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Zusammenfassung

Komplexe mechatronische Systeme, die autonom und flexibel auf Anderungen in ihrer Umwelt
reagieren, sind aus unserer Zukunft nicht mehr wegzudenken. Fahrerassistenzsysteme aus dem
Transportwesen (z.B. Automobil oder Luftfahrt) oder auch ,,das Haus der Zukunft* sind Beispie-
le hierfiir. Diese Systeme werden typischerweise durch eine Vernetzung von (mechatronischen)
Komponenten realisiert. Software wird dabei unter anderem eingesetzt, um durch Kommuni-
kation das Wissen von anderen Komponenten zu nutzen, um so benétigte Funktionalitdt zur
Verfligung zu stellen. Im Gegensatz zu reinen Softwareanwendungen bekommt der Sicherheits-
aspekt in solchen Systemen einen deutlich hoheren Stellenwert, da Fehler zu einer Gefahr fiir
ihre Umwelt und damit auch zu einer Gefahr fiir Menschenleben fiihren konnen. Zudem muss
die Wiederverwendung bereits existierender Losungen (Komponenten) in der Entwicklung von
mechatronischen Systemen unterstiitzt werden, um den Marktanforderungen wie Qualitdt und
Schnelligkeit gerecht zu werden.

Kompositionelle Vorgehensweisen sind weitverbreitete Engineering Ansétze, um solche komple-
xen Probleme durch kleinere Teilprobleme einfacher zu betrachten und einzelne Komponenten
wiederzuverwenden. Wiederverwendung ist dabei das Mittel, um komplexe Probleme durch be-
kannte (Teil-) Losungen unterstiitzend zu entwickeln. Dies fiihrt allerdings zu dem Problem,
dass Abhingigkeiten zwischen den verschiedenen Kompositionen, die auch auf unterschiedli-
chen Hierarchieebenen stattfinden konnen, beriicksichtigt werden miissen, ohne die Eigenschaf-
ten der einzelnen Komponenten zu verletzen. Hierbei miissen sowohl Altkomponenten integriert
werden, deren Verhalten typischerweise nicht mehr formal durch Modelle beschrieben ist sowie
auch Komponenten, die ihre Struktur aufgrund von Verianderungen in ihrer Umwelt zur Laufzeit
anpassen.

In dieser Arbeit wird eine Unterstiitzung fiir die Komposition und Wiederverwendung von Kom-
ponenten in dem modellgetriebenen Entwicklungsansatz MECHATRONIC UML vorgestellt. Die
Abhingigkeiten, die bei der Komposition beriicksichtigt werden miissen, werden dabei kon-
struktiv durch einen Syntheseansatz fiir das Verhalten von Komponenten und analytisch durch
eine Verfeinerungsiiberpriifung zwischen unterschiedlichen Hierarchieebenen von Verhalten,
bzw. von Komponenten unterstiitzt. Die Verfeinerungsiiberpriifung beriicksichtigt Altsysteme so-
wie Strukturanpassungen, deren Ressourcenbeschrinkungen in einer Codegenerierung adressiert
werden. Der Gesamtansatz wurde an dem RailCab-Projekt der Universitit Paderborn validiert.
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Kapitel 1

Einleitung

Software ist zunehmend fiir einen schnell wachsenden Bereich von technischen Systemen wie in
dem Transportwesen oder der Medizintechnik ein Schliisselfaktor, um Sicherheit, Effizienz oder
Komfort zu steigern [Wir04, BGHO05, GHO6b, GHH*08¢]. Die Entwicklung dieser Systeme ist
nicht mehr nur Gegenstand der klassischen Ingenieursdisziplinen Maschinenbau, Elektrotech-
nik und Regelungstechnik, sondern auch der Informatik. Mechatronische Systeme bezeichnen
Systeme, die aus der Summe dieser Disziplinen entstehen.

Komplexe mechatronische Systeme, die autonom und flexibel auf Anderungen in ihrer Umwelt
reagieren, sind aus unserer Zukunft nicht mehr wegzudenken. Fahrerassistenzsysteme aus dem
Transportwesen (z.B. Automobil oder Luftfahrt) oder auch ,,das Haus der Zukunft* sind Beispie-
le hierfiir. Diese Systeme werden typischerweise durch eine Vernetzung von (mechatronischen)
Komponenten realisiert. Im Fall der Fahrerassistenssysteme wird z.B. die Motorsteuerung mit
der Brems- und Lenksteuerung vernetzt, um bessere Bremswege zu ermoglichen [Rie09]. Soft-
ware wird dabei unter anderem eingesetzt, um durch Kommunikation das Wissen von anderen
Komponenten zu nutzen, um so benétigte Funktionalitit zur Verfiigung zu stellen. Dabei kann
das durch Software gesteuerte Verhalten einer Komponente gegebenenfalls auch an geédnderte
Bedingungen angepasst werden. Es entstehen komplexe Funktionsnetze aus (Software-) Kom-
ponenten, welche sowohl steuerungs- als auch regelungstechnische Aufgaben realisieren. Rea-
gieren diese Systeme optimal, autonom und flexibel auf Anderungen in ihrer Umwelt sprechen
wir von selbstoptimierenden, mechatronischen Systemen.

Im Gegensatz zu reinen Softwareanwendungen bekommt der Sicherheitsaspekt in solchen Sys-
temen einen deutlich hoheren Stellenwert, da Fehler zu einer Gefahr fiir ihre Umwelt und damit
auch zu einer Gefahr fiir Menschenleben fiihren konnen [LAK92, St096]. Zudem muss die Wie-
derverwendung bereits existierender Losungen (Komponenten) in der Entwicklung von mecha-
tronischen Systemen unterstiitzt werden, um den Marktanforderungen wie Qualitit und Schnel-
ligkeit gerecht zu werden. Diesen Herausforderungen wird heutzutage mit modellgetriebenen
Entwicklungsverfahren begegnet, die Sicherheitsanalysen auf der Modellebene durch Simula-
tion sowie formale mathematisch fundierte Verfahren erlauben. Zudem ermdoglicht die kompo-
nentenbasierte modellgetriebene Entwicklung durch wohldefinierte Schnittstellen und formale
Verhaltensmodelle ein hohes Mall an Wiederverwendungspotential von entwickelten Losungen
[GIM91, Crn02, HKKO04].
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Auf Grund dieser Anforderungen mechatronischer Systeme ist es notwendig Methoden zu ent-
wickeln, die auf der einen Seite eine geeignete Modellierung und Analyse erlauben und auf der
anderen Seite in dem Entwicklungsprozess die Komposition und Wiederverwendung von Kom-
ponenten unterstiitzen, um komplexe Systeme umsetzen zu konnen [GAO95, IWY00, Gar03].

Modellgetriebene Softwareentwicklung Die hochgradige Vernetzung selbstoptimieren-
der, mechatronischer Systeme ermoglicht auf der einen Seite, wesentlich erweiterte Funktiona-
litdt zu realisieren, bedeutet auf der anderen Seite aber auch entsprechend zusitzliche Software
zur nachrichtenbasierten Kommunikation zwischen Systemkomponenten. Diese Kommunikati-
on beinhaltet den Austausch von (komplexen) Zustandsinformationen iiber entsprechende Proto-
kolle und zugrunde liegende Kommunikationskanile. Das Verhalten der einzelnen Komponenten
wird dabei massiv durch diese Kommunikationen beeinflusst.

Um diese Systeme zu beherrschen, wird ein systematischer Entwicklungsansatz gefordert, der
Modellierung als eine wesentliche Entwurfsaktivitit beinhaltet. Um sicherheitskritische Anfor-
derungen zu adressieren, werden modellbasierte Analyseverfahren sowie eine Quellcodegenerie-
rung aus diesen Modellen bendtigt [GHO6b]. Die drei zusammenhidngenden Aktivitdten Model-
lierung, Analyse und Quellcodegenerierung werden mit dem Begriff modellgetrieben bezeichnet
[Ken02].

In [GHO6b] haben wir Verfahren zur modellgetriebenen Softwareentwicklung von mechatroni-
schen Systemen verglichen (siehe auch Abschnitt 7.1). Die meisten betrachteten Ansitze unter-
stiitzen nur eingeschrinkt Konzepte fiir die Modellierung. Kompositionelle Strukturanpassungen,
die neue Elemente der bisherigen Struktur hinzufiigen oder Elemente aus der Struktur entfernen,
um autonom und flexibel auf Anderungen in der Umwelt reagieren zu konnen, werden von kei-
nem der Verfahren unterstiitzt.

Weiterhin ist zu beobachten, dass keiner der Ansitze plattformspezifische Modelle (vollstiandig)
beriicksichtigt, um Altsysteme zu integrieren oder eine Wiederverwendung von entwickelten
Losungen zu ermdoglichen.

An dem Vergleich nimmt auch der an diesem Lehrstuhl entwickelte Ansatz MECHATRO-
NIC UML teil. Die betrachtete Version aus dem Jahr 2006 beriicksichtigt im Wesentlichen die
Ergebnisse der Dissertation von Sven Burmester [Bur06]. Der dort vorgestellte Ansatz unter-
stiitzt eine hybride Modellierung der Struktur auf Basis von diskreten Softwarekomponenten
und kontinuierlichen Reglerkomponenten sowie die Rekonfiguration der Reglerstruktur.

