmungsfreie Evaluierungsreihenfolgen be-
stimmt werden, da die Kommunikationen genau dann intern stattfinden, wenn dies benötigt wird.
Nachteil hierbei ist, dass ein Block oder Zusammensetzungen von Blöcken nicht einfach ersetzt
oder rekonfiguriert werden können, da die internen Abhängigkeiten wieder neu aufgelöst werden
müssen.

Die Black-Box-Integration berücksichtigt nicht die internen Teilmodelle eines Blockes. Ab-
hängigkeiten werden entsprechend gebündelt zu bestimmten Zeitpunkten im Programmablauf

195

Kapitel 6 Werkzeugunterstützung

aufgelöst (durch fest definierte Kommunikationszeitpunkte). Dieser Ansatz erlaubt es damit
Blockstrukturen zu rekonfigurieren, da lediglich die vorgegebene Taktung der Kommunikation
eingehalten werden muss. Problem ist allerdings, dass Verklemmungen nicht vermieden werden
können, wie in Abbildung 6.15 b) dargestellt.

Aufgrund der diskutierten Vor- und Nachteile beider Integrationsverfahren, werden in der
Praxis häufig beide Verfahren in einer Anwendung angewandt [Hon98]. Daher wurde in
[OGBG04, BGGO04b, GHH11] eine Gray-Box-Integration vorgestellt, die die Vorteile der
White-Box- und Black-Box-Integration ausnutzt, um eine möglichst optimale Evaluierungsrei-
henfolge für hybride rekonfigurierende Systeme zu ermitteln.

Der Gray-Box-Integrationsansatz ist aufgeteilt in zwei Schritte. Zuerst werden die internen Ab-
hängigkeiten der Blöcke, bzw. Blockstrukturen unabhängig von den externen Abhängigkeiten
aufgelöst, so dass für diese unabhängig von anderen Modulen eine verklemmungsfreie Evalu-
ierungsreihenfolge bestimmt werden kann. Im zweiten Schritt wird dann auf Basis der Evalu-
ierungsreihenfolgen der Module eine Gesamtevaluierungsreihenfolge bestimmt. Wie auch aus-
führlich in [Bur06] diskutiert, unterstützt dieser Ansatz die Anforderungen rekonfigurierender
Systeme, da die zu rekonfigurierenden Module getrennt voneinander betrachtet werden können.

Ein Problem ist allerdings, dass durch kompositionelle Strukturanpassungen a priori keine Eva-
luierungsreihenfolgen bestimmt werden können, da die konkrete Ausprägung nicht bekannt ist.
Das in Abschnitt 3 beschriebene Konvoibeispiel (siehe Abbildungen 3.1, 3.2 und 3.3) verdeut-
licht die notwendige kompositionelle Strukturanpassung, um die Konvoiparameter durch den
PosCalc-Regler berechnen zu können.

Da die Struktur nicht, wie bisher durch die HYBRID RECONFIGURATION CHARTS vorgegeben,
a priori für alle abhängigen möglichen Module festgelegt wird, kann auch keine Evaluierungs-
reihenfolge, wie für den zweiten Schritt gefordert, für das System festgelegt werden.

In [GHH11] haben wir verschiedene Ansatz vorgeschlagen, die den bisherigen Gray-Box-Ansatz
erweitern, um eine Evaluierungsreihenfolge aller abhängiger Module berechnen zu können
(Schritt 2), die einer kompositionellen Strukturanpassung ausgesetzt sind.

Eine erste Möglichkeit ist die datenflussgetriebene Integration. Die Datenfluss-Integration be-
rechnet keine Evaluierungsreihenfolge offline. Zur Laufzeit wird eine Evaluierungsreihenfolge
auf Basis des Datenflusses (der sich durch die lokalen Berechnungen sowie den Verbindungen
zwischen den Modulen ausdrückt) bestimmt. Da die Abhängigkeiten nur bedingt vorhergesehen
werden können, kann eine Verklemmung auftreten. Dies ist damit keine geeignete Lösung, da
die Verklemmungen auch nur aufgelöst werden können, wenn es Rückfallpunkte gibt, an denen
die Evaluierung erneut ausgeführt werden kann. Aufgrund der harten zeitlichen Restriktionen ist
dies allerdings nur sehr bedingt möglich.

Alternativ ist es möglich für die Module, die eine kompositionelle Strukturanpassung unterstüt-
zen, an den jeweiligen Schnittstellen der Module vorher fest die Evaluierungsreihenfolgen zu
definieren. Dieser Ansatz ist zwar weniger flexibel, ermöglicht allerdings eine einfache Integra-
tion in den im vorherigen Abschnitt vorgestellten WCET-Analyse und Codegenerierungsansatz.

196

6.2 Umsetzung

Da die möglichen Module a priori bekannt sind (z.B. der PosCalc-Controller), kann a priori die
lokale Evaluierungsreihenfolge durch die Gray-Box-Integration für jedes Modul bestimmt wer-
den. Dies bedeutet allerdings auch, dass das eingebettete Modul nur innerhalb der vorgegebenen
Grenzen kompositionelle Strukturanpassungen durchführen darf.

Zur Laufzeit kann dann, wie in den Abschnitten 6.1.2.1 und 6.1.2.2 beschrieben, die Grenze
angepasst werden, wenn denn eine neue gültige Evaluierungsreihenfolge für das übergeordne-
te Modul bestimmt wurde. Die Flexibilität des Ansatzes ist damit sehr stark abhängig von den
möglichen Ressourcen-Freiräumen zur Laufzeit, um alternative, möglicherweise bessere, Eva-
luierungsreihenfolgen zu bestimmen. Dieses Vorgehen ist allerdings notwendig, um die Vorher-
sagbarkeit des Systems zu gewährleisten. Durch die Integration mit dem in Abschnitt 6.1.2.2
vorgestellten Ansatz wird dies zugesichert.

6.1.2.5 Diskussion

In diesem Abschnitt haben wir eine neuartige WCET-Analyse in Kombination mit einem fle-
xiblen Ressourcenverwalter vorgestellt. Dieser Ansatz garantiert Vorhersagbarkeit trotz der ver-
wendeten komplexen Objektstrukturen mit prinzipiell unbekannter oberer Schleifengrenze. Er-
möglicht wird dies durch einen modellgetriebenen Entwicklungsansatz mit entsprechender Co-
degenerierung. Hiermit sind wir in der Lage komplexe Funktionalitäten umzusetzen, wie sie in
selbstoptimierenden, mechatronischen Systemen benötigt werden, um auf Umgebungsänderun-
gen zur Laufzeit optimal reagieren zu können.

6.2 Umsetzung

Das Werkzeug wurde als eine Erweiterung in Form von Plugins der Fujaba Real-Time Tool
Suite (Fujaba RT) umgesetzt. Fujaba RT ist eine Tool Suite basierend auf der Fujaba4Eclipse
Tool Suite, die 2002 durch einen Neuentwurf des Open Source UML Case Tools Fujaba initiiert
wurde [PTH+09].

Abbildung 6.16 zeigt eine Übersicht über die Architektur des Werkzeugs in Form von Plugins.
Intern enthalten diese weitere Plugins, die wir im Folgenden genauer erläutern werden.

Die Fujaba4Eclipse Plugins wurden im Wesentlichen unverändert genutzt. Diese Plugins enthal-
ten den Kern von Fujaba, die Unterstützung für Story Driven Modeling (mit Klassendiagrammen
und Storydiagrammen) und (Java-) Codegenerierung.

Fujaba RT setzt die MECHATRONIC UML um. Dies beinhaltet die Strukturmodellierung mit
Komponentendiagrammen, die Verhaltensmodellierung mit REAL-TIME STATECHARTS und
HYBRID RECONFIGURATION CHARTS sowie eine (C++) Codegenerierung.

Um die Konzepte dieser Arbeit umzusetzen wurde zum einen, wie in Abschnitt 2.6.1 beschrie-
benen eine Veränderung des Metamodells vorgenommen. Die Umstellung vollständig durchzu-
führen ist allerdings sehr aufwendig, da z.B. auch die Codegenerierung umfangreich angepasst

197

Kapitel 6 Werkzeugunterstützung

TimedStoryCharts

and RefinementAnalysis

LegacyComponent−

Integration

ComponentBe−

haviorSynthesis

Codegen and

WCETAnalysis

Fujaba4Eclipse

FujabaRT

<<uses>> <<uses>> <<uses>> <<uses>>

<<uses>>

Abbildung 6.16: Übersicht Werkzeugarchitektur

werden muss. Dies liegt daran, dass bisher nur für eine Komponente ein Statechartverhalten ge-
neriert wird. Um allerdings das Löschen und Erzeugen von z.B. Ports zu unterstützen, muss auch
ein Port eigenes Verhalten unabhängig von der Komponente besitzen. Im Rahmen dieser Arbeit
waren diese Umstellungen nicht mehr möglich, so dass gerade die Codegenerierung zwar für
die neuen Konzepte gezeigt werden kann, jedoch nicht komplett integriert mit der derzeitigen
Codegenerierung für HYBRID RECONFIGURATION CHARTS. Die vollständige Umstellung aller
Plugins auf das erweiterte Metamodell wird aktuell von dem Fujaba RT Team2 vorangetrieben.

Weitere Erweiterungen sind unter dem Motto Konsistenzerhaltung zwischen Fujaba RT Dia-
grammen erfolgt. Z.B. wurde eine MessageInterface-Plugin in der Projektgruppe Mauritius
[ACE+08] eingeführt, um Konsistenz zwischen Nachrichten sicherzustellen, die in der vorhe-
rigen Version nur über Strings umgesetzt wurden oder auch eine automatische Konsistenzhal-
tung zwischen Rollen- und Portverhalten (umgesetzt in der PG ReCab [BBB+09]). Speziell der
Aspekt der Konsistenzhaltung zwischen mehreren Diagrammen von Fujaba RT wurde auf den
Fujaba Days vorgestellt [ACE+08]. Eine Erweiterung des Umschaltkonzepts für Regler, die eine
vorhersagbare Umschaltung ermöglichen, wurde in [Poh08] realisiert.

Das Plugin TimedStoryCharts and RefinementAnalysis beinhaltet die Implementierung der TI-
MED STORY CHARTS (siehe Kapitel 2.6) und der Verfeinerungsüberprüfung für die Wiederver-
wendung von modellierten Komponenten (siehe Kapitel 3). Um Berechnungen auf dem Zone
Graphen (siehe Abschnitt 3.2.1) vorzunehmen, nutzen wir die UPPAAL UDBM Bibliothek3 aus.
Die Erreichbarkeitsanalyse innerhalb der Verfeinerungsüberprüfung nutzt eine Erreichbarkeits-
analyse auf Storydiagrammen aus [Zün09] und erweitert diese um eine zeitbehaftete Erreich-
barkeitsanalyse. Implementiert wurden diese Plugins im Rahmen der Masterarbeit von Christian

2Das Fujaba RT Team besteht im Wesentlichen aus den Mitarbeitern des Teilprojekts B1 des Sonderforschungsbe-
reichs 614 (http://www.sfb614.de/sfb614/projektbereiche/projektbereich-b/teilprojekt-b1/)

3http://www.cs.aau.dk/ adavid/UDBM/

198

6.2 Umsetzung

Heinzemann [Hei09]. Die Ergebnisse wurden im Rahmen einer Fujaba Days Demo in Koope-
ration mit Albert Zündorf vorgestellt [HHZ09]. Aktuell werden die bisherigen Plugins in der
Form erweitert, dass auch eine Verifikation von Eigenschaften möglich ist. Um dabei nicht den
Charakter einer reinen Erreichbarkeitsanalyse zu verlieren wurde hier das Konzepte von Testau-
tomaten verfolgt, die eine bestimmte Klasse von Eigenschaften in eine reine Erreichbarkeitsana-
lyse transformieren [Bre10]. Christian Heinzemann, der sich bereits in sein Masterarbeit [Hei09]
mit Timed Story Charts und deren Verfeinerung auseinander gesetzt hat, forciert dieses Thema
im Rahmen seiner Dissertation, so dass auch schon die Verifikationsumgebung auf einem Tool
Contest vorgestellt wurde [HSJZ10].

Das LegacyComponentIntegration-Plugin beinhaltet die Umsetzung der Konzepte zur Integra-
tion von Altkomponenten (siehe Kapitel 4). Intern wird die Umsetzung auf vier Plugins ver-
teilt: 1) LegacyComponent-Editor, 2) BlackBoxChecking, 3) WhiteBoxChecking und 4) Gray-
BoxChecking. Die Plugins 1) - 3) wurden im Rahmen der Projektgruppe ReCab [BBB+09] um-
gesetzt und das Plugin 4) in der Bachelorarbeit von Christian Brenner [Bre08]. Die Plugins 1)
- 3) sowie auch 4) wurden jeweils auf den Fujaba Days vorgestellt [HBB+09, BGH+08]. Der
Gesamtansatz der Integration von Altkomponenten, die FRiTSCab Tool Suite, wurde auf dem
Research Demonstration Track der International Conference on Software Engineering in Koope-
ration mit der Hella KGaA Hueck & Co. 4 vorgestellt [HMS+10].

Die Konzepte der Komponentenverhaltensynthese werden in dem ComponentBehaviorSynthe-
sis-Plugin implementiert. Um Berechnungen auf dem Zone Graphen vorzunehmen (siehe Ab-
schnitt 5.3.1) nutzen wir, wie bereits oben für die Verfeinerungsüberprüfung beschrieben, eine
Anbindung der UDBM Bibliothek aus. Umgesetzt wurde die Synthese in der Diplomarbeit von
Tobias Eckardt [Eck09], die auch als Demo auf den Fujaba Days vorgetragen wurde [EH09].
Eine Integration mit der Synthese von Rollenverhalten (siehe Abschnitt 2.4.1) wurde auf dem
Research Demonstration Track der International Conference on Software Engineering vorge-
stellt [HGH+09].

Das Plugin Codegen and WCETAnaylsis lässt sich in die drei Bereiche Codegenerierung, WCET-
Analyse und Ausführungsumgebung aufteilen, die die Konzepte zur Codegenerierung und Aus-
führung (siehe Kapitel 6.1) umsetzen. Die Umsetzung der Codegenerierung erweitert die (C++)
Codgenerierung für Story Diagramme um ein Factory-Konzept zum Erzeugen und Löschen von
den Elementen einer Komponentenarchitektur. Die Erzeugung wird dabei in Abhängigkeit von
den möglichen Ressourcen, die durch ein Ressourcenprofil festgelegt werden (siehe Abschnitt
6.1.2.1), kontrolliert. Wie bereits oben erläutert konnte hier keine vollständige Integration mit der
Codegenerierung für HYBRID RECONFIGURATION CHARTS [BGH+07, HH08b] realisiert wer-
den. Die WCET-Analyse nutzt intern eine Anbindung an das WCET Analyse-Werkzeug Bound-
T aus, um für einzelne Codefragmente eine WCET zu berechnen (siehe Abschnitt 6.1.2.2). Eine
Assoziation zur Codegenerierung ermöglicht dabei die vorherige Codegenerierung und Überset-
zung, die als Eingabe für das WCET Analyse-Werkzeug benötigt wird.

4http://www.hella.com/hella-de-de/index.html

199

Kapitel 6 Werkzeugunterstützung

Die Laufzeitumgebung baut auf der Laufzeitumgebung für HYBRID RECONFIGURATION

CHARTS [GH06a] auf, und erweitert diese um die Möglichkeit der Simulation von Zeit und
einer deterministischen Wiederholung, wie dies für die Integration von Altkomponenten benö-
tigt wird (siehe Kapitel 4). Umgesetzt wurden diese Plugins im Wesentlichen im Rahmen der
Projektgruppe ReCab [BBB+09]. Die Plugins wurden ebenfalls auf den Fujaba Days vorgestellt
[HBB+09].

6.3 Validierung

Das Ziel des in dieser Arbeit vorgestellten Ansatzes (siehe Kapitel 2.6 bis 5) ist es, einen mo-
dellgetriebenen Entwicklungsansatz für selbstoptimierende, mechatronische Systeme, in dessen
Mittelpunkt die Komposition und Wiederverwendung von Softwarekomponenten und deren Pro-
tokollverhalten zu komplexen hierarchischen Komponentensystemen stehen, bereitzustellen (sie-
he auch Abbildung 2.1).

Diese Ergebnisse wurden mit Hilfe des im vorherigen Abschnitt 6.2 vorgestellten Werkzeugs
validiert. Nach [EFR08, Bec08] können die Ergebnisse, die entstandenen Methoden, auf drei
unterschiedliche Arten validiert werden: 1) mit Typ I Validierung kann gezeigt werden, dass die
Absicht (Vorhersage) der Methoden der beobachteten Realität entspricht, wenn die Methode und
das Werkzeug richtig angewendet werden. 2) Die Typ II Validierung zeigt, dass die Methoden
erfolgreich von geschulten Benutzern angewandt werden können. Einen Vorteil des entwickelten
Gesamtansatzes gegenüber verwandten Ansätzen zeigt die Typ III Validierung.

Der Schwerpunkt dieser Arbeit liegt stärker im Bereich der Entwicklung von notwendigen Me-
thoden für die Entwicklung von selbstoptimierenden, mechatronischen Systemen (die durch bis-
herige Ansätze noch nicht unterstützt werden) und weniger im Bereich der experimentellen Va-
lidierung des Gesamtansatzes der MECHATRONIC UML und den hier vorgestellten Erweite-
rungen. Daher werden Typ II und Typ III Validierung nicht näher betrachtet. Ein Vergleich mit
anderen Ansätzen, in Form einer Validierung, ist zudem nicht ohne weiteres möglich, da die
MECHATRONIC UML und die hier vorgestellten Erweiterungen notwendige Konzepte für die
betrachteten Systeme anbieten, die durch verwandte Ansätze nicht unterstützt werden [GH06b]
(siehe auch Kapitel 7).

Um eine Typ I Validierung für den Ansatz dieser Arbeit durchzuführen, müssen wir zum einen
zeigen, dass wir die Klasse der betrachteten selbstoptimierenden, mechatronischen Systeme mo-
dellieren können. Zum anderen müssen wir die entwickelten Analysen und Synthesen dahinge-
hend validieren, dass diese den gestellten Anforderungen standhalten.

Das in Abschnitt 1.2 eingeführte RailCab-Projekt adressiert alle gestellten Anforderungen an den
Ansatz und ist daher eine geeignete Anwendung, um die Validierung zu zeigen. Im Speziellen
betrachten wir das Konvoi-Szenario. Die wesentlichen Argumente für eine erfolgreiche Validie-
rung wurden bereits in den einzelnen Abschnitten anhand des durchgängig betrachteten Konvoi-
Szenarios gezeigt. Im folgenden Abschnitt 6.3.1 werden wir die Spezifikation und Analyse der

200

6.3 Validierung

RailCab-Anwendung mit Hilfe der Werkzeugumgebung darstellen und Evaluierungsergebnisse
in Form von Laufzeit und Speicherverbrauch diskutieren. Weitere Anwendungsszenarien be-
trachten wir in Abschnitt 6.3.2. Die Validierung ist im Wesentlichen im Rahmen der in Abschnitt
6.2 beschriebenen Master- und Bachelorarbeiten sowie durch Projektgruppen und Tool-Demos
erfolgt.

6.3.1 Konvoi-Anwenungsszenario

In den Einleitungen zu den Hauptkapiteln dieser Arbeit (Kapitel 3 bis 5) wurde jeweils zuge-
schnitten für die Kapitel ein Ausschnitt des Konvoi-Szenarios gezeigt, an dem die Notwendigkeit
der dort erläuterten Methode diskutiert wurde. Wir werden in diesem Abschnitt das entwickelte
Werkzeug in den Vordergrund stellen und die Spezifikation und Analyse des Konvoi-Szenarios
hieran demonstrieren. Der Ablauf orientiert sich dabei an Abbildung 2.1. Den ersten Schritt, Sze-
narien modellieren und Rollenverhalten synthetisieren, werden wir allerdings überspringen. Für
Details hierzu sei auf [BGK05, HGH+09] verwiesen.

Wir beginnen mit einem Ausschnitt der Modellierung des RailCab Beispiels mit der Fujaba Real-
Time Tool Suite in Abschnitt 6.3.1.1. In den Abschnitten 6.3.1.2 bis 6.3.1.4 werden wir zeigen,
wie die umgesetzte Werkzeugunterstützung die Wiederverwendung von Komponenten, Altkom-
ponenten und Protokollverhalten adressiert. Abschließend in Abschnitt 6.3.1.5 werden wir die
Werkzeugunterstützung für die Codegenerierung sowie die WCET-Analyse vorstellen, die wir
für die Integration von Altkomponenten benötigen und die zudem den modellgetriebenen Ent-
wicklungsansatz vervollständigt.

6.3.1.1 Modellierung

Die Modellierungsumgebung erweitert die bisherige Werkzeugunterstützung der MECHATRO-
NIC UML. Basisarbeiten der Werkzeugunterstützung der MECHATRONIC UML wurden in
[BGH+05b] und [BGH+07] vorgestellt. Besonderer Schwerpunkt der Erweiterungen der Mo-
dellierungsumgebung liegen dabei zum einen auf der Unterstützung von Altkomponenten sowie
den bereits in Abschnitt 6.2 angesprochenen Erweiterungen des unterliegenden Metamodells,
um eine durchgängige Entwicklung zu unterstützen. Die Durchgängigkeit bezieht sich dabei
auf die in Abbildung 2.1 dargestellten Hauptaktivitäten der MECHATRONIC UML. So wur-
de in der Projektgruppe Mauritius [ACE+08] besonders die Durchgängigkeit zwischen einer
Anforderungsspezifikation mit sogenannten Goals (z.B. [Lam09]), über eine Szenario Spezifi-
kation und der Synthese von Zustandsverhalten hieraus, bis hin zur Komponentenspezifikation
erarbeitet. Der Übergang zur hierarchischen Komponentenspezifikation mit Strukturanpassung,
Constraint-Definition und Analyse bis hin zur Codegenerierung wurde in der Projektgruppe Re-
Cab [BBB+09] erarbeitet. Im Folgenden werden wir einen Ausschnitt des RailCab Szenarios
anhand dieser erweiterten Werkzeugumgebung vorstellen.

201

Kapitel 6 Werkzeugunterstützung

Die im Folgenden mit der Werkzeugumgebung illustrierten Modellelemente wurden ausgewählt,
um zu zeigen, dass mit der Werkzeugumgebung ein Entwickler auch die notwendigen Modelle
für die betrachtete Anwendungsdomäne beschreiben kann. Der Vollständigkeit halber wird an
den entsprechenden Stellen auf die umfangreichere Beschreibung der Beispielanwendung in den
Konzeptkapiteln verwiesen.

Wir beginnen mit der Modellierung der Kommunikation. Abbildung 6.17 zeigt die Struktur des
DistanceCoordination-Musters. Hierfür haben wir ein REAL-TIME COORDINATION PATTERN

mit den Rollen front und rear angelegt. Zusätzlich haben wir die einzuhaltenden Eigenschaften
definiert. Dies ist zum einen A[] not rear.Convoy imply front.Convoy sowie die Deadlock-Freiheit.
Diese Eigenschaften beziehen sich auf das Verhalten der Rollen, welche wir mit REAL-TIME

STATECHARTS spezifizieren.

DistanceCoordination
false

A[] not deadlock

false

A[] rear.Convoy imply front.Convoy

front rear

Abbildung 6.17: REAL-TIME COORDINATION PATTERN DistanceCoordination

Abbildung 6.18 zeigt das REAL-TIME STATECHART der front-Rolle. Um festzulegen welche
Nachrichten die Rollen austauschen können, werden im Message Interface Editor die Nachrich-
ten definiert. Explizit zeigen wird die Schnittstelle nicht. Die Nachrichtenbezeichnung ist jedoch
im Statechart ersichtlich. msgIFace_context und msg_IFace_legacy sind die beiden Schnitt-
stellen. msgIFace_context definiert die Nachrichten LEAVE_CONVOY, welche die Transition
leave nach noConvoy schaltet, CONVOY_REQUEST, die die Transition noConvoy nach wait-
Convoy schaltet und die Nachricht LEAVE_CONVOY_REQUEST, die die Transition von con-
voy nach waitNoConvoy schaltet. Die restlichen Nachrichten der front-Rolle werden durch die
msg_IFace_legacy-Schnittstelle definiert.

Wie bereits in den vorherigen Verhaltensbeschreibungen zur front-Rolle erläutert (siehe Ab-
schnitt 2.4.2) besteht die Koordination zum einen aus dem Teil der Anfrage, ob ein Konvoi
realisiert werden soll (Schleife zwischen den Zuständen noConvoy und waitConvoy) und zum
anderen aus der periodischen Anfrage (im Intervall 0 ≤ c1 ≤ 100) ob der Konvoi aufgelöst
werden soll. Im Intervall 150 ≤ c1 ≤ 200 kann der Konvoi aufgelöst werden. Fehler, wie z.B.
Netzwerkfehler, werden durch das Verhalten nicht berücksichtigt, um die Anschaulichkeit des
Beispiels nicht zu verlieren. Netzwerkfehler werden z.B. in [HHG08] betrachtet. Das Verhal-

202

6.3 Validierung

ten der rear-Rolle werden wir im Folgenden nicht explizit modellieren, sondern durch unsere
Altkomponenten-Integration erlernen (siehe Abschnitt 6.3.1.3).

InitialState

noConvoy

convoywaitConvoy

waitNoConvoy

leave

RailCab.RailCab.frontPort | clocks:

msgIFace_context.CONVOY_REQUEST() /

msgIFace_context.LEAVE_CONVOY() /

{c1}

/ msgIFace_legacy.DECLINE_CONVOY_REQUEST()

msgIFace_context.LEAVE_CONVOY_REQUEST() /

0 <= c1 <= 100 / msgIFace_legacy.DECLINE_LEAVE_CONVOY_REQUEST()

/ msgIFace_legacy.APPROVE_CONVOY_REQUEST() {c1}

150 <= c1 <= 200 / msgIFace_legacy.APPROVE_LEAVE_CONVOY_REQUEST()

Abbildung 6.18: REAL-TIME STATECHART front-Rolle

Neben dem DistanceCoordination-REAL-TIME COORDINATION PATTERN haben wir in dieser
Arbeit noch das Registration-REAL-TIME COORDINATION PATTERN betrachtet sowie das Con-
voyCoordination-PARAMETERIZED REAL-TIME COORDINATION PATTERN. Die Möglichkeit
der Spezifikation eines Musters ohne Multi-Rolle haben wir oben gezeigt. Wir werden daher
in 6.3.1.4 nur noch auf notwendige Anpassungen des Registration-Musters eingehen, um die
Synthese von Komponentenverhalten illustrieren zu können. Der Wesentliche Unterschied eines
PARAMETERIZED REAL-TIME COORDINATION PATTERN zu einem REAL-TIME COORDINA-
TION PATTERN ist die Spezifikation des Verhaltens mit Parametern. Wir werden daher diesen
Aspekt der Werkzeugunterstützung beleuchten.

Abbildung 6.19 zeigt die Rolle coordinator. Das Statechart der Coordinator-Komponente ist in
Abbildung 6.19 dargestellt. Dieses enthält einen Zustand mit zwei AND-States, die parallel aus-
geführt werden. Der untere AND-State beschreibt das Adaptionsverhalten für den Multi-Port, der
obere AND-State das parametrisierte Rollenstatechart für die Coordinator Rolle. Wie in Kaptel 3
auf Seite 65 beschrieben, wird mit dem Synchronisationkanal next über den Parameter k des Rol-
lenstatecharts jede Rolleninstanz geordnet nacheinander angestoßen, um die einzelnen Konvoi-
teilnehmer (n speichert die aktuelle Anzahl der Konvoiteilnehmer) nacheinander zu aktualisie-
ren (update-Nachricht). Angestoßen werden die Rolleninstanzen durch das Adaptionsstatechart
(unterer AND-State), indem die Transition mit dem Synchronisationskanal next[!] von Zustand
Convoy nach SendUpdates geschaltet wird. In dem vorderen Teil des Adaptionsstatecharts wird
der initiale Port (Übergang von noConvoy nach CreatePort) angelegt. Die Seiteneffekte und Syn-

203

Kapitel 6 Werkzeugunterstützung

chronisationskanäle an den Transitionen von Zustand CreatePort nach Convoy erzeugen weitere
Portinstanzen.

Nachdem alle Rollen spezifiziert sind, definieren wir den Komponententyp RailCab, der alle Rol-
len der Muster anwendet (siehe Abbildung 6.20). Weiterhin wird der Komponententyp PosCalc
wiederverwendet, indem er als Part in dem Komponententyp RailCab eingebettet wird, die da-
mit hierarchisch aufgebaut ist. Zudem können auf der Typebene Kompositionsregeln definiert
werden, um Abhängigkeiten zwischen Rollenverhalten zu bestimmen (siehe Kapitel 5). In dem
Beispiel wird gefordert, dass ein Konvoi nur durchgeführt werden darf, wenn das RailCab auch
bei einer Streckenabschnittskontrolle registriert ist (!(registree.unregistered AND rear.convoy)).

Wie schon zu Abbildung 3.1 beschrieben, ist das spezifizierte Verhalten des Multi-Parts Pos-
Calc (siehe Abbildung 6.21) verschieden zu dem Verhalten des coordinator-Multi-Ports. Zum
einen zeigt das Statechart eine andere Struktur (unterschiedliche Anzahl an Zuständen und Tran-
sitionen) auf sowie ein anderes zeitliches Verhalten (im Zustand AwaitAck kann länger verweilt
werden). Die verarbeiteten Nachrichten sind allerdings identisch, so dass keine Schnittstellen-
beschränkung vorgenommen werden muss (siehe Definition 20). Das Adaptionsverhalten des
PosCalc-Multi-Parts unterscheidet sich zum einen von dem Adaptionsverhalten der Coordina-
tor-Multi-Rolle durch die aufgerufenen Seiteneffekte. Zum anderen unterscheiden sich die Syn-
chronisationen. Das Adaptionsverhalten der Coordinator-Multi-Rolle startet durch die create-
Port-Synchronisation das Erzeugen der Delegations- und Part-Instanzen.

Die Synchronisation zur Erzeugung der internen Elemente wird nicht direkt von der Multi-Rolle
zum Multi-Part angesteuert, sondern über das Adaptionsverhalten der Delegation (siehe Abbil-
dung 6.22). Der Multi-Port führt bei der Erstellung einer neuen Portinstanz eine Synchronisation
über den Kanal createAbsPort durch. Danach kann über den Synchronisationkanal createRefPart
eine Instanz des Multi-Parts angelegt werden. Nachdem die Rekonfiguration ausgeführt wurde,
werden der neu erstellte Port und der neu erstellte Part über die Funktion createDelegation mit
einer Delegation verbunden. Die Funktion ist in Abbildung 6.23 als Story Diagramm angegeben.
Es werden der Port und der Part verbunden, die keine Assoziation zu einer Delegation besit-
zen. Für eine umfangreiche Beschreibung der Strukturanpassung sei auf Abschnitt 2.6 Seite 47
verwiesen.

Um Altkomponenten zu integrieren, unterstützt die Werkzeugumgebung zusätzlich die Spezifika-
tion von Legacy-Komponenten, die im Editor schwarz dargestellt werden. Zuerst wird dabei ein
Typ der Altkomponente angelegt und alle bekannten Informationen beschrieben. Abbildung 6.24
beschreibt die Eigenschaften einer RailCab Altkomponente. Je nachdem, welche Informationen
der Altkomponte vorliegen, können, wie in Kapitel 4 beschrieben, verschiedene Integrationsver-
fahren durchgeführt werden. In dem dargestellten Beispiel liegen alle relevanten Informationen
für alle drei Integrationsverfahren vor. Für das Black Box Checking ist das der Pfad zu der bi-
nären Datei der Altkomponente sowie die Obergrenze der Zustände der Altkomponente. Für
das White Box Checking wird der Pfad zur Quelldatei benötigt, die Sende-/Empfangsmethode,
Zeitmethode (nicht notwendig, ohne kann allerdings keine Zeit berücksichtigt werden), die pe-
riodisch ausgeführte Methode sowie die Initialisierungsdatei. In den Präferenzen gibt es zudem
noch die Möglichkeit für das Black Box Checking zwischen den Äquivalenzalgorithmus nach

204

6.3 Validierung

InitialState

Coordinator_MainState

InitialState

Idle

c1 <= 9999

sendUpdate

c1 <= 10

AwaitAck

c1 <= 25

Complete

c1 <= 29

InitialState

noConvoy

c2 <= 9999

Convoy

c2 <= 60

SendUpdates

c2 <= 59

CreatePort

c2 <= 59

Statechart_for_Coordinator | clocks: c1 c2

next[k] ?

{c1} [1 ; 1]

next[k+1] !

[1 ; 1] [this.parameter < n]

done !
[1 ; 1]

[this.parameter = n]

Raised:
Port2.update() [10 ; 10]

Trigger:
Port2.ack()

[1 ; 1]

Side Effects:
createPort(1)
coordinate?

createAbsPort !

{c2}

[10 ; 10]

0 <= c2 <= 60

next[1] !

{c2}

[1 ; 1]

0 <= c2 <= 39

Side Effects:
createPort(n+1)
createAbsPort !

[10 ; 10]

done ?

[1 ; 1]

portCreated ?

[1 ; 1]

Abbildung 6.19: PARAMETERIZED REAL-TIME STATECHART coordinator-Rolle

205

Kapitel 6 Werkzeugunterstützung

RailCab

pC2 : PosCalc

Comp RailCab

registree

front rear

coordinator

member

State Restriction

!(registree.unregistered AND rear.convoy)

Abbildung 6.20: RailCab Komponententyp

Vasileskii und Chow sowie einen einfachen Algorithmus zu wählen, der ohne Optimierung alle
Möglichkeiten überprüft. Für das Gray Box Checking kann in den Präferenzen der Pfad für die
Constraint-Datei oder auch eine andere Binärdatei, als die für das Black Box Checking, angege-
ben werden.

Eine Instanzsicht der Beispielanwendung zeigt Abbildung 6.25. Die Verbindung der Kompo-
nenten ist dabei nur möglich, wenn die Schnittstellen zueinander passen (die ein-/ausgehenden
Nachrichten müssen den gleichen Typ haben). Hieraus wird zudem die für die Integration einer
Altkomponente relevante Schnittstelle mit dem Modell spezifiziert, indem die entsprechenden
Schnittstellen miteinander verbunden werden.