Um den hohen Qualitdtsanforderungen an die Kommunikation gerecht zu werden, wurden Mus-
ter zur Spezifikation der Kommunikation in der MECHATRONIC UML eingefiihrt. Die Struktur
der sogenannten REAL-TIME COORDINATION PATTERNS besteht aus Rollen der beteiligten
Kommunikationspartner sowie einer Verbindung, dem Konnektor, zwischen den Rollen. Das
Rollenverhalten wird mittels REAL-TIME STATECHARTS beschrieben, die die bekannten Zu-
standsmaschinen der UML [Obj05b] im Wesentlichen wohldefiniert um Zeit erweitern.

Auf Basis dieser Muster wird eine Dekomposition des Systems in Komponenten und der Kom-
munikation zwischen den Komponenten, den REAL-TIME COORDINATION PATTERNS, ermog-
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licht. Hierfiir wurden Analysetechniken vorgestellt (z.B. [GTB*03]), die den modularen Aufbau
des Systems ausnutzen.

Das Komponentenverhalten wird implementiert durch Verfeinerung des Rollenverhaltens zu
Komponenten-Portverhalten. Wesentliche Aufgaben sind hierbei das Hinzufiigen von Reglern
zu einzelnen Zustinden, die Beschreibung von Rekonfigurationen der Regler sowie eine Anpas-
sung des Verhaltens, um Abhingigkeiten zwischen mehreren Rollen aufzulGsen.

Fiir diese hybriden Modelle wird eine Quellcodegenerierung unterstiitzt, die die Echtzeiteigen-
schaften auf Quellcodeebene korrekt umsetzt. Die Dissertation von Martin Hirsch [HirO8] er-
weitert diesen Ansatz, um kompositionelle Strukturanpassungen der Muster zu modellieren und
zu analysieren. Matthias Tichy hat diesen Ansatz wiederum um kompositionelle Strukturanpass-
ungen der Komponentenstruktur, ohne das Verhalten zu betrachten, erweitert [Tic09].

Damit unterstiitzt die MECHATRONIC UML einige grundlegende Anforderungen, um selbstop-
timierende, mechatronische Systeme zu entwickeln. Eine skalierbare formale Verifikation wird
durch einen musterbasierten Ansatz, der eine Dekomposition des Systems ermdglicht, erreicht.
Allerdings werden wesentliche Anforderungen der komponentenbasierten Entwicklung komple-
xer Systeme nicht adressiert.

Die MECHATRONIC UML stellt, wie auch all die in [GHO6b] betrachteten Verfahren, keine Un-
terstiitzung fiir eine Verfeinerung in hierarchischen Komponentensystemen mit kompositionellen
Strukturanpassungen zur Verfiigung. Dies ist allerdings essentiell, damit Kommunikationsmuster
mit kompositionellen Strukturanpassungen durch eine Komponente angewandt werden konnen.
Hierdurch wird eine Wiederverwendung von Losungen ermoglicht. Eine Unterstiitzung bei der
Komposition von Protokollverhalten zu einem Gesamtverhalten einer Komponente wird eben-
falls nur sehr eingeschrinkt durch eine von dem Entwickler manuell hinzugefiigte Synchroni-
sation adressiert. Hierbei weill der Entwickler zu keinem Zeitpunkt der Entwicklung, ob eine
Komposition der Protokollverhalten {iberhaupt moglich ist. Zudem konnen nicht explizit An-
forderungen an eine solche Komposition gestellt werden. Dariiber hinaus betrachten all diese
Ansitze keine Moglichkeit Altkomponenten, von denen kein Modell zur Verfiigung steht, die
aber einen hohen Wert darstellen, zu integrieren.

Wie in [TOHS99, Crn02, HKKO04] beschrieben stellen gerade diese, verallgemeinert dargestellt,
Kompositionen und Wiederverwendungen eine wesentliche Herausforderungen dar, um komple-
xe Systeme ganzheitlich von der Dekomposition des Systems hin zum komponierten Gesamt-
system zu entwickeln. Die in dieser Arbeit vorgestellte Unterstiitzung fiir die Komposition und
Wiederverwendung von Komponenten in dem modellgetriebenen Entwicklungsansatz MECHA-
TRONIC UML soll genau diese Anforderungen adressieren.

1.1 Ziele und Konzeptuberblick

Ziel dieser Arbeit ist es eine Unterstiitzung fiir die Komposition und Wiederverwendung von
Komponenten in dem modellgetriebenen Entwicklungsansatz MECHATRONIC UML vorzustel-
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len, um eine systematische, modellgetriebene Softwareentwicklung fiir selbstoptimierende, me-
chatronische Systeme zu ermdoglichen.

Dieser Ansatz baut auf den bisherigen Ergebnissen der MECHATRONIC UML auf, womit insge-
samt durch die Verifikationstechniken fiir vernetzte selbstoptimierende, mechatronische Systeme
aus [Hir08] durch Dekomposition des Systems und dem hier vorgestellten Kompositionsansatz
ein modellgetriebener Entwicklungsansatz entsteht, der hybrides-, Echtzeitverhalten und Res-
sourceneinschrinkungen fiir mechatronische Systeme mit kompositionellen Strukturanpassung-
en unterstitzt.

Im Folgenden werden die einzelnen Beitrige, die im Rahmen dieser Arbeit entstanden sind,
niher erldutert. Zu jedem Beitrag werden die umfassendsten Veroffentlichungen referenziert.
Weitere Veroffentlichungen oder betreute Arbeiten (Master- und Bachelorarbeiten sowie Pro-
jektgruppen) werden in den entsprechenden Hauptkapiteln referenziert. Eine vollstandige Liste
der im Rahmen dieser Arbeit entstandenen Veroffentlichungen ist im Literaturverzeichnis unter
,Eigene Veroffentlichungen® sowie ,,Betreute Arbeiten* zu finden.

Die einzelnen Beitrige sind aufgeteilt in die Bereiche Verfeinerung in hierarchischen Komponen-
tensystemen, Integration von Altkomponenten, Synthese von Komponentenverhalten und Werk-
zeugunterstiitzung. Die ersten drei Beitrdge adressieren unmittelbar die Unterstiitzung der Kom-
position und Wiederverwendung. Der Beitrag zur Werkzeugunterstiitzung stellt die notwendige
Basis zur Verfiigung, um Altkomponenten zu integrieren. Dabei werden die Herausforderungen
adressiert, um die (erweiterten) Modelle der MECHATRONIC UML auf Code abzubilden.

Verfeinerung in hierarchischen Komponentensystemen Abstraktion und Hierarchi-
sierung sind wesentliche Hilfsmittel bei der Entwicklung von Softwarekomponenten, um kom-
plexe Sachverhalte zu beherrschen. Der musterbasierte Ansatz zur Beschreibung der Kommu-
nikation sowie die Moglichkeit der Hierarchisierung der Komponentenstruktur sind daher feste
Bestandteile der MECHATRONIC UML. Die hierdurch entstehenden hierarchischen Komposi-
tionen fordern eine formale Definition der Verfeinerung zwischen den verschiedenen Abstrak-
tionen, um einen Erhalt des abstrakteren Verhaltens durch ein konkreteres Verhalten, bzw. ein
Verhalten auf einer niedrigeren Hierarchiestufe zu gewéhrleisten.

Eine Form der Komposition ist das Einbetten von Komponenten in hierarchische Komponenten.
Hierdurch wird Rollenverhalten bzw. Protokollverhalten an vorhandene Komponenten weiter-
geleitet, die eine Verfeinerung des Protokollverhaltens implementieren. Hierbei konnen unter-
schiedliche Rollenstrukturen auf Komponentenstrukturen abgebildet werden.

Der in dieser Arbeit vorgestellte Ansatz unterstiitzt eine Verifikation der Verfeinerung sol-
cher hierarchischer Komponentenstrukturen mit kompositioneller Strukturanpassung, die sowohl
Sicherheits- und Lebendigkeitseigenschaften beriicksichtigt, als auch das nach auflen sichtbare
Echtzeitverhalten [HHH10, HH11].



1.1 Ziele und Konzeptiiberblick

Integration von Altkomponenten Es kann gerade in der industriellen Praxis hiufig vor-
kommen, dass Altkomponenten wiederverwendet werden, um zum einen den Entwicklungspro-
zess zu beschleunigen und zum anderen auf bewihrte Qualitéit zuriickzugreifen. Unser Ansatz
unterstiitzt eine Integration von Altkomponenten. Zentrale Idee hierbei ist, das relevante Verhal-
tensmodell fiir die Integration iterativ zu erlernen und auf dessen Basis dann formal die Integra-
tion zu iiberpriifen [HHO8a, GHH08a, HMS*10].

Synthese von Komponentenverhalten Wie bereits weiter oben beschrieben, propagieren
wir einen musterbasierten Ansatz zur Beschreibung der Kommunikation. Diese Vorgehensweise
erlaubt es, das Kommunikationsverhalten getrennt von dem Komponentenverhalten zu model-
lieren und zu analysieren. Der Ansatz von Hirsch [HirO8] nutzt den musterbasierten Ansatz aus,
um kompositionelle Strukturanpassungen der Kommunikationsstruktur formal zu verifizieren.

Diese formal verifizierten Rollenverhalten werden durch eine Komponente angewandt und kom-
biniert. Da die Rollenverhalten, egal ob sie zu gleichen oder unterschiedlichen Kommunikations-
mustern gehoren, untereinander hdufig Abhingigkeiten aufweisen und dadurch nicht nur einfach
parallel von einer Komponente angewandt werden konnen, unterstiitzt unser Ansatz eine forma-
le Sprache zur Beschreibung der Abhingigkeiten. Neben der Beschreibung von Abhingigkeiten
zwischen neuentwickelten Losungen, kann in unserem Fall auch eine integrierte Altkomponente
beriicksichtigt werden.

Die Abhidngigkeiten sowie die Rollen sind Eingaben in eine Synthese fiir das Komponentenver-
halten. Diese stellt sicher, dass das synthetisierte Komponentenverhalten eine korrekte Verfeine-
rung der einzelnen Rollenverhalten ist [HGH™09, EH10a].

Werkzeugunterstiitzung Die entwickelten Konzepte zur Wiederverwendung werden durch
ein Werkzeug umgesetzt. Mit der Werkzeugunterstiitzung wird eine Laufzeitumgebung zur
Verfligung gestellt. Diese unterstiitzt neben dem Ausfiihren des Systems auf einer Zielplatt-
form eine Simulations- und Verifikationsumgebung fiir die Integration von Altkomponenten
[GHO6a, HMS™10]. Eine automatische Uberpriifung der Integration wird durch eine Codegene-
rierung basierend auf dem in [BGH"07] vorgestellten Ansatz, der hybride und Echtzeitsysteme
unterstiitzt, ermoglicht. Die Codegenerierung wird dahingehend erweitert, dass eine Betrachtung
von kompositionellen Strukturanpassungen unter Erhalt von Echtzeitanforderungen erreicht wird
[GHH11]. Der in dieser Arbeit vorgestellte Ansatz adressiert den Erhalt der Echtzeitanforderun-
gen durch eine Laufzeitanalyse (Worst Case Execution Time Analyse - WCET Analyse) fiir diese
Modelle [HOGS12].
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1.2 Anwendungsbeispiel

Das RailCab Forschungsprojekt' der Universitit Paderborn dient als ein konkretes Anwendungs-
beispiel fiir ein selbstoptimierendes, mechatronisches System. Das RailCab System erweitert das
herkémmliche Schienensystem um einen Linearantrieb sowie passive Weichen. Der eigentliche
Antrieb wird iiber einen Stator im Schienennetz und einem Liufer im RailCab ermdglicht. Durch
ein Magnetfeld, welches sich entlang der Schiene fortbewegt, wird das Fahrzeug beschleunigt
und gebremst. Eine passive Weiche in Verbindung mit einer aktiven Lenkung ermoglicht das
Ausscheren von dicht hintereinander fahrenden Fahrzeugen bei voller Geschwindigkeit.

Eine wesentliche Eigenschaft dieses Systems ist, dass die RailCabs individuell agieren und un-
abhingig und dezentral Entscheidungen treffen. Das Feder-/Neigemodul des RailCabs tauscht
z. B. Informationen mit anderen RailCabs aus, um eine Storung auf den Schienen zu kompensie-
ren und um den Schienenlauf zu optimieren.

Als durchgéingiges Anwendungsbeispiel wird in dieser Arbeit das Konvoiszenario betrachtet.
RailCabs bilden zur Laufzeit Konvois, um den Energieverbrauch durch Fahren im Windschatten
zu reduzieren und um den Streckendurchsatz zu erhohen (siehe Abbildung 1.1).

(a) RailCab-Konvoi in der Simulation (b) RailCab-Konvoi auf der Teststrecke

Abbildung 1.1: RailCab Konvoi

Ein Konvoi muss durch ein RailCab koordiniert werden, um die Sicherheit und Stabilitit des
Konvois nicht zu gefihrden [GHH06c, HHGO08]. Das System ist z. B. unsicher, wenn die Rail-
Cabs aufeinander auffahren konnen. Ein stabiler Konvoi unterstiitzt die Sicherheit, in dem ein
Ubersteuern der unterliegenden Regler beim Anpassen z. B. der Geschwindigkeit kontrolliert
wird. Ubersteuern beim Anpassen der Geschwindigkeit fiihrt zu dem Effekt, dass die vorgegebe-
ne Geschwindigkeit (Sollgeschwindigkeit) kurzfristig liberstiegen wird. Aufgrund von Storun-
gen zur Laufzeit, wie Wind, kann dies durch die Regelung nicht vollstindig verhindert werden.
In einem Konvoi ohne Koordinator kann durch Anpassen von Parametern des Konvois, wie der
Geschwindigkeit, ein Ziehharmonikaeffekt auftreten, der den Effekt des Ubersteuerns iiber den

Thttp://www-nbp.uni-paderborn.de/
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gesamten Konvoi verstédrkt und so zu einer Auffahrgefahr werden kann, womit das System un-
sicher ist. Durch einen Koordinator wird dieser Effekt verhindert, da er zentral alle Teilnehmer
koordiniert steuern kann, indem Konvoiparameter (wie die Bremsgeschwindigkeit) direkt in be-
notigter Reihenfolge den Konvoiteilnehmern zugewiesen werden.

Das dafiir notwendige Kommunikationsprotokoll wird iiber das REAL-TIME COORDINATION
PATTERN ConvoyCoordination definiert. Die Bestimmung des Koordinators erfolgt dynamisch
bei der Bildung des Konvois. Um die Rolle des Koordinators iibernehmen zu kdnnen, muss
das RailCab fiir jeden Konvoiteilnehmer die notwendigen Konvoiparameter berechnen konnen.
Hierfiir werden zur Laufzeit individuell fiir jeden Konvoiteilnehmer sogenannte PosCalc-Regler
instanziiert, die individuelle Informationen des Teilnehmers fiir Berechnungen beriicksichtigen.
Weiterhin wird ein DistanceCoordination-Kommunikationsmuster angewandt, welches den Ab-
stand zwischen zwei RailCabs regelt.

Abbildung 1.2 zeigt einen Ausschnitt des Convoy-Komponentendiagramms, welches in den fol-
genden Kapiteln verfeinert wird. In dem Ausschnitt bettet die RailCab-Komponente eine Coor-
dinator-Komponente ein, die das Verhalten als Konvoikoordinator kapselt und ihrerseits konti-
nuierliche Komponenten (Regler) vom Typ PosCalc fiir die Berechnung von Konvoiparametern
einbettet. Die Coordinator-Komponente verwaltet den Konvoi und die Parameter des Konvois.
Fiir die Berechnung der Parameter des Konvois sind die PosCalc-Regler verantwortlich. Da-
bei berechnet jede Instanz des PosCalc-Reglers Konvoiparameter fiir jeden Konvoiteilnehmer.
Verdnderungen in der Grofle des Konvois wirken sich direkt auf die innere Struktur der Coordi-
nator-Komponente aus. Weiterhin kann der Konvoi RailCabs integrieren, deren Verhalten nicht
als Modell vorliegt (LegacyRailCab).

‘RailCab @ “---________ ‘ :LegacyRailCab

:Coordinator

I
:PosCalc [
m————— VN A .

/ N -

- o o
«+_ :ConvoyCoordination %,
g \ =~ _ -
’Komponentenkomposmon % \ Bl - N
\

Integration N

’ Protokollkomposition %

Abbildung 1.2: Ausschnitt der RailCab-Komponentenarchitektur

Dieses Anwendungsbeispiel weist all die oben skizzierten Herausforderungen selbstoptimieren-
der, mechatronischer Systeme gerade hinsichtlich der Kompositionen und Wiederverwendung
auf: Es wird eine kompositionelle Strukturanpassung iiber mehrere Hierarchieebenen unter har-
ten Echtzeitanforderungen gefordert. Das Protokollverhalten front muss mit dem des coordinator
komponiert werden (Protokollkomposition) und des Weiteren besteht die RailCab-Komponente
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aus einer Komposition der Coordinator- und PosCalc-Komponente (Komponentenkomposition).
Die Wiederverwendung (Integration) von Altkomponenten wird durch die LegacyRailCab-
Komponente verdeutlicht. Diese Anforderung ist gerade relevant, wenn RailCab-Systeme fla-
chendeckend integriert sind und RailCabs von unterschiedlichen Herstellern interagieren.

Dieses Beispiel ladsst sich einfach auf andere Transportsysteme, wie z.B. Automobile transferie-
ren. Szenarien, in denen Fahrzeuge koordiniert eine Baustelle oder Kreuzung passieren, werden
seit Langerem diskutiert. Das Problem der Wiederverwendung, gerade von Altkomponenten un-
terschiedlicher Zulieferer, ist fiir diese Doméne ebenfalls typisch.

1.3 Ubersicht

Im néchsten Kapitel werden die Grundlagen fiir die modellgetriebene Softwareentwicklung an-
hand der MECHATRONIC UML vorgestellt. Dabei betrachten wir die Grundlagen von Echtzeit-
und hybriden Systemen. In Abschnitt 2.1 stellen wir unseren Ansatz zur Entwicklung von hier-
archischen Komponentensystemen vor, in dem wir die bisherigen Modellierungs- und Analyse-
techniken der MECHATRONIC UML zusammen mit der in dieser Arbeit bereitgestellten Un-
terstiitzung fiir Komposition und Wiederverwendung darstellen. Wir stellen dariiber hinaus mit
dem Timed Story Driven Modeling Ansatz (Abschnitt 2.6) die notwendigen Erweiterungen der
Modellierungstechniken der MECHATRONIC UML vor, um die Anforderungen dieser Arbeit zu
adressieren.

Unseren Ansatz zur Verfeinerung in hierarchischen Komponentensystemen stellen wir in Kapitel
3 vor. Wir werden dabei eine Verfeinerungsdefinition und -iiberpriifung erldutern, die die gefor-
derten kompositionellen Strukturanpassungen unterstiitzt.