6.3.1.2 Verfeinerungsüberprüfung

Als erstes wollen wir im Folgenden die Unterstützung zur Wiederverwendung von Komponenten
betrachten, die durch eine Hierarchisierung ausgedrückt wird, indem eine Komponente in eine
andere eingebettet wird (siehe hierzu Konzeptkapitel 3). Für unser Beispiel soll eine Verfeine-
rung zwischen der Multi-Rolle coordinator (hier also das abstrakte Verhalten) und dem Multi-Part
PosCalc überprüft werden (konkretes Verhalten). Die Benutzerführung ist bisher nicht vollstän-
dig umgesetzt, so dass die Überprüfung noch nicht automatisch durch Selektion der Port-/Part-
Elemente erfolgen kann, da eine automatische Überführung des parametrisierten Verhaltens in
TIMED STORY CHARTS zum Teil fehlt. Um daher eine Verfeinerung zu überprüfen, muss dieser

206

6.3 Validierung

InitialState

PosCalc_MainState

InitialState

Idle

c1 <= 9999

SendUpdate

c1 <= 10

AwaitAck

c1 <= 29

InitialState

noConvoy

c2 <= 9999

Convoy

c2 <= 60

SendUpdates

c2 <= 59

CreatePort

c2 <= 59

Statechart_for_PosCalc | clocks: c1 c2

next[k] ?

{c1} [1 ; 1]

Trigger:
Port1.ack()

next[k+1] !

[1 ; 1]

[this.parameter < n]

Trigger:
Port1.ack()

done !

[1 ; 1]
[this.parameter = n]

Raised:
Port1.update()

[10 ; 10]

Side Effects:
createPart()
coordinate?

createRefPart ?

{c2}

[10 ; 10]

0 <= c2 <= 60

next[1] !

{c2}

[1 ; 1]

0 <= c2 <= 39

Side Effects:
createPart()

createRefPart ?

[10 ; 10]

done ?

[1 ; 1]

partCreated ?

[1 ; 1]

Abbildung 6.21: PARAMETERIZED REAL-TIME STATECHART PosCalc-Port

207

Kapitel 6 Werkzeugunterstützung

InitialState Idle

c3 <= 9999

Active

c3 <= 0

Finished

c3 <= 10

DelegationsAdaption | clocks: c3

createAbsPort ?

{c3}

[10 ; 10]

{c3}[1 ; 1]

Side Effects:
createDelegation()

partCreated!
portCreated ![1 ; 1]

createRefPart !

[10 ; 10]

Abbildung 6.22: REAL-TIME STATECHART Delegation

create delegation object

«create»
d3: Delegat ion

c1 c2

bind port and part with no delegation

c1: CoordPort c2: CoordPort Part

{ c1.getDelegation() == null & c2.getDelegation() == null }

Delegation::createDelegation(): Void

ad Delegation::createDelegation()

«create»
portPart

«create»
port

[success]

[failure]

Abbildung 6.23: Erzeugen einer Delegation

208

6.3 Validierung

Abbildung 6.24: Eigenschaften Altkomponente

rc2 : legacyRailCabrc1 : RailCab

bS1 : BaseStation

Comp System

Abbildung 6.25: RailCab-Konvoi mit Altkomponente

209

Kapitel 6 Werkzeugunterstützung

Schritt bisher zum Teil manuell durchgeführt werden (in [Hei09] wurde dieser Schritt darge-
stellt).

Die Verifikation der Beispielanwendung ergibt, dass der Multi-Part PosCalc eine korrekte Verfei-
nerung nach der relaxierten Timed Bisimulation aus Abschnitt 3.1.2 der Multi-Rolle coordinator
ist, obwohl die zeitlichen Intervalle verschieden sind. Die Verschiebung des Echtzeitverhaltens
führt allerdings dazu, dass dies nur eine gültige Verfeinerung nach der relaxierten Form ist. Die
bisherige Verfeinerungsdefinition der MECHATRONIC UML, die eine strikte Bisimulation for-
dert, oder auch die aus dem UPPAAL-Umfeld verbreitete Timed Ready Simulation (siehe Ab-
schnitt 2.4.7.3) würden einen Konflikt aufgrund der Zeitverschiebung erkennen. Außer Betracht
steht bei diesem Vergleich, dass die verwandten Verfeinerungen keine Strukturanpassungen be-
trachten, also auch keine Verfeinerungsüberprüfung für das Beispiel durchführen können. Nicht
erfüllende Verfeinerungen wurden ebenfalls betrachtet, indem z.B. die Invariante des Zustands
SendUpdate auf 22 gesetzt wurde. Die Nachricht update kann dann in der Verfeinerung zu spät
verschickt werden. Diese Fehler wurden korrekterweise erkannt.

Im Rahmen der Masterarbeit von Christian Heinzemann [Hei09] wurden zudem noch einige
Messungen durchgeführt. Diese sind auf einem PC mit Intel Core2Duo Prozessor mit 3 Ghz und
3GB Arbeitsspeicher durchgeführt worden. Als Betriebssystem wurden Microsoft Windows XP
eingesetzt. Eclipse wurde in der Version 3.4 mit 1,5 GB initialisert. Während des Testdurchlaufs
wurden die Invarianten und Time Guards des Adaptionsstatecharts in der Anzahl der instanziier-
baren Ports parametrisiert. Die Invarianten der Zustände Convoy, CreatePort und SendUpdates
werden auf Werte 30x bzw. 30x− 1 gesetzt, wobei x die Anzahl der Ports bezeichnet. Der Wert
30 ergibt sich aus der Länge eines Durchlaufs durch das Statechart. Die Erreichbarkeitsanalyse
wurde mit und ohne Zeit durchgeführt. Die Ergebnisse werden in Abbildung 6.26 dargestellt.

! " # $ % !& !% "& "%

!

!&

!&&

!&&&

!&&&&

'()*+,*-.

/-.+,*-.

!"#$%&'()*+,

-
$
.
/#
0
1+
'1
"
'2
0
3
.
"
4
0
"

Abbildung 6.26: Laufzeit der Erreichbarkeitsanalyse

Erwartungskonform zeigen die Ergebnisse der Messung einen starken Anstieg durch Betrachtung
von Zeit. Für drei Zustände werden unter Berücksichtigung von Zeit über eine Stunde benötigt.
Ohne Zeit lassen sich problemlos 25 Ports expandieren. Bei der Verwendung von Zeit erwies
sich das UDBM-Binding als ausschlaggebend für die lange Laufzeit. Mit zunehmender Laufzeit

210

6.3 Validierung

dauerten die einzelnen Berechnungsschritte zunehmend länger und ca. 95% der Rechenzeit ent-
fiel auf das UDBM-Binding. Aktuelle weiterführende Arbeiten der Erreichbarkeitsanalyse zur
Nutzung für ein Model Checking zeigen einen erheblichen Performancegewinn (von 20 Min. für
vier Ports auf unter eine Sekunde) durch Auslagerung des UDBM-Bindings in Java-Quellcode
statt der Skriptsprache Ruby aus [HSJZ10].

Weiterhin ergaben die Messungen, dass bei der Erreichbarkeitsanalyse ohne Zeit ca. 95% der
Laufzeit allein auf das Kopieren der Graphen entfiel. Auf das Finden der Matchings, die An-
wendung der Regeln und die Überprüfung von isomorphen Zuständen entfielen die restlichen
5%. In der Erreichbarkeitsanalyse mit Zeit sank der Anteil für das Kopieren der Graphen auf ca.
15% bei 2 Ports und auf 5% bei 4 Ports. Dies ist zu begründen mit einen stärkeren Einfluss des
UDBM-Bindings auf die Laufzeit.

Abbildung 6.28 zeigt die Entwicklung der Anzahl der Zustände im erreichten Transitionssystem.
Der Anstieg bei Berücksichtigung von Zeit fällt dabei wesentlich stärker aus als ohne Zeit. Dies
liegt daran, dass mit Zeit auch die Delay-Kanten expandiert werden müssen, die ohne Berück-
sichtigung von Zeit nicht weiter betrachtet werden. Die Anzahl der Objekte in jedem Zustand
stieg jedoch nur langsam an. Dies ist auf die gewählte Abbildung der Statecharts auf Graphen
zurückzuführen, die für eine neue Instanz eines Statecharts nur ein neues ActiveState-Objekt
anlegt.

! " # $ % !& !% "& "%
&

%&&

!&&&

!%&&

"&&&

"%&&

'()*+,-./*0+1(-
23+(1-41567

89/:+;:+(<-=>?1@61-
0/3-./*0+-23+(1-
41567

'()*+,-./*0+1(-2A56-
41567

89/:+;:+(<-=>?1@61-
0/3-./*0+-2A56-41567

!"#$%&'()*+,

!
"
#
$
%
&'
-
*$
.
%
/
"
01
"
)
+/
"

Abbildung 6.27: Anzahl expandierter Graphen und maximale Anzahl der Knoten

Abbildung 6.28 zeigt schließlich die Laufzeit des Verfeinerungsalgorithmus mit Zeit. Das Er-
gebnis zeigt, dass die Laufzeit trotz relativ kleiner Anzahl und Größe der Graphen relativ hoch
ist. Da die Überprüfung sehr viele Zugriffe auf die UDBM-Bibliothek ausführt, um die oberen
Schranken der Clocks zu erhalten, ist diese hohe Laufzeit, wie bei der Erreichbarkeitsanalyse,
auf die hohe Laufzeit der UDBM-Bibliothek zurückzuführen.

Insgesamt lässt sich folgern, dass die Implementierung zum Zeitpunkt der Erstellung dieser Ar-
beit lediglich die prinzipielle Machbarkeit der Verfeinerung gezeigt hat. Eine Optimierung der
Implementierung ist notwendig, um größere Anzahlen an Portinstanzen betrachten zu können.

211

Kapitel 6 Werkzeugunterstützung
! " # $ %

&'()*+'(, !, ,, -$- ""$.

! " # $ %

.

%..

!...

!%..

"...

"%..

!"#$%&'()*+,

-
$
.
/#
0
1+
'1
"
'2
0
3
.
"
4
0
"

Abbildung 6.28: Laufzeit Verfeinerung

Die möglichen stellen die Optimierungspotential aufweisen, wurden aufgezeigt. In aktuellen,
weiterführenden Arbeiten wurde bereits eine erhebliche Verbesserung der Laufzeit (Reduzierung
um ca. 80%) erreicht [HSE10].

6.3.1.3 Integration Altkomponenten

Die Integration von Altkomponenten wurde in der FRiTSCab Tool Suite vollständig umgesetzt.
Die Validierung wurde, soweit möglich, auf Basis von Altkomponenten aus dem RailCab Pro-
jekt durchgeführt, die zum Teil angepasst wurden, um die verschieden Szenarien der Integration
durchspielen zu können. Dies sollte allerdings die Qualität der Aussage, dass die Integrationsver-
fahren anwendbar sind, nicht einschränken (siehe hierzu auch Abschnitt 6.3.2). Wir werden im
Folgenden zuerst die Schnittstelle der drei verschiedenen Verfahren erläutern und anschließend
auf Evaluierungsergebnisse eingehen.

Abbildung 6.29 zeigt den Aufruf der Analyseverfahren. Die Auswahl der Analyseverfahren ste-
hen dem Benutzer nach Selektion der Port(s) der Altkomponente und Kontext zur Verfügung.

Wird das White Box Checking ausgewählt, so kann der Benutzer anschließend eine Reihe von
Parametern für die Verifikation einstellen (siehe Abbildung 6.30). Zum einen ist es möglich
unterschiedliche Model Checker zu verwenden, wobei, wie in Abschnitt 4.3 beschrieben, der
CBMC Model Checker die meisten benötigen Konstrukte unterstützt und damit auch die erste
Wahl für eine Verifikation ist. Zudem können die Parameter des Kommunikationskanals und der
Ausführungsumgebung der Komponenten eingestellt werden. Z.B. ist die Pufferkapazität oder
die Länge der Ausführungsperiode einstellbar.

Wird das White Box Checking auf dem gezeigten Anwendungsbeispiel durchgeführt, so wird ein
Fehler erkannt (siehe Gegenbeispiel aus Abbildung 6.31). Gegenbeispiele können im Kontext-
verhalten durchgespielt werden, um den Benutzer direkt zu der möglichen Fehlerursache zu füh-
ren. In unserem Fall wird ein Deadlock erkannt, da die Altkomponente eine LEAVE_CONVOY-

212

6.3 Validierung

Abbildung 6.29: Legacy Checking

Abbildung 6.30: Parameter White Box Checking

213

Kapitel 6 Werkzeugunterstützung

Nachricht verschickt während der aktive Zustand des Kontexts waitNoConvoy ist, der diese Nach-
richt verarbeiten kann.

Das Black Box Checking und Gray Box Checking haben ebenfalls diesen Fehler erkannt. Im Fall
des Black Box Checking kann zudem noch das gesamte Verhalten der Altkomponente erlernt
werden (siehe Abbildung 6.32). Hieraus wird ersichtlich, dass die Altkomponente unabhängig
von der Entscheidung des Kontextverhaltens den Konvoi auflöst. Dies ist durchaus eine mögli-
che Interpretation für die rear-Rolle, die allerdings in unserem Fall durch die front-Rolle nicht
berücksichtigt wurde. Eine Möglichkeit, um die Integration erfolgreich zu gestalten, ist eine An-
passung des Kontextverhaltens in der Form, dass ein Auflösen des Konvois zu jeder Zeit durch
die rear-Rolle ohne zusätzliche Bestätigung ermöglicht wird. Dies wurde ebenfalls durch alle
drei Integrationsverfahren bestätigt.

Ein weiterer Aspekt der Integration von Altkomponenten ist die Betrachtung von Reglerverhalten
durch die Anbindung von Systemidentifikationsverfahren (siehe Abschnitt 4.4). Die Werkzeug-
unterstützung ermöglicht dabei das Hinzufügen von Experimenten zur Erkennung von Regler-
verhalten zu einer Altkomponente (siehe Abbildung 6.33). Das heißt, diese Experimente werden
nicht aus dem Werkzeug selbst heraus gestartet, sondern aus Spezialwerkzeugen zur Identifi-
kation von kontinuierlichen Verhalten, wie z.B. Matlab mit entsprechenden Erweiterungen. Es
wird dabei davon ausgegangen, dass die Experimentdaten in einer Datei gespeichert werden, so
dass zu jeder Datei ein kontinuierlicher Port angelegt wird. Auf diesem kann eine Identifikation
des Reglerverhaltens durchgeführt werden (siehe Abbildung 6.34). Das erkannte Verhalten wird
dann dem kontinuierlichen Port hinterlegt und kann dann im Weiteren durch einen Experten ei-
nem speziellen Regler zugewiesen werden. In unserem Fall ist dies ein Drehzahlregler und ein
Drehmomentregler (siehe Abbildung 6.35).

Das erlernte Zustandsverhalten sowie das für einen Zustand spezifische Reglerverhalten kann an-
schließend manuell zu einem Gesamtverhalten zusammengeführt werden. Abbildung 6.36 zeigt
den erlernten Automaten der Altkomponente angereichert mit den Reglerkonfigurationen.

Evaluierungsergebnisse Im Folgenden betrachten wir zuerst die Evaluierungsergebnisse
der Systemidentifikation, dann die des Black Box , White Box und Gray Box Checking.

Die Systemidentifikation benötigt für das Erkennen des Drehmoment-Reglers ca. 20 Sekunden
und ca. 150 MB Speicher und für den Drehzahlregler ca. 8 Sekunden und ebenfalls ca. 150
MB Speicher. Für ausführlichere Evaluierungsergebnisse zur Systemidentifikation sei auf die
referenzierte Literatur aus Abschnitt 4.4 verwiesen.

Ohne Berücksichtigung der Periode benötigt das Black Box Checking für das betrachtete Evalu-
ierungsbeispiel weniger als eine halbe Minute, dabei werden über 1000 Zugehörigkeitsanfragen
gestellt. Unsere Optimierung der Anzahl der Anfragen führt dabei zu über 900 Cache Hits und
über 30.000 Präfix Cache Hits (siehe Abschnitt 4.2.2). Die Laufzeit erhöht sich unter Berücksich-
tigung der Periode um den Faktor Anzahl der Zugehörigkeitsanfragen mal Größe der Periode.
Bei einer Periode von 1 Sekunde würde sich entsprechend die Laufzeit um 1000 Sekunden er-
höhen. Dies gilt gleichermaßen für die anderen Analyseverfahren. Zusätzlich ist die Laufzeit

214

6.3 Validierung

Abbildung 6.31: Gegenbeispiel White Box Checking

215

Kapitel 6 Werkzeugunterstützung

Abbildung 6.32: Erlernter Automat der Altkomponente

Abbildung 6.33: Altkomponente: laden der (kontinuierlichen) Daten

216

6.3 Validierung

Abbildung 6.34: Starte Systemidentifikation

Abbildung 6.35: Erkannte Regler / Transferfunktion

217

Kapitel 6 Werkzeugunterstützung

Abbildung 6.36: Erlernter Automat der Altkomponente mit Reglerkonfigurationen

im Fall des Black Box Checking maßgeblich von der Anzahl der zu erkennenden Zustände der
Altkomponente abhängig. In unserem Beispiel wird bei genauer Angabe der zu erlernenden Zu-
stände die oben genannte Laufzeit benötigt. Sollen stattdessen zehn Zustände erkannt werden
beträgt die Laufzeit ca. 90 Sekunden. Interessanterweise wurden bei künstlichen Beispielen pro-
blemlos 15 Zustände innerhalb von 25 Minuten erkannt, wenn die obere Grenze der Zustände
nur geringfügig von der tatsächlichen Anzahl abweicht. Zum Teil liegt dies an der quadratischen
Abhängigkeit der Anzahl der zu erlernenden Zustände auf die Gesamtlaufzeit des Vasileskii und
Chow Algorithmus, der für die Äquivalenzanfrage implementiert wurde (siehe Abschnitt 4.2.2).
Wie die gezeigten Zahlen aber schon andeuten ist die Anzahl der benötigten Äquivalenzanfragen
sehr groß, gleich wohl die Optimierungen schon viele unnötige ausschließen. Dies lässt folgern,
dass eine optimistische Abschätzung der Obergrenze der Zustände verfolgt werden sollte, gleich
wohl dann das Verfahren mehrfach angestoßen werden muss, bis der erlernte Automat sich nicht
mehr verändert, gegenüber dem vorherigen Durchlauf. Eine wesentliche Laufzeitverbesserung
kann durch den Einsatz eines Model Checkers erreicht werden, da hierdurch auf die Äquiva-
lenzanfrage verzichtet werden kann.

Die folgende Abbildung 6.37 zeigt zusammenfassend die Evaluierungsergebnisse. Es wurden
5, 7 und 10 Zustände mit und ohne Model Checking betrachtet. Durch das Einbeziehen von
Model Checking kann die Laufzeit um ca. 50 % reduziert werden. Der Speicherverbrauch konnte
ebenfalls reduziert werden. Da durch das Model Checking die Anzahl der Anfragen reduziert
wird, singt gleichermaßen die Anzahl an (Prefix) Cache Hits. Der extreme Anstieg der Prefix
Cache Hits lässt sich mit der höher angesetzten Anzahl an zu erlernenden Zuständen erklären.

Im Fall des White Box Checking ist die Laufzeit neben der Periodenlänge stark von der Anzahl
und Größe der verwendeten Puffer und Zeitvariablen abhängig. Wie in Abschnitt 4.3 diskutiert,
haben wir das CBMC-Werkzeug verwendet, da dieses im Vergleich zu den anderen tatsächlich
Puffer in der Umsetzung unterstützt. Während der Speicherverbrauch für einen Ein- und Aus-

218

6.3 Validierung

Tabelle1

Seite 1

5 (o
. M

C)

5 (m
. M

C)

7 (o
. M

C)

7 (m
. M

C)

10 (o
. M

C)

10 (m
. M

C)
1

10

100

1000

10000

100000

1000000

10000000

Laufzeit (Sek.)
Speicher (MB)
Anfragen
Cache hits
Pref ix cache hits

Zustände

Abbildung 6.37: Evaluierungsergebnisse Black Box Checking

Tabelle1

Seite 1

5 (o. MC)

5 (m
. MC)

7 (o. MC)

7 (m
. MC)

10 (o. MC)

10 (m
. MC)

0

50

100

150

200

250

300

350

400

450

0

50

100

150

200

250

300

350

400

450

Laufzeit (Sek.)

Zustände

Abbildung 6.38: Laufzeiten Black Box Checking mit einer Periode von 400 ms

219

Kapitel 6 Werkzeugunterstützung

gangspuffer der Größe 2, 3 und 6 in etwa bei 300 MB beträgt, unterscheiden sich die Laufzeiten
stark. Für 2 sind es 75 Sekunden, für 3 90 Sekunden und für 6 180 Sekunden. Noch stärker sind
die Auswirkungen, wenn eine variable Periodenlänge und eine variable Länge des Sende- und
Empfangsintervalls berücksichtigt wird. Die Laufzeit erhöht sich für den Fall mit Pufferlänge
3 auf ca. 25 Minuten. Insgesamt lassen sich allerdings schwer Evaluierungsergebnisse erheben
oder reproduzieren, da das (die) Werkzeug(e) sehr unzuverlässig die betrachteten Anwendungen
analysieren. Ein Grund hierfür könnte die eher untypische Anwendungsklasse sein, die Paralle-
lität und Zeit benötigt, und daher Konstrukte verwendet die eher selten in den gezeigten Evalu-
ierungen der Werkzeuge zum Einsatz kommen.

Eine vielversprechende Stellschraube zur Verbesserung der Laufzeit der Integrationsverfahren
ist die Optimierung der erkannten Zustände pro Iteration und damit eine Minimierung der An-
zahl der Iterationen. Grund für diese Annahme ist, dass der größte Ressourcenaufwand in der
Überprüfung der Äquivalenz liegt. Eine weitere Beobachtung ist, dass die potentiell erkannten
Zustände maßgeblich von der Länge des Gegenbeispiels abhängig sind. Je länger ein Gegen-
beispiel, desto mehr Zustände können erkannt werden. Die meisten Model Checker, wie auch
UPPAAL, verfügen über eine Einstellungsmöglichkeit, um lange Gegenbeispiele zu bevorzugen.
Für das Gray Box Checking können wir darüber hinaus noch weitere Optimierungen an dem zu
überprüfenden Modell vornehmen, die wir im Folgenden diskutieren. Anschließend stellen wir
die Evaluierungsergebnisse des Gray Box Checking unter Betrachtung der diskutierten Optimie-
rungen vor.

1.) Festlegung eines minimalen Anteils an unbekanntem Verhalten für Gegenbei-
spiele Eine Möglichkeit der Minimierung des unbekanntem Verhalten für Gegenbeispiele be-
steht in der Verwendung von Transitionen der chaotischen Hülle (also bei bisher unbekanntem
Verhalten), indem das Modell und die UPPAAL-Query so modifiziert werden, dass möglichst
viele dieser Transitionen verwendet werden. Im Prinzip genügt es auch, die Zählvariable bei
Transitionen zu s∀ (einschließlich Selbsttransitionen) zu erhöhen5.

Lediglich eine minimale Anzahl zu fordern, reicht jedoch alleine nicht aus, da so möglicher-
weise Deadlocks unerkannt bleiben könnten, die nur unter Verwendung von weniger Tran-
sitionen zu erreichen sind. Durch Benutzen der UPPAAL Kommandozeilenoption -t2 lässt
sich allerdings erreichen, dass möglichst das Gegenbeispiel mit der geringsten verwendeten
Zeit ermittelt wird. Ersetzt man nun die bisherige Query-Formel durch eine Variante, die dem
Model Checker eine „Zeitstrafe“ gibt, wenn zu wenige Transitionen zu s∀ genutzt werden,
dann kann ein Minimum für neues Verhalten festgelegt werden, das in Gegenbeispielen ent-
halten sein soll. UPPAAL versucht dann, die Anzahl dieser Transitionen der chaotischen Hülle
bis zur angegebenen Schranke zu maximieren. Kann der festgelegte Wert nicht erreicht wer-
den, dann kann UPPAAL dennoch ein Gegenbeispiel ermitteln, sofern eines existiert. Für eine
Clock t, eine Integer-Variable x und ein gewünschtes Minimum M muss dazu unsere Query

5Dies reduziert die notwendigen Änderungen am Modell deutlich, hat allerdings kaum Auswirkungen auf die
Länge des Gegenbeispiels.

220

6.3 Validierung

der Form A[] not p mit p = (ilegacyComponent3.sDelta or deadlock) durch
A[] not(t > M - x and p) ersetzt werden.

Problematisch bei diesem Ansatz sind allerdings Kreise im Verhaltensmodell der Altkomponen-
te, sofern diese im Zusammenspiel mit dem Kontext beliebig oft durchlaufen werden können.
UPPAAL tendiert dazu, diese dazu zu verwenden, die Zählvariable zu erhöhen, ohne das Modell
weiter durchsuchen zu müssen (was wünschenswert wäre). Sämtliche Schleifeniterationen nach
der ersten sind für die Verhaltenssynthese uninteressant, kosten jedoch beim Testen Zeit. Daher
sollte die Minimalanzahl für neue Interaktionen nicht zu groß gewählt werden, zumal Schleifen
in reaktiven Systemen zwangsläufig vorkommen.

2.) Maximierung der Anzahl der unterschiedlichen Transitionen zu s∀ im Ge-
genbeispiel Um nutzlose Schleifendurchläufe zu vermeiden, kann auch die Anzahl der
unterschiedlichen Transitionen zu s∀ im Gegenbeispiel maximiert werden, statt für die
Gesamtdurchläufe durch diese Transitionen einen Mindestwert festzulegen. Dies kann er-
reicht werden, indem an Stelle einer einzelnen Booleschen-Variablen je eine für je-
de dieser Transitionen definiert wird. Diese werden mit 0 initialisiert und bei Verwen-
dung der jeweiligen Transition auf 1 gesetzt. Analog zum letzten Ansatz kann als Query
A[] not (t > M - x1 - x2 .. - xn and p) verwendet werden. Die Variablen x1

bis xn sind die erwähnten Markierungsvariablen für die n Transitionen zu s∀. Als M sollte hier
mindestens n gewählt werden.

Ein Nachteil dieses Ansatzes ist allerdings, dass eine einzelne der s∀-Transitionen mehreren tat-
sächlichen Transitionen der Altkomponente entsprechen kann. Damit würden die Gegenbeispie-
le bei kleinem IO-Alphabet, abhängig von Altkomponente und Kontext, möglicherweise kleiner
ausfallen als bei dem anderen Ansatz. Bei dem hier vorgestellten Beispiel ist das allerdings nicht
der Fall, da jede Nachricht nur einmal im Statechart der Altkomponente vorkommt.

3.) Maximierung der Überdeckung von Transitionen des Kontextes Eine weitere
Alternative ist die Maximierung der Anzahl der im Gegenbeispiel verwendeten Transitionen des
Kontextes. Im Prinzip kann dafür analog zum vorhergehenden Ansatz vorgegangen werden, mit
dem Unterschied, dass die Markierungsvariablen für andere Transitionen verwendet werden. Vor-
teil hierbei ist, dass nicht lediglich jede Nachricht einmal verwendet wird. Allerdings wird hier
Verhalten der Altkomponente, das erst durch mehrere Schleifendurchläufe innerhalb des Kon-
textes erreicht wird, nicht sofort erreicht. Zudem wird das bereits synthetisierte Verhalten nicht
beachtet.

Anmerkungen All diese Optimierungen können das Erkennen von Gegenbeispielen im be-
reits synthetisierten Teil des Modells verzögern, da der Model Checker zunächst in der chaoti-
schen Hülle die „Zeitstrafe“ abbauen wird. Ein Lösungsansatz ist, statt die Query zu verändern,
die entsprechende Zeitbedingung für alle Transitionen, die zum Deadlock-Zustand führen, zu
verwenden. Allerdings kann dadurch das Modell deutlich größer werden.

221

Kapitel 6 Werkzeugunterstützung

Alternativ kann auch die Bedingung, dass kein echter Deadlock erreicht wird, aus p herausgezo-
gen werden und auf Ebene der Konjunktion gestellt werden, sodass die Zeitbedingung für echte
Deadlocks nicht gilt. Allerdings müsste dazu zusätzlich der explizite Deadlock-Zustand so an-
gepasst werden, dass er alle Eingaben akzeptiert, damit kein „falscher“ Deadlock des Kontextes
entsteht6.

Die einzelnen Lösungsvorschläge sind jeweils nicht für jede Situation optimal und sollten, mög-
licherweise in Kombination, auf das jeweilige Einsatzszenario (also die Altkomponente und den
Kontext) abgestimmt verwendet werden.

Generell ist das Optimierungspotential eingeschränkt, wenn ε-Transitionen (die ein Zeitvergehen
simulieren) zugelassen werden: Problematisch ist, dass diese zunächst für jeden Zustand ange-
nommen werden müssen und nicht durch den Kontext eingeschränkt werden. Selbst nach einer
ansonsten vollständigen Synthese müssen alle Zustände, für die weder bereits eine Transition mit
ε-“Eingabe“ vorliegt noch eine ausgeschlossen wurde (durch Beenden des Testlaufs in diesem
Zustand), erneut besucht werden, nur um abzuwarten, ob innerhalb des maximalen Zeitrahmens
in einen anderen Zustand geschaltet wird.

Evaluierung zu den Verbesserungsvorschlägen Die vorgeschlagenen Ansätze zur Ge-
winnung längerer Gegenbeispiele wurden jeweils evaluiert, um ihren Einfluss auf das Verfahren
untersuchen und vergleichen zu können. Da die Laufzeit der Simulation hier wenig über den Tes-
taufwand im realen System aussagt, wurde als Maßstab zum Vergleich der Varianten die Anzahl
an Einzelschritten und Iterationen bis zum Ende des Syntheseverfahrens erhoben. Der Speicher-
verbrauch wurde hier ebenfalls vernachlässigt, da sich dieser im Wesentlichen aus der Größe
des Zustandsraums ergibt, der sich durch die Optimierung in den Beispielen kaum unterscheidet
(verbrauchter Speicher liegt bei ca. 60 MB).

Die Evaluierung wurde sowohl mit dem intakten als auch dem fehlerhaften Modell durchgeführt.
Da, wie oben beschrieben, die Periodenzeit (ε) einen hohen Einfluss auf den Testaufwand hat,
wurde das Verfahren jeweils einmal mit und ohne ε durchgeführt.

Tabelle 6.1 zeigt die Ergebnisse der Simulationsdurchläufe für eine erfolgreiche Integration der
Altkomponente für die verschiedenen Verfahren der Gray-Box-Integration, Tabelle 6.2 zeigt die
entsprechenden Ergebnisse für eine fehlerhafte Integration. Die Resultate können wie folgt in-
terpretiert werden.

Die Maximierung von Transitionen zu s∀ im Gegenbeispiel bis zu 5 („1. Vorschlag“) liefert bei
Verwendung mit ε-Transitionen in der chaotischen Hülle eine Verschlechterung. Dies kann in
einer ungünstigen Wahl der Grenze, bis zu der maximiert werden soll, begründet sein. Die ent-
sprechenden Gegenbeispiele zeigten jedoch, dass Kreise im Automaten unnötig oft durchlaufen
wurden. Dennoch ergibt sich ohne Zulassen von ε-Transitionen eine Verbesserung gegenüber der
normalen Anfrage an den UPPAAL Model Checker.

6Der Deadlock-Zustand würde dadurch zweckentfremdet und zu einer Art zweitem s∀-Zustand, bis die Zeitbedin-
gung in der Query erfüllt ist.

222

6.3 Validierung

Die Ergebnisse bei Maximierung der Anzahl verschiedener Transitionen zu s∀ im Gegenbei-
spiel („2. Vorschlag“) und die bei Maximierung der Transitionsüberdeckung im Kontext („3.
Vorschlag“) ähneln einander. Diese Ansätze liefern für die erfolgreiche Integration auch mit ε-
Transitionen bessere Resultate, ohne können sie das komplette Verhalten sogar in einem einzigen
Durchlauf synthetisieren. Bei Anwendung auf die fehlerhafte Integration sind die Ergebnisse oh-
ne Verwendung von ε-Transitionen deutlich besser als bei den anderen beiden Varianten. Werden
diese zugelassen, dann sind die Laufzeiten schlechter als bei normaler Anfrage an den Model
Checker. Hier sind eventuell Verbesserungen möglich, wenn die Vorschläge aus den vorherigen
Anmerkungen umgesetzt werden, mit denen zunächst echte Deadlocks erkannt werden könnten.

Tabelle 6.1: Ergebnisse der Evaluierung der Verbesserungsvorschläge für die korrekte Integrati-
on (Iterationen / Einzelschritte).

normale Anfrage 1. Vorschlag 2. Vorschlag 3. Vorschlag
mit ε-Transitionen 10 / 62 9 / 81 6 / 46 6 / 54
ohne ε-Transitionen 10 / 60 4 / 40 1 / 17 1 / 16

Tabelle 6.2: Ergebnisse der Evaluierung der Verbesserungsvorschläge für die fehlerhafte Integra-
tion (Iterationen / Einzelschritte).

normale Anfrage 1. Vorschlag 2. Vorschlag 3. Vorschlag
mit ε-Transitionen 7 / 31 7 / 41 7 / 39 7 / 49
ohne ε-Transitionen 7 / 29 4 / 24 3 / 18 3 / 22

6.3.1.4 Synthese Komponentenverhalten

Das Ziel der Syntheseumsetzung ist es die in Kapitel 5 vorgestellten Konzepte zu implementie-
ren, so dass eine Synthese des Komponentenverhaltens direkt aus Fujaba RT angestoßen werden
kann. Dieses Ziel wurde nur zum Teil erreicht. Grund hierfür ist, dass die initiale Implementie-
rung auf einem diskreten Zeitmodell nach [Bey02] aufbaut. Diese Implementierung ist zwar aus
Fujaba RT aufrufbar, skaliert allerdings nicht und wurde auch nicht vollständig auf das in Kapi-
tel 5 vorgestellte kontinuierliche Zeitmodell umgestellt. Wir können daher die Rollenverhalten
rear und registree des Registration- und DistanceCoordination-Musters, über die eine Komposi-
tionsregel gilt (siehe Abbildung 6.20), nicht in dem vorgestellten Umfang betrachten, da diese
nach der diskreten Zeitsemantik zu keinem Ergebnis kommt. Dies liegt an der zu hohen Spei-
cherlast und Laufzeit des Ansatzes mit diskreter Zeitsemantik. Wir werden daher im Folgenden
zuerst zwei angepasste Verhalten, den synthetisierten Automaten sowie ein Laufzeitvergleich der
diskreten und kontinuierlichen Zeitsemantik betrachten.