In Kapitel 4 stellen wir unsere Integration von Altkomponenten vor. Der in dieser Arbeit entwi-
ckelte Ansatz unterstiitzt drei unterschiedliche Verfahren, um Altkomponenten mit unterschied-
lichen zur Verfiigung stehenden Informationen (Black Box, White Box und Gray Box) zu inte-
grieren.

Die Synthese von Komponentenverhalten wird in Kapitel 5 erldutert. Im Mittelpunkt steht hierbei
die Konkretisierung von Protokollverhalten durch Komposition innerhalb einer Komponente.

In Kapitel 6 stellen wir die Werkzeugunterstiitzung vor. Unser Ansatz zur Quellcodegenerierung,
Laufzeitanalyse sowie Laufzeitumgebung wird in Abschnitt 6.1 priasentiert. Anschlieend wer-
den in Abschnitt 6.2 und 6.3 die Umsetzung der Werkzeugunterstiitzung sowie eine Validierung
des Gesamtansatzes vorgestellt.

Kapitel 7 diskutiert die verwandten Arbeiten und abschlieBend wird in Kapitel 8 eine Zusam-
menfassung und Ausblick der Arbeit gegeben.



Kapitel 2
Mechatronic UML

Dieses Kapitel fithrt in die modellbasierte Softwareentwicklung mittels der MECHATRO-
NIC UML ein, da die in dieser Arbeit vorgestellten Konzepte auf der MECHATRONIC UML
basieren, bzw. diese erweitern. In diesem Zusammenhang werden die theoretischen Grundlagen
von Timed Automata und Graphtransformationssystemen behandelt.

Die MECHATRONIC UML ist eine Anpassung der UML [Obj05b] fiir die modellbasierte Ent-
wicklung mechatronischer Systeme. Eine Werkzeugunterstiitzung wird durch die Fujaba Real-
Time Tool Suite! angeboten.

Im néchsten Abschnitt beschreiben wir unseren Ansatz zur Entwicklung von hierarchischen Kom-
ponentensystemen. Wir werden dabei die bisherigen Modellierungs- und Analysetechniken der
MECHATRONIC UML zusammen mit der in dieser Arbeit bereitgestellten Unterstiitzung fiir
Komposition und Wiederverwendung darstellen.

Anschlieend erldutern wir die Modellierungselemente und Analysetechniken der MECHATRO-
NIC UML. Zuerst stellen wir in Abschnitt 2.2 genauer die hier betrachteten selbstoptimierenden,
mechatronischen Systeme vor. Wir beginnen dann mit der Strukturmodellierung der MECHA-
TRONIC UML in Abschnitt 2.3, die grundlegend in dieser Arbeit genutzt wird. Die Echtzeit-
Verhaltensbeschreibung und -Analyse stellen wir in Abschnitt 2.4 vor. Der dort beschriebene
musterbasierte Ansatz wird in dieser Arbeit ebenfalls ausgenutzt. Im Zusammenspiel mit dem
hierarchischen komponentenbasierten Aufbau der MECHATRONIC UML dient der musterba-
sierte Ansatz als Grundlage fiir die Unterstiitzung der Wiederverwendung von Komponenten
und Protokollverhalten. AnschlieBend stellen wir die hybride Modellierung der MECHATRO-
NIC UML vor (siehe Abschnitt 2.5), die wir fiir die Integration von Altkomponenten mit rege-
lungstechnischen Anteilen (sieche Abschnitt 4.4) sowie fiir die Codegenerierung ausnutzen (siehe
Abschnitt 6.1.2.4). In Abschnitt 2.6 beschreiben wir den Timed Story Driven Modeling Ansatz,
um iiber eine Datenstruktur gemeinsam Verhalten und Strukturanpassungen zu spezifizieren. Den
Timed Story Driven Modeling Ansatz werden wir in Abschnitt 3.1.2 ausnutzen, um eine Verfei-
nerung fiir hierarchische Komponentensysteme mit kompositionellen Strukturanpassungen zu
definieren.

Thttp://www.fujaba.de/projects/real-time.htm]
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2.1 Entwicklung hierarchischer Komponentensysteme

In diesem Kapitel wird die MECHATRONIC UML vorgestellt, die fiir Strukturanpassungen auf
der Kommunikationsebene einen Verifikationsansatz auf Basis einer Dekomposition des Systems
in Komponenten und Kommunikationen zwischen Komponenten ermoglicht. Um ein Gesamt-
system zu entwickeln wird zudem wie durch [SGW94, TOHS99, Crn02, HKKO04], [Obj05b, S.
515ff] und [Obj09, S. 534ff] beschrieben, eine Komposition der getrennt entwickelten und ana-
lysierten Komponenten und Kommunikationen zwischen Komponenten zu hierarchischen Kom-
ponenten benétigt. In den Kapiteln 3 bis 5 stellen wir Ansétze vor, die genau dieser Forderung
nachgehen, indem eine Wiederverwendung von Komponenten und Kommunikationen zwischen
Komponenten zu hierarchischen Komponenten unterstiitzt wird.

Wir werden in diesem Abschnitt einen systematischen Entwicklungsansatz skizzieren, der die
bisherigen Entwicklungsschritte der MECHATRONIC UML wie in den folgenden Abschnitten
vorgestellt mit denen, die in dieser Arbeit vorgestellt werden, integriert darstellt. Die grundle-
gende Arbeit zu dem Entwicklungsansatz der MECHATRONIC UML wurde von Giese in [Gie03]
vorgestellt.

Der Entwicklungsansatz besteht aus den Schritten Szenarien modellieren, Rollenverhalten syn-
thetisieren, Koordinationsmuster analysieren, Rollen anwenden (diese Schritte werden durch die
bisherige MECHATRONIC UML unterstiitzt) und dem Schwerpunkt dieser Arbeit Verfeinerung in
hierarchischen Komponentensystemen, Altkomponenten integrieren und Komponentenverhalten
synthetisieren. Im Folgenden erldutern wir die einzelnen Schritte anhand von Abbildung 2.1. Wir
werden dabei nicht explizit auf mogliche Iterationen zwischen den einzelnen Schritten eingehen.

Szenarien modellieren und Rollenverhalten synthetisieren

Die MECHATRONIC UML unterstiitzt mit der Aktivitit Szenarien modellieren die Mog-
lichkeit in den friihen Phasen der Softwareentwicklung formal Kommunikationen zwischen
den Rollen eines Musters zu spezifizieren. Ermoglicht wird dies durch eine Anpassung von
UML-Sequenzdiagrammen. Hierbei wird die Anforderung unterstiitzt, Zeit in den frithen Pha-
sen durch eine Parametrisierung fiir nicht genau bekannte Zeitbedingungen zu beschreiben
[BGKO05, ACE*08]. Das Gesamtverhalten MZASc (fiir alle Muster ¢ = 1...,7 = n) ergibt sich
aus den parallel geschalteten Szenarien (1.. ., k): M7 = M>f| ... || M (sieche Abbildung 2.1
unter Parameterized Real-Time Sequence Diagram). Durch den Fokus auf die Kommunikati-
onsbeschreibung zwischen Rollen propagieren wir bereits in den friihen Phasen einen kompo-
sitionellen Entwicklungsansatz, im Vergleich zu den klassischen Verfahren zur Synthese von
Zustandsverhalten basierend auf Harel [HKPOS5], die ein Gesamtverhalten synthetisieren.

Um aus den Szenarien Rollenverhalten fiir ein Koordinationsmuster zu synthetisieren, miis-
sen die Szenarien Synthesebedingungen geniigen (M;°° = ¢;). Es darf z.B. nicht vorkommen,
dass eine ausgewiesene Konfiguration (Zustand) unterschiedliche Vorbedingungen in verschie-
denen Szenarien besitzt oder dass spezifizierte Konfigurationen nicht erreichbar sind (siehe
[GHHKO06]).
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Aktivitat Modelle Analyse
Parameterized Real-Time Gesamtverhalten Scenario M7

- N Sequence Diagram MpPe = M| ... || M5

Szenarien mit 1, ...,k Teilszenarien

\modellieren ) e2 L Synghesebedingung:

] & ez Mfe ¢
~ roono ¢; - Beschreibt Eigenschaften fiir
Rollenverhalten konfliktfreie Szenarien
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Coordination Pattern MFP =MA| .. | M Nk

e o R NV PN mit 1,...,k Rollenverhalten, N, Kanalverhalten
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mit M komponiertes Protokollverhalten
M;

mit 1); : Kompositionseigenschaften

Abbildung 2.1: Ubersicht Entwicklungsansatz

Dieser Ansatz ermoglicht es damit das Rollenverhalten von Koordinationsmustern zu syntheti-
sieren. Das Koordinationsmuster muss zusitzlich manuell definiert werden. Dies beinhaltet den
Namen des Musters festzulegen sowie die Spezifikation zu beschreiben.

Der bisherige Ansatz unterstiitzt grundsétzlich nur die Synthese von REAL-TIME STATECHARTS
(siehe Abschnitt 2.4.2) fiir eine bilaterale Kommunikation, die iiber ein REAL-TIME COORDI-
NATION PATTERN beschrieben wird (sieche Abschnitt 2.4.1). Handelt es sich um eine multilate-
rale Kommunikation, wie dies fiir unser Konvoi-Beispiel benotigt wird (siehe Abschnitt 1.2), so
muss zusdtzlich manuell das fiir die multilaterale Kommunikation benotigte Verhalten beschrie-
ben werden. Dies beinhaltet unter anderem die Beschreibung der Strukturanpassung des Musters
durch einen Seiteneffekt. Hiermit werden dann PARAMETERIZED REAL-TIME COORDINATION
PATTERNS als Kommunikationsmuster sowie PARAMETERIZED REAL-TIME STATECHARTS,
die das Rollenverhalten beschreiben, beschrieben (sieche Abschnitt 2.4.3 und 2.4.4).

Koordinationsmuster analysieren und Rollen anwenden

11
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Die Koordinationsmuster stellen eine wesentliche zentrale Einheit des kompositionellen Vorge-
hens der MECHATRONIC UML dar (siehe Abschnitt 2.4.1). Hierdurch wird eine Dekompositi-
on des Systems in Komponenten und der Kommunikation zwischen den Komponenten erreicht
sowie eine Wiederverwendung bereits auf der Ebene der Protokollverhalten. Diese Vorgehens-
weise ermdglicht eine kompositionlle formale Verifikation. Das Gesamtverhalten M7 (fiir al-
le Muster 7 = 1...,7 = n) ergibt sich dabei aus den parallel geschalteten Rollenverhalten
(M. .. [[M],) und einem zusitzlichen Kanalverhalten Ny, welches abstrakt das Netzwerkver-
halten spezifiziert (z.B. via Nachrichtenpuffer und Beriicksichtigung von Nachrichtenverlust):
MFP = MJ] ... ||M[||Ny (siche Abbildung 2.1 unter PARAMETERIZED REAL-TIME COOR-
DINATION PATTERN).

Dieser Aufbau des Systems wird ausgenutzt, um eine kompositionelle Analyse des Systems
durchzufiihren. Im Gegensatz zur Uberpriifung einer temporallogischen Formel auf dem globalen
Zustandsraum nutzt ein kompositioneller Ansatz die Architektur aus, um nur fiir einzelne Ele-
mente (Komponenten und Kommunikationen) lokale temporallogische Formeln zu iiberpriifen.
Fiir jedes Muster M/ wird entsprechend iiberpriift ob die lokalen Sicherheits- und begrenzten
Lebendigkeitseigenschaften ¢; sowie die Deadlockfreiheit —d erfiillt sind: M = ¢; A .

Erfiillen die Muster die Korrektheitsbedingungen, kann auf Basis der Rollen Komponententy-
pen spezifiziert werden. Eine Komponente instanziiert die fiir den Typ relevanten Rollen. Wir
sprechen hier von sogenannten Basiskomponenten (siehe auch [Tic09]), die lediglich Rollen an-
wenden. Im Folgenden stellen wir vor, wie diese Basiskomponenten konkretisiert werden.

Komponenten konkretisieren: Verfeinerung in hierarchischen Komponentensystemen, Alt-
komponenten integrieren und Komponentenverhalten synthetisieren

Dieser Schritt beschiftigt sich mit der Konkretisierung der im vorherigen Schritt Rollen anwen-
den definierten Basiskomponenten. Die Basiskomponenten setzen sich aus den parallel geschal-
teten Protokollverhalten zusammen. Da die Protokollverhalten in Form von Rollen erst unab-
hiingig von der Komponentenimplementierung entwickelt werden, um eine Wiederverwendung
komponenteniibergreifend zu ermoglichen, ist eine komponentenspezifische Verfeinerung not-
wendig.

Wir konnen im Wesentlichen drei unterschiedliche Ursachen fiir eine Konkretisierung des Rol-
lenverhaltens unterscheiden. Die offensichtlichste ist die 1) Konkretisierung der unterliegenden
Funktionen in Form von Reglern und Seiteneffekten. Dabei kann es sich um eine konkretere
Form einer vorliegenden abstrakten Funktion handeln sowie um eine Einbettung von noch nicht
spezifizierten Funktionen, wie z.B. das Hinzufiigen des Abstandsreglers, der fiir den Konvoi be-
notigt wird, oder auch die Funktion zur Beschreibung der Strukturanpassung des Konvois, um
z.B. einen weiteren Teilnehmer aufnehmen zu koénnen.

Die Konkretisierung der Funktionen hat hidufig zur Folge, dass 2) das zeitliche Verhalten oder
auch das Rollenverhalten konkretisiert werden muss. Es kann hierbei zum Beispiel zu einer An-
passung von Guards oder einer Anpassung des Zustandsverhalten durch Hinzufiigen weiterer
Zustinde kommen.

12
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Durch die Komposition von mehreren Rollen fithren 3) Abhédngigkeiten zwischen diesen Rollen
zu einer Konkretisierung des Rollenverhaltens. Die Rollenverhalten konnen entsprechend nicht
mehr nur parallel ausgefiihrt werden. Hierbei kann ebenfalls wie unter 2) das Echtzeitverhalten
konkretisiert werden. Ein Beispiel hierfiir ist, dass zwei Zustidnde unterschiedlicher Rollen nicht
gleichzeitig betreten werden diirfen. Das Verhalten der Rollen muss also untereinander synchro-
nisiert werden.

Alle drei Ursachen fiir eine Konkretisierung konnen in Kombination miteinander auftreten, wie
dies auch einfach an dem Konvoibeispiel zu sehen ist. Wie in Abschnitt 2.3 zu Abbildung 2.2 er-
lautert, werden fiir die Situationen, ob ein RailCab im Konvoi ist oder nicht zwei unterschiedliche
Regler (VelocityControl und DistanceControl) eingebettet. Die hierdurch bedingte Rekonfigura-
tion fiihrt zu einer Konkretisierung des Guards. Zudem darf ein RailCab nur an einem Konvoi
teilnehmen, wenn es auch registriert ist.

Das Gesamtverhalten einer Komponente M ergibt sich damit aus den Konkretisierungen der
Rollenverhalten M7 ,||...[[M], sowie den Synchronisationen zwischen den Rollenverhalten
M; .|| Mp: ME = M. |M), | M7 ... ||M}. Eine Konkretisierung kann damit erfolgen
durch: '

i) manuelles anpassen des Protokollverhaltens (in Abbildung 2.1 durch M7 ; unter hierarchi-
sche Komponenten dargestellt),

ii) durch vorhandene modellierte Komponenten (wird ebenfalls in Abbildung 2.1 durch M7 ;
unter hierarchische Komponenten dargestellt),

iii) Altkomponenten (siche M7 ; in Abbildung 2.1 unter hierarchische Komponenten),

iv) hinzufiigen von zusétzlichen Abhédngigkeiten in Form von Synchronisationsverhalten (sie-
he M7 in Abbildung 2.1 unter hierarchische Komponenten).

Fiir die Analyse der sich hiermit ergebenden hierarchischen Komponenten muss eine Verfeine-
rung definiert und tiberpriift werden, um sicherzustellen, dass die durchgefiihrten Konkretisie-
rungen nicht zu einer Verletzung des bereits verifizierten Rollenverhaltens fiihren.

Aus Sicht der Analyse sind die Anwendungsfille 1) und i1) identisch, da zwei bekannte Modelle
hinsichtlich einer Verfeinerung tiberpriift werden (siehe Kapitel 3). Fiir den Anwendungsfall iii)
muss zusitzlich das relevante Verhalten erlernt werden (siehe Kapitel 4) und fiir iv) konnen
wir konstruktiv durch eine formale Abhédngigkeitsbeschreibung das Synchronisationsverhalten
(gesamte Komponentenverhalten) synthetisieren (siehe Kapitel 5).

2.2 Selbstoptimierende, mechatronische Systeme

Werden Systeme fiir mehrere Anwendungssituationen entwickelt, treten hdufig Konflikte zwi-
schen den Anforderungen auf. Diese Konflikte miissen im Entwicklungsprozess gefunden und
eine mogliche Losung ausgewihlt werden. Da nur eine Losung ausgewihlt werden kann, wird
nicht zwangsldufig eine optimale Losung fiir alle Anwendungssituationen umgesetzt. Einen Lo-
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sungsansatz zur Aufhebung der Anforderungskonflikte stellen selbstoptimierende Systeme dar.
Hierdurch ist das entwickelte System in der Lage, mehrere Anwendungssituationen umzusetzen,
zur Laufzeit die aktuelle Situation zu erkennen, eine Gewichtung oder Priorisierung der Anfor-
derungen auf wechselnde Umweltbedingungen zu bestimmen und daraus erforderliche Verhal-
tensanpassungen abzuleiten, die optimal fiir eine bestimmte Anwendungssituation sind. Defi-
nitionen sowie eine Reihe von Anwendungsbeispielen fiir selbstoptimierende, mechatronische
Systeme werden in [ADG"09] vorgestellt.

Zur Erfassung der aktuellen Situation nutzt das entwickelte System lokale und globale Netz-
werkressourcen, um die Qualitdt der eigenen Funktionalititen auf Grundlage einer moglichst
umfangreichen Wissensbasis zu verbessern. Teil dieser Systeme ist daher eine Koordination zwi-
schen den einzelnen Teil-Systemen, bzw. Komponenten, um eine umfangreiche Wissensbasis in
dem vernetzten System zu erstellen. Die Koordination mit der Umgebung bewirkt damit eine
lokale Anpassung des Verhaltens, um den neuen Anforderungen gerecht zu werden.

Wie in [FGK'04] beschrieben, kann die Anpassung unterschiedlich erfolgen. Die einfachste
Form ist die Parameteranpassung, z.B. das Andern eines Parameters einer Motorregelung. Dar-
iber hinaus kann die Struktur des Systems angepasst werden, z.B. wird fiir die Motorregelung
im Betrieb ,,sportlich fahren* eine andere Reglerstruktur bendtigt als im Betrieb ,,0konomisch
fahren®. Eine Strukturanpassung verédndert die Ordnung oder Beziehungen zwischen den Ele-
menten des Systems. Es wird zwischen einer Rekonfiguration und einer kompositionellen Struk-
turanpassung unterschieden. Eine Rekonfiguration verdndert die Beziehungen einer festen Men-
ge von verfiigbaren Elementen. Eine kompositionelle Strukturanpassung fiigt neue Elemente der
bisherigen Struktur hinzu oder entfernt Elemente aus der Struktur.