Die vereinfachte rear- und registree-Rolle spezifizieren im Vergleich zu den in Kapitel 5 auf Sei-
te 141 betrachteten Verhalten Uhren mit minimalen Werten (siehe Abbildung 6.39 und 6.40), um
den Zustandsraum durch die diskrete Zeitsemantik möglichst klein zu halten. Die Reduzierung

223

Kapitel 6 Werkzeugunterstützung

des Zustandsraums ist hierdurch extrem, da nach der diskreten Zeitsemantik jeder Integerwert
ein zusätzlicher Zustand ist. Dies macht sich besonders während der notwendigen Produktauto-
matenbildung für die Synthese bemerkbar. Um den Unterschied zu den bisherigen Automaten
der gezeigten Validierung zu verdeutlichen, werden wir die Nachrichten in den Automaten der
Synthese klein schreiben.

InitialState

noConvoy waiting

convoy

Statechart_for_System | clocks: cr c2

/ convoyProposal()
{cr}

1 <= cr <= 1 /

0 <= cr <= 0
startConvoy()

/
breakConvoy() /

Abbildung 6.39: Vereinfachte rear-Rolle

InitialState

unregistered registered

waiting

Statechart_for_legacyRailCab.sub1 | clocks: ce1 ce2

/ register()

0 <= ce1 <= 1 / unregister()

0 <= ce1 <= 0 / requestUpdate()

0 <= ce2 <= 0
performUpdate()

/

1 <= ce2 <= 1 / unregister()

Abbildung 6.40: Vereinfachte registree-Rolle

Das Ergebnis der Synthese ist das rollenkonforme REAL-TIME STATECHART aus Abbildung
6.41. Alle Zustände der registree (Zustände (registree.unregistered,. . .), (registree.registered,.
. .) und (registree.waiting,. . .)) werden zu einem Zustand der rear-Rolle zusammengefasst.
Der Zustand (registree.unregistered,rear.convoy) wurde durch anwenden der Kompositionsregel
entfernt. Die Verfeinerungsbeziehung der Rollenverhalten wurde hierdurch jedoch nicht verletzt.

224

6.3 Validierung

Abbildung 6.41: Synthetisiertes Komponentenverhalten für die vereinfachten Rollen

Wie einleitend in diesen Abschnitt diskutiert, ist eine diskrete Zeitsemantik nicht oder nur be-
dingt anwendbar für mechatronische Systeme. Ein Problem ist die Zustandsraumexplosion. Eine
weitere wesentliche Begründung hierfür ist, dass die Modellierung physikalischer Effekte mit
diskreter Zeitsemantik schlecht oder teilweise gar nicht möglich ist (siehe Abschnitt Anforderun-
gen und Voraussetzungen auf Seite 67). Wir werden im Folgenden einen Vergleich der diskreten
Zeitsemantik mit unserer Umsetzung der Zone Graphen vergleichen, wie wir sie bereits für die
Verfeinerung von Multielementen in Abschnitt 6.3.1.2 eingesetzt haben.

Wie schon am obigen Beispiel erläutert, ist das Eingabemodell der Konformitätsüberprüfung ein
abstraktes zeitbehaftetes Modell der parallelen Komposition von zwei oder mehreren Timed Au-
tomata. Die Größe dieses Eingabemodells hat einen entscheidenden Faktor auf die Laufzeit. Wir
werden daher im Folgenden genau die Zeitabstraktion beider Ansätze vergleichen. Um die Effek-
te zu betrachten haben wir die beiden einfachen Rollenautomaten um die Parameter earliestCon-
voy, maxConvoy und maxRegister erweitert (siehe Abbildung 6.42 und 6.43). Dies ermöglicht
es uns die höchsten Grenzwert sowie die Differenz zwischen Grenzwerten in einem oder in ver-
schieden Automaten der parallelen Komposition zu vergleichen. Für den Vergleich haben wir
als Basis die Automaten in UPPAAL spezifiziert, da beide Ansätze diese Eingabe verarbeiten
können.

Tabelle 6.44 fasst die Ergebnisse der Evaluierung zusammen. Angefangen haben wir die Eva-
luierung mit kleinen Werten, die schrittweise erhöht wurden. Zudem wurde auch die Differenz
zwischen den drei Parametern variiert. Erwartungskonform ist die Zeitabstraktion durch Zone
Graphen erheblich effizienter.

225

Kapitel 6 Werkzeugunterstützung

breakConvoy?

cr := 0startConvoy!

convoy

cr >= earliestConvoy

cr <= maxConvoy
noConvoy

Abbildung 6.42: Parametrisierte rear-Rolle

unregister! lifetick!

register!

unregistered
registered

ce := 0

ce := 0

ce <= maxRegister

Abbildung 6.43: Parametrisierte registration-
Rolle

(earliestConvoy,maxConvoy,maxRegistered) A
FIS 16 100 5
ZG 16 38 21
FIS 33 226 15
ZG 44 102 68
FIS 200 1600 172
ZG 67 153 104
FIS 245 2102 287
ZG 122 283 344
FIS 645 5397 1917

FIS 848 7683 4208
ZG 122 283 344
FIS 1233 11301 11662
ZG 254 591 1396
FIS xxx xxx xxx
ZG 192 443 729
FIS xxx xxx xxx

FIS xxx xxx xxx
ZG 72 168 141

(1,5,10)

(2,10,40)

(2,10,20)

(0,1,1)

(4,5,10)

(1,2,2)

(3,15,30)

(9,10,20)

(5,20,20)

(3,15,20)

ZG 195 440 708

ZG 122 283 338

nsatz States Transitions Time (ms)

Abbildung 6.44: Komponentenverhaltensynthese: Evaluierung diskrete und kontinuierliche
Zeitsemantik

226

6.3 Validierung

Ein Vergleich der Anzahl der Zustände, Transitionen und Berechnungsdauer ist in den Abbil-
dungen 6.45, 6.46 und 6.47 dargestellt. Aus dem Vergleich der Zustände und Transitionen kann
beobachtet werden, dass mit Zunahme der Zustände in dem diskreten Zeitmodell auch die An-
zahl der Transitionen stark zunimmt. In dem Zone Graphen ist diesbezüglich kein beobachtbarer
Zusammenhang erkennbar.

0

200

400

600

800

1000

1200

1400

(0,1,1) (1,2,2) (4,5,10) (1,5,10) (9,10,20) (2,10,20) (3,15,20) (2,10,40) (3,15,30) (5,20,20)

(earliestConvoy,maxConvoy,maxRegistered)

St
at

es

FIS ZA

Abbildung 6.45: Vergleich Anzahl der Zustände

Der Vergleich der Berechnungszeit beider Verfahren lässt folgern, dass die der Zone Graphen
nicht proportional zu den absoluten Werten der Parameter ansteigt, während dies der Fall für die
diskrete Zeitsemantik ist. Die einfache Begründung liegt darin, dass der Zone Graph nicht die
absoluten Werte betrachtet, sondern nur die Intervalle. Aus diesen Vergleichen lässt sich folgern,
dass der Syntheseansatz mit Zone Graphen praktikabel für die betrachtete Anwendungsdomäne
ist.

6.3.1.5 Codegenerierung und WCET-Analyse

Die einzelnen Elemente der Komponenten werden entsprechend dem Komponenten-Metamodell
auf Klassen abgebildet. Das Klassenmodell wird dabei während der Modellierung automatisch
aus dem Komponentenmodell abgeleitet und beinhaltet die Methoden für die Strukturanpassung.
Aus diesem internen Modell wird objektorientierter C++ Code generiert. Für die Strukturan-
passungen werden zusätzlich Factory Klassen angelegt, wie in Abbildung 6.48 abgebildet. Die
Factory-Klassen ermöglichen das kontrollierte erzeugen (und löschen) der Instanzen.

227

Kapitel 6 Werkzeugunterstützung

0

2000

4000

6000

8000

10000

12000

(0,1,1) (1,2,2) (4,5,10) (1,5,10) (9,10,20) (2,10,20) (3,15,20) (2,10,40) (3,15,30) (5,20,20)

(earliestConvoy,maxConvoy,maxRegistered)

Tr
an

si
tio

ns

FIS ZA

Abbildung 6.46: Vergleich Anzahl der Transitionen

0

2000

4000

6000

8000

10000

12000

14000

(0,1,1) (1,2,2) (4,5,10) (1,5,10) (9,10,20) (2,10,20) (3,15,20) (2,10,40) (3,15,30) (5,20,20)

(earliestConvoy,maxConvoy,maxRegistered)

Ti
m

e
(m

s)

FIS ZA

Abbildung 6.47: Vergleich der Berechnungszeit

228

6.3 Validierung

Wie bereits in Abschnitt 6.2 diskutiert kann die Codegenerierung für die Strukturanpassungen
noch nicht vollständig automatisch mit der bisherigen Codegenerierung für HYBRID RECONFI-
GURATION CHARTS ausgeführt werden, da die hierfür benötigten umfangreichen Metamodel-
lanpassungen noch nicht vollständig in die bisherige Codegenerierung eingeflossen sind. Der ge-
nerierte Code muss daher manuell angepasst werden, um die Anwendung ausführen zu können.
Die manuelle Anpassung beinhaltet im Wesentlichen die direkte Zuordnung von strukturellen
Elementen zu Verhalten (z.B. Port zu Portverhalten, Komponente zu Komponentenverhalten).
Dies ist momentan nicht gegeben, da die HYBRID RECONFIGURATION CHART Codegenerie-
rung ein Gesamtverhalten für eine Komponente generiert. Wird allerdings unabhängig für die
einzelnen Elemente sowie deren Überlappung die Codegenerierung angestoßen, so wird keine
manuelle Anpassung benötigt.

Als Validierung haben wir das Hinzufügen und Löschen von Konvoiteilnehmern mit den be-
schriebenen Verhalten betrachtet und durch ein Testsystem simuliert. Hierbei wurde gleichzeitig
die Funktion evaluiert, die Parameter der Profile zur Laufzeit einer neuen Situation anzupas-
sen. Tabelle 6.3 gibt einen Überblick über die Größe und den Speicherverbrauch des generierten
Codes für die RailCab Komponente und das ConvoyCoordination-Muster mit der benötigten Fac-
tory. Im Vergleich zu der in der Arbeit von Burmester [Bur06] evaluierten HYBRID RECONFIGU-
RATION CHART Codegenerierung ist für die Initialisierung des Systems durch den zusätzlichen
Aufwand der Factory Klassen, ein größer Ressourcenbedarf notwendig. Für dynamische Sys-
teme ergibt sich allerdings durch diesen Ansatz ein Vorteil, da nicht alle Ressourcen a priori
festgelegt und komplett unveränderbar vorinstanziiert werden müssen.

Als Ergebnis der Validierung kann festgehalten werden, dass eine Anwendung unter den gege-
benen Bedingungen generiert und erfolgreich ausgeführt werden kann. Anzumerken ist hierbei,
dass wir als Zielsystem nur eine PC-Plattform gewählt haben. Durch die Kapselung der betriebs-
systemspezifischen Prozeduren durch die entwickelten Frameworks (siehe Abschnitt 6.1) gehen
wir davon aus, dass die Codegenerierung auch für weitere Plattformen anwendbar ist.

Die Codegenerierung ist zudem Grundlage für die WCET-Analyse, die, bis auf die Schleifen-
analyse, plattformspezifisch auf Codeebene durchgeführt werden muss. Zuerst wird für die (Ti-
med) Story Diagramme eine WCNI berechnet. Dieses Ergebnis dient dann zusätzlich zu dem
übersetzten Code als Eingabe in ein entsprechendes WCET-Analysewerkzeug. Das verwendete
Werkzeug Bound-T (siehe Abschnitt 6.1.2.2) ermöglicht die Angabe der WCNI für Schleifen
durch sogenannte Assertions, mit denen die Schleifen beschrieben werden, die eingeschränkt
werden sollen sowie die maximale Anzahl der Durchläufe für diese Schleife. Die Abbildung
der Assertions wurde dabei im Rahmen der Projektgruppe ReCab [BBB+09] für das Werkzeug
Bound-T automatisiert.

Das Ergebnis der WCET Berechnung wird in einem (Ressourcen) Profil hinterlegt (siehe Ab-
schnitt 6.1.2.1). Für die hier vorgestellten Beispiele benötigte das verwendete WCET-Werkzeug
nur wenige Sekunden. Für die Komplexität sowie die Herleitung der WCET Ergebnisse sei auf
Abschnitt 6.1.2.2 (Seite 192) verwiesen.

229

Kapitel 6 Werkzeugunterstützung

RailCab

createDelegation ():Delegation

PortCoordinator

updatePort (p:MemberPort)

MemberPortFactory

getNewMemberPort ():MemberPort

getCountOfFreeMemberPort ():Integer

getInstanceLimitForMemberPort ():Integer

setFreeMemberPort (p:MemberPort)

setInstanceLimitForMemberPort (val:Integer)

setProfileLimits (limits:Integer[])

MemberPort

DelegationCoordinator

createDelegation ():Delegation
PosCalcDelegation

PosCalcDelegationFactory

cd Classes for CodegenExampleShuttle

11

has

1

1

has

*1

has

1

1
has

1

1

has

1

*
has

*1

has

1

1

has

1

1

has 1

1

has

Abbildung 6.48: Generierte Klassen

Speicher pro
Typ Dateien LoC Instanz [kBytes]

RailCab.h 23
RailCab.cpp 74 2,12

Component RailCabStatechart.h 117
RailCabStatechart.cpp 1267 47,8

Σ 1481
Coordinator.h 41

Coordinator.cpp 323 7,74
Pattern Member.h 41

Member.cpp 90 2,28
Σ 495

CoordinatorFactory.h 26
Factory CoordinatorFactory.cpp 91 2,67

Σ 117
Σ 2093

Tabelle 6.3: Generierte Fujaba Klassen

230

6.3 Validierung

6.3.2 Weitere Anwendungsszenarien und Fazit

Neben dem Konvoi-Szenario wurden in [May09, May08] die Anwendung des kompositionellen
Modellierungsansatzes der MECHATRONIC UML betrachtet, um weitere Szenarien der RailCab-
Anwendung zu implementieren. Dabei konnten REAL-TIME COORDINATION PATTERNS für
Szenarien wie Bahnübergang oder Weichenfahrt entwickelt werden sowie eine Einteilung dieser
Muster bezogen auf die Ebene der Koordination zwischen verschiedenen Komponenten (z.B.
Koordination innerhalb eines RailCabs oder zwischen RailCabs).

Der Gesamtansatz der MECHATRONIC UML wurde und wird zudem im Rahmen des Sonder-
forschungsbereichs 614 in einem ganzheitlichen Ansatz zur Entwicklung von mechatronischen
Systemen (von der domänenübergreifenden Entwicklung bis hin zur domänenspezifischen Ent-
wicklung) an zahlreichen Demonstratoren erprobt [ADG+09]. Aus diesen Ergebnissen kann ge-
schlossen werden, dass die MECHATRONIC UML für die betrachteten Systeme geeignet ist.

Außerhalb der RailCab-Anwendung wurde die Integration von Altkomponenten an einer
Scheibenwischer-Anwendung in Kooperation mit der Hella KGaA Hueck & Co (siehe Abschnitt
6.2) evaluiert [HMSN10a, HMSN10b]. Da wir nicht direkt auf die Alktomponenten zugreifen
konnten, wurden diese entsprechend nach Vorgaben (z.B. Patente) nachimplementiert und ana-
lysiert. Grundsätzlich scheint daher eine Anwendung der Altkomponentenintegration auch im
industriellen Umfeld möglich zu sein. Wünschenswert wäre aber gerade in diesem Bereich eine
Validierung mit umfangreicheren industriellen Fallstudien.

Insgesamt lässt sich folgern, dass mit der Werkzeugumgebung Anwendungen aus der betrachte-
ten Domäne mechatronischer Systeme umgesetzt werden können. Die gestellten Anforderungen
aus der Einleitung sowie Abschnitt 2.2 wurden dabei erfüllt. Für die Details zu den Evaluierun-
gen der entwickelten Methoden sei auf Abschnitt 6.3.1 verwiesen.

231

Kapitel 6 Werkzeugunterstützung

232

Kapitel 7

Verwandte Arbeiten

Die Beherrschung komplexer Softwaresysteme, wie dies für mechatronische Systeme benötigt
wird, verlangt eine modellgetriebene Softwareentwicklung. Durch die Modellbildung wird eine
Abstraktion ermöglicht, die zur Reduzierung der Komplexität führt. Die durch die MECHATRO-
NIC UML propagierte Separierung in Echtzeitkoordinationsmusterverhalten und Echtzeitverhal-
ten der Komponenten ermöglicht eine kompositionelle Verifikation großer verteilter Systeme.
Diese wohldefinierte Separierung haben wir in dieser Arbeit ausgenutzt, um einen neuen Ansatz
zur Unterstützung der Komposition und Wiederverwendung in einem komponentenbasierten,
modellgetriebenen Softwareentwicklungsansatz für mechatronische Systeme mit eingebettetem
Charakter, kompositionellen Strukturanpassungen und Echtzeitverhalten zu präsentieren.

Es gibt eine ganze Reihe an Ansätzen, die die Anforderungen mechatronischer Systeme adres-
sieren. In diesen Ansätzen ist allerdings die Verhaltensanpassung häufig nur auf einfache Rekon-
figurationen beschränkt oder es fehlt gänzlich an einer Unterstützung für die Wiederverwendung
von Komponenten mit Strukturanpassungen oder Altkomponenten. Im Unterschied zu diesen
Ansätzen ist unser Ansatz in einen nahtlosen Entwicklungsansatz integriert, welcher Echtzeitan-
forderungen für komplexe, verteilte Systeme garantiert und sogar eine vorhersagbare Codegene-
rierung für die verifizierten kompositionellen Strukturanpassungen ermöglicht.

Im folgenden Abschnitt 7.1 werden wir zuerst einen Vergleich mit Ansätzen vornehmen, die
einen ganzheitlichen Entwurf mechatronischer Systeme adressieren. Anschließend werden wir
spezifischer für die vorgestellten Konzepte zur Unterstützung der Komposition und Wiederver-
wendung Vergleiche in Abschnitt 7.2, 7.3 und 7.4 vornehmen.

7.1 Modellgetriebene Entwicklungsansätze

Die grundlegende Arbeit zu diesem Vergleich wurde in [GH06b] vorgestellt. Als Anwendungs-
beispiel haben wir das RailCab betrachtet. Als relevante Vergleichskriterien haben wir die Un-
terstützung für Modellierung, modellgetriebene Entwicklung sowie die Analyse dieser Modelle
identifiziert.

Die Unterstützung für eine Modellierung ist eine wichtige Voraussetzung für die Entwick-
lung von komplexen Systemen. Der Entwickler benötigt eine Unterstützung für angemessene

233

Kapitel 7 Verwandte Arbeiten

Abstraktions- und Beschreibungstechniken für die spezifischen Probleme. Neben üblichen Be-
schreibungstechniken für das Verhalten, wie Zustandsmaschinen, werden Techniken zur Mo-
dellierung von Verhaltensanpassungen benötigt sowie eine Möglichkeit Altkomponenten zu be-
trachten. Die Unterstützung von Modularität ist daher ein wichtiger Bestandteil, um eine Tren-
nung zwischen verschiedenen Komponenten oder allgemein Verhalten zu ermöglichen und da-
durch Wartbarkeit und Wiederverwendung zu erleichtern.

Die Unterstützung eines modellgetriebenen Entwicklungsansatzes (MDD) ist für komplexe Sys-
teme wichtig, da durch eine Trennung zwischen plattformspezifischen (PSM) und plattformun-
abhängigen Modellen (PIM) erst eine Wiederverwendung von Modellen (Komponenten) ermög-
licht wird. Diese Anforderung geht mit einer Unterstützung von Codegenerierung einher.

Die Modellanalyse kann signifikant die Qualität und Entwicklungskosten verbessern (z.B.
[Wir04]). Eine wichtige Grundlage für die Modellanalyse ist eine wohldefinierte Semantik, da
dies die Voraussetzung für eine Simulation oder eine formale Verifikation ist. Aufgrund der Grö-
ße des Zustandsraums komplexer Systeme werden skalierbare Analyseverfahren benötigt.

Betrachtete Ansätze Auf Basis der beschriebenen Kriterien und der Relevanz der Integrati-
on zwischen Softwaretechnik und Regelungstechnik für mechatronische Systeme, haben wir (do-
mänenspezifische) Stand der Technik Ansätze, kommende Standards und akademische Ansätze
betrachtet. Eine mangelnde Überdeckung der gestellten Anforderungen ist dabei Ausschlusskri-
terium für die Aufnahme der Ansätze in den Vergleich.

Als de facto Standard in der Industrie betrachten wir MATLAB/Simulink mit Stateflow
(im Folgenden mit MATLAB bezeichnet). Domänenspezifische Ansätze mit Softwaretechnik-
Hintergrund sind CHARON, Masaccio und Giotto (im Folgenden mit Masaccio bezeichnet), Hy-
bridUML in Kombination mit HL3 (im Folgenden mit HybridUML bezeichnet) und das Tripple
HyROOM/HyCharts/Hybrid Sequence Charts (im Folgenden mit HyROOM bezeichnet). Zusätz-
lich betrachten wir auch den Stand der MECHATRONIC UML vor dieser Arbeit als einen Ansatz
mit Hintergrund aus der Softwaretechnik. HyVisual/Ptolemy II (im Folgenden mit HyVisual be-
zeichnet) ist ein Ansatz aus dem klassischen Engineering Bereich. SysML als (kommender) En-
gineering Standard wird ebenfalls untersucht.

Tabelle 7.1 zeigt einen Überblick der betrachteten Ansätze unter Angabe des Namens, die be-
trachteten Referenzen und der URL.

Ansatz Referenzen URL
CHARON [ADE+01, AIK+03, AGLS01] www.cis.upenn.edu/mobies/charon/

HybridUML [BBHP04] www.informatik.uni-bremen.de/agbs/research/hybriduml/

HyROOM [SPP01, BBP+02, GSB98, GKS00] www4.in.tum.de/~stauner/

HyVisual [HLL+03, BCL+05] ptolemy.eecs.berkeley.edu/

Masaccio [HKSP02, HHK01, Hen00] www.eecs.berkeley.edu/~fresco

MATLAB [ASK04] www.mathworks.com

MECHATRONIC UML [GBSO04, BGT05, BGO06, BGK05, BGST05] www.fujaba.de/projects/realtime/

SysML [Obj05a] http://www.omgsysml.org/

UMLh [FNW98, FJW97] swt.cs.tu-berlin.de/~nordwig/HYFOS/

Tabelle 7.1: Untersuchte modellgetriebene Ansätze

234

7.2 Modellierung und Verfeinerung kompositioneller Strukturanpassungen

Übersicht Vergleich Tabelle 7.2 zeigt zusammengefasst das Ergebnis unserer Untersuchung.
Ausführlich wurde dies in [GH06b] diskutiert. Aus der Tabelle lassen sich folgende Beobach-
tungen ableiten: 1) Die meisten Ansätze unterstützen nur sehr restriktiv Konzepte für die Model-
lierung, wie Standardsichten für die Struktur und das Verhalten. Szenario- und Aktivitätssichten,
welche für die frühe Entwicklungsphase oder auch zur Beschreibung von Verhaltensanpassungen
nützlich sein können, werden häufig nicht unterstützt. Einen musterbasierten Ansatz zur Erhö-
hung der Wiederverwendung wird nur von der MECHATRONIC UML unterstützt. 2) Weiterhin
können wir folgern, dass alle Ansätze in der Unterstützung der PSM Ebene schwächen aufwei-
sen, die allerdings notwendig für eine Integration von Altkomponenten oder der Wiederverwen-
dung von Elementen ist und notwendig für (beinahe) jedes komplexes System. 3) Eine weitere
überraschende Beobachtung ist, dass fast alle Ansätze, inklusive MATLAB, eine Codegenerie-
rung anbieten, die keine Garantien für die Einhaltung der spezifizierten Zeitbedingungen und
Anforderungen im Modell zusagen. 4) Eine skalierbare formale Verifikation von Sicherheitsei-
genschaften wird kaum unterstützt, geschweige denn die Berücksichtigung von kompositionellen
Strukturanpassungen und Altkomponenten. Wir können daraus folgern, dass keiner dieser An-
sätze die identifizierten Anforderungen für die Softwareentwicklung mechatronischer Systeme
gerade hinsichtlich der Unterstützung für Wiederverwendung und kompositionellen Strukturan-
passungen erfüllen.

7.2 Modellierung und Verfeinerung kompositioneller
Strukturanpassungen

In dieser Arbeit haben wir TIMED STORY CHARTS vorgestellt, um einen gemeinsamen Forma-
lismus für Echtzeitverhalten mit kompositionellen Strukturanpassungen anzubieten. Weiterhin
haben wir eine Komposition und Wiederverwendung von Lösungen in diesem Formalismus um-
gesetzt durch eine wohldefinierte Verfeinerung und Verifikation der Verfeinerung. Wir können
daher zum einen verwandte Arbeiten im Bereich der Modellierung von Systemen mit Struktur-
anpassungen betrachten. Zum anderen werden wir verwandte Verfeinerungen untersuchen.

7.2.1 Modellierung

Eine abstrakte Vorgehensweise für die Entwicklung dynamischer Architekturen wird in [ZC06]
vorgestellt. Hierbei wird nicht explizit auf Sprachen und konkrete Verifikationsansätze eingegan-
gen. Muster werden in diesem Ansatz ebenfalls nicht berücksichtigt. Die grundsätzliche Idee ein
zusätzliches Adaptionsverhalten einzuführen ist allerdings ähnlich. Die Notwendigkeit der Mo-
dellierung und Analyse von Systemen mit Strukturanpassungen wurde ebenfalls in der Roadmap
[CLG+09] erkannt, es werden jedoch ebenfalls keine konkreten Ansätze vorgestellt.

Bradbury und weitere geben in [BCDW04] eine Übersicht über Modellierungssprachen für die
Modellierung von dynamischen Softwarearchitekturen. Die Übersicht betrachtet Sprachen, die

235

Kapitel 7 Verwandte Arbeiten

A
n

s
a
tz

M
A

T
L

A
B

C
H

A
R

O
N

H
y
b

ri
d
U

M
L

U
M

L
h

H
y
R

O
O

M

M
a
s
a
c
c
io

M
e
c
h
a
tr

o
n
ic

U
M

L

H
y
V

is
u

a
l

S
y
s
M

L

Struktur:

 Instanzen und/oder Typen X X X X X X X X X

 Deployment -- -- -- -- -- -- X -- --

 Muster -- -- -- -- -- -- X -- --

 Prozess/Task Sicht -- -- -- -- -- -- -- -- --

Verhalten:

 Kontinuierlich X X X X X X X X X

 Zustandsmaschine X X X X X X X X X

 Szenarien -- -- -- -- X -- X -- X

 Aktivitäten -- -- -- -- -- -- X -- X

 Anpassung X X -- X X X X X --

 Kompositional -- -- -- -- -- -- -- -- --

 Modularität X X X X X X X X X

MDD Level

 PIM X X X X X X X X X

 PSM -- -- X -- -- X X -- --

 Code X X X X X X X X --

Codegenerierung

 Nicht-Echtzeitfähig (nur simulativ) -- -- -- X -- -- -- X --

 Echtzeitfähig X X X -- X X X -- --

 Echtzeitfähig + korrekte zeitliche Aktivierung -- X X -- -- X X -- --

 Echtzeitfähig + korrektes Scheduling (inkl. WCET) -- -- -- -- -- X X -- --

Semantik X X X X X X X X --

Simulation X X X X X -- X X --

Scheduling Analyse -- X -- -- -- X X X --

Formale Verifikation / Model Checking X X -- -- -- X X -- --

 Skalierbar -- X -- -- -- X X -- --

 Kompositionale Strukturanpassung -- -- -- -- -- -- -- -- --

 Altkomponenten -- -- -- -- -- -- -- -- --

Legende:
 X: unterstützt
 --: nicht unterstützt

Tabelle 7.2: Übersicht Vergleich MDD Ansätze

236

7.2 Modellierung und Verfeinerung kompositioneller Strukturanpassungen

auf 1) Graphtransformationen basieren, die auf 2) Prozessalgebren basieren und Sprachen, die
auf 3) formaler Logik basieren.

Zu den Ansätzen, die auf Graphtransformationen basieren gehören die von Le Métayer [LM98],
Hirsch et. al. [HIM98], Taentzer et. al. [TGM00], Gyapay et. al. [GVH03], Rivera et al. [RDV09]
und Boronat et. al. [BÖ10].

Die Ansätze von Le Métayer [LM98] und Hirsch et. al. [HIM98] basieren auf einer kontextfreien
Grammatik, deren Produktionsregeln als Graphtransformationen spezifiziert sind. Der Ansatz
von Taentzer et. al. [TGM00] modelliert Strukturanpassungen über Graphtransformationen. All
diese Ansätze betrachten keine Verfeinerung sowie Zeit.

Ansätze zu 1), die Zeit berücksichtigen sind die von Gyapay et. al. [GVH03], Rivera et al.
[RDV09] und Boronat et. al. [BÖ10]. Der Ansatz von Gyapay et. al. setzt das Vergehen von
Zeit durch diskrete Zeitticks um. Weiterhin können zeitliche Eigenschaften im Vergleich zu un-
serem Ansatz nicht einzelnen Teilgraphen hinzugefügt werden. In dem Ansatz von Rivera et al.
wird Zeit durch eine globale Clock umgesetzt, welche nicht zurückgesetzt werden kann. Wei-
terhin können Graphtransformationsregeln nicht durch einen Time Guard eingeschränkt werden.
Boronat et. al. stellt einen Ansatz vor, der ebenfalls Zeit durch eine globale Clock umsetzt, die
nicht zurückgesetzt werden kann. Zudem unterstützt dieser Ansatz keine Invarianten.

Darwin [MK96], LEDA [CPT99] und Dynamic Wright [ADG98] sind Ansätze, die auf Prozes-
salgebren basieren. Dynamic Wright unterstützt eine Verhaltensbeschreibung und Verfeinerung
ebenfalls über Folgen von externen Nachrichten und ist somit ähnlich zu der in dieser Arbeit ver-
wendeten Verfeinerung. Zeit wird jedoch nicht berücksichtigt. Darwin und Leda sind Ansätze,
die auf dem π-Kalkül [MPW92] basieren. Zeit sowie eine Überprüfung einer Verfeinerung wird
von diesen Ansätzen nicht unterstützt.

Die Ansätze von Gerel [EW92] und Aguirre et. al. [AM02] sind Beispiele für eine auf formaler
Logik basierenden Sprache. Der Ansatz von Gerel beschreibt Vorbedingungen für die Ausfüh-
rung von Regeln mit Prädikatenlogik (erster Stufe). Der Ansatz von Aguirre et. al. beschreibt das
Verhalten von Komponenten mit einer temporalen Logik. Eine Verfeinerung wird durch beide
Ansätze nicht berücksichtigt.

Die existierenden Sprachen zur Modellierung von Strukturanpassungen nutzen verschiedenste
Formalismen für die Beschreibung des Verhaltens. Bis auf die Ansätze im Bereich der Prozes-
salgebren wird keine Verfeinerung betrachtet. All die betrachteten Ansätze unterstützen nur sehr
eingeschränkt die Modellierung von Zeit.

7.2.2 Verfeinerung

Wir betrachten im Folgenden Ansätze, die eine Verfeinerung für Graphtransformationssysteme
oder Timed Automata unterstützen. Im Bereich der Graphtransformationssysteme haben wir die
Ansätze von Giese [Gie07], Heckel und Thöne [HT04] sowie Große-Rhode et. al. [GRPS02]
untersucht. Giese beschreibt eine Verfeinerung für hybride Graphtransformationssysteme (die

237

Kapitel 7 Verwandte Arbeiten

entsprechend kontinuierliche Anteile enthalten). Über die erste Ableitung einer kontinuierlichen
Variable lässt sich Zeit darstellen. Dieser Ansatz fordert eine strikte Einhaltung der (Zeit-) In-
tervalle. Der Erhalt von Protokollverhalten wird nicht betrachtet. Die Ansätze von Heckel und
Thöne sowie Große-Rhode et. al. unterstützen keine Zeit. Der Ansatz von Heckel und Thöne
fokussiert sich zudem auf eine reine Diensterhaltung und kann keine Verifikationsergebnisse er-
halten.

Im Bereich der Timed Automata haben wir die Ansätze von Beyer [Bey02] und Giese et. al.
[GTB+03, BGH05a, Bur06] untersucht. In [Bey02] und [GTB+03] wird jeweils eine Verfei-
nerung über ganzzahlige Clocks (ein diskretes Zeitmodell) definiert. Die Verfeinerungen werden
ebenfalls zu dem in dieser Arbeit vorgestellten Ansatz über Traces definiert. Beide Ansätze unter-
stützen jedoch nicht eine Relaxierung der Zeitintervalle. In [BGH05a, Bur06] wird eine Abstrak-
tion eines HYBRID RECONFIGURATION CHARTS berechnet und anschließend die Korrektheit
der Abstraktion gezeigt. Dieser Ansatz beschreibt eine strikte Einhaltung von Zeitintervallen.
Weiterhin wird nicht die Erfüllung des Protokollverhaltens durch die Verfeinerung garantiert.

7.2.3 Verifikation

Im Folgenden schränken wir die Betrachtung von verwandten Ansätzen für die Verifikation
auf diejenigen ein, die auch kompositionale Strukturanpassungen unterstützen. Ölveczky hat in
[ÖM02, ÖM05, ÖM07] das Werkzeug Real-Time Maude vorgestellt. Real-Time Maude basiert
auf textuellen (objektorientierten) Ersetzungsregeln. Dieser Ansatz unterstützt allerdings keine
Erzeugungen von Uhren und basiert zudem auf einer diskreten Zeitsemantik.

Rensink hat unter anderem in [Ren08] das Werkzeug GROOVE vorgestellt. GROOVE erlaubt ein
Model Checking über eine Graphversion von LTL-Formeln, wobei Gadducci et. al. in [GHK00]
die Anwendbarkeit temporallogischer Formeln auf das zu einem Graphtransformationssystem
generierte Transitionssystem untersucht hat. Baldan et. al. hat in [BCK08] einen Verifikationsan-
satz für Graphtransformationssysteme beschrieben, der auf einer Überapproximation des Verhal-
tens basiert. Die Approximation kann unter Ausnutzung von Gegenbeispielen verfeinert werden
[CGJ+00]. GROOVE sowie der Ansatz von Baldan et. al. betrachten keine zeitlichen Elemente.