Dariiber hinaus sind wesentliche Merkmale mechatronischer Systeme, dass sie eingebettete,
Echtzeit-, hybride und sicherheitskritische Systeme sind [GHO6b].

Ein Mikrocontroller, der in einer technischen Umgebung integriert ist, wird eingebettetes System
genannt. Ein Mikrocontroller steuert, regelt, oder iiberwacht dabei Teile der technischen Um-
gebung, in der er eingebettet ist, indem die Software des Mikrocontrollers mit der Hardware
(elektrische oder mechanische Module) interagiert. Um einen moglichst giinstigen Preis in der
Massenproduktion von Mikrocontrollern zu erzielen, sind die Ressourcen (Speicher und CPU)
stark eingeschrinkt.

Systeme, deren Verhalten von Zeitbedingungen/-restriktionen abhingig sind, werden Echizeit-
systeme genannt. Die Korrektheit der Funktionen eines Echtzeitsystems hingen nicht nur von
dem logischen Ergebnis einer Berechnung ab, sondern auch von dem Zeitpunkt, wann dieses
Ergebnis vorliegt. Ein Airbag-System ist offensichtlich ein Echtzeitsystem. Das Ausldsen muss
zuverldssig innerhalb eines bestimmten Zeitintervalls passieren.

Eine Integration von kontinuierlichen und diskreten Systemen wird hybrides System genannt.
Ein Beispiel fiir ein kontinuierliches System ist eine Motorregelung, die kontinuierlich Eingaben
in Form von Sensorsignalen verarbeitet und kontinuierlich Ausgaben berechnet. Diskrete Modi,
wie ,,der Motor ist im Zustand 6konomisches Fahren* oder ,,sportliches Fahren®, zwischen den
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umgeschaltet werden kann, fiihren zu einem hybriden System, da hierdurch die Motorregelung
beeinflusst wird.

Kann eine Fehlfunktion eine Gefahr fiir die Umgebung darstellen, handelt es sich um ein sicher-
heitskritisches System. Hierunter fallen sowohl die Gefahr ein Menschenleben zu verlieren, wie
auch hohe 6konomische Verluste.

Selbstoptimierende, mechatronische Systeme beschreiben damit komplexe mechatronische Sys-
teme, die optimal, autonom und flexibel auf Anderungen in ihrer Umwelt reagieren konnen.

2.3 Komponenten

Die Struktur des (Software-) Systems wird in der MECHATRONIC UML mit Komponentendia-
grammen spezifiziert [Bur06, HHO06]. Es wird dabei zwischen diskreten, kontinuierlichen und
hybriden Komponenten? Unterschieden. Das Verhalten diskreter Komponenten wird durch Zu-
standsverhalten spezifiziert (siehe Abschnitt 2.4.2) und kontinuierliche Komponenten durch Reg-
lerverhalten. Eine hybride Komponente besteht aus diskreten und kontinuierlichen Anteilen. Eine
Komponente ist in sich abgeschlossen und verbirgt ihre innere Struktur und ihr inneres Verhalten.

Ein Zugriff ist nur liber bestimmte Zugangspunkte, die sogenannten Ports, moglich. Hierbei wird
auch zwischen diskreten, kontinuierlichen und hybriden Ports unterschieden. Ein diskreter Port
kann dabei in der MECHATRONIC UML ein Required Interface und ein Provided Interface mit
jeweils einer Menge von Nachrichten spezifizieren. Im Fall von kontinuierlichen Ports sind dies
kontinuierliche Ein- und Ausgangsgroflen (Parameter oder Variablen) des Reglerverhaltens. Ein
hybrider Port beinhaltet beide Informationen.

Uber ein Required Interface werden Nachrichten verschickt und iiber ein Provided Inter-
face empfangen. Im Fall eines diskreten Ports wird ein Protokollverhalten (mit REAL-TIME
STATECHARTS- siehe Abschnitt 2.4.2) auf Basis der Nachrichtenschnittstelle definiert. Die Spe-
zifikation des Protokollverhaltens ist ein wesentlicher Bestandteil des MECHATRONIC UML-
Ansatzes und wird in Abschnitt 2.4 betrachtet.

Komponenten erlauben die Modellierung eines hierarchischen Systems, d.h. die interne Struk-
tur einer Komponente kann sich aus mehreren eingebetteten Komponenten zusammensetzen.
Es wird dabei zwischen Basiskomponenten und hierarchischen Komponenten unterscheiden. Im
Gegensatz zu einer hierarchischen Komponente enthélt eine Basiskomponente keine weiteren
Komponenten. Ein Beispiel einer hierarchischen Komponente wurde in Abschnitt 1.2 vorgestellt.

Abbildung 2.2 zeigt eine RailCab Komponente, die im Vergleich zu Abbildung 1.2 zwei
regelungstechnische Komponenten (VelocityController und DistanceController) einbettet. Die
Schnittstellen der eingebetteten regelungstechnischen Komponenten stellen dabei kontinuierli-
che Ein-/Ausgangsgrofen dar. Zur Verringerung der visuellen Komplexitit wurden in dem Bei-

%In dieser Arbeit wird aus Griinden der besseren Lesbarkeit allgemein von Komponenten gesprochen, wenn durch
den Kontext offensichtlich ist, ob Komponententypen oder -instanzen gemeint sind.

15



Kapitel 2 Mechatronic UML

spiel die Schnittstellen nicht zur iibergeordneten RailCab Komponente weitergeleitet. Der Velo-
cityController regelt die Geschwindigkeit und der DistanceController den Abstand zum voraus-
fahrenden RailCab. V' und d geben die jeweiligen Sollgeschwindigkeiten fiir die Geschwindkeit
und Distanz vor. Die Eingénge versehen mit einem * geben die Istwerte zur Geschwindigkeit
und Distanz an. Der VelocityController benétigt zudem noch die Position des RailCab, die iiber
X angegeben wird. Der VelocityController gibt an dem Ausgang die Beschleunigung (F™) an und
der DistanceController die Geschwindigkeit 1/*.

RailCab @
rear front

v 2]
—] v E :Velocity Controller F [—O0

& i :Distance Controller %

Abbildung 2.2: RailCab Komponente

2.4 Echtzeitverhalten

Systeme, deren Verhalten von Zeitbedingungen/-restriktionen abhéngig sind, werden Echtzeit-
systeme genannt. Echtzeitsysteme verdndern ihren Zustand als eine Funktion iiber die Zeit. Die
Korrektheit eines Ergebnisses einer Funktion hiangt damit nicht nur von dem logischen Ergebnis
einer Berechnung ab, sondern auch von dem Zeitpunkt, wann dieses Ergebnis vorliegt [Kop97].

Je nach gegebener Anforderung, konnen wir zwischen harter Echtzeit und weicher Echtzeit un-
terscheiden. Unter harter Echtzeit wird verstanden, dass ein Ergebnis einer Berechnung inner-
halb eines bestimmten Zeitfensters (Deadline) vorliegt. Wird diese Zeitfenster nicht eingehalten,
konnen negative oder fatale Konsequenzen entstehen. Bei weicher Echtzeit tritt eine positive Wir-
kung ein, wenn das Zeitfenster eingehalten wird. Wird das Zeitfenster verfehlt, fiihrt das zu einer
Verschlechterung des Ergebnisses, allerdings nicht zu fatalen Konsequenzen [Kop97].

Die MECHATRONIC UML ist darauf fokussiert, dass nachrichtenbasierte Echtzeit-
Koordinationsverhalten zu beschreiben, das zwischen verschiedenen mechatronischen
Komponenten unter harten Echtzeitanforderungen auftritt. Um das Koordinationsverhalten
wiederverwenden zu konnen, werden REAL-TIME COORDINATION PATTERNS eingefiihrt
(siehe Abschnitt 2.4.1). Diese erlauben die Spezifikation von Rollen und Rollenverhalten, die
dann durch eine Komponente angewandt werden konnen.

Das Rollenverhalten wird mit REAL-TIME STATECHARTS beschrieben. REAL-TIME STATE-
CHARTS sind eine Erweiterung von UML State Machines [Obj05b] um spezielle Echtzeiteigen-
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schaften fiir die periodische Ausfithrung, Echtzeitverhalten, Wort Case Ausfiihrungszeiten und
Deadlines zu modellieren. Die Semantik der REAL-TIME STATECHARTS ist iiber die Seman-
tik der Timed Automata definiert (siche Abschnitt 2.4.2). Im Folgenden beschreiben wir zuerst
REAL-TIME COORDINATION PATTERNS und anschlieBend REAL-TIME STATECHARTS.

Da mechatronische Systeme zur Laufzeit ihre Struktur anpassen kénnen (z.B. Konvoi, siehe Ab-
schnitt 1.2), kann sich die Kommunikationsstruktur ebenfalls dynamisch zur Laufzeit anpas-
sen. Um diesen Fall betrachten zu konnen, wurden die PARAMETERIZED REAL-TIME STATE-
CHARTS und PARAMETERIZED REAL-TIME COORDINATION PATTERNS entwickelt (sieche Ab-
schnitt 2.4.4 und 2.4.3).