Schilling hat in [Sch06] einen Ansatz für den Nachweis von induktiven Invarianten für Graph-
transformationsregeln vorgestellt. Dieser kann ohne die Durchführung einer Erreichbarkeitsana-
lyse beweisen, dass verbotene Graphsituationen im System nicht erreichbar sind. Becker und
Giese haben diesen Ansatz in [BG08] um eine Unterstützung von Zeit bei dem Nachweis von
Invarianten erweitert. Diese Ansätze erlauben den Nachweis von strukturellen Eigenschaften.
Für Eigenschaften wie Deadlocks, die nicht über eine verbotene Struktur definiert werden kön-
nen oder für die der gesamte erreichbare Zustandsraum aufgebaut werden muss, werden durch
diesen Ansatz nicht unterstützt.

238

7.3 Analyse von Altkomponenten

7.3 Analyse von Altkomponenten

Verwandt zu unseren Ansätzen zur Integration von Altkomponenten sind reguläre Inferenzan-
sätze und Modellabstraktionstechniken aus dem Bereich der formalen Verifikation. Wir werden
im Folgenden erst verwandte Ansätze im Bereich regulärer Inferenz vorstellen. Anschließend
werden wir verwandte Arbeiten im Bereich Modellabstraktion diskutieren.

7.3.1 Reguläre Inferenz

Es existieren verschiedene Ansätze, die auf dem Lernalgorithmus von Angluin (siehe Abschnitt
4.2.1) basieren. Einige Ansätze, wie in [BJLS03, HNS03b, Ber06] beschrieben, erweitern Anglu-
ins Algorithmus, zur Verbesserung der Laufzeit für bestimmte Applikationen oder Domänen.
Diese Ansätze nutzen Angluin’s Algorithmus und fügen z.B. zusätzliche Technologien, wie Tes-
ten und Verifikation hinzu. Hierdurch werden primär die Zugehörigkeitsanfragen reduziert.

Hungar et al. [HNS03b, HNS03a, SH03, MNRS04, MRSL07] und Raffelt et al. [RMSM09] op-
timieren den Algorithmus von Angluin durch domänenspezifische Informationen, wie beispiels-
weise Präfix-Abgeschlossenheit und die Ausnutzung eines deterministischen Systems. Hierdurch
reduzieren sie die Anzahl der Zugehörigkeitsanfragen.

Li and Shahbaz et al. präsentieren in ihrem Ansatz [LGS06b, LGS06a, SLG07] wie Tests genutzt
werden können, um parametrisierte Zustandsautomaten zu erlernen. Dieser Ansatz basiert auch
auf Angluins Algorithmus. Zunächst wird ein Test für jede Komponente ausgeführt. Anschlie-
ßend werden die einzelnen Komponenten integriert. Basierend auf den synthetisierten Modellen
werden Testfälle generiert und ausgeführt.

Berg et al. zeigen in [BJR06] einen Ansatz, welcher ebenfalls versucht durch reguläre Inferenz
Zustandsautomaten mit Parametern zu erstellen. Sie nutzen Angluins L∗ Algorithmus, um effi-
zienter auf eine bestimmte Klasse von Systemen arbeiten zu können. Sie optimieren den Ansatz
in dem sie für jeden Zustand die Eingangssignale ableiten und zu äquivalenten Klassen zusam-
menfassen. Dabei gilt die Hypothese, dass alle Eingangssignale die den gleichen Effekt auf einen
Zustandsautomaten besitzen in der gleichen äquivalenten Klassen eingeordnet werden.

Die präsentierten Ansätze in [BPG03, CGP03, GP05] basieren auf einem Automatenmodell des
Systems/der Komponente. Mit diesem Modell und einer Spezifikation lernen sie die benötigten
Annahmen, um die Spezifikation zu garantieren.

Eine Technik, um eine Black Box mittels Model Checking zu überprüfen, wird von Peled und
anderen in [PVY99] vorgestellt. Die Idee die zwei Techniken zu kombinieren, ist weiter aus-
gearbeitet worden zu einer Methode namens Adaptive Model Checking [GPY02]. In [EG+06]
wird dieser Ansatz zu einem Grey Box Checking erweitert. Hierbei wird vorausgesetzt, dass ei-
nige Teile des Systems bereits bekannt sind. Diese Ansätze bieten die Möglichkeit einen Fehler
während der Lernphase zu finden.

239

Kapitel 7 Verwandte Arbeiten

Grinchtein et al. präsentieren in ihrem Ansatz [GJL04, GJP06] wie der Inferenz Algorithmus von
Angluin für zeitbehaftete Systeme genutzt werden kann. Präziser berücksichtigen sie Systeme,
welche mittels deterministischer Event Recording Timed Automata modelliert werden können.
Event Recording Timed Automata [AFH99] sind eine eingeschränkte Klasse von Timed Auto-
mata, die für jede Nachricht (Aktion) eine Uhr vorsehen, die die Zeit von dem letzten auftreten
der Nachricht erfasst.

Fazit Im Prinzip basieren die hier betrachteten Lernalgorithmen alle auf dem von Angluin. Bis
auf [PVY99], versuchen alle Ansätze das ganze Verhalten zu synthetisieren. Erst anschließend
werden Konfliktsituationen gefunden. Unser Black-Box-Ansatz betrachtet im Vergleich dazu be-
sonders das enge Zusammenspiel zwischen dem Kontext und der Altkomponente. Somit ist es
nicht erforderlich das gesamte Verhalten der Altkomponente zu erlernen. Nur der relevante Teil
der Integration ist erforderlich. Ähnlich zu [PVY99] ist unser Ansatz in der Lage reale Feh-
ler nach jedem Lernschritt zu finden. Darüber hinaus ermöglichen wir ein reaktives Verhalten
in Form von ein- und ausgehenden Nachrichten sowie Zeit(-bedingungen) zu berücksichtigen.
Die Betrachtung von reaktiven Verhalten sowie das Ausnutzen der Präfixabgeschlossenheit ist
ähnlich zu den Ansätzen von Hungar et al. [HNS03b]. Die Möglichkeit eingeschränkt Zeit zu
betrachten ist ähnlich zu dem Ansatz von Grinchtein et al. [GJL04].

Insgesamt lässt sich folgern, dass keiner der Ansätze all die relevanten Anforderungen der von
uns betrachteten Systeme adressieren. Die einzelnen Techniken unseres Black-Box-Ansatzes
sind allerdings ähnlich zu den hier betrachteten Verfahren, bzw. basieren hierauf. Unser Gray-
und White-Box-Ansatz lassen sich aufgrund der unterschiedlichen zur Verfügung stehenden In-
formationen, die starke Auswirkung auf das Verfahren haben, nicht direkt mit diesen Ansätzen
vergleichen. Bezogen auf den Gray-Box-Ansatz lässt sich am ehesten ein Vergleich mit dem An-
satz von [EG+06] erstellen, die ebenfalls davon ausgehen, mehr Informationen als für die reine
Black-Box-Analyse zur Verfügung zu haben. Dieser Ansatz basiert allerdings immer noch auf
dem von Angluin. Im Vergleich dazu ermöglicht unser Gray-Box-Ansatz direkt das Verhalten zu
lernen, ohne Äquivalenzanfragen, sowie reaktive Systeme und Zeit zu betrachten.

7.3.2 Abstraktionstechniken

Abstraktionstechniken sind eine wichtige Technik, um die Explosion des Zustandsraums beim
Model Checking zu behandeln. Gegenbeispiele werden dabei oft genutzt, um abstrakte Modelle
zu verfeinern. Eine Approximation wird verfeinert, wenn Verhalten der Approximation, welches
nicht im ursprünglichen konkreten Modell vorhanden ist, der Grund für ein Gegenbeispiel ist
(siehe Abschnitt 7.2.3 - CEGAR).

Ausgehend vom Quellcode ist es Ziel der Abstraktionsansätze ein möglichst abstraktes Modell zu
gewinnen, um (realistisch) eine Verifikation zu ermöglichen. In einem ersten Schritt wird dabei
eine Überapproximation erstellt (Zustände werden zusammengefasst). Dann wird das Modell so
lange verfeinert, bis kein fehlerhaftes Gegenbeispiel auftritt. Zahlreiche Ansätze, wie [Kur94,

240

7.4 Synthese von Komponentenverhalten

LNA99, CGJ+03] (siehe auch die von uns angewandten Quellcode Model Checker in Abschnitt
4.3), basieren hierauf.

All diese Ansätze basieren auf einer reinen Quellcodeanalyse. Es werden im Vergleich zu un-
serem Gray-Box-Ansatz keine Tests durchgeführt, um die Eingabe das Systems zu berücksich-
tigen. Weiterhin betrachten diese Ansätze im Vergleich zu all unseren keine Interaktion mit der
Umgebung (Kontext) sowie Verletzungen von Zeitbedingungen.

7.4 Synthese von Komponentenverhalten

In diesem Abschnitt betrachten wir die verwandten Arbeiten zu unserem Ansatz der Synthese von
Komponentenverhalten. In Abschnitt 7.4.1 werden wir Ansätze aus dem Bereich der Controller-
Synthese betrachten. In Abschnitt 7.4.2 diskutieren wir Ansätze zur Synthese von nicht zeit-
behfteten Komponentenverhalten und anschließend in Abschnitt 7.4.3 zeitbehaftete Ansätze.

7.4.1 Controller-Synthese

Der Bereich der Controller-Synthese [AMP95, AMPS98, AT02, BK06, GGR08] beschäftigt sich
mit dem Problem der Synthese von Verhalten für einen Controller, welcher mit einer (bestimm-
ten) Umgebung interagiert.

Die Interaktionen eines Controllers werden durch alternierende Aktionen zwischen dem Control-
ler und der Umgebung beschrieben. Die Synthese versucht auf Basis dieser Interaktionen und ge-
gebenenfalls weiteren Anforderungen (Einschränkungen) einen Controller zu synthetisieren, der
alle Aktionen mit der Umgebung erfüllen kann. Die hiermit unterliegenden spieletheoretischen
Grundlagen führen zur Anwendung von speziellen Verhaltensmodellen wie den Timed Game
Automaton [AMP95, MPS95]. In einem solchen Automaten werden Transitionen in kontrollier-
bar durch den Controller oder der Umgebung eingeteilt.

Der Eingabe Timed Game Automaton ist typischerweise unterspezifiziert (offen), so dass
zusätzliche Eigenschaften durch die Synthese integriert werden müssen, um z.B. geforderte
Sicherheits- und Lebendigkeitseigenschaften zu erfüllen (wie z.B. [Pnu77, CMP94, ACD90,
ACD93]). Diese dienen als weitere Eingabe in die Syntheseverfahren.

Der Hauptunterschied zu unserer Synthese ist, dass die gegebenen Verhaltensmodelle der
Controller-Synthese nicht kompositionell sind, sondern als ein Gesamtsystemverhalten aufge-
fasst werden. In unserem Ansatz ist die Kompositionalität durch die unabhängigen Rollenau-
tomaten gegeben. Konsequenterweise können auch keine Eigenschaften in diesen Ansätzen be-
schrieben werden, die sich auf eine Komposition beziehen. Insgesamt folgt hieraus, dass andere
(Verfeinerungs-) Beziehungen zwischen dem Ursprungsmodell und dem synthetisierten Modell
gelten, die wiederum zu einer unterschiedlichen Synthese (Synthesealgorithmus) führen.

241

Kapitel 7 Verwandte Arbeiten

7.4.2 Synthese von nicht-zeitbehafteten Komponentenverhalten

Giese und Vilbig haben in [GV06] einen Syntheseansatz für das Verhalten von interagieren-
den Komponenten vorgestellt. Die Interaktionen werden durch sogenannte Kontrakte spezifiziert
[Gie00], die das Protokollverhalten einer Operationen mit Statecharts beschreiben.

Ähnlich zu Koordinationsmustern werden Kontrakte unabhängig voneinander spezifiziert.
Nimmt eine Komponente an mehreren Kontrakten teil, ist es ebenfalls möglich, dass Zustands-
kombination auftreten, die durch gestellte Systemanforderungen verboten sind. Entsprechend
wurde in diesem Ansatz Zustandsrestriktionen ohne Zeit definiert, die bestimmte Zustandskom-
binationen verbieten.

Der Syntheseprozess von Giese und Vilbig beginnt mit einer parallelen Komposition der Kon-
traktverhalten. Anschließend werden die verbotenen Zustandskombinationen aus dieser paral-
lelen Komposition entfernt. Als letzter Schritt wird überprüft, ob das synthetisierte Verhalten
eine Verfeinerung der beteiligten Rollenverhalten ist. Ist dies der Fall, so ist das Ergebnis ein
kontraktkonformes Zustandsverhalten unter Berücksichtigung der Restriktionen.

Da der in dieser Arbeit vorgestellte Ansatz historisch auf dem von Giese und Vilbig aufbaut,
ist die grundsätzliche Syntheseprozedur sehr ähnlich. Aufgrund der Betrachtung von Zeit durch
unseren Ansatz sind die Ansätze jedoch wiederum sehr unterschiedlich.

Die Verhaltensdiagramme der Kontrakte beschreiben eine Sequenz von Nachrichten, unter-
scheiden jedoch nicht zwischen senden und empfangen von Nachrichten. Für die MECHATRO-
NIC UML ist diese Unterscheidung allerdings inhärent, genauso wie die Beschreibung von Zeit-
bedingungen.

Ein weiterer Unterschied sind die verschieden Verfeinerungsbeziehungen, die entsprechend
großen Einfluss auf die Synthese haben. In dem Ansatz von Giese und Vilbig werden sogenannte
τ Transitionen eingeführt, um gegenstandslosen Nichtdeterminismus zu beschreiben (repräsen-
tiert irgendein mögliches Verhalten). Für frühe Entwicklungsphasen, wo die abhängigen Verhal-
ten noch nicht konkret bekannt sind, ist dies auch geeignet. Für unseren Fall, mit wohlbekannten
Rollenverhalten, ist dieses Konzept ungeeignet. Jedoch ist die grundsätzliche Idee, dass zwischen
den Aktionen eines Rollenverhaltens willkürlich internes Verhalten auftreten kann, ähnlich.

7.4.3 Synthese von zeitbehafteten Komponentenverhalten

Seibel erweitert den Ansatz von Giese und Vilbig in [Sei07] um Timed Automata mit einem
diskreten Zeitmodell und Zustandsrestriktionen.

Ähnlich zu unserem Ansatz erweitert Seibel die Zustandsrestriktionen von Giese und Vilbig um
Zeit. Zudem werden Restrkionsautomaten definiert, die Nachrichten der Kontraktverhalten (Port-
verhalten) beobachten können. Für die Synthese wird dann eine diskrete Zeitsemantik definiert,
die das Vergehen von Zeit durch Integer-Schritte bestimmt (vergleiche Abschnitt 6.3.1.4). Der
Syntheseablauf ist wiederum der gleiche wie bei Giese und Vilbig.

242

7.4 Synthese von Komponentenverhalten

Das von Seibel auf UML Ports [Obj09] erweiterte Konzept ist entsprechend ähnlich zu unserem
Ansatz aufgrund der Verwandtschaft zu Giese und Vilbig. Das Port-Konzept ist zudem ähnlich zu
unserem Rollen Konzept. Jedoch werden Portverhalten spezifisch für eine Komponente definiert.

Der Hauptunterschied zu der Arbeit von Seibel ist die diskrete Zeitsemantik, die nicht oder nur
sehr eingeschränkt für mechatronische Systeme angewandt werden kann (siehe Abschnitt 2.1).
Zudem wendet Seibel die parallele Komposition und die Zustandsrestriktionen auf dem diskreten
Zeitmodell an, während wir nur die Abstraktion ausnutzen, um die Rollenkonformität zu über-
prüfen. Das Konzept der τ Transitionen hat Seibel von Giese und Vilbig übernommen, statt das
Verhalten der Ports zu betrachten. Daher sind auch die Verfeinerungsbeziehungen und der Syn-
thesealgorithmus verschieden zu unserem und nicht anwendbar für die MECHATRONIC UML.

243

Kapitel 7 Verwandte Arbeiten

244

Kapitel 8

Zusammenfassung und Ausblick

In dieser Arbeit haben wir einen systematischen modellgetriebenen Entwicklungsansatz für
selbstoptimierende, mechatronische Systeme vorgestellt, in dessen Mittelpunkt die Komposition
und Wiederverwendung von Softwarekomponenten und deren Protokollverhalten zu komplexen
hierarchischen Komponentensystemen steht. Die Komposition unterstützt eine kompositionelle
Anpassung der Komponentenstruktur unter Berücksichtigung der sich daraus ergebenden Ver-
haltensanpassung sowie Altkomponenten. Durch eine nahtlose Integration in die MECHATRO-
NIC UML werden Echtzeitanforderungen für komplexe verteilte Systeme garantiert und sogar
eine vorhersagbare Codegenerierung für die verifizierten, kompositionellen Strukturanpassungen
ermöglicht.

Zusammenfassung In Abschnitt 2.1 haben wir eine systematische Vorgehensweise für die
Entwicklung von hierarchischen Komponentensystemen beschrieben. Hierbei haben wir die Me-
thoden der MECHATRONIC UML mit den neu entwickelten Methoden in dieser Arbeit ganzheit-
lich integriert dargestellt, um eine Empfehlung für die systematische Entwicklung hierarchischer
Komponenten im Kontext mechatronischer Systeme zu geben. Die Unterstützung der Wiederver-
wendung haben wir dabei in die Bereiche Verfeinerung in hierarchischen Komponentensystemen,
Integration von Altkomponenten und Synthese von Komponentenverhalten unterteilt.

Die Verfeinerung in hierarchischen Komponentensystemen basiert auf den in Kapitel 2.6 einge-
führten TIMED STORY CHART Formalismus. Mit diesem Formalismus begegnen wir der An-
forderung, Echtzeitverhalten sowie Strukturanpassungen integriert zu betrachten. Die in Kapitel
3 vorgestellte Verfeinerung und Überprüfung der Verfeinerung nutzt dies aus und zeigt im Ver-
gleich zu bisherigen Ansätzen ein höheres Potential an Wiederverwendung durch eine Relaxie-
rung des Echtzeitverhaltens.

Für die Integration von Altkomponenten haben wir drei unterschiedliche Ansätze identifiziert, um
für die Altkomponente eine möglichst passende Analyse der Integration zu erreichen. Wir un-
terscheiden dabei zwischen Gray Box Checking, Black Box Checking und White Box Checking
(siehe Kapitel 4). Die Betrachtung von Sicherheits- und Lebendigkeitseigenschaften sowie Ana-
lyseverfahren aus der Regelungstechnik, um Reglerverhalten zu identifizieren, führen dazu, dass
die gestellten Anforderungen mechatronischer Systeme abgedeckt werden.

245

Kapitel 8 Zusammenfassung und Ausblick

Die Synthese von Komponentenverhalten rundet die Unterstützung der Wiederverwendung von
Komponenten und deren Protokollverhalten ab (siehe Kapitel 5). Mit diesem Ansatz können
wir formal Abhängigkeiten zwischen Protokollverhalten beschreiben und automatisch ein kon-
sistentes (protokollkonformes) Gesamtverhalten auf Basis der Protokollverhalten synthetisieren,
welches die spezifizierten Abhängigkeiten berücksichtigt.

Um Altkomponenten integrieren zu können und einen modellgetriebenen Ansatz vollständig an-
zubieten, wird eine automatische Codegenerierung aus den Modellen der MECHATRONIC UML
benötigt. Im Rahmen dieser Arbeit haben wir eine Laufzeitumgebung für die Integration von
Altkomponenten entwickelt (siehe Kapitel 6.1), die in die bisherige Codegenerierung und Lauf-
zeitumgebung der MECHATRONIC UML [Bur06, BGH+07] integriert ist. Hiermit wird eine au-
tomatische Analyse für die Integration von Altkomponenten ermöglicht. Zudem haben wir den
bisherigen Ansatz erweitert, um eine Vorhersagbarkeit trotz der verwendeten komplexen Objekt-
strukturen zu ermöglichen, indem wir eine Laufzeitanalyse (WCET Analyse) für Story Diagram-
me zur Verfügung stellen.

Die durch die Werkzeugunterstützung ermöglichte Validierung (siehe Kapitel 6) hat gezeigt, dass
unter richtiger Anwendung der Methoden, selbstoptimierende, mechatronische Systeme erfolg-
reich umgesetzt werden können.

Ausblick Ausblicke auf weiterführende Arbeiten können aufgrund der stetigen Weiterent-
wicklung der MECHATRONIC UML im Fachgebiet Softwaretechnik1 viele gegeben werden.

Naheliegend sind Erweiterungen des eingeführten TIMED STORY CHART Ansatzes und ent-
sprechender Verfeinerung zu einer formalen Verifikation. Hierzu müssen die zu überprüfenden
Eigenschaften für die Domäne mechatronischer Systeme insofern angepasst werden, dass so-
wohl Struktur-, als auch Verhaltenseigenschaften geeignet spezifiziert werden können. Erste Ide-
en hierzu wurden in [HSJZ10] vorgestellt.

Für die Integration von Altkomponenten und der Synthese von Komponentenverhalten sind an
erster Stelle umfassende Evaluierungen notwendig. Für die Integration von Altkomponenten ist
besonders zu untersuchen, inwiefern strukturelle und rein statische Reverse Engineering Ver-
fahren die Überprüfung der Integration unterstützen können. Eine Integration mit den an diesem
Lehrstuhl entstandenen bisherigen Arbeiten im Bereich Reverse Engineering (z.B. [Wen08]) wä-
re z.B. denkbar, um strukturelle Information in den Integrationsansatz einfließen zu lassen.

Im Fall der Synthese von Komponentenverhalten ist zu untersuchen, ob die vorgestellten Kom-
positionsregeln ausreichend sind. Eine Erweiterung um die Möglichkeit der Spezifikation von
strukturellen Abhängigkeiten ist ein Ausblick für weiterführende Arbeiten. In diesem Zusam-
menhang ist zu untersuchen, ob die Unterstützung von Strukturanpassungen einfacher und um-
fangreicher ermöglicht werden kann, wenn eine Synthese direkt über TIMED STORY CHARTS

definiert wird.

1http://www.upb.de/cs/ag-schaefer

246

Wie schon bereits in Abschnitt 6 diskutiert, ist eine vollständige Integration der Codegenerie-
rung für Story Diagramme mit der für HYBRID RECONFIGURATION CHARTS ein Ausblick.
Weiterhin ist eine werkzeugtechnische Integration mit der flexiblen Ressourcenverwaltung (sie-
he Abschnitt 6.1.2.1) notwendig, um umfangreiche Evaluierungen speziell der Nutzenpotentia-
le selbstoptimierender, mechatronischer Systeme mit kompositionellen Strukturanpassungen zu
untersuchen. Eine Erweiterung der bisherigen Simulation (siehe [BGH+07]), um die hiermit er-
möglichten komplexeren Szenarien, ist ein Ausblick für eine Validierungsumgebung.

Die MECHATRONIC UML gliedert sich in den Gesamtentwicklungsansatz des Sonderfor-
schungsbereichs 6142 als ein domänenspezifischer Entwicklungsansatz für die Softwaretech-
nik ein. Um eine durchgängige Entwicklung zu unterstützen, wird ein Übergang zwischen
der domänenübergreifenden Entwicklung in die Domäne der Softwaretechnik benötigt. In
[GGS+07, HHKS08] haben wir hierzu erste Ideen vorgestellt, die als Grundlage für weiter-
führende Arbeiten nützlich sein können (siehe z.B. [GSG+09]). Da sich die szenariobasierte
Entwicklung in den frühen Phasen als sehr nützlich erwiesen hat, ist der Übergang, unterstützt
durch eine Synthese von Zustandsverhalten, wie in [GHHK06, HGH+09, Gre10] betrachtet, viel-
versprechend. Die Einbeziehung von Strukturanpassungen ist ein möglicher Ausblick für eine
solche Synthese.

Die MECHATRONIC UML wurde und wird stetig im Rahmen des RailCab-Projektes evaluiert.
Eine Anwendung der Konzepte in der Industrie wurde teilweise gezeigt (siehe Abschnitt 6.3.2).
Umfangreichere Betrachtungen sind hier wünschenswert. Im Sinne einer tiefgreifenderen Vali-
dierung sollte hierbei ebenfalls untersucht werden, ob die Methoden erfolgreich von geschulten
Benutzern angewandt werden können.

2http://www.sfb614.de/

247

Kapitel 8 Zusammenfassung und Ausblick

248

Anhang A

Timed Story Charts

In Abschnitt 2.6.4 haben wir TIMED STORY CHARTS eingeführt. Im Folgenden werden die ein-
zelnen Elemente (siehe Abschnitt A.1) sowie die zusammengesetzte Ausführung der Elemente
(siehe Abschnitt A.2) erläutert.

A.1 Elemente

A.1.1 Statechart

Ein Statechart AB wird definiert durch eine Klasse AB, welche von der Statechart Klasse (siehe
Abbildung 2.27) erbt. Der Name der Statechart-Klasse entspricht dem Namen des Statecharts.
Ein Statechart wird durch Instanziierung der Statechart-Klasse angelegt. Für Strukturelemente
zu denen inhärent ein Verhalten gehört, wird automatisch das dazugehörige Statechart erzeugt.
Zu diesen Strukturelementen gehören nach dem Metamodell aus Abbildung 2.20 Component,
Part, Delegation und Coordinator. Hierdurch haben auch alle Part Elemente ein Verhalten. Ein
Statechart kann ebenfalls in einem ComplexState eingebettet sein. Für Multielemente, die ein
parametrisiertes Verhalten verlangen, wird durch die parameter Attribute der Objekte ClockIn-
stance, ActiveState und Synchronization eine eindeutige Zugehörigkeit einer Statechartinstanz
zu den Parametern gewährleistet.

Für die Umsetzung von parametrisierten Verhalten gibt es unterschiedliche Möglichkeiten. Es
kann z. B. für jede Instanz eines Multielementes eine Instanz des parametrisierten Verhalten
angelegt werden. Für Analysezwecke führt dies allerdings zu einem unnötigen Mehraufwand,
da die einzelnen Zustandsobjekte die gleichen für jede Instanz sind. Um dies zu umgehen, wird
durch unseren Ansatz nur ein Objekt für das Statechart angelegt und für Element des Statecharts,
die sich pro Instanz unterscheiden (ClockInstance, ActiveState und Synchronization), wird das
parameter Attribut genutzt.

Abbildung A.1 zeigt die Abbildung eines parametrisierten Statecharts AB_Statechart auf ein TI-
MED STORY CHART. Trotz der Mehrfachinstanziierung des Statecharts, wird nur ein Statechart
Objekt AB_Statechart angelegt. Durch das parameter Attribute des ActiveState Objekts wird
trotzdem eine eindeutige Unterscheidung zwischen den unterschiedlichen Instanzen ermöglicht.

249

Anhang A Timed Story Charts

Die MECHATRONIC UML verlangt, dass zu den Strukturelementen wie Komponenten, Ports
und Delegation ein Statechart angelegt werden muss. Weiterhin wird für ein Multielement ver-
langt, dass für jede Instanz eines Multielements ein Statechart mit entsprechend dazugehörigen
Parametern angelegt wird. Ein Statechart muss auch in andere Statecharts eingebettet werden
können. Durch die in Abschnitt A.1.1 eingeführten Statechart-Klassen bleibt damit die Seman-
tik eines Statecharts erhalten, da ein Statechart genau durch eine Klasse und Assoziation zu
entsprechenden Strukturelementen und komplexen Zuständen, die Statecharts einbetten können,
definiert ist. Weiterhin wird durch die parameter Attribute eine Mehrfach-Instanziierung mit den
geforderten Eigenschaften unterstützt.

rtsc : AB_Statechart, Instanz 1

A B

s1 : State
name = „A“

s2 : State
name = „B“

sc : AB_Statechart

as1 : ActiveState

parameter = 1

as2 : ActiveState

parameter = 2

active active

rtsc : AB_Statechart, Instanz 2

A B

Abbildung A.1: Abbildung eines Statecharts auf einen Objektgraphen.

A.1.2 Zustände

Ein Statechart-Zustand wird über eine Instanz der State Klasse angelegt. Das name Attribute
wird mit dem Namen des States initialisiert. Ein AND-State wird durch die Klasse ComplexState
spezifiziert, in dem eine Menge von Statecharts dem gleichen ComplexState zugeordnet werden.
Ein Zustand ist aktiv, wenn ein Objekt vom Typ ActiveState eine gerichtete Assoziation active
zu diesem Zustand hat. Ein Zustandswechsel wird durch Anpassung dieser Assoziation erreicht,
indem active zu einen anderen Zustand assoziiert wird. Ein parametrisiertes Statechart besitzt
für jede Instanz eine ActiveObjekt Instanz, die mit dem aktiven Zustand der Instanz assoziiert

250

A.1 Elemente

ist. Das parameter Attribut einer ActiveObjekt Instanz wird mit dem Wert k der k-ten Instanz
des parametrisierten Statecharts instanziiert. Ein ActiveState Objekt eines nicht parametrisierten
Statecharts wird mit Parameter eins instanziiert. Initial assoziieren die ActiveObjekt Instanzen
die Startzustände eines Statecharts.

Wie bereits in Abschnitt A.1.1 diskutiert, ist durch die Umsetzung von Mehrfach-Instanzen ei-
nes parametrisierten Statecharts mittels des parametrisierten ActiveState Objekts eine effiziente
Möglichkeit, um die Instanzen eines parametrisierten Statecharts zu verwalten, ohne für jede
Instanz eine Statechart Instanz anzulegen.

Abbildung A.1 zeigt ein Beispiel für die Abbildung eines parametrisierten Statecharts mit zwei
Instanzen auf einen Objektgraphen (siehe auch Abschnitt A.1.1). Für die beiden Instanzen des
AB_Statecharts wird ein AB_Statechart Objekt instanziiert. Die Zustände A und B werden je-
weils durch ein State Objekt abgebildet. Das Namensattribut ist entsprechend mit A und B initia-
lisiert. Die aktiven Zustände der beiden Instanzen des Statecharts werden über die ActiveState
Objekte as1 und as2 spezifiziert. Das parameter Attribut wird mit der eindeutigen Instanznum-
mer initialisiert.

Die endliche Menge an Zuständen S eines PARAMETERIZED REAL-TIME STATECHART (siehe
Abschnitt 2.4.4) ist durch eine endliche Menge von State Objekten definiert. Der Startzustand
S0 ist durch die initiale Menge an ActiveState Objekten definiert. Darüber hinaus ist der aktuelle
Zustand eines PARAMETERIZED REAL-TIME STATECHART durch die Menge der ActiveState
Objekten bestimmt (siehe auch Defintion A.1.3). Das Attribut parameter des ActiveState Ob-
jektes lässt eine Unterscheidung der einzelnen Instanzen eines Statecharts zu und erlaubt so die
eindeutige Kodierung des Zustands jeder Statechartinstanz, worüber eine konkrete Instanz ei-
nes Multielements definiert ist. Die Parametrisierung von Statecharts eines einfachen Elements
mit Parameter gleich eins verletzt die Semantik nicht, da das Statechart nur einmal instanziiert
werden kann und der aktive Zustand sich nur auf diese Instanz beziehen kann. Die Komposi-
tionsbeziehung zwischen Statechart und Zuständen sowie zwischen komplexen Zuständen und
eingebetteten Statecharts (Sub-Statecharts) stellt sicher, dass ein Zustand nicht ohne sein State-
chart existieren kann und ein eingebettetes Statechart nicht ohne den umgebenden komplexen
Zustand.

A.1.3 Transitionen

Eine Transition ist durch ein Story Diagram definiert. Die einzelnen Stories definieren die Ein-
und Ausgehenden-Ereignisse, Bedingungen, Time Guards, Synchronisationskanäle, Seiteneffek-
te, Clock Resets und Deadlines. Werden Zeitbedingungen definiert, so werden Timed Story Pat-
tern verwendet andernfalls Story Pattern.

Abbildung A.2 zeigt die grundsätzliche Abbildung einer PARAMETERIZED REAL-TIME

STATECHART-Transition. Eine Transition wird durch ein Story Diagramm mit einer Story für
die Transition abgebildet. Die Story stellt lediglich eine Transition von Zustand A nach B dar,

251

Anhang A Timed Story Charts

ohne jegliche Bedingungen, Ereignisse und Seiteneffekte. Für diesen einfachen Fall wird der
Link durch ein Story Pattern von Zustand A nach Zustand B umstrukturiert.

Die einzelnen Elemente einer Transition eines TIMED STORY CHARTS werden im Folgenden
definiert und in Abschnitt A.2 kombiniert.

State
name = „A“

ActiveState

AB_Statechart::Trans_A_B()

this

State
name = „B“

<<-->> <<++>>
active active

Abbildung A.2: Schalten einer Transition

Eine PARAMETERIZED REAL-TIME STATECHART-Transition T ist definiert durch T ⊆ S ×
Σ × C(X) × 2X × Sig(l) × S , wobei eine einzelne Transition von s nach s′ durch ein 6-Tupel
beschrieben ist (s, a, ϕ, λ, sig, s′) (siehe Abschnitt 2.4.4). Durch die Definition von ActiveOb-
ject Objekten lassen sich beliebig Zustandsübergänge zwischen State Objekten beschreiben, die
wiederum auf die Zustände S eines Statecharts abbildbar sind (siehe Abschnitt A.1.2). Die Ab-
bildung der anderen Elemente wird im Folgenden erläutert.

A.1.4 Clocks

Eine Clock ist definiert durch ein ClockInstance Objekt (siehe Abschnitt 2.6.2). Das parameter
Attribut bezieht sich auf Instanz k des (parametrisierten) Statecharts (siehe Abschnitt A.1.2).
Den Namen der Uhr wird durch das id Attribut bestimmt. value gibt den aktuellen Wert der Uhr
an.

Da die Elemente des Statecharts nur einmal erzeugt werden, müssen nur einmal unabhängig von
der konkreten Instanz Regeln für eine Clock Instanz beschrieben werden.

Eine Abbildung einer Clock auf ein Clock Instanz Objekt ist Abbildung A.3 zu entnehmen. Da
es sich hier nur um eine Instanz handelt, wurde die Clock c1 mit dem parameter gleich eins
initialisiert (siehe Abschnitt A.1.2).

Die Clocks eines PARAMETERIZED REAL-TIME STATECHART sind definiert über X :=
(x1, .., xn) eine endliche Menge an Clockvariablen mit xi ∈ R+. Eine Clockvariable entspricht

252

A.1 Elemente

ClockInstance
id = „c1“
parameter = 1

rtsc : AB_Statechart | c1

sc : AB_Statechart has

Abbildung A.3: Abbildung einer Clock auf ein ClockInstance Objekt

einem ClockInstance Objekt, welches durch das value Attribut einen Wert aus den reellen Zah-
len aufnehmen kann. Eine Clock ist zudem über die Transition von ClockInstance Objekten eine
Zuweisung zu Zuständen oder Transitionen ermöglicht, um Zeitbedingungen zu spezifizieren
(siehe z. B. Abschnitt A.1.5). Die Definition einer Clock über Clock Instanzen erlaubt zudem,
wie bereits in Abschnitt 2.6.2 vorgestellt, mehrere Instanzen einer gleichen Clock anzulegen.
Dies ist zwingend notwendig für Multielemente. Eine Clock wird mit Erzeugen des Statecharts
initialisiert. Eine Clock Instanz bezieht sich somit immer auf eine konkrete Instanz eines pa-
rametrisierten Statecharts. Eine Angabe von Clock Instanzregeln ist für die Instanziierung von
Statecharts nicht erforderlich, da die Erstellung der benötigten Clocks direkt in die Regel zum
Erstellen des Statecharts mit aufgenommen werden kann (siehe Abschnitt 2.6.2). Dies verletzt
nicht die Semantik der PARAMETERIZED REAL-TIME STATECHART, da eine Clock nur mit ei-
nem Statechart exisitiert. Das ClockInstance Objekt erhält den gleichen Parameter wie das zu
dem Statechart gehörige ActiveState Objekt.

A.1.5 Guards

Ein Guard einer Transition wird auf eine Boolsche Bedingung des Story Pattern oder TIMED

STORY PATTERN abgebildet, welches die Transition beschreibt (siehe Abschnitt A.1.3).

Abbildung A.4 zeigt ein Beispiel für die Abbildung des Guards railCab.speed ≤ 10. Die Zu-
stände sowie die Transition wird wie zuvor definiert beschrieben. Der Guard wird über das Rail-
Cab Objekt rc1 als Story Pattern Bedingung spezifiziert.

Nach der Definition von PARAMETERIZED REAL-TIME STATECHARTS muss ein Guard durch
eine Boolesche Bedingung ausgedrückt und evaluiert werden können. Genau dies wird durch
eine Boolesche Bedingung eines Story Patterns umgesetzt.

A.1.6 Synchronisationen

Eine Synchronisation ist durch Synchronisationsobjekte der Klasse Synchronization definiert.
Das name Attribut gibt den Namen der Synchronisation an. Das parameter Attribut gibt den

253

Anhang A Timed Story Charts

State
name = „A“

ActiveState

AB_Statechart::Trans_A_B()

this

State
name = „B“

A B[railCab.speed > 10]

rc1 : RailCab

{rc1.speed > 10}

<<-->> <<++>>
active active

Abbildung A.4: Guard

Parameter der aktuellen Instanz an. Eine Synchronisation findet zwischen zwei Sub-Statecharts
eines And-States statt. Ein Story Diagramm schaltet die an der Synchronisation beteiligten Tran-
sitionen gleichzeitig. Das Statechart Objekt, in welchem der AND-State eingebettet ist, bietet
eine Methode an, die dem Story Diagramm zu Grunde liegt, um die Synchronisation zu schal-
ten. Eine Synchronisation wird ausgeführt, wenn die beteiligten Zustände und das Synchroni-
sationsobjekt gebunden wurden sowie ein Guard, der die Gleichheit der parameter überprüft,
um sicherzustellen, dass es sich um die gleichen Instanzen handelt, wahr ausgewertet wird. Ei-
ne Synchronisation ist Bidirektional. Um den Lesefluss zu fördern, wird ein sendSrc und ein
recvSrc eingeführt (vgl. Syntax von UPPAAL [LPY97])

In Abbildung A.5 wird eine parametrisierte Synchronisation zwischen zwei Transitionen gezeigt.
Um die Synchronisation auszuführen, muss das Story Diagramm die Zustände A und C sowie das
Synchronisationsobjekt binden. Da es sich hier um eine parametrisierte Synchronisation handelt,
muss zudem noch der Parameter der beteiligten Instanzen identisch sein. Das wird über den
Guard as2.parameter = sy.parameter ∧ sy.parameter = as3.parameter sichergestellt.

Eine Synchronisation kann nur dann durchgeführt werden, wenn die Zustände aktiviert sind, die
die Synchronisationsobjekte als ausgehende Transition schalten. Die Definition der Synchroni-
sationskanäle ermöglicht zudem nur lokale Synchronisation innerhalb eines AND-States, wie
durch die Definition von PARAMETERIZED REAL-TIME STATECHARTS gefordert.

Synchronisationsobjekte dürfen nur dann aktiviert sein, wenn die Synchronisation tatsächlich
durch entsprechende aktive Zustände aktiviert wird. Ist dies nicht der Fall, so darf ein Synchro-
nisationsobjekt nicht aktiv sein. Dies wird durch die in Abbildung A.6 und A.7 dargestellten
Regeln ermöglicht.

254

A.1 Elemente

as3 : ActiveState

AB_Statechart::Sync_Trans_A_B_C_D()

sy:Synchronisation

sc1 : Port1SC_Statechart

as1 : ActiveState this

sc2 : Sync_Statechart

c1:ComplexState

name = „ComplexA“

s1 : State

name = „A“

ComplexA

A B
synck?

C D
synck!

Port1SC

Sync

s2 : State

name = „B“

s1 : State

name = „C“

s2 : State

name = „D“

as2 : ActiveState

sendSrcrecvSrc

{as2.parameter = sy.parameter sy.parameter = as3.parameter}∧

has

active

<<-->> <<++>>
activeactive

<<-->><<++>>
active active

Abbildung A.5: Synchronisation von zwei Transitionen

255

Anhang A Timed Story Charts

Das Story Pattern aus Abbildung A.6 stellt nur dann ein Synchronisationsobjekt zur Verfügung,
wenn der zu dem Synchronisationsobjekt gehörige Zustand aktiv ist. Falls ein entsprechendes
Synchronisationsobjekt bereits angelegt wurde, so wird nur eine Assoziation zu diesem Objekt
erzeugt. Andernfalls wird auch das Synchronisationsobjekt erzeugt. In diesem Fall ist die zuge-
hörige Transition sendend und es wird eine Assoziation vom Typ sendSrc angelegt.

Abbildung A.7 zeigt, wie ein Synchronisationsobjekt deaktiviert wird, indem die Referenz zu
diesem Objekt gelöscht wird. Für jeden Synchronisationskanal einer ausgehenden Transition des
Zustands, der verlassen wird, wird diese Story ausgeführt. Falls ein Synchronisationsobjekt keine
Assoziation zu einem Zustand besitzt, wird dieses Objekt entfernt (siehe Abbildung A.8).

s1 : State
name = „A“

AB_Statechart::createStateASyncChannels(k : int)

this

sendSrc

[failure]

[success]

as : ActiveState
parameter = k

s1

sy:Synchronization

parameter = k
name = „sync“

<<++>>

[failure]

[success]

A B
sync

k
!

cs1:ComplexState
subStatechart

active

cs1

has

sendSrc

s1

sy:Synchronization

parameter := k
name := „sync“

<<++>>
cs1

has
<<++>>

<<++>>

Abbildung A.6: Erstellung von Synchronisationskanälen beim Betreten eines Zustands

Die bisher vorgestellten Synchronisationsobjekte lassen sich auf Synchronisationskanäle der PA-
RAMETERIZED REAL-TIME STATECHART einfach abbilden. Ein Synchronisationsobjekt ent-
spricht dabei genau einem Synchronisationskanal (vgl. auch [GB03]). Nach der Definition von
PARAMETERIZED REAL-TIME STATECHARTS, bzw. REAL-TIME STATECHARTS, kann eine
Transition allerdings auch eine Menge an Synchronisationskanälen schalten. Dies ist durch den
vorgestellten Ansatz ebenfalls gegeben, da lediglich mehrere Synchronisationsobjekte instanzi-
iert werde müssen.

256

A.1 Elemente

s1 : State
name = „A“

AB_Statechart::removeStateASyncChannels(k : int)

thisas : ActiveState
parameter = k

A B
sync

k
!

sy:Synchronization

parameter = k
name = „sync“

sendSrc
<<-->>

1: deleteSyncChannels()

cs1:ComplexState

active
has

Abbildung A.7: Entfernen von Synchronisationskanälen beim Verlassen eines Zustands

ComplexState::deleteSyncChannels()

s2 : States1 : State

sy:Synchronization

<<-->>

sendSrc recvSrc
sy

[each time]

[end]

x x

this

has

Abbildung A.8: Löschen von Synchronisationskanälen ohne Assoziation zu einem Zustand

257

Anhang A Timed Story Charts

A.1.7 Invariante

Eine Invariante für einen Zustand wird durch eine TIMED STORY PATTERN-Invariante definiert
(siehe Abschnitt 2.6.2).

Abbildung A.9 zeigt die Abbildung einer parametrisierten Invariante c1 ≤ ub. Die Abbildung
definiert zum einen, dass der entsprechende Zustand und die dazugehörige Clock gebunden
werden muss. Der Zustand muss aktiv sein. Weiterhin müssen die Parameter übereinstimmen
(as.parameter = ci.parameter). Ist dies der Fall, kann die Invariante c1 ≤ ub überprüft wer-
den.

State
name = „A“

ci : ClockInstance
id = „c1“

A

as : ActiveState

c1≤ub

has

AB_Statechart::invariant1()

this

has

{as.parameter=ci.parameter∧c1≤ub }

active

Abbildung A.9: Abbildung einer Time Invariante eines Zustands

Eine Invariante I ist eine Funktion I → C(X), welche eine Menge von Ungleichungen den Zu-
ständen zuweist. Eine Invariante limitiert das Verweilen in einem Zustand über die obere Schran-
ke hinaus. Die gezeigte Abbildung stellt zum einen eine Verbindung zwischen Invarianten und
Zuständen sowie zwischen Invarianten und Clocks her. Die Invariante des TIMED STORY PAT-
TERN ist zudem dadurch definiert, dass der Zustand nur so lange aktiv sein darf, wie die Invari-
ante gültig ist. Danach muss der Zustand durch eine Transition verlassen werden. Falls dies nicht
möglich ist, erhält man einen Time-Stopping-Deadlock. Die Berücksichtigung der Invarianten
wird in der Berechnung des Folgezustandes, wie sie in [Hir08] definiert und in Abschnitt TIMED

STORY PATTERN übernommen wurde, erzwungen.

258

A.1 Elemente

A.1.8 Time Guards

Ein Time Guard einer Transition ist definiert durch einen Time Guard eines Story Pattern (siehe
Abschnitt 2.6.2).

Abbildung A.10 zeigt die Abbildung eines parametrisierten Time Guards. Voraussetzung, um
den Guard zu überprüfen ist, dass die beteiligten Zustände der Transition und die Clock (c1),
über die der Guard Einschränkungen trifft gebunden sind. Wie üblich für eine Parametrisierung,
wird zudem überprüft, ob die Parameter zueinander passen. Dann kann überprüft werden, ob der
Guard erfüllt ist (lb ≤ c1 ∧ c1 ≤ ub).

State
name = „A“

as : ActiveState

AB_Statechart::Trans_A_B()

this

State
name = „B“

A B

ci : ClockInstance

id = „c1“

lb≤c1≤ub

{as.parameter=ci.parameter∧lb≤c1∧c1≤ub }

<<-->> <<++>>
active active

Abbildung A.10: Abbildung eines Time Guards einer Transition

Ein Time Guard ist definiert durch φ ::= x ∼ n | x− y ∼ n | φ ∧ φ | true | false, mit x, y ∈
C,∼∈ {≤, <,=, >,≥}, n ∈ N. Eine Transition des TIMED STORY CHART kann nur schalten,
wenn der Time Guard erfüllt ist. Somit bleibt die Semantik eines Time Guards für PARAMETE-
RIZED REAL-TIME STATECHARTS erhalten.

A.1.9 Clock Resets

Ein Clock Reset ist definiert durch ein TIMED STORY PATTERN Clock Reset (siehe Abschnitt
2.6.2).

Abbildung A.11 zeigt die Abbildung eines Clock Resets. Voraussetzung für einen Clock Reset
ist, dass die Zustände, die den Clock Reset durch das Schalten einer Transition auslösen und die
Clock, die zurückgesetzt werden soll, gebunden sind. Weiterhin muss müssen die Parameter der

259

Anhang A Timed Story Charts

Clock und des aktiven Zustands übereinstimmen. Ist dies der Fall, wird durch das Binden des
ClockReset Objekts die Clock zurückgesetzt.

s1 : State
name = „A“

as : ActiveState

AB_Statechart::Trans_A_B()

this

s2 : State
name = „B“

A B

ci : ClockInstance

id = „c1“

{as.parameter = ci.parameter}

{c1}

rs : ClockReset

has

has

reset

has

<<-->> <<++>>
active active

Abbildung A.11: Abbildung eines Clock Resets einer Transition

Ein Clock Reset ist definiert durch λ ⊆ X ist eine Menge von Variablen, die auf null gesetzt wer-
den, wenn die Transition schaltet. Dies ist durch die gezeigte Abbildung ebenfalls der Fall. Die
Transition wird durch Binden des Ziel- und Quellzustands der Transition ermittelt. Die Menge
der Clocks kann so beliebig einer Transition zugewiesen werden. Dadurch, dass jedem ClockIn-
stance Objekt bei der Initialisierung ein Clock Reset Objekt zugewiesen wird, ist die Semantik
unverändert.

A.1.10 Deadlines

Eine Deadline restriktiert das Verweilen in einer Transition durch eine zeitliche Unter- und Ober-
grenze. Eine Deadline ist definiert durch ein ClockInstance Objekt, welches mit dem Schalten
der Transition angelegt wird, einer Zwischenstory, in dem die Untergrenze durch einen Time
Guard definiert ist und einer weiteren Story, die eine Invariante mit der Obergrenze der Deadline
definiert.

Abbildung A.12 zeigt die Abbildung einer Deadline. Die Ausführung der Transition mit einer
Deadline wird in drei Story Diagramme aufgeteilt. Das erste Story Diagramm in Abbildung A.12
bindet die Vorbedingung für die Ausführung und schaltet in den Zwischenzustand executingTran-
sAB um. Dabei wird ein ClockInstance Objekt für die Deadline erzeugt und mit 0 initialisiert.

260

A.1 Elemente

Über diese Clock Instanz wird die Zeit seit Beginn des Schaltvorgangs modelliert. Das zweite
Story Diagramm in Abbildung A.13 spezifiziert als Vorbedingung, dass sich das Statechart in
dem Zwischenzustand befindet und dass die untere Schranke der Deadline abgelaufen ist. Das
dritte Story Diagramm ist eine Invariante, die ein Verweilen im Zwischenzustand nur bis zur obe-
ren Schranke der Deadline erlaubt. Auf eine Abbildung dieser Invariante wurde an dieser Stelle
verzichtet, da sie analog zu der in Abbildung A.9 aufgebaut ist.

s1 : State
name = „A“

as : ActiveState

AB_Statechart::Trans_A_B_Pt1()

this

s2 : State
name = „executingTransAB“

A B[lb, ub]

c1 : ClockInstance
id = „AB_SC_d1“
parameter := as.parameter

<<++>>

<<++>>
<<++>>

rs : ClockReset

reset
<<++>>

<<++>>

<<-->> <<++>>active
active

Abbildung A.12: Abbildung einer Deadline (Teil 1).

Nach der in Abschnitt 2.6.3 eingeführten Semantik von TIMED STORY DIAGRAMS kann nur
Zeit in Stories vergehen. Daher ist die Abbildung von Deadlines in TIMED STORY CHARTS dem
Aufbau der Abbildung von REAL-TIME STATECHARTS auf Extended Hierarchical Timed Auto-
mata (ExHTA) ähnlich [GB03]. In ExHTA, wie auch in Timed Automata, vergeht ebenfalls nur
Zeit in einem Zustand. Durch die eingeführten Abbildungen auf Zustände und Zeitbedingungen
(siehe Abschnitt A.1.7 und A.1.8) ist die Semantik der PARAMETERIZED REAL-TIME STATE-
CHARTS erhalten. Die dargestellte Abbildung betrachtet relative Deadlines. Absolute Deadlines
sind über diesen Mechanismus ebenfalls einfach abbildbar. Der Unterschied ist lediglich, dass
nicht eine Clock mit Beginn des Schaltens der Transition extra erzeugt wird, sondern sich auf
eine bereits spezifizierte Clock bezogen wird, die z. B. mit Erzeugen des Statecharts initialisiert
wird.

A.1.11 Actions und Seiteneffekte

Eine Action oder Seiteneffekt ist als Methode des Statecharts definiert. Wie [Zün01] bereits
gezeigt hat, lassen sich diese einfach über Collaboration Messages abbilden.

261

Anhang A Timed Story Charts

s1 : State
name = „executingTransAB“

as : ActiveState

AB_Statechart::Trans_A_B_Pt2()

this

s2 : State

name = „B“

A B[lb, ub]

c1 : ClockInstance
id = „AB_SC_d1“

<<-->>

{as.parameter=ci.parameter∧lb≤c1}

<<-->>

rs : ClockReset

reset
<<-->>

<<-->>

<<-->> <<++>>
active active

Abbildung A.13: Abbildung einer Deadline (Teil 2).

Abbildung A.14 zeigt die Abbildung von Seiteneffekten, Entry und Exit Action. Abbildung A.15
zeigt die Abbildung einer Do Action. Ein Seiteneffekt, Entry und Exit Action wird abgebil-
det durch binden der Zustände, die an der Transition beteiligt sind (Zustand A und Zustand
B). Ist dies der Fall, kann der Quellezustand (Zustand A) verlassen werden und die Exit Ac-
tion (exitAction1()) ausgeführt werden. Anschließend kann der Seiteneffekt ausgeführt werden
(sideEffect1()). Das schalten des Seiteneffekts wird durch einen Zwischenzustand executingTran-
sAB simuliert. Nachdem der Seiteneffekt ausgeführt wurde, wird der Zwischenzustand verlassen
und der Zielzustand (Zustand B) betreten und die entryAction1() ausgeführt.

Eine Do Action hat die Besonderheit, dass sie periodisch ausgeführt werden kann. Daher er-
folgt die Abbibldung durch zwei Stories (siehe Abbildung A.15). Die Story do1_execute() stellt
eine Abbildung der doAction() und der unteren Ausführungsgrenze lb da. Die zweite Story
do1_Invariant() stellt sicher, dass die Obergrenze ub eingehalten wird. Ist die Ausführung be-
endet, wird die Clock wieder zurückgesetzt. Die Invariantenregel stellt zudem sicher, dass die
Do Action periodisch ausgeführt wird.

Eine Exit Action wird nach Definition der PARAMETERIZED REAL-TIME STATECHARTS ausge-
führt, wenn der Zustand verlassen wird. TIMED STORY PATTERN müssen daher erst die Zustän-
de, die an der Transition beteiligt sind, binden. Ist dies der Fall, kann der Quellzustand verlassen
werden und die Collaboration Message, die die Exit Action implementiert, ausgeführt werden.
Ein Seiteneffekt wird beim Schalten der Transition ausgeführt. Um dies zu ermöglichen wird ein
Zwischenzustand eingeführt, der beim Verlassen der ersten Story erzeugt wird. Der Zwischenzu-
stand ist ein Stellvertreter Objekt für eine Transition. Das Ausführen des Seiteneffekts simuliert

262

A.1 Elemente

as

AB_Statechart::Trans_A_B()

this

s2

s1 : State
name = „A“

as : ActiveStatethis

s2 : State
name = „executingTransAB“

1: exitAction1()

1: sideEffect1()

A B
sideEffect1()exit: exitAction1() entry: entryAction1()

active

<<-->>
active

<<++>>
<<++>>

<<++>>
active

s3 : State
name = „B“

s2

asthis

s3

1: entryAction1()

<<-->> <<++>>active active
<<-->>

<<-->>

Abbildung A.14: Ausführung von Entry Action, Exit Action und Seiteneffekt

263

Anhang A Timed Story Charts

State
name = „A“

ci : ClockInstance
id = „c_do_inv1“

A

as : ActiveState

p∈[lb ;ub]

has

AB_Statechart::do1_invariant()

this

has

{as.parameter=ci.parameter∧c_do_inv1≤ub }

do : doAction1()

State
name = „A“

ci : ClockInstance
id = „c_do_inv1“

as : ActiveState

has

AB_Statechart::do1_execute()

this

has 1: doAction1()

{as.parameter=ci.parameter∧lb≤c_do_inv1}

rs : ClockReset
reset

active active

Abbildung A.15: Ausführung einer Do Action eines Zustandes.

daher genau die Situation des Schaltens einer Transition. Eine Entry Action wird ausgeführt,
wenn der Zielzustand betreten wird. Voraussetzung dafür ist also, dass der Zwischenzustand ver-
lassen wird und der Zielzustand aktiv ist. Ist dies der Fall kann die Entry Action ausgeführt wer-
den. Dies wird durch unsere Definition umgesetzt. Die Semantik der Collaboration Messages
und die Aufsplittung in drei Stories erfüllt damit die Semantik der PARAMETERIZED REAL-
TIME STATECHARTS.

Eine Do Action muss einmal in jeder Periode innerhalb der angegebenen Schranken ausgeführt
werden. Durch die Abbildung über TIMED STORY CHART-Invarianten bleibt damit die Semantik
erfüllt (siehe Abschnitt A.1.7).

A.1.12 WCET und Prioritäten

Eine WCET nach [GB03] wird für alle Action und Seiteneffekte definiert, um ein Scheduling
bestimmen zu können. Eine WCET kann einfach durch ein extra WCET Objekt der Story hin-
zugefügt werden, indem eine Collaboration Message ausgeführt wird. Um eine eindeutige As-
soziation der WCET zu einer Collaboration Message zu ermöglichen, erhält das WCET Objekt
den gleichen Namen, wie die Collaboration Message.

Eine Priorität an einer Transition gibt an, dass eine Transition mit höherer Piorität geschaltet
wird, falls mehrere Transitionen gleichzeitig schalten können. Eine Abbildung auf TIMED STO-
RY CHARTS erfolgt durch Hinzufügen von Prioritäts Objekten, die durch eine extra Story über-
prüft werden, falls mehrere Transitionen schalten können.

264

A.2 Zusammengesetzte Ausführung

Da die TIMED STORY CHARTS bisher im Wesentlichen für Analysen von plattformunabhängig-
en Modellen eingesetzt wurden, sind die hierfür notwendigen Klassen noch nicht in das Meta-
modell aus Abbildung 2.23 eingeflossen.

A.2 Zusammengesetzte Ausführung

Im vorherigen Abschnitt wurden die einzelnen Elemente eines TIMED STORY CHARTS beschrie-
ben. Hierbei wurde gezeigt, dass die PARAMETERIZED REAL-TIME STATECHART-Elemente
auf TIMED STORY CHART-Elemente abbildbar sind. Hierdurch wird allerdings nicht vermie-
den, dass die einzelnen Elemente in einer beliebigen Reihenfolge ausgeführt werden, bzw. es
ist nicht beschrieben, wie die verschiedenen Elemente zusammen angewandt werden, ohne die
Ausführungssemantik der PARAMETERIZED REAL-TIME STATECHARTS zu verletzen.

In diesem Abschnitt soll entsprechend das Zusammenspiel der einzelnen TIMED STORY CHART-
Elemente betrachtet werden. Die Kombination der Elemente muss wiederum der korrespondie-
renden Kombination der PARAMETERIZED REAL-TIME STATECHARTS-Elemente entsprechen.
Die grundsätzliche Umsetzung der Kombination der Elemente ist einfach über ein Story Dia-
gramm realisierbar. Die einzelnen definierten Elemente werden dabei als Stories in einer wohl-
definierten Reihenfolge verschaltet. Dieser modulare Aufbau erlaubt eine einfache Anpassung
der Ausführungsreihenfolge.

Zum einen müssen wir zeigen, dass das Verschalten von Zustandselementen eines TIMED STO-
RY CHARTS dem Zustand eines PARAMETERIZED REAL-TIME STATECHARTS entspricht. Zum
anderen betrachten wir, dass das verschalten von Transitionselementen eines TIMED STORY

CHARTS einer Transition des PARAMETERIZED REAL-TIME STATECHARTS entspricht. Anders-
herum formuliert, wird ein Zustand und eine Transition eines PARAMETERIZED REAL-TIME

STATECHARTS in eine oder mehrere Schaltregeln des TIMED STORY CHARTS mit mehreren
Stories transformiert. Wie bereits einleitend in diesem Kapitel erläutert beschreiben wir hier le-
diglich informell die Semantik. Die für die Verfeinerung benötigte formale Semantik der TIMED

STORY CHARTS wird in Abschnitt 3.1.2 beschrieben.

Im Folgenden betrachten wir zunächst das Verschalten der TIMED STORY CHART Elemente, um
einen Zustand zu bestimmen. Anschließend werden wir Transitionen betrachten.

A.2.1 Zustände

Abbildung A.16 zeigt einen Zustand eines REAL-TIME STATECHARTS, bzw. PARAMETERIZED

REAL-TIME STATECHARTS. Die Ausführungssemantik eines Zustands nach [GB03] ist durch
vier Schritte definiert:

I. Beim betreten des Zustands wird die entry-Methode ausgeführt.

265

Anhang A Timed Story Charts

II. Anschließend wird überprüft, ob die Invariante erfüllt ist. Ist dies der Fall, wird überprüft,
ob die Clock des Zustands kleiner oder gleich der Invariante minus der oberen Grenze
der Periode ist. Wenn diese Bedingung positiv ausgewertet wird, kann mit III fortgefahren
werden und andernfalls wird mit IV fortgefahren.

III. Sind die Voraussetzungen der Invariante erfüllt, wird die do Methode mit spezifizierter
Periode (die durch eine untere und obere Schranke angegeben wird) ausgeführt.

IV. Ist die Invariante abgelaufen, so wird die exit Methode ausgeführt.

A

entry:entryAction1()
do:doAction1()
exit: exitAction1()

c ≤ 10

Abbildung A.16: Zustand eines Real-Time Statecharts

Das in Abbildung A.17 dargestellte Story Diagramm setzt diese Schritte um. Als 1. Story wird
die Entry Action, wie in Abschnitt A.1.11 vorgestellt, ausgeführt. Voraussetzung, um die Entry
Action auszuführen ist, dass der dazugehörige Zustand gebunden ist. Die Entry Action wird als
Collaboration Message definiert, so dass diese wiederum durch ein Story Diagramm spezifiziert
wird.

Für eine spezifische Plattform muss zudem gezeigt werden, dass die WCET der Entry Action
kleiner der Invariante ist. Allgemein müssen alle Action und Seiteneffekte eine kleinere WCET
als die korrespondierenden Zeitbedingungen haben. In Kapitel 6.1 betrachten wir plattformspe-
zifische Informationen, um z. B. die Laufzeit von Story Diagrammen zu bestimmen. Für die in
diesem Kapitel betrachteten plattformunabhängigen Modelle ist das nicht relevant.

Nachdem die Entry Action ausgeführt wurde, wird durch die 2. Story nach Abschnitt A.1.7 die
Invariante überprüft. Hierfür wird wiederum der Zustand sowie die zu der Invarianten gehörende
Clock Instanz gebunden.

Ist die Invariante abgelaufen, so wird die Exit Action ausgeführt und der Zustand verlassen.

Ist dies nicht der Fall, wird überprüft, ob die Do Action ausgeführt werden kann. Hierfür wird
überprüft, ob die angegebene obere Schranke (p.up) noch innerhalb des offenen Zeitintervalls
der Invariante ausgeführt werden kann. Ist dies nicht der Fall, wird ebenfalls der Zustand über
die Exit Action verlassen.

Die 3. Story führt die Do Action nach Abschnitt A.1.11 aus. Die Do Action wird periodisch
ausgeführt. Dabei wird sichergestellt, dass die Do Action innerhalb des angegeben Periodenin-
tervalls ausgeführt wird.

Die 4. Story führt die Exit Action des Zustands nach Abschnitt A.1.11 aus. Die Exit Action ist
der Startpunkt für das Schalten einer Transition, wie in Abbildung A.14 gezeigt.

Die definierte Verschaltung der Stories setzt damit die Ausführungssemantik eines Zustands um.
Im Folgenden werden wir die Ausführungssemantik einer Transition betrachten.

266

A.2 Zusammengesetzte Ausführung

1. Entry-Action
ausführen

4.Exit-Action
ausführen

2. Invariante
überprüfen

3. Do-Action
ausführen

[c < inv -
p.up -1]

[else]

Zustand
betreten

Zustands-
verhalten
ausführen

Zustand
verlassen

Legende
c: Clockinstanz
inv: Zustands-

invariante
p.up: Obere

Zeitschranke
Periode der Do-
Action

Abbildung A.17: Zustand eines Timed Story Chart

A.2.2 Transitionen

Im vorherigen Abschnitt haben wir die Ausführungssemantik eines Zustands erläutert. Die Ent-
ry und Exit Action sind der Übergang von einem Zustand in eine Transition, bzw. von einer
Transition in einen Zustand. In diesem Abschnitt werden wir die Semantik der Ausführung einer
Transition durch Abbildung der PARAMETERIZED REAL-TIME STATECHART-Transitionen auf
TIMED STORY CHART-Transitionen definieren.

Abbildung A.18 zeigt eine Transition eines PARAMETERIZED REAL-TIME STATECHARTS, mit
allen relevanten Elementen für die Abbildung auf TIMED STORY CHARTS. Die Entry und Exit
Action der Zustände A und B stellen den angesprochenen Übergang von einem Zustand zu einer
Transition und umgekehrt dar.

A B
sideEffect1()exit: exitAction1() entry: entryAction1()

a / b
synck?

{c1}10≤c1≤20

[rc.speed < 10] [2 ;5]

Abbildung A.18: Transition eines Realtime Statecharts

Die Ausführung einer solchen Transition ist nach [GB03] definiert durch die folgenden Schritte:

I. Als erstes werden die Vorbedingungen zum Schalten einer Transition überprüft. Die Vor-
bedingungen sind, dass das Trigger-Event vorliegt, der Synchronisationskanal schaltbereit
ist und der Guard sowie Time Guard erfüllt sind.

II. Das Trigger-Event wird aus dem Event-Puffer genommen. Falls der Quellzustand weitere
ausgehende Transitionen besitzt, werden diese nicht weiter berücksichtigt.

III. Als nächstes wird der Quellzustand der Transition verlassen und die Exit Action ausge-
führt.

267

Anhang A Timed Story Charts

IV. Ist eine relative Deadline spezifiziert worden, so wird eine Clock angelegt.

V. Während des Schaltens der Transition wird der Seiteneffekt der Transition ausgeführt, der
auf die Parameter des Trigger-Events zugreifen kann. Nach der Ausführung des Seitenef-
fekts steht das Event nicht mehr zur Verfügung.

VI. Anschließend werden die Deadlines der Transition überprüft.

VII. Nach der Ausführung des Seiteneffektes wird das RaisedEvent der Transition erzeugt.

VIII. Anschließend werden die Clock Resets ausgeführt.

IX. Mit Betreten des Zielzustandes werden die Synchronisationskanäle von ausgehenden Tran-
sitionen des Zielzustandes verfügbar gemacht.

X. Die letzte Aktion des Zustandswechsels ist die Ausführung der Entry Action des Zielzu-
standes.

Abbildung A.19 zeigt das Story Diagramm, welches die Ausführungsreihenfolge für TIMED

STORY CHARTS auf Basis der PARAMETERIZED REAL-TIME STATECHARTS festlegt. Die ein-
zelnen Stories repräsentieren die zuvor definierten einzelnen Elemente eines TIMED STORY

CHART.

1. Vorbedin-
gung prüfen

4. Quellzustand
verlassen und

ExitAction ausführen

9. Raised Events
erstellen und
Clock Resets

ausführen

11. Zielzustand
betreten und
EntryAction
ausführen

6a. Seiteneffekt
ausführen

2. Event aus
der Queue

holen

7a. Event
löschen

3. Sync-Kanäle
des Quellzu-

stand entfernen

10. Sync-Kanäle
des Zielzustand

 erstellen

Quellzustand
verlassen

Transition mit Deadline
ausführen

Zielzustand
betreten

5. Deadline-
clock er-
zeugen

8. Deadline
Invariante
überprüfen

8. Deadline
Invariante
überprüfen

[Deadline == true]

6b. Seiteneffekt
ausführen

7b. Event
löschen

Transition ohne Deadline
ausführen

[else]

Abbildung A.19: Timed Story Chart Transition

Die 1. Story überprüft die Vorbedingung zum Schalten der Transition. Dazu zählt das Binden
des Quellzustandes als aktiven Zustand, das Binden des Trigger-Events sowie der Synchronisati-
onskanäle. Bei einer Synchronisation werden die an der Synchronisation beteiligten Transitionen
gemäß Abschnitt A.1.6 in einem Story Diagramm geschaltet, um die Gleichzeitigkeit der Transi-
tionsübergänge zu gewährleisten. Falls eines dieser Objekte nicht gebunden werden kann, kann
das Story Diagramm nicht ausgeführt werden und die Transition wird nicht geschaltet. Außer-
dem werden alle Guards und Time Guards der Transition als Bedingungen in die erste Story

268

A.2 Zusammengesetzte Ausführung

aufgenommen. Der Guard sowie der Time Guard müssen ebenfalls erfüllt sein, damit das Story
Diagramm ausgeführt werden kann. Zusammen ergibt sich damit genau Punkt I der Ausfüh-
rungssemantik einer Transition eines PARAMETERIZED REAL-TIME STATECHART.

Die 2. Story ruft die dequeue Methode des Statecharts auf und nimmt das Trigger-Event aus der
Queue. Das Trigger-Event bleibt bis zum Ende der Ausführung des Seiteneffektes im System
erhalten, um die Parameter des Events verarbeiten zu können.

Die 3. Story entfernt die Synchronisationskanäle des verlassenen Zustands gemäß Abschnitt
A.1.6. Dies entspricht zusammen mit der 2. Story genau Punkt II der Ausführungssemantik eines
PARAMETERIZED REAL-TIME STATECHARTS. Die Multi-Story spezifiziert zudem, dass mehr
als ein Synchronisationskanal entfernt werden kann.

In Story 4. wird die Exit Action des Quellzustands ausgeführt und ein Zwischenzustand ange-
legt. Dies entspricht Punkt III der Ausführungssemantik eines PARAMETERIZED REAL-TIME

STATECHART.

Story 5. legt für relative Deadlines, wie in Abschnitt A.1.10 beschrieben, Clock Instanzen an.
Dies entspricht Regel IV eines PARAMETERIZED REAL-TIME STATECHARTS.