2.4.1 Real-Time Coordination Pattern

Um das Kommunikationsverhalten von Echtzeitsystemen zu spezifieren, miissen Nachrichten-
verzogerungen beriicksichtigt werden und Antwortzeiten garantiert werden. REAL-TIME COOR-
DINATION PATTERNS [GTB™03] unterstiitzen diese Anforderungen. Ein Muster besteht aus den
Mitgliedern, die an dem Muster teilnehmen (Rollen genannt), das Verhalten der Rollen, den Kon-
nektor zwischen den Rollen, das Verhalten der Konnektoren und Invarianten fiir jede Rolle sowie
Musterbedingungen.

Das Verhalten einer Rolle definiert die externe Kommunikation (das Kommunikationsprotokoll)
eines Teilnehmers. Eine Rolle beschreibt nicht das konkrete Verhalten einer Komponente, son-
dern abstrahiert hiervon. Eine konkrete Komponente muss dieses Verhalten anwenden und darf
dabei kein weiteres externes Verhalten hinzufiigen. Um dieses Verhalten zu erfiillen, kann eine
Komponente zusitzlich internes Verhalten hinzufiigen (z.B. das unterlagerte Regelungsverhalten
oder konkrete Implementierungen von Seiteneffekten). In Abhédngigkeit von den Kommunikatio-
nen, an denen eine Komponente teilnimmt, wendet eine Komponente Rollen aus verschiedenen
Mustern an. In der Folge einer Anwendung einer Rolle durch eine Komponente wird das Rol-
lenverhalten durch einen Port der Komponente realisiert (konkretisiert). Um die Eigenschaften
einer Rolle bzw. Musters nicht zu verletzen muss das Portverhalten eine Verfeinerung des Rol-
lenverhaltens sein (sieche Abschnitt 2.4.2).

Die Konnektoren spezifizieren die Kommunikationsverbindung (Link) zwischen den Kommuni-
kationsteilnehmern (Rollen). Das Verhalten eines Konnektors beschreibt abstrakt das unterlie-
gende Netzwerkverhalten (z.B. UDP), in dem die Qualitit des Netzwerkprotokolls, wie Verzo-
gerung oder Nachrichtenverlust, beriicksichtigt werden.

Um das Verhalten einer Rolle oder Konnektors zu beschreiben, verwenden wir REAL-TIME
STATECHARTS (siehe Abschnitt 2.4.2). Das Verhalten kann, wie wir z.B. in [GHHKO06] und
[ACE"08] gezeigt haben, auch aus Szenarien synthetisiert werden.

Eine Rolleninvariante beschreibt Eigenschaften, die durch den Teilnehmer garantiert werden und
Mustereigenschaften beschreiben Eigenschaften, die durch das Muster erfiillt werden sollen. Rol-
leninvarianten und Mustereigenschaften beschreiben Sicherheits- und Lebendigkeitseigenschaf-
ten. Sicherheitseigenschaften beschreiben, dass etwas Schlechtes niemals passieren wird. Wih-
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rend Lebendigkeitseigenschaften beschreiben, dass etwas Gutes eventuell passieren wird. Im
Rahmen von Echtzeitsystemen findet typischerweise eine eingeschriankte Form von Lebendig-
keitseigenschaften, die begrenzten Lebendigkeitseigenschaften, Anwendung. Hiermit wird eine
zeitliche Obergrenze festgelegt, in der etwas Gutes passieren soll.

Diese Eigenschaften konnen durch Model Checking basierend auf dem Verhalten der Rollen und
Konnektoren verifiziert werden. Im Fall von REAL-TIME STATECHARTS, die iiber die Semantik
von Timed Automata definiert sind (siche Abschnitt 2.4.2), ist dies mittels des UPPAAL Model

Checkers® moglich.

Um zu zeigen, dass ein Gesamtsystem bzgl. seiner Spezifikation korrekt umgesetzt wurde, wird
in einem ersten Schritt liberpriift, ob jedes Muster seine Spezifikation erfiillt. Hierzu gehort,
dass die Eigenschaften des Musters erfiillt sind und Deadlock-Freiheit gezeigt wurde. In einem
zweiten Schritt wird tiberpriift, ob jede Komponente korrekt ist. Eine Komponente ist korrekt,
wenn ihre Eigenschaften erfiillt sind, die Komponente keine Deadlocks enthilt, die Invarianten
der Rollen eingehalten werden und die angewandten Rollen korrekt verfeinert werden. Wenn
diese beiden Schritte erfolgreich sind, dann ist ein syntaktisch korrekt komponiertes System,
welches aus Mustern und Komponenten besteht, ebenfalls korrekt [GTB*03].

Abbildung 2.3 zeigt das DistanceCoordination-Muster mit den Rollen rear und front, die iiber
einen Kanal miteinander verbunden sind. Die Intention dieses Musters ist die Koordination zwi-
schen zwei hintereinanderfahrenden RailCabs in einem Konvoi zu beschreiben. Dabei befindet
sich das vorherfahrende RailCab in der Rolle front und das hinterherfahrende RailCab in der Rol-
le rear. Das Verhalten der Rollen, welches genauer in dem nichsten Abschnitt 2.4.2 beschrieben
wird, muss dabei bestimmte Eigenschaften erfiillen, die dem REAL-TIME COORDINATION PAT-
TERN zugeordnet werden. Zum einen, dies gilt fiir jedes Muster, muss die Deadlock Freiheit
gelten. Zum anderen gibt es musterspezifische Eigenschaften, wie, wenn das RailCab in der Rol-
le rear im Konvoi (Konvoizustand) ist, dann muss auch das vorherfahrende RailCab im Konvoi
(Konvoizustand) sein (rear.convoy implies front.convoy). Diese Eigenschaft wird bendétigt, um si-
cherzustellen, dass ein rechtzeitiges Bremsen des RailCabs in der Rolle rear moglich ist. Hiermit
wird impliziert, dass eine entsprechende regelungstechnische Komponente in diesen Zustédnden
aktiv ist, die z. B. fiir eine Abstandskontrolle sorgt (siche Abschnitt 2.5).

Ein weiteres Beispiel ist das REAL-TIME COORDINATION PATTERN Registration. Hiermit wird
die Koordination zwischen einem RailCab und der Streckenabschnittskontrolle beschrieben. Die
Streckenabschnittskontrolle ist die Entitédt im RailCab-System, die fiir die Bestromung des Sys-
tems sowie der Bekanntmachung der RailCabs untereinander innerhalb eines Streckenabschnitts
zustdandig ist. Eine Eigenschaft, die dabei sichergestellt sein muss ist, dass wenn ein RailCab
(welches hier in der Rolle registree ist) registriert ist, die zugehorige Streckenabschnittskon-
trolle (die in der Rolle registrar ist) den gleichen Status hilt (registree.registered implies regis-
trar.registered). Ansonsten kann z. B. nicht garantiert werden, dass ein RailCab die relevanten
Daten der RailCabs in dem gleichen Streckenabschnitt erhilt. Dies ist wiederum eine Vorausset-
zung, damit die RailCabs sich untereinander koordinieren kdnnen.

3www.uppaal.com
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Abbildung 2.4: Registration-Koordinationsmuster

2.4.2 Real-Time Statecharts

REAL-TIME STATECHARTS [GBO3] sind eine Erweiterung von UML State Machines [Obj05b],
um den Einsatz in eingebetteten Systemen zu ermoglichen. Bis auf das after- und when- Kon-
strukt besitzt ein Realtime Statechart alle Eigenschaften von UML State Machines. Um Echtzeit-
verhalten modellieren zu konnen, werden die Transitionen und Zustinde um Clocks erweitert.
Zustinde werden um Zeitinvarianten, Clock Resets, die mit den entry()- und exit()- Methoden
assoziiert sind, WCETs (Worst Case Execution Time) zu den entry()-, do()- und exit()- Methoden
und ein Periodenintervall fiir die do()- Methode erweitert. Transitionen werden um Time-Guards,
Clock Resets, Priorititen, Deadlines, WCETSs und Synchronisationskanile erweitert. Die Seman-
tik der REAL-TIME STATECHARTS ist iiber Hierarchical Timed Automata [DMY02] definiert, so
dass eine formale Verifikation der Modelle mit dem Model Checker UPPAAL ermoglicht wird.

Ein Beispiel fiir ein REAL-TIME STATECHART zeigt Abbildung 2.5 und Abbildung 2.6. Die Ab-
bildungen zeigen eine Implementierung der Rolle front und rear aus Abbildung 1.2. Das REAL-
TIME STATECHART der Rolle front hat zwei verschachtelte Zustinde noConvoy und convoy mit
Unterzustinden default und wait im Fall des Zustands noConvoy und Unterzustand default im
Fall des Zustands convoy. Die Struktur des REAL-TIME STATECHARTS der Rolle rear ist gleich
aufgebaut. Die Kommunikation zwischen den beiden Rollen wird durch die Rolle rear initiiert.
Initial schickt diese eine convoyProposal-Nachricht, die die front-Rolle empfangen kann und in-
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nerhalb des Intervalls von 0 < 1000 den Konvoi iiber eine startConvoy-Nachricht starten kann
und zu einem beliebigen Zeitpunkt durch Verschicken der Nachricht breakConvoy wieder been-

den kann.

4 noConvoy h
.\ [cf > 999]
it
convoyProposal / wal
default ) (e \_of<=1000 )
N J
[cf <=999]
/ startConvoy
4 convoy h
. breakG default
L reakConvoy )

noConvoy

.