Story 6a. und 6b. sind identisch. Die Unterscheidung wird getroffen, um zwischen einer Tran-
sition mit und ohne Deadline zu unterscheiden, da dies zu einer unterschiedlichen Folgeaktion
führt. Beide Stories führen den Seiteneffekt aus. Der Seiteneffekt kann dabei auf die Parameter
des Trigger-Event zurückgreifen und in Story 7a. und 7b, die ebenfalls identisch sind, wird das
Trigger-Event gelöscht. Die Stories entsprechen damit Punkt V der Ausführungssemantik eines
PARAMETERIZED REAL-TIME STATECHARTS.

Die 8. Story überprüft, ob das Deadlineintervall nicht verletzt wurde (siehe Abschnitt A.1.10).
Dies entspricht Regel VI eines PARAMETERIZED REAL-TIME STATECHART.

In der 9. Story werden die Raised-Events und die Clock Resets der Transition ausgeführt. Da-
bei müssen nach der Semantik der PARAMETERIZED REAL-TIME STATECHARTS die Raised-
Events vor dem Zurücksetzen der Clock Instanzen generiert werden. Da die Definition der TI-
MED STORY PATTERN sicherstellt, dass Clock Resets im Anschluss an die Ausführung der
Graphtransformation ausgeführt werden, bleiben die Punkte VII und VIII der Ausführungsse-
mantik eines PARAMETERIZED REAL-TIME STATECHARTS erhalten.

Die 10. Story aktiviert die Synchronisationskanäle der von dem Zielzustand ausgehenden Tran-
sitionen. Dies geschieht vor dem eigentlichen Betreten des Zielzustandes in der 11. Story.

In der 11. Story wird der Zielzustand betreten und der Zwischenzustand entfernt. Abschließend
wird die Entry Action des Zielzustandes ausgeführt. Zusammen mit der Generierung der Syn-
chronisationskanäle in der 10. Story werden die Regeln IX und X erfüllt.

269

Anhang A Timed Story Charts

270

Abbildungsverzeichnis

1.1 RailCab Konvoi . 6
(a) RailCab-Konvoi in der Simulation . 6
(b) RailCab-Konvoi auf der Teststrecke . 6

1.2 Ausschnitt der RailCab-Komponentenarchitektur 7

2.1 Übersicht Entwicklungsansatz . 11
2.2 RailCab Komponente . 16
2.3 Convoy-Koordinationsmuster . 19
2.4 Registration-Koordinationsmuster . 19
2.5 REAL-TIME STATECHARTS der Rolle front . 20
2.6 REAL-TIME STATECHARTS der Rolle rear . 20
2.7 REAL-TIME STATECHART der Rolle registrar 20
2.8 REAL-TIME STATECHART der Rolle registree 20
2.9 Verhalten RailCab Komponente . 22
2.10 Difference Bound Matrice für eine Clock Zone mit einer Clock. 26
2.11 Erweiterung des Konvois um ein RailCab mit einem Time Guard und einem

Clock Reset . 32
2.12 Eine Invariantenregel über einen Teilgraphen 33
2.13 Ein Story Pattern zur Erweiterung des Konvois um ein RailCab 34
2.14 Ein Story Pattern zur Reduzierung des Konvois um ein RailCab 34
2.15 Ein Story Diagramm zur Erweiterung des Konvois um ein RailCab 36
2.16 HYBRID RECONFIGURATION CHART für die rear Rolle 44
2.17 Beispiel Konvoirestrukturierung . 46
2.18 Konvoirestrukturierung: Überblick . 49
2.19 Konvoirestrukturierung: Story . 50
2.20 Komponenten und -parts Metamodell . 51
2.21 Multi-Part, -Port, und -Delegation . 52
2.22 Beispiel-Klassendiagramm . 52
2.23 Erweiterung Komponentenmetamodell um Zeit 54
2.24 Definition einer Clock-Instanz und eines Clock Resets 55
2.25 Clock Reset und Time Guard . 56
2.26 Invariante . 56
2.27 Metamodell für die Abbildung von Realtime Statecharts auf Story Diagramme . . 60
2.28 Schalten einer Transition mit Events . 60
2.29 Dequeue der Event Handling Queue . 62

271

Abbildungsverzeichnis

2.30 Enqueue der Event Handling Queue . 63

3.1 Verhaltensmodell Coordinator-Komponente . 68
3.2 Coordinator-Komponente mit eingebetteten Regler 68
3.3 Verfeinertes UpdatePort Timed Story Diagramm 69
3.4 Anforderungen an die Verfeinerung . 72
3.5 Beziehung zwischen RTBS und (Timed) Bisimulation 73
3.6 Zeitintervall-Verfeinerung . 78
3.7 Beispiel für eine Strukturverfeinerung: (a) zeigt eine gültige Strukturverfeine-

rung, (b) eine ungültige . 84
3.8 Überprüfung Kreise . 95

4.1 Architektur mit LegacyRailCab . 98
4.2 Iteratives Lernen und Überprüfen: Gray Box Checking 101
4.3 Maximal chaotisches Verhalten: der chaotische Automat 107
4.4 Trivialer initialer Automat, der den bekannten initialen Zustand berücksichtigt

(4.4(a)) und das initiale Verhalten einer Altkomponente (4.4(b)) 109
(a) . 109
(b) . 109

4.5 Bekanntes Kontextverhalten . 110
4.6 Synthetisiertes Verhalten: Konflikt mit der Umgebung 114
4.7 Korrekt synthetisiertes Verhalten in Bezug auf den Kontext 117
4.8 Iteratives Lernen und Überprüfen: Black Box Checking 118
4.9 Parameter White Box Checking . 135

5.1 Beispiel Konvoirestrukturierung mit Basisstation 141
5.2 Kombination von separaten Protokollen in der MECHATRONIC UML 142
5.3 Vereinfachte rear-Rolle . 142
5.4 Vereinfachte Registree-Rolle . 142
5.5 Synchronisationsverhalten Komponente: Anwendungsfälle 144
5.6 Ansatz Komponentenverhaltenssynthese . 145
5.7 Nachrichten-Kompositionsregel eca1 . 148
5.8 Beispiel eines parallelen Kompositionsautomaten (Rollen rear und registree) . . 151
5.9 Anwendung von Zustands-Kompositionsregel r1 152
5.10 Anwendung von Zustands-Kompositionsregel r2 152
5.11 Anwendung von Nachrichten-Kompositionsregel eca1 156
5.12 Ausschnitt eines Zone Graphen des Konvoi-Beispiels (siehe Abbildung 5.11) . . 160
5.13 Modifizierte einfache rear-Rolle . 168
5.14 Modifizierte einfache registree-Rolle . 168
5.15 Kompositions-konformer Automat der vereinfachten Rollenautomaten 169
5.16 Zone Graph des vereinfachten kompositions-konformen Timed Automaton (sie-

he Abbildung 5.14) . 170
5.17 Modifizierter rollen-konformer Automat aus Abbildung 5.15 171

272

Abbildungsverzeichnis

5.18 Deadlock-freier Zone Graph des modifizierten Automaten aus Abbildung 5.17 . . 172

6.1 Schichtenarchitektur der Laufzeitumgebung . 176
6.2 Basis-Klassen der Komponentenschicht . 177
6.3 Ausführungssequenz einer Komponente . 178
6.4 Basis-Klassen der Portschicht . 178
6.5 Eine Nachrichtensequenz . 179
6.6 Beobachtung und Kontrolle der Ausführung einer MECHATRONIC UML Kom-

ponentenarchitektur . 180
6.7 Laufzeitumgebung mit Simulationsschicht . 180
6.8 Externe Ereignisse einer Komponente . 181
6.9 Nachrichtensequenz einer deterministischen Wiederholung 182
6.10 Integration plattformspezifischer Informationen 184
6.11 Einfaches Adaptionsverhalten zur Erzeugung einer Musterbeziehung 185
6.12 Story Diagram zur Beschreibung des initiateCoordination Seiteneffekts 185
6.13 Unterliegendes Klassendiagramm des initiateCoordination Seiteneffekts 186
6.14 Parametrisiertes Profil . 193
6.15 Abstraktes Partitionierungsbeispiel [Bur06] . 195
6.16 Übersicht Werkzeugarchitektur . 198
6.17 REAL-TIME COORDINATION PATTERN DistanceCoordination 202
6.18 REAL-TIME STATECHART front-Rolle . 203
6.19 PARAMETERIZED REAL-TIME STATECHART coordinator-Rolle 205
6.20 RailCab Komponententyp . 206
6.21 PARAMETERIZED REAL-TIME STATECHART PosCalc-Port 207
6.22 REAL-TIME STATECHART Delegation . 208
6.23 Erzeugen einer Delegation . 208
6.24 Eigenschaften Altkomponente . 209
6.25 RailCab-Konvoi mit Altkomponente . 209
6.26 Laufzeit der Erreichbarkeitsanalyse . 210
6.27 Anzahl expandierter Graphen und maximale Anzahl der Knoten 211
6.28 Laufzeit Verfeinerung . 212
6.29 Legacy Checking . 213
6.30 Parameter White Box Checking . 213
6.31 Gegenbeispiel White Box Checking . 215
6.32 Erlernter Automat der Altkomponente . 216
6.33 Altkomponente: laden der (kontinuierlichen) Daten 216
6.34 Starte Systemidentifikation . 217
6.35 Erkannte Regler / Transferfunktion . 217
6.36 Erlernter Automat der Altkomponente mit Reglerkonfigurationen 218
6.37 Evaluierungsergebnisse Black Box Checking 219
6.38 Laufzeiten Black Box Checking mit einer Periode von 400 ms 219
6.39 Vereinfachte rear-Rolle . 224
6.40 Vereinfachte registree-Rolle . 224

273

Abbildungsverzeichnis

6.41 Synthetisiertes Komponentenverhalten für die vereinfachten Rollen 225
6.42 Parametrisierte rear-Rolle . 226
6.43 Parametrisierte registration-Rolle . 226
6.44 Komponentenverhaltensynthese: Evaluierung diskrete und kontinuierliche

Zeitsemantik . 226
6.45 Vergleich Anzahl der Zustände . 227
6.46 Vergleich Anzahl der Transitionen . 228
6.47 Vergleich der Berechnungszeit . 228
6.48 Generierte Klassen . 230

A.1 Abbildung eines Statecharts auf einen Objektgraphen. 250
A.2 Schalten einer Transition . 252
A.3 Abbildung einer Clock auf ein ClockInstance Objekt 253
A.4 Guard . 254
A.5 Synchronisation von zwei Transitionen . 255
A.6 Erstellung von Synchronisationskanälen beim Betreten eines Zustands 256
A.7 Entfernen von Synchronisationskanälen beim Verlassen eines Zustands 257
A.8 Löschen von Synchronisationskanälen ohne Assoziation zu einem Zustand 257
A.9 Abbildung einer Time Invariante eines Zustands 258
A.10 Abbildung eines Time Guards einer Transition 259
A.11 Abbildung eines Clock Resets einer Transition 260
A.12 Abbildung einer Deadline (Teil 1). 261
A.13 Abbildung einer Deadline (Teil 2). 262
A.14 Ausführung von Entry Action, Exit Action und Seiteneffekt 263
A.15 Ausführung einer Do Action eines Zustandes. 264
A.16 Zustand eines Real-Time Statecharts . 266
A.17 Zustand eines Timed Story Chart . 267
A.18 Transition eines Realtime Statecharts . 267
A.19 Timed Story Chart Transition . 268

274

Tabellenverzeichnis

6.1 Ergebnisse der Evaluierung der Verbesserungsvorschläge für die korrekte Inte-
gration (Iterationen / Einzelschritte). 223

6.2 Ergebnisse der Evaluierung der Verbesserungsvorschläge für die fehlerhafte In-
tegration (Iterationen / Einzelschritte). 223

6.3 Generierte Fujaba Klassen . 230

7.1 Untersuchte modellgetriebene Ansätze . 234
7.2 Übersicht Vergleich MDD Ansätze . 236

275

Tabellenverzeichnis

276

Literaturverzeichnis

Eigene Veröffentlichungen

[AB11] ANDREAS BAUMGART, Matthias Büker Werner Damm Günter Ehmen Tayfun Ge-
zgin Stefan Henkler Hardi Hungar Bernhard Josko Markus Oertel Thomas Peiken-
kamp Philipp Reinkemeier Ingo Stierand Raphael W. Eckard Böde B. Eckard Bö-
de: Architecture Modeling / OFFIS. 2011. – Forschungsbericht 144

[ACE+08] ALHAWASH, Kahtan ; CEYLAN, Toni ; ECKARDT, Tobias ; FAZAL-BAQAIE, Ma-
sud ; GREENYER, Joel ; HEINZEMANN, Christian ; HENKLER, Stefan ; RISTOV,
Renate ; TRAVKIN, Dietrich ; YALCIN, Coni: The Fujaba Automotive Tool Sui-
te. In: AS̈MANN, Uwe (Hrsg.) ; JOHANNES, Jendrik (Hrsg.) ; ZÜNDORF, Albert
(Hrsg.): Proceedings of the 6th International Fujaba Days 2008, Dresden, Germa-
ny Bd. TUD-FI08-09, Technische Universität Dresden, September 2008, S. 36–39
10, 17, 198

[ADG+09] ADELT, P. ; DONOTH, J. ; GAUSEMEIER, Jürgen ; GEISLER, J. ; HENKLER, Stefan
; KAHL, Sascha ; KLÖPPER, B. ; KRUPP, A. ; MÜNCH, E. ; OBERTHÜR, Simon
; PAIZ, C. ; PODLOGAR, H. ; PORRMANN, M. ; RADKOWSKI, R. ; ROMAUS,
C. ; SCHMIDT, Alexander ; SCHULZ, B. ; VÖ, H. ; WITKOWSKI, U. ; WIT-
TING, K. ; ZNAMENSHCHYKOV, O.: Selbstoptimierende Systeme des Maschinen-
baus – Definitionen, Anwendungen, Konzepte.. Bd. Band 234. Paderborn : HNI-
Verlagsschriftenreihe, 2009 14, 231

[BGH05] BURMESTER, Sven ; GIESE, Holger ; HENKLER, Stefan: Visual Model-Driven
Development of Software Intensive Systems: A Survey of available Techniques and
Tools. In: Proceedings of the Workshop on Visual Modeling for Software Intensive
Systems (VMSIS) at the the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’05), Dallas, Texas, USA, 2005, S. 11–18 1

[BGH+07] BURMESTER, Sven ; GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin ;
TICHY, Matthias ; GAMBUZZA, Alfonso ; MÜNCH, Eckehard ; VÖCKING, Hen-
ner: Tool Support for Developing Advanced Mechatronic Systems: Integrating the
Fujaba Real-Time Tool Suite with CAMeL-View. In: Proceedings of the 29th In-
ternational Conference on Software Engineering (ICSE), Minneapolis, Minnesota,
USA, IEEE Computer Society Press, May 2007, S. 801–804 5, 175, 176, 183, 199,
201, 246, 247

277

Literaturverzeichnis

[BGH+08] BRENNER, Christian ; GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin ;
PRIESTERJAHN, Claudia: Integration of Legacy Components in Mechatronic UML
Architectures. In: AS̈MANN, Uwe (Hrsg.) ; JOHANNES, Jendrik (Hrsg.) ; ZÜN-
DORF, Albert (Hrsg.): Proceedings of the 6th International Fujaba Days 2008,
Dresden, Germany Bd. TUD-FI08-09, Technische Universität Dresden, Septem-
ber 2008, S. 52–56 100, 138, 199

[EH09] ECKARDT, Tobias ; HENKLER, Stefan: Synthesis of Component Behavior. In:
GORP, Pieter V. (Hrsg.): Proceedings of the 7th International Fujaba Days. Eind-
hoven University of Technology, The Netherlands : Technische Universiteit Eind-
hoven, November 2009, S. 40–45 144, 199

[EH10a] ECKARDT, Tobias ; HENKLER, Stefan: Component Behavior Synthesis for Criti-
cal Systems. In: GIESE, Holger (Hrsg.): Architecting Critical Systems Bd. 6150.
Springer Berlin / Heidelberg, 2010, S. 52–71 5, 144

[EHH+11] ECKARDT, Tobias ; HEINZEMANN, Christian ; HENKLER, Stefan ; HIRSCH, Mar-
tin ; PRIESTERJAHN, Claudia ; SCHÄFER, Wilhelm: Modeling and verifying dy-
namic communication structures based on graph transformations. In: Computer
Science - Research and Development (2011), july, S. 1–20. – ISSN 1865–2034 63

[GGS+07] GAUSEMEIER, Jürgen ; GIESE, Holger ; SCHÄFER, Wilhelm ; AXENATH, Björn
; FRANK, Ursula ; HENKLER, Stefan ; POOK, Sebastian ; TICHY, Matthias: To-
wards the Design of Self-Optimizing Mechatronic Systems: Consistency between
Domain-Spanning and Domain-Specific Models. In: Proceedings of the 16th In-
ternational Conference on Engineering Design (ICED), Paris, France, 2007, S.
25–38 247

[GH06a] GIESE, Holger ; HENKLER, Stefan: Architecture-Driven Platform Independent
Deterministic Replay for Distributed Hard Real-Time Systems. In: Proceedings of
the 2nd International Workshop on The Role of Software Architecture for Testing
and Analysis (ROSATEA2006). New York, NY, USA : ACM Press, July 2006, S.
28–38 5, 176, 181, 183, 200

[GH06b] GIESE, Holger ; HENKLER, Stefan: A Survey of Approaches for the Visual Model-
Driven Development of Next Generation Software-Intensive Systems. In: Journal
of Visual Languages and Computing Bd. 17, 2006, S. 528–550 1, 2, 3, 14, 200,
233, 235

[GHH06a] GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin: Analysis and Modeling of
Real-Time with Mechatronic UML taking Clock Drift into Account. In: Procee-
dings of the International Workshop on Modeling and Analysis of Real-Time and
Embedded Systems (MARTES), Satellite Event of the 9th International Conference
on Model Driven Engineering Languages and Systems, MoDELS/UML2006, Ge-
nova, Italy Bd. 343. University of Oslo, October 2006 (Research Report), S. 41–60
38

278

Literaturverzeichnis

[GHH06b] GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin: A PlugIn for the Develop-
ment of Resource Aware Components with Mechatronic UML. In: GIESE, Holger
(Hrsg.) ; WESTFECHTEL, Bernhard (Hrsg.): Proceedings of the fourth Internatio-
nal Fujaba Days 2006, Bayreuth, Germany Bd. tr-ri-06-275, University of Pader-
born, September 2006 (Technical Report), S. 51–55 183

[GHH+06c] GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin ; TICHY, Matthias ;
VÖCKING, Henner: Modellbasierte Entwicklung vernetzter, mechatronischer Sys-
teme am Beispiel der Konvoifahrt autonom agierender Schienenfahrzeuge. In: Pro-
ceedings of the Fourth Paderborner Workshop Entwurf mechatronischer Systeme
Bd. 189, 2006 (HNI-Verlagsschriftenreihe), S. 457–473 6, 27

[GHH08a] GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin: Combining Compositio-
nal Formal Verification and Testing for Correct Legacy Component Integration in
Mechatronic UML. In: LEMOS, Rogério de (Hrsg.) ; GIANDOMENICO, Felici-
ta D. (Hrsg.) ; GACEK, Cristina (Hrsg.) ; MUCCINI, Henry (Hrsg.) ; VIEIRA, Mar-
lon (Hrsg.): Architecting Dependable Systems V Bd. 5135, Springer Verlag, 2008
(Lecture Notes in Computer Science (LNCS)), S. 248–273 5, 100

[GHH08b] GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin: A Multi-Paradigm Ap-
proach Supporting the Modular Execution of Reconfigurable Hybrid Systems /
Computer Science Department, University of Paderborn. 2008 (tr-ri-08-297). –
Forschungsbericht 183

[GHH+08c] GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin ; ROUBIN, Vladimir ; TICHY,
Matthias: Modeling Techniques for Software-Intensive Systems. In: TIAKO, Dr.
Pierre F. (Hrsg.): Designing Software-Intensive Systems: Methods and Principles.
Langston University, OK, 2008, S. 21–58 1

[GHH11] GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin: A multi-paradigm approach
supporting the modular execution of reconfigurable hybrid systems. In: SIMULA-
TION - Transactions of the Society for Modeling and Simulation International 87
(2011), Nr. 9, S. 775–808 5, 183, 196

[GHHK06] GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin ; KLEIN, Florian: Nobody’s
perfect: Interactive Synthesis from Parametrized Real-Time Scenarios. In: Procee-
dings of the 5th ICSE 2006 Workshop on Scenarios and State Machines: Models,
Algorithms and Tools (SCESM’06),Shanghai, China, ACM Press, May 2006, S.
67–74 10, 17, 247

[GHHP07] GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin ; PRIESTERJAHN, Claudia:
Model-Based Testing of Mechatronic Systems. In: GEIGER, Leif (Hrsg.) ; GIESE,
Holger (Hrsg.) ; ZÜNDORF (Hrsg.): Proceedings of the fifth International Fujaba
Days 2007, Kassel, Germany, University of Kassel, September 2007 (Technical
Report), S. 51–55 100

279

Literaturverzeichnis

[HBB+09] HENKLER, Stefan ; BREIT, Moritz ; BRINK, Christopher ; BÖGER, Markus ;
BRENNER, Christian ; BRÖKER, Kathrin ; POHLMANN, Uwe ; RICHTERMEIER,
Manel ; SUCK, Julian ; TRAVKIN, Oleg ; PRIESTERJAHN, Claudia: FRiTSCab:
Fujaba Re-Engineering Tool Suite for Mechatronic Systems. In: GORP, Pieter V.
(Hrsg.): Proceedings of the 7th International Fujaba Days. Eindhoven University
of Technology, The Netherlands : Eindhoven University of Technology, November
2009, S. 25–29 100, 128, 138, 183, 184, 199, 200

[Hen05] HENKLER, Stefan: Laufzeitunterstützung für Test, Überwachung und Diagnose bei
der modellbasierten Entwicklung mit Mechatronic UML, University of Paderborn,
Software Engineering Group, Diplomarbeit, June 2005 176

[HGH+09] HENKLER, Stefan ; GREENYER, Joel ; HIRSCH, Martin ; SCHÄFER, Wilhelm ;
ALHAWASH, Kahtan ; ECKARDT, Tobias ; HEINZEMANN, Christian ; LÖFFLER,
Renate ; SEIBEL, Andreas ; GIESE, Holger: Synthesis of Timed Behavior from
Scenarios in the Fujaba Real-Time Tool Suite. In: Proceedings of the 31st In-
ternational Conference on Software Engineering (ICSE 2009), May 16-24, 2009,
Vancouver, Canada. Washington, DC, USA : IEEE Computer Society, May 2009.
– ISBN 978–1–4244–3453–4, S. 615–618 5, 144, 199, 201, 247

[HH06] HENKLER, Stefan ; HIRSCH, Martin: A Multi-Paradigm Modeling Approach for
Reconfigurable Mechatronic Systems. In: Proceedings of the International Work-
shop on Multi-Paradigm Modeling: Concepts and Tools (MPM06), Satellite Event
of the the 9th International Conference on Model-Driven Engineering Languages
and Systems MoDELS/UML2006, Genova, Italy Bd. 2006/1. Budapest Universi-
ty of Technology and Economics, October 2006 (BME-DAAI Technical Report
Series), S. 15–25 15

[HH07] HENKLER, Stefan ; HIRSCH, Martin: Compositional Validation of Distributed
Real Time Systems. In: GEHRKE, Matthias (Hrsg.) ; GIESE, Holger (Hrsg.) ;
STROOP, Joachim (Hrsg.): Proceedings of the 4th Workshop on Object-oriented
Modeling of Embedded Real-Time Systems (OMER 4), Paderborn, Germany, 30.-
31.10.2007 Bd. tr-ri-07-286, University of Paderborn, October 2007, S. 52–56 100

[HH08a] HENKLER, Stefan ; HIRSCH, Martin: Iterative Behavior Synthesis by Combining
Formal Verification and Model-Based Testing. In: Postproceedings of the 4th Work-
shop on Object-oriented Modeling of Embedded Real-Time Systems (OMER 4),
Paderborn, Germany, 2008, S. 39–51 5, 100

[HH08b] HENKLER, Stefan ; HIRSCH, Martin: Tool Support for Developing Advanced
Mechatronic Systems: Integrating the Fujaba Real-Time Tool Suite with CAMeL-
View. In: SCHÄTZ, Bernhard (Hrsg.) ; GIESE, Holger (Hrsg.) ; NICKEL, Ulrich
(Hrsg.) ; HUHN, Michaela (Hrsg.): Proceedings of the Dagstuhl-Workshop: Model-
Based Development of Embedded Systems (MBEES), 7.3.-12.3.2008, Schloss Dag-
stuhl, Germany. Technische Universität Braunschweig, April 2008 (Informatik-
Bericht 2008-02), S. 78–87 199

280

Literaturverzeichnis

[HH11] HEINZEMANN, Christian ; HENKLER, Stefan: Reusing dynamic communicati-
on protocols in self-adaptive embedded component architectures. In: Proceedings
of the 14th international ACM Sigsoft symposium on Component based software
engineering. New York, NY, USA : ACM, 2011 (CBSE ’11). – ISBN 978–1–
4503–0723–9, S. 109–118 4, 73, 80, 84

[HHG08] HIRSCH, Martin ; HENKLER, Stefan ; GIESE, Holger: Modeling collaborations
with dynamic structural adaptation in mechatronic UML. In: SEAMS ’08: Pro-
ceedings of the 2008 international workshop on Software engineering for adaptive
and self-managing systems. New York, NY, USA : ACM, 2008. – ISBN 978–1–
60558–037–1, S. 33–40 6, 27, 38, 47, 48, 57, 73, 173, 202

[HHH10] HEINZEMANN, Christian ; HENKLER, Stefan ; HIRSCH, Martin: Refinement
Checking of Self-Adaptive Embedded Component Architectures / Computer
Science Department, University of Paderborn. 2010 (tr-ri-10-313). – Forschungs-
bericht 4, 27, 47, 48, 57, 73, 75

[HHKS08] HENKLER, Stefan ; HIRSCH, Martin ; KAHL, Sascha ; SCHMIDT, Alexander:
Development of Self-optimizing Systems: Domain-spanning and Domain-specific
Models exemplified by an Air Gap Adjustment System for Autonomous Vehic-
les. In: ASME International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, August 3-6, 2008, New York,
USA. New York, USA : ASME, September 2008, S. 1–11 247

[HHP08] HENKLER, Stefan ; HIRSCH, Martin ; PRIESTERJAHN, Claudia: Hybrid Model
Checking with the FUJABA Real-Time Tool Suite. In: AS̈MANN, Uwe (Hrsg.)
; JOHANNES, Jendrik (Hrsg.) ; ZÜNDORF, Albert (Hrsg.): Proceedings of the 6th

International Fujaba Days 2008, Dresden, Germany, Technische Universität Dres-
den, September 2008, S. 40–43 45

[HHPS10] HENKLER, Stefan ; HIRSCH, Martin ; PRIESTERJAHN, Claudia ; SCHÄFER, Wil-
helm: Modeling and Verifying Dynamic Communication Structures based on
Graph Transformations. In: ENGELS, Gregor (Hrsg.) ; LUCKEY, Markus (Hrsg.)
; SCHÄFER, Wilhelm (Hrsg.): Software Engineering 2010 - Fachtagung des GI-
Fachbereichs Softwaretechnik, 22.-26.2.2010 in Paderborn Bd. 159, GI, 2010
(LNI). – ISBN 978–3–88579–253–6, S. 153–164 27, 38, 63

[HHZ09] HEINZEMANN, Christian ; HENKLER, Stefan ; ZÜNDORF, Albert: Specificati-
on and Refinement Checking of Dynamic Systems. In: GORP, Pieter V. (Hrsg.):
Proceedings of the 7th International Fujaba Days. Eindhoven University of Tech-
nology, The Netherlands, November 2009, S. 6–10 47, 73, 199

[HMS+10] HENKLER, Stefan ; MEYER, Jan ; SCHÄFER, Wilhelm ; DETTEN, Markus von ;
NICKEL, Ulrich: Legacy Component Integration by the Fujaba Real-Time Tool
Suite. In: ICSE ’10: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering. New York, NY, USA : ACM, 2010. – ISBN 978–1–
60558–719–6, S. 267–270 5, 100, 128, 138, 199

281

Literaturverzeichnis

[HMSN10a] HENKLER, Stefan ; MEYER, Jan ; SCHÄFER, Wilhelm ; NICKEL, Ulrich: Re-
verse Engineering mechatronischer Systeme. In: Seventh Paderborner Workshop
Entwurf mechatronischer Systeme, eingereicht, Heinz Nixdorf Institut, Universität
Paderborn, 2010 (HNI-Verlagsschriftenreihe), S. 1–16 99, 100, 128, 138, 231

[HMSN10b] HENKLER, Stefan ; MEYER, Jan ; SCHÄFER, Wilhelm ; NICKEL, Ulrich: Reverse
Engineering vernetzter automotiver Softwaresysteme. In: GIESE, Holger (Hrsg.)
; HUHN, Michaela (Hrsg.) ; PHILLIPS, Jan (Hrsg.) ; SCHÄTZ, Bernhard (Hrsg.):
Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme
VI, Schloss Dagstuhl, Germany, 2010, Tagungsband Modellbasierte Entwicklung
eingebetteter Systeme, fortiss GmbH, München, 2010, S. 77–86 100, 128, 138, 231

[HOGS10] HENKLER, Stefan ; OBERTHÜR, Simon ; GIESE, Holger ; SEIBEL, Andreas:
Model-Driven Runtime Resource Predictions for Advanced Mechatronic Systems
with Dynamic Data Structures. In: ISORC ’10: Proceedings of the 2010 13th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing. Washington, DC, USA : IEEE Computer Society, 2010. –
ISBN 978–0–7695–4037–5, S. 58–65 183

[HOGS12] HENKLER, Stefan ; OBERTHÜR, Simon ; GIESE, Holger ; SEIBEL, Andreas:
Model-Driven Runtime Resource Predictions for Advanced Mechatronic Systems
with Dynamic Data Structures. In: International Journal of Computer Systems
Science and Engineering 26 (2012), Nr. 6, S. 1–16 5, 183

[HSG08] HENKLER, Stefan ; SEIBEL, Andreas ; GIESE, Holger: Synthesis of Real-Time
Component Behavior / University of Paderborn, Software Engineering Group.
2008 (tr-ri-08-296). – Forschungsbericht 144

[OMT+08] OSMIC, Semir ; MÜNCH, Eckehard ; TRÄCHTLER, Ansgar ; HENKLER, Ste-
fan ; SCHÄFER, Wilhelm ; GIESE, Holger ; HIRSCH, Martin: Safe Online-
Reconfiguration of Self-Optimzing Mechatronic Systems. In: GAUSEMEIER,
Jürgen (Hrsg.) ; RAMMIG, Franz (Hrsg.) ; SCHÄFER, Wilhelm (Hrsg.): Selbst-
optimierende mechatronische Systeme: Die Zukunft gestalten. 7. Internationales
Heinz Nixdorf Symposium für industrielle Informationstechnik. Paderborn : HNI-
Verlagsschriftenreihe, February 2008, S. 411–426 43

[PTH+09] PRIESTERJAHN, Claudia ; TICHY, Matthias ; HENKLER, Stefan ; HIRSCH, Martin
; SCHÄFER, Wilhelm: Fujaba4Eclipse Real-Time Tool Suite. In: Model-Based
Engineering of Embedded Real-Time Systems (MBEERTS) Bd. 6100. Springer
Verlag, 2009. – ISBN 978–3–642–16276–3, S. 1–7 197

Betreute Arbeiten

[ACE+08] ALHAWASH, Kahtan ; CEYLAN, Toni ; ECKARDT, Tobias ; FAZAL-BAQAIE, Masud
; HEINZEMANN, Christian ; RISTOV, Renate ; YALCIN, Coni ; SOFTWARE ENGI-

282

Literaturverzeichnis

NEERING GROUP, UNIVERSITY OF PADERBORN (Hrsg.): Abschlussarbeit der Pro-
jektgruppe Mauritius: Fujaba Automotive Tool Suite. Software Engineering Group,
University of Paderborn, 2008 198, 201

[BBB+09] BREIT, Moritz ; BÖGER, Markus ; BRENNER, Christian ; BRÖKER, Kathrin ; POHL-
MANN, Uwe ; RICHTERMEIER, Manel ; SUCK, Julian ; TRAVKIN, Oleg ; SOFTWARE

ENGINEERING GROUP, UNIVERSITY OF PADERBORN (Hrsg.): Abschlussarbeit der
Projektgruppe ReCab: Re-Engineering mechatronischer Systeme. Software Enginee-
ring Group, University of Paderborn, 2009 48, 70, 100, 128, 138, 184, 198, 199, 200,
201, 229

[Bre08] BRENNER, Christian: Verhaltenssynthese von Legacy-Komponenten auf Basis mo-
dellbasierter Testverfahren, Software Engineering Group, University of Paderborn,
Bachelor Thesis, Juni 2008 100, 199

[Bre10] BRENNER, Christian: Analyse von mechatronischen Systemen mittels Testautomaten,
Software Engineering Group, University of Paderborn, Master Thesis, August 2010
73, 85, 94, 199

[Dor08] DOROCIAK, Rafal: Hybride Verifikation von Mechatronic UML Modellen durch In-
tegration des Modelcheckers PHAVer, Software Engineering Group, University of
Paderborn, Bachelor Thesis, Januar 2008 45

[Eck09] ECKARDT, Tobias: Synthesis of Reconfiguration Charts, Software Engineering
Group, University of Paderborn, Master Thesis, September 2009 144, 199

[Hei09] HEINZEMANN, Christian: Verifikation von Protokollverfeinerungen, Software Engi-
neering Group, University of Paderborn, Master Thesis, Oktober 2009 47, 73, 199,
210

[May08] MAY, Karl A.: Identifikation von Koordinationsmustern in autonomen mechatroni-
schen Echtzeitsystemen, Software Engineering Group, University of Paderborn, Ba-
chelor Thesis, September 2008 231

[May09] MAY, Karl A.: Verifikation und Klassifizierung einer Koordinationsmustersammlung
für Autonome Schienenfahrzeuge, Software Engineering Group, University of Pader-
born, Bachelor Thesis - Aufbauarbeit, März 2009 59, 70, 85, 231

[Poh08] POHLMANN, Uwe: Modellierung und Implementierung von Umschaltverfahren in
Hybrid Reconfiguration Charts, Software Engineering Group, University of Pader-
born, Bachelor Thesis, Mai 2008 198

[Pri07] PRIESTERJAHN, Claudia: Modellbasiertes Testen von Mechatronic UML Modellen
mit Gegenbeispielen, Software Engineering Group, University of Paderborn, Master
Thesis, November 2007 100

[Ric08] RICHTERMEIER, Manuel: Worst Case Execution Time Berechnung von Story Dia-
grammen für mechatronische Systeme, Software Engineering Group, University of
Paderborn, Bachelor Thesis, September 2008 183

283

Literaturverzeichnis

[Suc08] SUCK, Julian: Entwurf und Implementierung einer formalen Verifikation für para-
metrisierte Echtzeitkoordinationsmuster, Software Engineering Group, University of
Paderborn, Bachelor Thesis, Dezember 2008 38

Literatur

[ABBL03] ACETO, Luca ; BOUYER, Patricia ; BURGUEÑO, Augusto ; LARSEN, Kim G.: The
power of reachability testing for timed automata. In: Theory of Computer Science
300 (2003), Nr. 1-3, S. 411–475. – ISSN 0304–3975 96

[ACD90] ALUR, Rajeev ; COURCOUBETIS, Costas ; DILL, David L.: Model-Checking for
Real-time Systems. In: Proceedings of the Fifth Annual Symposium on Logic in
Computer Science (LICS ’90), 4-7 June 1990, Philadelphia, Pennsylvania, USA,
IEEE Computer Society, June 1990, S. 414–425 241

[ACD93] ALUR, Rajeev ; COURCOUBETIS, Costas ; DILL, David L.: Model-Checking in
Dense Real-time. In: Information and Computation 104 (1993), Nr. 1, S. 2–34 37,
71, 241

[ACH94] ALUR, Rajeev ; COURCOUBETIS, Costas ; HENZINGER, Thomas A.: The Ob-
servational Power of Clocks. In: CONCUR ’94: Proceedings of the Concurrency
Theory. London, UK : Springer-Verlag, 1994. – ISBN 3–540–58329–7, S. 162–
177 85

[AD90] ALUR, Rajeev ; DILL, David L.: Automata for Modeling Real-time Systems. In:
Proceedings of the Seventeenth International Colloquium on Automata, Languages
and Programming Bd. 443. New York, NY, USA : Springer-Verlag New York, Inc.,
1990 (Lecture Notes in Computer Science (LNCS)). – ISBN 0–387–52826–1, S.
322–335 21, 53, 85

[AD94] ALUR, Rajeev ; DILL, David L.: A Theory of Timed Automata. In: Theoretical
Computer Science 126 (1994), Nr. 2, S. 183–235 32, 53, 54, 55, 70, 71

[ADE+01] ALUR, Rajeev ; DANG, Thao ; ESPOSITO, Joel M. ; FIERRO, Rafael B. ; HUR,
Yerang ; IVANCIC, Franjo ; KUMAR, Vijay ; LEE, Insup ; MISHRA, Pradyumna ;
PAPPAS, George J. ; SOKOLSKY, Oleg: Hierarchical Hybrid Modeling of Embed-
ded Systems. In: EMSOFT ’01: Proceedings of the First International Workshop
on Embedded Software. London, UK : Springer-Verlag, 2001. – ISBN 3–540–
42673–6, S. 14–31 234

[ADG98] ALLEN, Robert ; DOUENCE, Rémi ; GARLAN, David: Specifying and Analyzing
Dynamic Software Architectures. In: Lecture Notes in Computer Science 1382
(1998), S. 21–37 237

[AFH99] ALUR, Rajeev ; FIX, Limor ; HENZINGER, Thomas A.: Event-clock automata:
a determinizable class of timed automata. In: Theoretical Computer Science 211

284

Literaturverzeichnis

(1999), Nr. 1-2, S. 253 – 273. – ISSN 0304–3975 240

[AGLS01] ALUR, Rajeev ; GROSU, Radu ; LEE, Insup ; SOKOLSKY, Oleg: Compositional
Refinement of Hierarchical Hybrid Systems. In: Proceedings of the Fourth Inter-
national Conference on Hybrid Systems: Computation and Control (HSCC’01) Bd.
2034, Springer Verlag, 2001 (Lecture Notes in Computer Science), S. 33–48 234

[AIK+03] ALUR, Rajeev ; IVANCIC, Franjo ; KIM, Jesung ; LEE, Insup ; SOKOLSKY, Oleg:
Generating embedded software from hierarchical hybrid models. In: Proceedings
of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for em-
bedded systems, ACM Press, 2003, S. 171–182 234

[Alu92] ALUR, Rajeev: Techniques for automatic verification of real-time systems. Stan-
ford, CA, USA, Stanford University, Diss., 1992 146

[Alu99] ALUR, Rajeev: Timed Automata. In: HALBWACHS, Nicolas (Hrsg.) ; PELED, Do-
ron (Hrsg.): Proceedings of the 11th International Conference on Computer Aided
Verification (CAV ’99), July 6-10, 1999, Trento, Italy Bd. 1633, Springer Verlag,
1999 (Lecture Notes in Computer Science (LNCS)), S. 8–22 24, 25, 32, 53, 54, 55,
75, 87

[AM02] AGUIRRE, Nazareno ; MAIBAUM, Tom: A Temporal Logic Approach to the Spe-
cification of Reconfigurable Component-Based Systems. In: Automated Software
Engineering, International Conference on 0 (2002), S. 271–274. – ISSN 1527–
1366 237

[AMP95] ASARIN, Eugene ; MALER, Oded ; PNUELI, Amir: Symbolic Controller Synthesis
for Discrete and Timed Systems. In: Hybrid Systems II. London, UK : Springer-
Verlag, 1995. – ISBN 3–540–60472–3, S. 1–20 241

[AMPS98] ASARIN, Eugene ; MALER, Oded ; PNUELI, Amir ; SIFAKIS, Joseph: Controller
Synthesis for Timed Automata. In: Proceedings of the 5th IFAC Cconference on
System Structure and Control (SSC’98), Elsevier Science, Juli 1998, S. 469–474
70, 71, 181, 241

[Ang87] ANGLUIN, Dana: Learning regular sets from queries and counterexamples. In:
Information and Computation 75 (1987), Nr. 2, S. 87–106. – ISSN 0890–5401
117, 119

[ASK04] AGRAWAL, Aditya ; SIMON, Gyula ; KARSAI, Gabor: Semantic Translation of
Simulink/Stateflow Models to Hybrid Automata Using Graph Transformations. In:
Electronic Notes Theoretic Computer Science 109 (2004), S. 43–56. – ISSN 1571–
0661 234

[AT02] ALTISEN, Karine ; TRIPAKIS, Stavros: Tools for Controller Synthesis of Timed
Systems. In: PETTERSSON, Paul (Hrsg.) ; YI, Wang (Hrsg.): Proceedings of the
2nd Workshop on Real-Time Tools (RT-TOOLS’02), 2002, S. 1–12 241

285

Literaturverzeichnis

[BBHP04] BERKENKÖTTER, Kirsten ; BISANZ, Stefan ; HANNEMANN, Ulrich ; PELESKA,
Jan: Executable HybridUML and its Application to Train Control Systems. In:
EHRIG, Hartmut (Hrsg.) ; DAMM, Werner (Hrsg.) ; DESEL, Jörg (Hrsg.) ; GROSSE-
RHODE, Martin (Hrsg.) ; REIF, Wolfgang (Hrsg.) ; SCHNIEDER, Eckehard (Hrsg.)
; WESTKÄMPER, Engelbert (Hrsg.): Integration of Software Specification Techni-
ques for Applications in Engineering Bd. 3147, Springer Verlag, 2004 (Lecture
Notes in Computer Science (LNCS)), S. 145–173 234

[BBP+02] BENDER, K. ; BROY, M. ; PETER, I. ; PRETSCHNER, A. ; STAUNER, T.: Model
based development of hybrid systems. In: Modelling, Analysis, and Design of
Hybrid Systems Bd. 279. Springer Verlag, July 2002, S. 37–52 234

[BCDW04] BRADBURY, Jeremy S. ; CORDY, James R. ; DINGEL, Juergen ; WERMELINGER,
Michel: A survey of self-management in dynamic software architecture specifi-
cations. In: WOSS ’04: Proceedings of the 1st ACM SIGSOFT workshop on Self-
managed systems. New York, NY, USA : ACM, 2004. – ISBN 1–58113–989–6, S.
28–33 235

[BCH+04] BEYER, Dirk ; CHLIPALA, Adam J. ; HENZINGER, Thomas A. ; JHALA, Ranjit ;
MAJUMDAR, Rupak: The Blast Query Language for Software Verification. In:
GIACOBAZZI, Roberto (Hrsg.): Static Analysis, 11th International Symposium,
SAS 2004, Verona, Italy, August 26-28, 2004, Proceedings Bd. 3148, Springer, 2004
(Lecture Notes in Computer Science). – ISBN 3–540–22791–1, S. 2–18 131

[BCK08] BALDAN, Paolo ; CORRADINI, Andrea ; KÖNIG, Barbara: A framework for the
verification of infinite-state graph transformation systems. In: Information and
Computation 206 (2008), Nr. 7, S. 869–907. – ISSN 0890–5401 238

[BCL+05] BROOKS, C. ; CATALDO, A. ; LEE, E. A. ; LIU, J. ; LIU, X. ; NEUENDORFFER,
S. ; ZHENG, H. ; UNIVERSITY OF CALIFORNIA, BERKELEY (Hrsg.): HyVisual:
A Hybrid System Visual Modeler. CA 94720: University of California, Berkeley,
2005. – Technical Memorandum UCB/ERL M05/24 234

[BDL04] BEHRMANN, Gerd ; DAVID, Alexandre ; LARSEN, Kim G.: A Tutorial on Uppaal.
In: BERNARDO, Marco (Hrsg.) ; CORRADINI, Flavio (Hrsg.): Formal Methods for
the Design of Real-Time Systems: 4th International School on Formal Methods for
the Design of Computer, Communication, and Software Systems, SFM-RT 2004,
Springer–Verlag, September 2004 (LNCS 3185), S. 200–236 23

[Bec08] BECKER, Steffen: Coupled Model Transformations for QoS Enabled Component-
Based Software Design, Department of Computer Science, University of Olden-
burg, Diss., March 2008 200

[Ber06] BERG, Therese: Regular Inference for Reactive Systems, it, Licentiate thesis, April
2006. – 132 S. 127, 239

[Bey02] BEYER, Dirk: Formale Verifikation von Realzeit-Systemen mittels Cottbus Timed
Automata. Mensch & Buch Verlag, Berlin, 2002. – ISBN 3–89820–450–2 65, 223,

286

Literaturverzeichnis

238

[BG08] BECKER, Basil ; GIESE, Holger: On Safe Service-Oriented Real-Time Coordinati-
on for Autonomous Vehicles. In: In Proceedings of 11th International Symposium
on Object/component/service-oriented Real-time distributed Computing (ISORC),
IEEE Computer Society Press, 5 2008. – ISBN 978–0–7695–3132–8, S. 203–210
238

[BGGO04a] BURMESTER, Sven ; GEHRKE, Matthias ; GIESE, Holger ; OBERTHÜR, Simon:
Making Mechatronic Agents Resource-aware in order to Enable Safe Dynamic
Resource Allocation. In: GEORGIO, B. (Hrsg.): Proceedings of Fourth ACM In-
ternational Conference on Embedded Software 2004 (EMSOFT 2004), Pisa, Italy,
ACM Press, September 2004, S. 175–183 184, 186, 193

[BGGO04b] BURMESTER, Sven ; GIESE, Holger ; GAMBUZZA, Alfonso ; OBERSCHELP, Oli-
ver: Partitioning and Modular Code Synthesis for Reconfigurable Mechatronic
Software Components. In: BOBEANU, C. (Hrsg.): Proceedings of European Simu-
lation and Modelling Conference (ESMc’2004), Paris, France, EOROSIS Publica-
tions, October 2004, S. 66–73 196

[BGH05a] BURMESTER, Sven ; GIESE, Holger ; HIRSCH, Martin: Syntax and Semantics of
Hybrid Components / Software Engineering Group, University of Paderborn. 2005
(tr-ri-05-264). – Forschungsbericht 43, 238

[BGH+05b] BURMESTER, Sven ; GIESE, Holger ; HIRSCH, Martin ; SCHILLING, Daniela ;
TICHY, Matthias: The Fujaba Real-Time Tool Suite: Model-Driven Development
of Safety-Critical, Real-Time Systems. In: Proceedings of the 27th Internatio-
nal Conference on Software Engineering (ICSE), St. Louis, Missouri, USA, ACM
Press, May 2005, S. 670–671 201

[BGK05] BURMESTER, Sven ; GIESE, Holger ; KLEIN, Florian: Synthesis of Parameterized
UML Real-Time Patterns from Multiple Parameterized Real-Timed Scenarios. In:
BORDELEAU, Francis (Hrsg.) ; LEUE, Stefan (Hrsg.) ; SYSTÄ, Tarja (Hrsg.): Sce-
narios: Models, Algorithms and Tools Bd. 3371. Springer Verlag, April 2005, S.
193–211 10, 201, 234

[BGO06] BURMESTER, Sven ; GIESE, Holger ; OBERSCHELP, Oliver: Hybrid UML Com-
ponents for the Design of Complex Self-optimizing Mechatronic Systems. In:
BRAZ, JOSÉ (Hrsg.) ; ARAÚJO, HELDER (Hrsg.) ; VIEIRA, ALVES (Hrsg.)
; ENCARNAÇÃO, BRUNO (Hrsg.): Informatics in Control, Automation and Ro-
botics I. Springer Netherlands, 2006. – ISBN 978–1–4020–4543–1, S. 281–288
234

[BGST05] BURMESTER, Sven ; GIESE, Holger ; SEIBEL, Andreas ; TICHY, Matthias: Worst-
Case Execution Time Optimization of Story Patterns for Hard Real-Time Systems.
In: Proceedings of the 3rd International Fujaba Days 2005, Paderborn, Germany,
2005, S. 71–78 234

287

Literaturverzeichnis

[BGT05] BURMESTER, Sven ; GIESE, Holger ; TICHY, Matthias: Model-Driven Develop-
ment of Reconfigurable Mechatronic Systems with Mechatronic UML. In: ASS-
MANN, Uwe (Hrsg.) ; RENSINK, Arend (Hrsg.) ; AKSIT, Mehmet (Hrsg.): Model
Driven Architecture: Foundations and Applications Bd. 3599, Springer Verlag, Au-
gust 2005 (Lecture Notes in Computer Science), S. 47–61 234

[BJLS03] BERG, Therese ; JONSSON, Bengt ; LEUCKER, Martin ; SAKSENA, Mayank: In-
sights to Angluin’s Learning. In: Proceedings of the International Workshop on
Software Verification and Validation (SVV 2003) Bd. 118, 2003 (Electronic Notes
in Theoretical Computer Science), S. 3–18 239

[BJR06] BERG, Therese ; JONSSON, Bengt ; RAFFELT, Harald: Regular Inference for State
Machines with Parameters. In: BARESI, Luciano (Hrsg.) ; HECKEL, Reiko (Hrsg.):
Fundamental Approaches to Software Engineering Bd. 3922. Springer Berlin /
Heidelberg, 2006, S. 107–121 97, 239

[BK06] BONAKDARPOUR, Borzoo ; KULKARNI, Sandeep S.: Automated Incremental
Synthesis of Timed Automata. In: BRIM, Lubos (Hrsg.) ; HAVERKORT, Boude-
wijn R. (Hrsg.) ; LEUCKER, Martin (Hrsg.) ; POL, Jaco van d. (Hrsg.): Formal Me-
thods: Applications and Technology, 11th International Workshop, FMICS 2006
and 5th International Workshop PDMC 2006, Bonn, Germany, August 26-27, and
August 31, 2006, Revised Selected Papers Bd. 4346, Springer-Verlag Berlin Hei-
delberg, 2006 (Lecture Notes in Computer Science (LNCS)), S. 261–276 241

[BK08] BAIER, Christel ; KATOEN, Joost-Pieter: Principles of Model Checking. MIT
Press, 2008 36, 74, 86, 104

[BN03] BROEKMAN, Bart ; NOTENBOOM, Edwin: Testing Embedded Software. Addison-
Wesley, 2003 98

[BÖ10] BORONAT, A. ; ÖLVECZKY, P. C.: Formal Real-Time Model Transformations in
MOMENT2. In: Proc. of the 13th Intern. Conf. on Fundamental Approaches to
Software Engineering, FASE 2010, 2010, S. 29–43 237

[BPG03] BARRINGER, H. ; PASAREANU, Corina S. ; GIANNAKOPOLOU, D.: Proof Ru-
les for Automated Compositional Verification through Learning. In: International
Workshop on Specification and Verification of Component Based Systems, Finland,
2003, S. 14–21 239

[Bur06] BURMESTER, Sven: Model-Driven Engineering of Reconfigurable Mechatronic
Systems, Software Engineering Group, University of Paderborn, Diss., 8 2006 2,
15, 45, 65, 70, 136, 175, 176, 181, 183, 195, 196, 229, 238, 246, 273

[But05] BUTTAZZO, Giorgio C.: Real-Time Systems Series. Bd. 23: Hard Real-time Com-
puting Systems: Predictable Scheduling Algorithms and Applications. 2. Springer,
2005. – ISBN 978–0–387–23137–2 70, 186

288

Literaturverzeichnis

[BY03] BENGTSSON, Johan ; YI, Wang: Timed Automata: Semantics, Algorithms and
Tools. In: Lectures on Concurrency and Petri Nets, 2003, S. 87–124 24, 25, 75,
86, 87, 163

[CDH+00] CORBETT, James C. ; DWYER, Matthew B. ; HATCLIFF, John ; LAUBACH, Shawn
; PĂSĂREANU, Corina S. ; ROBBY ; ZHENG, Hongjun: Bandera: extracting finite-
state models from Java source code. In: ICSE ’00: Proceedings of the 22nd inter-
national conference on Software engineering. New York, NY, USA : ACM, 2000.
– ISBN 1–58113–206–9, S. 439–448 100

[CGJ+00] CLARKE, Edmund ; GRUMBERG, Orna ; JHA, Somesh ; LU, Yuan ; VEITH, Hel-
mut: Counterexample-Guided Abstraction Refinement. In: EMERSON, E. (Hrsg.)
; SISTLA, A. (Hrsg.): Computer Aided Verification Bd. 1855. Springer Berlin /
Heidelberg, 2000, S. 154–169 238

[CGJ+03] CLARKE, Edmund ; GRUMBERG, Orna ; JHA, Somesh ; LU, Yuan ; VEITH, Hel-
mut: Counterexample-guided abstraction refinement for symbolic model checking.
In: J. ACM 50 (2003), Nr. 5, S. 752–794. – ISSN 0004–5411 241

[CGP00] CLARKE, E. M. ; GRUMBERG, O. ; PELED, D. A.: Model Checking. MIT Press,
2000 26, 32, 36, 40, 41, 70, 80, 104

[CGP03] COBLEIGH, Jamieson M. ; GIANNAKOPOULOU, Dimitra ; PASAREANU, Cori-
na S.: Learning Assumptions for Compositional Verification. In: Tools and Al-
gorithms for the Construction and Analysis of Systems Bd. Volume 2619/2003,
Springer Berlin / Heidelberg, 2003. – ISBN 978–3–540–00898–9, S. 331–346 239

[Cho78] CHOW, T. S.: Testing Software Design Modeled by Finite-State Machines. In:
IEEE Transactions on Software Engineering 4 (1978), Nr. 3, S. 178–187. – ISSN
0098–5589 117, 118, 127

[CKL04] CLARKE, Edmund M. ; KROENING, Daniel ; LERDA, Flavio: A Tool for Checking
ANSI-C Programs. In: JENSEN, Kurt (Hrsg.) ; PODELSKI, Andreas (Hrsg.): Tools
and Algorithms for the Construction and Analysis of Systems, 10th Internatio-
nal Conference, TACAS 2004, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April
2, 2004, Procee Bd. 2988, Springer, 2004 (Lecture Notes in Computer Science). –
ISBN 3–540–21299–X, S. 168–176 130

[CKSY05] CLARKE, Edmund ; KROENING, Daniel ; SHARYGINA, Natasha ; YORAV, Karen:
SATABS: SAT-based Predicate Abstraction for ANSI-C. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2005) Bd. 3440, Springer
Verlag, 2005 (Lecture Notes in Computer Science). – ISBN 3–540–25333–5, S.
570–574 130

[CLG+09] CHENG, Betty H. C. ; LEMOS, Rogério de ; GIESE, Holger ; INVERARDI, Paola ;
MAGEE, Jeff ; ANDERSSON, Jesper ; BECKER, Basil ; BENCOMO, Nelly ; BRUN,
Yuriy ; CUKIC, Bojan ; SERUGENDO, Giovanna Di M. ; DUSTDAR, Schahram ;

289

Literaturverzeichnis

FINKELSTEIN, Anthony ; GACEK, Cristina ; GEIHS, Kurt ; GRASSI, Vincenzo ;
KARSAI, Gabor ; KIENLE, Holger M. ; KRAMER, Jeff ; LITOIU, Marin ; MALEK,
Sam ; MIRANDOLA, Raffaela ; MÜLLER, Hausi A. ; PARK, Sooyong ; SHAW,
Mary ; TICHY, Matthias ; TIVOLI, Massimo ; WEYNS, Danny ; WHITTLE, Jon:
Software Engineering for Self-Adaptive Systems: A Research Roadmap. In: Soft-
ware Engineering for Self-Adaptive Systems Bd. 5525, Springer Berlin / Heidel-
berg, 2009 (Lecture Notes in Computer Science). – ISBN 978–3–642–02160–2, S.
1–26 235

[CMP94] CHANG, Edward Y. ; MANNA, Zohar ; PNUELI, Amir: Compositional Verification
of Real-time Systems. In: Proceedings of the 9th Annual IEEE Symposium on
Logic in Computer Science, 4-7 July 1994, Paris, France, 1994, S. 458–465 241

[CPT99] CANAL, Carlos ; PIMENTEL, Ernesto ; TROYA, José M.: Specification and Refi-
nement of Dynamic Software Architectures. In: WICSA1: Proceedings of the TC2
First Working IFIP Conference on Software Architecture (WICSA1). Deventer, The
Netherlands, The Netherlands : Kluwer, B.V., 1999. – ISBN 0–7923–8453–9, S.
107–126 237

[Crn02] CRNKOVIC, Ivica ; LARSSON, Magnus (Hrsg.): Building Reliable Component-
Based Software Systems. Norwood, MA, USA : Artech House, Inc., 2002. – ISBN
1580533272 1, 3, 10

[Dij76] DIJKSTRA, Edsger W.: A Discipline of Programming. Prentice-Hall, 1976 139

[Dil89] DILL, David L.: Timing Assumptions and Verification of Finite-State Concurrent
Systems. In: Automatic Verification Methods for Finite State Systems, Internatio-
nal Workshop, Grenoble, France, June 12-14, 1989, Proceedings Bd. 407/1990,
Springer-Verlag Berlin / Heidelberg, 1989 (Lecture Notes in Computer Science
(LNCS)). – ISBN 0–387–52148–8, S. 197–212 26

[DKU06] DUARTE, Lucio ; KRAMER, Jeff ; UCHITEL, Sebastian: Model Extraction Using
Context Information. In: NIERSTRASZ, Oscar (Hrsg.) ; WHITTLE, Jon (Hrsg.)
; HAREL, David (Hrsg.) ; REGGIO, Gianna (Hrsg.): Model Driven Engineering
Languages and Systems Bd. 4199. Springer Berlin / Heidelberg, 2006, S. 380–394
100

[DMY02] DAVID, Alexandre ; MÖLLER, M. O. ; YI, Wang: Formal Verification of UML
Statecharts with Real-Time Extensions. In: Fundamental Approaches to Software
Engineering Bd. 2306. Springer Berlin / Heidelberg, 2002, S. 208–241 19

[Dou99] DOUGLASS, Bruce P.: Doing hard time: developing real-time systems with UML,
objects, frameworks, and patterns. Boston, MA, USA : Addison-Wesley Longman
Publishing Co., Inc., 1999. – ISBN 0–201–49837–5 176

[Dou02] DOUGLASS, Bruce P.: Real-Time Design Patterns: Robust Scalable Architecture
for Real-Time Systems. Boston, MA, USA : Addison-Wesley Longman Publishing
Co., Inc., 2002. – ISBN 0201699567 70, 176, 177, 178

290

Literaturverzeichnis

[Dun02] DUNN, William R.: Practical Design of Safety-Critical Computer Systems. Relia-
bility Press, 2002 100

[EFR08] EUSGELD, Irene (Hrsg.) ; FREILING, Felix C. (Hrsg.) ; REUSSNER, Ralf (Hrsg.):
Dependability Metrics: Advanced Lectures [result from a Dagstuhl seminar, Octo-
ber 30 - November 1, 2005]. Bd. 4909. Springer, 2008 (Lecture Notes in Computer
Science). – ISBN 978–3–540–68946–1 200

[EG+06] ELKIND, Edith ; GENEST, Blaise ; ; PELED, Doron ; AND, Hongyang Q.: Grey-
Box Checking. In: Formal Techniques for Networked and Distributed Systems -
FORTE 2006 Bd. Volume 4229/2006, Springer Berlin / Heidelberg, 2006. – ISBN
978–3–540–46219–4, S. 420–435 239, 240

[EW92] ENDLER, M. ; WEI, J.: Programming generic dynamic reconfigurations for distri-
buted applications. In: International Workshop on Configurable Distributed Sys-
tems, 1992, S. 68–79 237

[FGK+04] FRANK, Ursula ; GIESE, Holger ; KLEIN, Florian ; OBERSCHELP, Oliver ;
SCHMIDT, Andreas ; SCHULZ, Bernd ; VÖCKING, Henner ; WITTING, Katrin ;
GAUSEMEIER, J/ürgen (Hrsg.): Selbstoptimierende Systeme des Maschinenbaus:
Definitionen und Konzepte. HNI-Verlagsschriftenreihe, Band 155, Paderborn, Ger-
many, 2004 14

[Fid96] FIDGE, Colin: Fundamentals of Distributed System Observation. In: IEEE Soft-
ware 13 (1996), Nr. 6, S. 77–83. – ISSN 0740–7459 183

[FJW97] FRIESEN, Viktor ; JÄHNICHEN, Stefan ; WEBER, Matthias: Specification of soft-
ware controlling a discrete-continuous environment. In: ICSE ’97: Proceedings of
the 19th international conference on Software engineering. New York, NY, USA :
ACM, 1997. – ISBN 0–89791–914–9, S. 315–325 234

[FNW98] FRIESEN, Viktor ; NORDWIG, André ; WEBER, Matthias: Object-Oriented
Specification of Hybrid Systems Using UMLh and ZimOO. In: Proceedings of the
11th International Conference of Z Users on The Z Formal Specification Notation,
Berlin, Germany Bd. 1493, Springer Verlag, 1998 (Lecture Notes in Computer
Science (LNCS)), S. 328–346 234

[Föl05] FÖLLINGER, Otto: Regelungstechnik. Einführung in die Methoden und ihre An-
wendung. Hüthig, 2005 42

[FPW98] FRANKLIN, G. F. ; POWELL, J. D. ; WORKMAN, M.: Digital Control of Dynamic
Systems. 3. Addison-Wesley Longman Publishing Co., Inc., 1998 136

[GAO95] GARLAN, David ; ALLEN, Robert ; OCKERBLOOM, John: Architectural Mis-
match: Why Reuse Is So Hard. In: IEEE Software 12 (1995), Nr. 6, S. 17–26.
– ISSN 0740–7459 2

[Gar03] GARLAN, David: Formal Modeling and Analysis of Software Architecture: Com-
ponents, Connectors, and Events. In: Formal Methods for Software Architectures

291

Literaturverzeichnis

Bd. 2804, Springer Berlin / Heidelberg, 2003 (Lecture Notes in Computer Science).
– ISBN 978–3–540–20083–3, S. 1–24 2

[GB03] GIESE, Holger ; BURMESTER, Sven: Real-Time Statechart Semantics / Lehrstuhl
für Softwaretechnik, Universität Paderborn. Paderborn, Germany, 6 2003 (tr-ri-03-
239). – Forschungsbericht 19, 21, 23, 24, 59, 61, 256, 261, 264, 265, 267

[GBSO04] GIESE, Holger ; BURMESTER, Sven ; SCHÄFER, Wilhelm ; OBERSCHELP, Oli-
ver: Modular Design and Verification of Component-Based Mechatronic Systems
with Online-Reconfiguration. In: Proceedings of 12th ACM SIGSOFT Foundati-
ons of Software Engineering 2004 (FSE 2004), Newport Beach, USA, ACM Press,
November 2004, S. 179–188 234

[GGR08] GEIST, Stephanie ; GROMOV, Dmitry ; RAISCH, Jörg: Timed Discrete Event Con-
trol of Parallel Production Lines with Continuous Outputs. In: Discrete Event Dy-
namic Systems 18 (2008), Nr. 2, S. 241–262. – ISSN 0924–6703 241

[GHJV95] GAMMA, Erich ; HELM, Richard ; JOHNSON, Ralph ; VLISSIDES, John: Design
Patterns. Boston, MA : Addison-Wesley, 1995. – ISBN 0201633612 58

[GHK00] GADDUCCI, Fabio ; HECKEL, Reiko ; KOCH, Manuel: A Fully Abstract Model for
Graph-Interpreted Temporal Logic. In: Theory and Application of Graph Transfor-
mation Bd. 1764. Springer Berlin / Heidelberg, 2000, S. 310–322 238

[Gie00] GIESE, Holger: Contract-Based Component System Design. In: HICSS ’00: Pro-
ceedings of the 33rd Hawaii International Conference on System Sciences-Volume
8, 4-7 January, 2000, Maui, Hawaii. Washington, DC, USA : IEEE Computer
Society, 2000. – ISBN 0–7695–0493–0, S. 8051–8060 242

[Gie03] GIESE, Holger: A Formal Calculus for the Compositional Pattern-Based Design
of Correct Real-Time Systems. / Lehrstuhl für Softwaretechnik, Universität Pader-
born. Paderborn, Deutschland, July 2003 (tr-ri-03-240). – Forschungsbericht 10,
70, 79, 80

[Gie07] GIESE, Holger: Modeling and Verification of Cooperative Self-adaptive Mechatro-
nic Systems. In: Reliable Systems on Unreliable Networked Platforms Bd. 4322,
Springer Berlin / Heidelberg, 2007 (Lecture Notes in Computer Science). – ISBN
978–3–540–71155–1, S. 258–280 65, 85, 237

[GJL04] GRINCHTEIN, Olga ; JONSSON, Bengt ; LEUCKER, Martin: Learning of Event-
Recording Automata. In: LAKHNECH, Yassine (Hrsg.) ; YOVINE, Sergio (Hrsg.):
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems
Bd. 3253. Springer Berlin / Heidelberg, 2004, S. 77–82 240

[GJM91] GHEZZI, Carlo ; JAZAYERI, Mehdi ; MANDRIOLI, Dino: Fundamentals of softwa-
re engineering. Upper Saddle River, NJ, USA : Prentice-Hall, Inc., 1991. – ISBN
0–13–820432 1

292

Literaturverzeichnis

[GJP06] GRINCHTEIN, Olga ; JONSSON, Bengt ; PETTERSSON, Paul: Inference of Event-
Recording Automata Using Timed Decision Trees. In: CONCUR 2006 Concur-
rency Theory Bd. Volume 4137/2006, Springer Berlin / Heidelberg, 2006. – ISBN
978–3–540–37376–6, S. 435–449 240

[GKS00] GROSU, Radu ; KRÜGER, Ingolf ; STAUNER, Thomas: Hybrid Sequence Charts.
In: Proceedings of the 3rd IEEE International Symposium on Object-oriented Real-
time distributed Computing (ISORC 2000), IEEE Computer Society, 2000. – ISBN
0–7695–0607–0, S. 104–112 234

[Gol78] GOLD, E. M.: Complexity of Automaton Identification from Given Data. In:
Information and Control 37 (1978), Nr. 3, S. 302–320 119

[Gom00] GOMAA, Hassan: Designing Concurrent, Distributed, and Real-Time Applications
with Uml. Boston, MA, USA : Addison-Wesley Longman Publishing Co., Inc.,
2000. – ISBN 0201657937 176

[GP05] GIANNAKOPOULOU, Dimitra ; PASAREANU, Corina S.: Learning-Based Assume-
Guarantee Verification (Tool Paper). In: GODEFROID, Patrice (Hrsg.): Model
Checking Software, 12th International SPIN Workshop, San Francisco, CA, USA,
August 22-24, 2005, Proceedings Bd. 3639, Springer, 2005 (Lecture Notes in Com-
puter Science). – ISBN 3–540–28195–9, S. 282–287 239

[GPY02] GROCE, Alex ; PELED, Doron ; YANNAKAKIS, Mihalis: Adaptive Model
Checking. In: Tools and Algorithms for the Construction and Analysis of Systems
Bd. Volume 2280/2002, Springer Berlin / Heidelberg, 2002. – ISBN 978–3–540–
43419–1, S. 269–301 127, 239

[Gra72] GRAUPE, Daniel: Identification of Systems. Krieger Pub. Co., 1972. – ISBN
0882753592 136

[Gre10] GREENYER, Joel: Synthesizing Modal Sequence Diagram Specifications with
Uppaal-Tiga / Software Engineering Group, University of Paderborn. 2010 (tr-
ri-10-310). – Forschungsbericht 247

[GRPS02] GROS̈E-RHODE, Martin ; PRESICCE, Francesco P. ; SIMEONI, Marta: Formal soft-
ware specification with refinements and modules of typed graph transformation
systems. In: J. Comput. Syst. Sci. 64 (2002), Nr. 2, S. 171–218. – ISSN 0022–0000
65, 85, 86, 237

[GS03] GÖSSLER, Gregor ; SIFAKIS, Joseph: Component-Based Construction of
Deadlock-Free Systems. In: PANDYA, Paritosh K. (Hrsg.) ; RADHAKRISHNAN,
Jaikumar (Hrsg.): FST TCS 2003: Foundations of Software Technology and Theo-
retical Computer Science Bd. 2914. Springer Berlin / Heidelberg, 2003, S. 420–433
139

[GSB98] GROSU, Radu ; STAUNER, Thomas ; BROY, Manfred: A Modular Visual Model for
Hybrid Systems. In: Formal Techniques in Real Time and Fault Tolerant Systems

293

Literaturverzeichnis

(FTRTFT’98), Springer Verlag, 1998. – ISBN 3–540–65003–2, S. 75–91 234

[GSG+09] GAUSEMEIER, Jürgen ; SCHÄFER, Wilhelm ; GREENYER, Joel ; KAHL, Sascha ;
POOK, Sebastian ; RIEKE, Jan: Management of Cross-Domain Model Consistency
During the Development of Advanced Mechatronic Systems. In: BERGENDAHL,
Margareta N. (Hrsg.) ; GRIMHEDEN, Martin (Hrsg.) ; LEIFER, Larry (Hrsg.): Pro-
ceedings of the 17th International Conference on Engineering Design (ICED’09)
Bd. 6. University of Stanford, CA, USA : Design Society, August 2009, S. 1–12
247

[GTB+03] GIESE, Holger ; TICHY, Matthias ; BURMESTER, Sven ; SCHÄFER, Wilhelm ;
FLAKE, Stephan: Towards the Compositional Verification of Real-Time UML
Designs. In: Proceedings of the 9th European software engineering conference
held jointly with 11th ACM SIGSOFT international symposium on Foundations of
software engineering (ESEC/FSE-11), ACM Press, September 2003, S. 38–47 3,
17, 18, 35, 37, 38, 65, 70, 238

[GV06] GIESE, Holger ; VILBIG, Alexander: Separation of Non-Orthogonal Concerns in
Software Architecture and Design. In: Software and System Modeling (SoSyM) 5
(2006), June, Nr. 2, S. 136 – 169 139, 242

[GVH03] GYAPAY, Szilvia ; VARRÓ, Dániel ; HECKEL, Reiko: Graph transformation with
time. In: Fundamenta Informaticae 58 (2003), Nr. 1, S. 1–22. – ISSN 0169–2968
237

[Har87] HAREL, David: Statecharts: A visual formalism for complex systems. In: Sci.
Comput. Program. 8 (1987), Nr. 3, S. 231–274. – ISSN 0167–6423 57, 59

[Hen92] HENZINGER, Thomas A.: Sooner is Safer than Later. In: Information Processing
Letters 43 (1992), Nr. 3, S. 135–141. – ISSN 0020–0190 145

[Hen96] HENZINGER, T. A.: The theory of hybrid automata. In: Logic in Computer Science,
Symposium on 0 (1996), S. 278. – ISSN 1043–6871 42, 43

[Hen00] HENZINGER, Thomas A.: Masaccio: A Formal Model for Embedded Components.
In: Proceedings of the First IFIP International Conference on Theoretical Com-
puter Science (TCS), Lecture Notes in Computer Science 1872, Springer-Verlag,
2000, 2000, S. 549–563 234

[HHK01] HENZINGER, Thomas A. ; HOROWITZ, Benjamin ; KIRSCH, Christoph M.: Giotto:
A Time-triggered Language for Embedded Programming. In: Proceedings of the
IEEE 91:84-99, 2003. A preliminary version appeared in the Proceedings of the
First International Workshop on Embedded Software (EMSOFT), Lecture Notes in
Computer Science 2211, Springer-Verlag, 2001, S. 166–184 234

[HIM98] HIRSCH, Dan ; INVERARDI, Paola ; MONTANARI, Ugo: Graph grammars and
constraint solving for software architecture styles. In: ISAW ’98: Proceedings of
the third international workshop on Software architecture. New York, NY, USA :

294

Literaturverzeichnis

ACM, 1998. – ISBN 1–58113–081–3, S. 69–72 237

[Hir08] HIRSCH, Martin: Modell-basierte Verifikation von vernetzten mechatronischen
Systemen, Software Engineering Group, University of Paderborn, Diss., Septem-
ber 2008 3, 4, 5, 27, 28, 31, 32, 45, 53, 55, 56, 57, 59, 81, 86, 87, 258

[HJMS03] HENZINGER, Thomas ; JHALA, Ranjit ; MAJUMDAR, Rupak ; SUTRE, Grégoire:
Software Verification with BLAST. In: BALL, Thomas (Hrsg.) ; RAJAMANI, Sr-
iram (Hrsg.): Model Checking Software Bd. 2648. Springer Berlin / Heidelberg,
2003. – ISBN 978–3–540–40117–9, S. 624–624 129

[HKK04] HARDUNG, Bernd ; KÖLZOW, Thorsten ; KRÜGER, Andreas: Reuse of software
in distributed embedded automotive systems. In: EMSOFT ’04: Proceedings of the
4th ACM international conference on Embedded software. New York, NY, USA :
ACM Press, 2004. – ISBN 1–58113–860–1, S. 203–210 1, 3, 10

[HKP05] HAREL, David ; KUGLER, Hillel ; PNUELI, Amir: Synthesis Revisited: Genera-
ting Statechart Models from Scenario-Based Requirements. In: Formal Methods in
Software and Systems Modeling. Berlin/Heidelberg, Germany : Springer-Verlag,
2005, S. 309–324 10, 173

[HKPV95] HENZINGER, Thomas A. ; KOPKE, Peter W. ; PURI, Anuj ; VARAIYA, Pravin:
What’s decidable about hybrid automata? In: STOC ’95: Proceedings of the twenty-
seventh annual ACM symposium on Theory of computing. New York, NY, USA :
ACM, 1995. – ISBN 0–89791–718–9, S. 373–382 45

[HKSP02] HENZINGER, Thomas A. ; KIRSCH, Christoph M. ; SANVIDO, Marco A. ; PREE,
Wolfgang: From Control Models to Real-Time Code Using Giotto. In: IEEE Con-
trol Systems Magazine 23(1):50-64, 2003. A preliminary report on this work ap-
peared in C.M. Kirsch, M.A.A. Sanvido, T.A. Henzinger, and W. Pree, A Giotto-
based helicopter control system, Proceedings of the Second International Work-
shop on Embedded Software (EMSOFT), Lecture Notes in Computer Science 2491,
Springer-Verlag, 2002, 2002, S. 46–60 234

[HLL+03] HYLANDS, Christopher ; LEE, Edward ; LIU, Jie ; LIU, Xiaojun ; NEUENDORF-
FER, Stephen ; XIONG, Yuhong ; ZHAO, Yang ; ZHENG, Haiyang: Overview of
the Ptolemy Project / Department of Electrical Engineering and Computer Science,
University of California, Berkeley. 2003 (UCB/ERL M03/25). – Forschungsbe-
richt 234

[HN96] HAREL, David ; NAAMAD, Amnon: The STATEMATE semantics of statecharts.
In: ACM Transaction on Software Engineering Methodology 5 (1996), Nr. 4, S.
293–333. – ISSN 1049–331X 59

[HNS03a] HUNGAR, Hardi ; NIESE, Oliver ; STEFFEN, Bernhard: Domain-Specific Optimi-
zation in Automata Learning. In: Computer Aided Verification Bd. 2725. Springer
Berlin / Heidelberg, 2003, S. 315–327 100, 239

295

Literaturverzeichnis

[HNS03b] HUNGAR, Hardi ; NIESE, Oliver ; STEFFEN, Bernhard: Domain-Specific Op-
timization in Automata Learning. In: Computer Aided Verification Bd. Volume
2725/2003, Springer Berlin / Heidelberg, 2003. – ISBN 978–3–540–40524–5, S.
315–327 97, 118, 239, 240

[Hoa85] HOARE, C. A. R.: Communicating Sequential Processes. Prentice-Hall Internatio-
nal, 1985 (Series in Computer Science) 102

[Hon98] HONEKAMP, Uwe: IPANEMA - Verteilte Echtzeit-Informationsverarbeitung in me-
chatronischen Systemen, University of Paderborn, Diss., 1998 176, 195, 196

[HPSS87] HAREL, D. ; PNUELI, A. ; SCHMIDT, J. P. ; SHERMAN, R.: On the Formal Seman-
tics of Statecharts. In: Proceedings of the 2nd IEEE Symposium Logic in Computer
Science (LICS 1987), IEEE, 1987, S. 54–64 57

[HS99] HOLZMANN, Gerard J. ; SMITH, Margaret H.: A practical method for verifying
event-driven software. In: ICSE ’99: Proceedings of the 21st international confe-
rence on Software engineering. Los Alamitos, CA, USA : IEEE Computer Society
Press, 1999. – ISBN 1–58113–074–0, S. 597–607 100

[HSE10] HEINZEMANN, C. ; SUCK, J. ; ECKARDT, T.: Reachability Analysis on Timed
Graph Transformation Systems. In: Proceedings of the Fourth International Work-
shop on Graph-Based Tools (GraBaTs 2010), 2010 212

[HSJZ10] HEINZEMANN, Christian ; SUCK, Julian ; JUBEH, Ruben ; ZÜNDORF, Albert: To-
pology Analysis of Car Platoons Merge with FujabaRT & TimedStoryCharts - a
Case Study. In: GORP, Pieter V. (Hrsg.) ; MAZANEK, Steffen (Hrsg.) ; RENSINK,
Arend (Hrsg.): Transformation Tool Contest. Malaga, 2010, S. 1–15 63, 199, 211,
246

[HT04] HECKEL, Reiko ; THÖNE, Sebastian: Behavioral Refinement of Graph
Transformation-Based Models. In: Proceedings of the ICGT 2004 Workshop on
Software Evolution through Transformations (SETra 04), Electronic Notes in Theo-
retical Computer Science, 2004, S. 139–151 65, 84, 91, 237

[HT05] HECKEL, Reiko ; THÖNE, Sebastian: Behavioral Refinement of Graph
Transformation-Based Models. In: Electronic Notes in Theoretical Computer
Science 127 (2005), Nr. 3, S. 101–111 84, 85

[Ise92] ISERMANN, Rolf: Identifikation dynamischer Systeme. Springer-Verlag, 1992 97,
136

[IWY00] INVERARDI, Paola ; WOLF, Alexander L. ; YANKELEVICH, Daniel: Static
checking of system behaviors using derived component assumptions. In: ACM
Transactions on Software Engineering and Methodology (TOSEM) 9 (2000), Nr. 3,
S. 239–272. – ISSN 1049–331X 2

[JLS00] JENSEN, Henrik E. ; LARSEN, Kim G. ; SKOU, Arne: Scaling up Uppaal. In:
Formal Techniques in Real-Time and Fault-Tolerant Systems Bd. 1926, Springer

296

Literaturverzeichnis

Berlin / Heidelberg, 2000 (Lecture Notes in Computer Science). – ISBN 978–3–
540–41055–3, S. 641–678 23, 37, 39, 41, 65, 85, 99, 131

[Ken02] KENT, Stuart: Model Driven Engineering. In: BUTLER, Michael (Hrsg.) ; PE-
TRE, Luigia (Hrsg.) ; SERE, Kaisa (Hrsg.): Integrated Formal Methods Bd. 2335.
Springer Berlin / Heidelberg, 2002, S. 286–298 2

[KM98] KRAMER, Jeff ; MAGEE, Jeff: Analysing Dynamic Change in Software Architec-
tures: A Case Study. In: CDS ’98: Proceedings of the International Conference
on Configurable Distributed Systems. Washington, DC, USA : IEEE Computer
Society, 1998. – ISBN 0–8186–8451–8, S. 91 45, 100

[Kop97] KOPETZ, Hermann: Real-Time Systems: Design Principles for Distributed Embed-
ded Applications. 1. Springer, 1997. – ISBN 978–0792398943 16, 70

[Kur94] KURSHAN, Robert P.: Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton, NJ, USA : Princeton University Press,
1994. – ISBN 0–691–03436–2 241

[LAK92] LAPRIE, J. C. C. (Hrsg.) ; AVIZIENIS, A. (Hrsg.) ; KOPETZ, H. (Hrsg.): Depen-
dability: Basic Concepts and Terminology. Secaucus, NJ, USA : Springer-Verlag
New York, Inc., 1992. – ISBN 0387822968 1

[Lam77] LAMPORT, Leslie: Proving the Correctness of Multiprocess Programs. In: IEEE
Transactions on Software Engineering SE-3 (1977), March, Nr. 2, S. 125–143. –
ISSN 0098–5589 145

[Lam09] LAMSWEERDE, Axel: Reasoning About Alternative Requirements Options.
(2009), S. 380–397. ISBN 978–3–642–02462–7 201

[LGS06a] LI, Keqin ; GROZ, Roland ; SHAHBAZ, Muzammil: Integration Testing of Com-
ponents Guided by Incremental State Machine Learning. In: TAIC-PART ’06: Pro-
ceedings of the Testing: Academic & Industrial Conference on Practice And Rese-
arch Techniques. Washington, DC, USA : IEEE Computer Society, 2006. – ISBN
0–7695–2672–1, S. 59–70 239

[LGS06b] LI, Keqin ; GROZ, Roland ; SHAHBAZ, Muzammil: Integration Testing of Distri-
buted Components Based on Learning Parameterized I/O Models. In: NAJM, Elie
(Hrsg.) ; PRADAT-PEYRE, Jean (Hrsg.) ; DONZEAU-GOUGE, Véronique (Hrsg.):
Formal Techniques for Networked and Distributed Systems - FORTE 2006 Bd.
4229. Springer Berlin / Heidelberg, 2006, S. 436–450 239

[Lju98] LJUNG, Lennart: System Identification: Theory for the User (2nd Edition). Prentice
Hall PTR, 1998. – ISBN 0136566952 136, 137

[Lju10] LJUNG, Lennart: Perspectives on system identification. In: Annual Reviews in
Control 34 (2010), Nr. 1, S. 1–12. – ISSN 1367–5788 136

[LM98] LE MÉTAYER, Daniel: Describing Software Architecture Styles Using Graph
Grammars. In: IEEE Transactions on Software Engineering 24 (1998), Nr. 7, S.

297

Literaturverzeichnis

521–533. – ISSN 0098–5589 237

[LNA99] LIND-NIELSEN, Jørn ; ANDERSEN, Henrik R.: Stepwise CTL Model Checking
of State/Event Systems. In: CAV ’99: Proceedings of the 11th International Con-
ference on Computer Aided Verification. London, UK : Springer-Verlag, 1999. –
ISBN 3–540–66202–2, S. 316–327 241

[LO08] LICHTE, Hermann-Simon ; OBERTHÜR, Simon: Schedulability Criteria and Ana-
lysis for Dynamic and Flexible Resource Management. In: Electron. Notes Theor.
Comput. Sci. 200 (2008), Nr. 2, S. 3–19. – ISSN 1571–0661 186, 187

[LPY97] LARSEN, Kim G. ; PETTERSSON, Paul ; YI, Wang: Uppaal in a Nutshell. In: In-
ternational Journal on Software Tools for Technology Transfer 1 (1997), Oktober,
Nr. 1-2, S. 134–152 254

[Mil89] MILNER, Robin: Communication and Concurrency. Upper Saddle River, NJ, USA
: Prentice-Hall, Inc., 1989 (Prentice Hall International Series in Computer Science)
23, 24, 139, 155

[MJS+00] MÜLLER, Hausi A. ; JAHNKE, Jens H. ; SMITH, Dennis B. ; STOREY, Margaret-
Anne ; TILLEY, Scott R. ; WONG, Kenny: Reverse engineering: a roadmap. In:
ICSE ’00: Proceedings of the Conference on The Future of Software Engineering.
New York, NY, USA : ACM, 2000. – ISBN 1–58113–253–0, S. 47–60 100

[MK96] MAGEE, Jeff ; KRAMER, Jeff: Dynamic structure in software architectures. In:
SIGSOFT Software Engineering Notes 21 (1996), Nr. 6, S. 3–14. – ISSN 0163–
5948 237

[MNRS04] MARGARIA, Tiziana ; NIESE, Oliver ; RAFFELT, H. ; STEFFEN, Bernhard: Ef-
ficient test-based model generation for legacy reactive systems. In: HLDVT ’04:
Proceedings of the High-Level Design Validation and Test Workshop, 2004. Ninth
IEEE International. Washington, DC, USA : IEEE Computer Society, 2004. –
ISBN 0–7803–8714–7, S. 95–100 239

[MPS95] MALER, Oded ; PNUELI, Amir ; SIFAKIS, Joseph: On the Synthesis of Discrete
Controllers for Timed Systems (An Extended Abstract). In: MAYR, Ernst W.
(Hrsg.) ; PUECH, Claude (Hrsg.): Proceedings of the 12th Annual Symposium on
Theoretical Aspects of Computer Science (STACS 95), Munich, Germany, March
2-4, 1995 Bd. 900, Springer Verlag, 1995 (Lecture Notes in Computer Science
(LNCS)), S. 229–242 70, 71, 241

[MPW92] MILNER, Robin ; PARROW, Joachim ; WALKER, David: A calculus of mobile
processes. In: Information and Computation 100 (1992), Nr. 1, S. 1–77. – ISSN
0890–5401 237

[MRSL07] MARGARIA, Tiziana ; RAFFELT, Harald ; STEFFEN, Bernhard ; LEUCKER, Martin:
The LearnLib in FMICS-jETI. In: ICECCS ’07: Proceedings of the 12th IEEE In-
ternational Conference on Engineering Complex Computer Systems. Washington,

298

Literaturverzeichnis

DC, USA : IEEE Computer Society, 2007. – ISBN 0–7695–2895–3, S. 340–352
239

[Obj05a] OBJECT MANAGEMENT GROUP (Hrsg.): Systems Modeling Language (SysML)
Specification. Object Management Group, Januar 2005 234

[Obj05b] OBJECT MANAGEMENT GROUP (Hrsg.): UML 2.0 Superstructure Specification.
Object Management Group, Juli 2005. – Document: formal/2005-07-04 2, 9, 10,
16, 19, 34

[Obj09] OBJECT MANAGEMENT GROUP (Hrsg.): UML 2.2 Superstructure Specification.
Object Management Group, April 2009. – Document: formal/2009-02-02 10, 243

[OGBG04] OBERSCHELP, Oliver ; GAMBUZZA, Alfonso ; BURMESTER, Sven ; GIESE, Hol-
ger: Modular Generation and Simulation of Mechatronic Systems. In: CALLAOS,
N. (Hrsg.) ; LESSO, W. (Hrsg.) ; SANCHEZ, B. (Hrsg.): Proceedings of the 8th
World Multi-Conference on Systemics, Cybernetics and Informatics (SCI), Orlan-
do, USA, International Institute of Informatics and Systemics (IIIS), July 2004, S.
1–6 196

[ÖM02] ÖLVECZKY, Peter C. ; MESEGUER, José: Specification of real-time and hybrid
systems in rewriting logic. In: Theoretical Computer Science 285 (2002), Nr. 2, S.
359 – 405. – ISSN 0304–3975 238

[ÖM05] ÖLVECZKY, Peter C. ; MESEGUER, José: Real-Time Maude 2.1. In: Electronic
Notes in Theoretical Computer Science 117 (2005), S. 285 – 314. – ISSN 1571–
0661. – Proceedings of the Fifth International Workshop on Rewriting Logic and
Its Applications (WRLA 2004) 238

[ÖM07] ÖLVECZKY, Peter C. ; MESEGUER, José: Abstraction and Completeness for Real-
Time Maude. In: Electronic Notes in Theoretical Computer Science 176 (2007), Nr.
4, S. 5 – 27. – ISSN 1571–0661. – Proceedings of the 6th International Workshop
on Rewriting Logic and its Applications (WRLA 2006) 65, 238

[OZKV08] OBERTHÜR, Simon ; ZNAMENSHCHYKOV, Alex ; KLÖPPER, Benjamin ;
VÖCKING, Henner: Improved Flexible Resource Management by Means of Look-
Ahead Scheduling and Bayesian Forecasting. In: GAUSEMEIER, Jürgen (Hrsg.) ;
RAMMIG, Franz J. (Hrsg.) ; SCHÄFER, Wilhelm (Hrsg.): Self-optimizing Mecha-
tronic Systems: Design the Future. Paderborn : Heinz Nixdorf Institut, Universi-
tät Paderborn, February 2008 (HNI-Verlagsschriftenreihe, Paderborn), S. 361–376
189, 193

[OZL10] OBERTHÜR, Simon ; ZARAMBA, Leszek ; LICHTE, Hermann-Simon: Flexible
Resource Management for Self-X Systems: An Evaluation. In: Proceedings of
First IEEE Workshop on Self-Organizing Real-Time Systems – SORT 2010 IEEE,
IEEE CS Press, May 2010, S. 1–10 193

299

Literaturverzeichnis

[Pet99] PETTERSSON, Paul: Modelling and Verification of Real-Time Systems Using Ti-
med Automata: Theory and Practice, Department of Computer Systems, Uppsala
University, Diss., February 1999 23

[Pit89] PITT, Leonard: Inductive inference, DFAs, and computational complexity. In:
Analogical and Inductive Inference Bd. 397, Springer Berlin / Heidelberg, 1989
(Lecture Notes in Computer Science). – ISBN 978–3–540–51734–4, S. 18–44 119

[Pnu77] PNUELI, Amir: The Temporal Logic of Programs. In: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, 1977, IEEE Computer
Society Press, 1977, S. 46–57 241

[Pul01] PULLUM, Laura L.: Software Fault Tolerance. ARTECH HOUSE, INC., 2001 100

[PVY99] PELED, Doron ; VARDI, Moshe Y. ; YANNAKAKIS, Mihalis: Black Box Checking.
In: FORTE XII / PSTV XIX ’99: Proceedings of the IFIP TC6 WG6.1 Joint Interna-
tional Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols (FORTE XII) and Protocol Specification, Testing and
Verification (PSTV XIX). Deventer, The Netherlands, The Netherlands : Kluwer,
B.V., 1999. – ISBN 0–7923–8646–9, S. 225–240 97, 127, 239, 240

[RDV09] RIVERA, J. E. ; DURAN, F. ; VALLECILLO, A.: A graphical approach for mo-
deling time-dependent behavior of DSLs. In: Visual Languages - Human Centric
Computing 0 (2009), S. 51–55. ISBN 978–1–4244–4876–0 237

[Ren08] RENSINK, Arend: Explicit State Model Checking for Graph Grammars. In: Con-
currency, Graphs and Models Bd. 5065, Springer Berlin / Heidelberg, 2008 (Lec-
ture Notes in Computer Science). – ISBN 978–3–540–68676–7, S. 114–132 238

[Rie09] RIETH, Peter: Das mechatronische Fahrwerk der Zukunft. In: WINNER, Hermann
(Hrsg.) ; HAKULI, Stephan (Hrsg.) ; WOLF, Gabriele (Hrsg.): Handbuch Fahreras-
sistenzsysteme. Vieweg+Teubner, 2009. – ISBN 978–3–8348–9977–4, S. 626–631
1

[RMSM09] RAFFELT, Harald ; MERTEN, Maik ; STEFFEN, Bernhard ; MARGARIA, Tiziana:
Dynamic testing via automata learning. In: International Journal on Software Tools
for Technology Transfer (STTT) 11 (2009), October, Nr. 4, S. 307–324. – ISSN
1433–2779 239

[Roz97] ROZENBERG, Grzegorz: HANDBOOK of GRAPH GRAMMARS and COMPU-
TING by GRAPH TRANSFORMATION, Volume 1: Foundations. World Scientific,
1997. – ISBN 9810228848 29, 30

[Sch06] SCHILLING, Daniela: Kompositionale Softwareverifikation mechatronischer Sys-
teme, Software Engineering Group, University of Paderborn, Diss., Februar 2006
238

[Sei05] SEIBEL, Andreas: Story Diagramme für eingebettete Echtzeitsysteme, Software
Engineering Group, University of Paderborn, Bachelor Thesis, 2005 194

300

Literaturverzeichnis

[Sei07] SEIBEL, Andreas: Behavioral Synthesis of Potential Component Real-Time Beha-
vior, Software Engineering Group, University of Paderborn, Diploma Thesis, June
2007 242

[SGW94] SELIC, Bran ; GULLEKSON, Garth ; WARD, Paul T.: Real-Time Object-Oriented
Modeling. John Wiley & Sons, 1994. – ISBN 0471599174 10, 48

[SH03] STEFFEN, Bernhard ; HUNGAR, Hardi: Behavior-Based Model Construction. In:
VMCAI 2003: Proceedings of the 4th International Conference on Verification, Mo-
del Checking, and Abstract Interpretation Bd. 2575/2003, Springer Berlin / Heidel-
berg, 2003 (Lecture Notes in Computer Science). – ISBN 978–3–540–00348–9, S.
5–19 239

[SLG07] SHAHBAZ, Muzammil ; LI, Keqin ; GROZ, Roland: Learning Parameterized State
Machine Model for Integration Testing. In: COMPSAC ’07: Proceedings of the
31st Annual International Computer Software and Applications Conference - Vol.
2- (COMPSAC 2007). Washington, DC, USA : IEEE Computer Society, 2007. –
ISBN 0–7695–2870–8, S. 755–760 239

[SPP01] STAUNER, Thomas ; PRETSCHNER, Alexander ; PÉTER, Istran: Approaching a
Discrete-Continuous UML: Tool Support and Formalization. In: Workshop of the
pUML-Group held together with the UML’2001 on Practical UML-Based Rigorous
Development Methods - Countering or Integrating the eXtremists. Toronto, Canada
: GI, October 2001. – ISBN 3–88579–335–0, S. 242–257 234

[Sta08] STALLMANN, Florian: A model-driven approach to multi-agent system design,
Software Engineering Group, University of Paderborn, Diss., April 2008 58

[Sto96] STOREY, Neil R.: Safety Critical Computer Systems. Boston, MA, USA : Addison-
Wesley Longman Publishing Co., Inc., 1996. – ISBN 0201427877 1, 100

[Sto02] STOELINGA, Mariëlle: Alea jacta est: verification of probabilistic, real-time and
parametric systems, University of Nijmegen, the Netherlands, Diss., April 2002 71

[TFCB90] TSAI, J. J. P. ; FANG, K. Y. ; CHEN, H. Y. ; BI, Y. D.: A Noninterference Monitoring
and Replay Mechanism for Real-Time Software Testing and Debugging. In: IEEE
Transactions on Software Engineering 16 (1990), Nr. 8, S. 897–916. – ISSN 0098–
5589 182

[TGM00] TAENTZER, Gabriele ; GOEDICKE, Michael ; MEYER, Torsten: Dynamic Change
Management by Distributed Graph Transformation: Towards Configurable Distri-
buted Systems. In: TAGT’98: Selected papers from the 6th International Workshop
on Theory and Application of Graph Transformations. London, UK : Springer-
Verlag, 2000. – ISBN 3–540–67203–6, S. 179–193 237

[Tic09] TICHY, Matthias: Gefahrenanalyse selbstoptimierender Systeme, Software Engi-
neering Group, University of Paderborn, Diss., May 2009 3, 12, 50

301

Literaturverzeichnis

[TOHS99] TARR, Peri ; OSSHER, Harold ; HARRISON, William ; SUTTON, JR., Stanley M.:
N Degrees of Separation: Multi-Dimensional Separation of Concerns. In: Procee-
dings of the 21st International Conference on Software Engineering (ICSE ’99).
New York, NY, USA : ACM, 1999. – ISBN 1–58113–074–0, S. 107–119 3, 10,
139, 143

[TY01] TRIPAKIS, Stavros ; YOVINE, Sergio: Analysis of Timed Systems Using Time-
Abstracting Bisimulations. In: Formal Methods in System Design 18 (2001), Janu-
ary, Nr. 1, S. 25–68 80, 164

[Vas73] VASILEVSKII, M. P.: Failure diagnosis of automata. In: Cybernetics and Systems
Analysis 9 (1973), July, Nr. 4, S. 653–665. – ISSN 1060–0396 117, 118, 127

[Wen08] WENDEHALS, Lothar: Struktur- und verhaltensbasierte Entwurfsmustererken-
nung, Software Engineering Group, University of Paderborn, Diss., Januar 2008
246

[Wir04] WIRSING, Martin (Hrsg.): Report on the EU/NSF Strategic Workshop on Enginee-
ring Software-Intensive Systems. Edinburgh, GB, May 2004 1, 234

[WL97] WEISE, Carsten ; LENZKES, Dirk: Efficient Scaling-Invariant Checking of Timed
Bisimulation. In: REISCHUK, Rüdiger (Hrsg.) ; MORVAN, Michel (Hrsg.): Procee-
dings of the 14th Annual Symposium on Theoretical Aspects of Computer Science
(STACS 97), Lübeck, Germany, February 27 - March 1, 1997 Bd. 1200, Springer
Verlag Berlin Heidelberg, 1997 (Lecture Notes in Computer Science (LNCS)), S.
177–188 39, 164

[YJ94] YI, Wang ; JONSSON, Bengt: Decidability of timed language-inclusion for net-
works of real-time communicating sequential processes. In: Foundation of Softwa-
re Technology and Theoretical Computer Science Bd. 880, Springer Verlag, 1994
(Lecture Notes in Computer Science (LNCS)), S. 243–255 74, 75, 85

[YPD94] YI, Wang ; PETTERSSON, Paul ; DANIELS, Mats: Automatic Verification of Real-
time Communicating Systems by Constraint-solving. In: HOGREFE, Dieter (Hrsg.)
; LEUE, Stefan (Hrsg.): Proceedings of the 7th IFIP WG6.1 International Confe-
rence on Formal Description Formal Techniques, Berne, Switzerland, 1994 Bd. 6,
Chapman & Hall, 1994 (IFIP Conference Proceedings), S. 243–258 23, 155

[Zam99] ZAMBONELLI, Franco: An Efficient Logging Algorithm for Incremental Replay of
Message. In: IPPS ’99/SPDP ’99: Proceedings of the 13th International Sympo-
sium on Parallel Processing and the 10th Symposium on Parallel and Distributed
Processing. Washington, DC, USA : IEEE Computer Society, 1999. – ISBN 0–
7695–0143–5, S. 392–398 182

[ZC06] ZHANG, Ji ; CHENG, Betty H. C.: Model-based development of dynamically ad-
aptive software. In: ICSE ’06: Proceeding of the 28th international conference on
Software engineering. New York, NY, USA : ACM, 2006. – ISBN 1–59593–375–
1, S. 371–380 45, 48, 100, 235

302

Literaturverzeichnis

[Zün01] ZÜNDORF, Albert: Rigorous Object Oriented Software Development, Software
Engineering Group, University of Paderborn, Habilitation, 2001 29, 33, 34, 46, 53,
56, 57, 58, 261

[Zün09] ZÜNDORF, Albert: Model Checking the Leader Election Protocol with Fujaba. In:
LEVENDOVSZKY, Tihamer (Hrsg.) ; RENSINK, Arend (Hrsg.) ; GORP, Pieter V.
(Hrsg.): Fifth International Workshop on Graph Based Tools (GraBaTs), 2009, S.
1–11 198

—————————————————————–

303

	1 Einleitung
	1.1 Ziele und Konzeptüberblick
	1.2 Anwendungsbeispiel
	1.3 Übersicht

	2 Mechatronic UML
	2.1 Entwicklung hierarchischer Komponentensysteme
	2.2 Selbstoptimierende, mechatronische Systeme
	2.3 Komponenten
	2.4 Echtzeitverhalten
	2.4.1 Real-Time Coordination Pattern
	2.4.2 Real-Time Statecharts
	2.4.3 Parameterized Real-Time Coordination Pattern
	2.4.4 Parameterized Real-Time Statecharts
	2.4.5 Rekonfigurationsverhalten
	2.4.6 Verifikation
	2.4.7 Verfeinerungen

	2.5 Hybrides Verhalten
	2.5.1 Hybrid Reconfiguration Charts
	2.5.2 Verifikation und Verfeinerung

	2.6 Timed Story Driven Modeling
	2.6.1 Metamodell
	2.6.2 Timed Story Pattern
	2.6.3 Timed Story Diagrams
	2.6.4 Timed Story Charts

	3 Verfeinerung in hierarchischen Komponentensystemen
	3.1 Verfeinerungsdefinition
	3.1.1 Real-Time Statecharts
	3.1.2 Timed Story Charts
	3.1.3 Diskussion

	3.2 Verfeinerungsüberprüfung
	3.2.1 Erreichbarkeitsanalyse
	3.2.2 Verifikation der Verfeinerung
	3.2.3 Diskussion

	4 Integration von Altkomponenten
	4.1 Gray Box Checking
	4.1.1 Formalisierungen
	4.1.2 Initiale Verhaltenssynthese
	4.1.3 Iterative Verhaltenssynthese

	4.2 Black Box Checking
	4.2.1 L* Lernalgorithmus
	4.2.2 L* für mechatronische Systeme

	4.3 White Box Checking
	4.4 Identifikation von Reglerverhalten
	4.5 Diskussion

	5 Synthese von Komponentenverhalten
	5.1 Kompositionsregeln
	5.1.1 Zustands-Kompositionsregeln
	5.1.2 Nachrichten-Kompositionsregeln

	5.2 Synthese
	5.2.1 Parallele Komposition
	5.2.2 Anwendung von Zustands-Kompositionsregeln
	5.2.3 Anwendung von Nachrichten-Kompositionsregeln

	5.3 Erhalt von Rollenverhalten
	5.3.1 Rollenkonformität
	5.3.2 Erhalt von Deadlock Freiheit

	5.4 Weitere Anwendungsfälle
	5.5 Diskussion

	6 Werkzeugunterstützung
	6.1 Ausführung
	6.1.1 Laufzeitumgebung
	6.1.2 Codegenerierung und Laufzeitanalyse

	6.2 Umsetzung
	6.3 Validierung
	6.3.1 Konvoi-Anwenungsszenario
	6.3.2 Weitere Anwendungsszenarien und Fazit

	7 Verwandte Arbeiten
	7.1 Modellgetriebene Entwicklungsansätze
	7.2 Modellierung und Verfeinerung kompositioneller Strukturanpassungen
	7.2.1 Modellierung
	7.2.2 Verfeinerung
	7.2.3 Verifikation

	7.3 Analyse von Altkomponenten
	7.3.1 Reguläre Inferenz
	7.3.2 Abstraktionstechniken

	7.4 Synthese von Komponentenverhalten
	7.4.1 Controller-Synthese
	7.4.2 Synthese von nicht-zeitbehafteten Komponentenverhalten
	7.4.3 Synthese von zeitbehafteten Komponentenverhalten

	8 Zusammenfassung und Ausblick
	A Timed Story Charts
	A.1 Elemente
	A.1.1 Statechart
	A.1.2 Zustände
	A.1.3 Transitionen
	A.1.4 Clocks
	A.1.5 Guards
	A.1.6 Synchronisationen
	A.1.7 Invariante
	A.1.8 Time Guards
	A.1.9 Clock Resets
	A.1.10 Deadlines
	A.1.11 Actions und Seiteneffekte
	A.1.12 WCET und Prioritäten

	A.2 Zusammengesetzte Ausführung
	A.2.1 Zustände
	A.2.2 Transitionen

	Abbildungsverzeichnis
	Tabellenverzeichnis
	Literaturverzeichnis