[cr > 999]

default

[cr <=999]
startConvoy /
4 convoy h
default
breakConvoy /
N Y J

Abbildung 2.5: REAL-TIME STATECHARTS Abbildung 2.6: REAL-TIME STATECHARTS
der Rolle front der Rolle rear

Abbildung 2.7 und 2.8 zeigt eine Erweiterung des bisherigen Beispiels um Echtzeitkommunika-
tionsverhalten mit einer Streckenabschnittskontrolle (sieche Abschnitt 2.4.1). Fiir die Rolle regis-
trar und registree wird ein entsprechendes REAL-TIME STATECHART beschrieben. Beide weisen
die gleiche Struktur auf: zwei verschachtelte Zustédnde unregistered und registered. default ist der
Unterzustand des Zustands unregistered. default und waiting sind die Unterzustéinde von registe-
red. Initiiert wird die Koordination durch eine register-Nachricht der Rolle registree. Innerhalb
des Zeitintervalls ca < 2000 verschickt die registree eine requestUpdate-Nachricht. Vor Betre-
ten des Zustands waiting wird die Clock ta bzw. ce zuriickgesetzt (auf null gesetzt). Innerhalb
von 500 Zeiteinheiten verschickt die Rolle registrar dann eine performUpdate-Nachricht. Vor
Betreten des Zustands default wird dann jeweils wieder die entsprechende Clock (ca bzw. ce)

zuriickgesetzt.

.\ unregistered 4 registered R unregistered a registered h

: default \ register/ (" default \ : default \ / register default

- fea™{ “ca<=2000 ) ) ool ce<=2000

(ca} {ce}
performUpdate / / requestUpdate
/ performUpdate requestUpdate /
{ca} {ce}

unregister / <=500 / unregister ce<=500
e L ) L (_ce<=s00 ) )
Abbildung 2.7: REAL-TIME =~ STATECHART Abbildung 2.8: REAL-TIME =~ STATECHART

der Rolle registrar der Rolle registree
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Aus Sicht einer Komponente werden die Rollen im Idealfall unabhingig voneinander ausge-
fiihrt. Es existiert also ein iibergeordneter Zustand (Railcab in Abbildung 2.9), der die einzelnen
Rollen parallel ausfiihrt. Dieses Idealbild kann und wird auch héufig verletzt, indem Abhédngig-
keiten zwischen den verschiedenen Rollen existieren. Wendet eine Komponente z.B. gleichzeitig
die Rolle rear und registree an, so muss gelten, dass das RailCab registriert sein muss, um an
einem Konvoi teilzunehmen. Diese Anforderung wird in der MECHATRONIC UML durch ein
zusitzliches Synchronisationsverhalten (Beobachter-Automat) realisiert, der durch aktive Syn-
chronisation mit den Portverhalten solche iibergreifenden Anforderungen realisiert.

Initial ist das Synchronisationsstatechart im Zustand unregistered. Wenn iiber den Trigger
when(bsAvailable) signalisiert wird, dass eine Streckenabschnittskontrolle in der Nihe ist, wird
die Registrierung iiber die Synchronisation doRegister gestartet. Im Vergleich zu Nachrichten
wird eine Synchronisation iiber ein ! bzw. ? kodiert, wie dies in UPPAAL iiblich ist. Im Zustand
noConvoy verweilt das Synchronisationsstatechart fiir wenigstens 2500 Zeiteinheiten, damit das
RailCab die aktuellen Streckendaten empfangen kann. Wenn ein Konvoi niitzlich fiir ein RailCab
ist (when(convoyUseful)), dann wird tiber die Synchronisation buildConvoy ein Konvoi initiiert.
So lange das RailCab im Zustand convoy ist, kann es nicht in den Zustand register wechseln.
Entsprechend kann das RailCab nicht gleichzeitig im Zustand convoy und unregistered sein.

Eine Verfeinerung muss zudem sicherstellen, dass die verifizierten Eigenschaften des Musters
(der Rolle) nicht durch das Synchronisationsverhalten verletzt werden (siehe Abschnitt 2.4.1).

2.4.2.1 Formalisierungen

Die bisher informal eingefiihrten REAL-TIME STATECHARTS werden im Folgenden tiber Timed
Automata definiert. Fiir eine Abbildung von REAL-TIME STATECHARTS auf Timed Automata
sei auf [GB03] verwiesen.

Bei der Verifikation von auf Timed Automata basierenden Systemen ist deren unendlicher Zu-
standsraum problematisch, an dessen Stelle daher eine geeignete Abstraktion analysiert werden
muss. Fiir diesen Zweck werden oft Zone Graphen eingesetzt, welche auch die Grundlage fiir die
in Abschnitt 3 vorgestellten Erreichbarkeitsanalyse und die in Abschnitt 5 eingefiihrten Synthese
darstellen.

Timed Automata [AD90] basieren auf endlichen Automaten und sind, wie diese, ein zustands-
basiertes Verhaltensmodell. Sie definieren ebenfalls Transitionen und Entsprechungen zu den
Zustinden endlicher Automaten, die jedoch als Locations bezeichnet werden. Der Grund fiir die
unterschiedliche Benennung ist, dass eine Location, fiir sich genommen, nicht den Gesamtzu-
stand des Modells definiert, da dieser im Unterschied zu (gewthnlichen) endlichen Automaten
auch zeitabhingig ist. Wenn allerdings keine explizite Unterscheidung notwendig ist, werden wir
im Rahmen dieser Arbeit den Begriff Zustand auch fiir Timed Automata verwenden.

Zeitbehaftetes Verhalten wird auf dieselbe Weise modelliert, wie dies bereits fiir REAL-TIME
STATECHARTS (siehe Abschnitt 2.4.2) eingefiihrt wurde, also mit Clocks, Clock Resets und
Time Guards sowie Invarianten, die auf die Clocks Bezug nehmen.
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2.4 Echtzeitverhalten

Ein Timed Automaton sei hier basierend auf [GB03] und [JLS00] wie folgt definiert:

Definition 1 (Timed Automaton)
Ein Timed Automaton A ist ein Tupel (L, 1y, %, C, I, T), wobei

o [ endliche, nichtleere Menge von Locations

o |y C L Teilmenge von Startlocations

Y. eine endliche Menge von Events, mit den internen Events ¢

C eine endliche Menge von Clocks

I: L — ©(C) ordnet jedem Zustand einen Clock Constraint (Invariante) zu

T C LxYx ¢(C)x x2¢ x L eine endliche Menge von Transitionent = (1, a,g,r,l') € T
mit

[ € L Quell-Location

a € Y ein Event

g € ©(C) ein Clock Constraint (Time Guard)
r € C eine Menge von Clock Resets

I € L die Ziel-Location

Die parallele Komposition mehrerer Automaten basiert auf der Komposition in Prozessalgebren
[Mil89]. Fiir Timed Automata wurde dies bereits durch die vernetzten Timed Automata definiert
[YPD94, Pet99, BDLO04].

Definition 2 (Parallele Komposition Timed Automata)

Seien Ay = (L1,19,%,,C1, 1, Ty) und Ay = (Ly,19, %y, Cy, Iy, T) zwei Timed Automata mit
C1NCy = @ und ¥y N Xy = B. Wir definieren die parallele Komposition A || As als einen
Produktautomat Ap = (Lp,1%,Yp,Cp, Ip, Tp), mit

o Lp=11 X Lo,

o Ip=(11,13),

o Yp=2>21UDy,

o Ip:Lp— &(C)U &(Co) mit Ip((l1,15)) = (L) A Ix(ls),
o Cp=CLUC(C,

T C Lp X Yp X @(Cp) x 26P x Lp, mit
- ((l1,15),e1,q1,7m1, (L', 1) € Tp < (lh,e1, 01,71, 1) € Ty, und
= ((l1,12), €2, 92,72, (11, 1)) € Tp < (I, €2, g2, 12, 12") € T,

Die Menge der Zustéinde ergibt sich aus dem Kreuzprodukt der Zusténde der einzelnen Automa-
ten. Die Nachrichten sind entsprechend eine Vereinigung der separaten Automaten, wie dies auch
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fiir die Uhren C'p gilt. Fiir Invarianten von komponierten Zustinden ((ly, 1)) werden die Inva-
rianten der einzelnen Zustinde /(l;) und I(l3) miteinander verbunden, da beide Invarianten in
der parallelen Ausfithrung betrachtet werden miissen. Die Menge der Transitionen 7 reflektiert
genau die verschachtelte, nebenldufige Ausfithrung der Nachrichten der parallelen Ausfithrung
der separaten Automaten. Die Transition korrespondiert entweder zu Automaten A; oder Ay. Im
Vergleich zu [Mil89] betrachtet diese Definition keine Synchronisationen von Nachrichten, da
die separaten Rollenautomaten der MECHATRONIC UML unabhiéngig voneinander sind.

Asynchrone Kommunikation kann durch Modellierung eines Puffers als zusitzlicher Automat
auf synchrone Kommunikation abgebildet werden. Im Rahmen dieser Arbeit wird diese Vorge-
hensweise vorausgesetzt und daher generell von der Verwendung von Synchronisationskanilen
ausgegangen.

Die Prioritit p modelliert wie bei den RTSCs, dass Transitionen mit hoherer Prioritét (also hohe-
rer Zahl p) bevorzugt zu alternativen Transitionen geschaltet werden miissen. Analog zu [GB03]
gelten hier alle Transitionen mit p > 0 als urgent, alle mit p = 0 als nicht-urgent.

Die verschiedenen existierenden Varianten von Timed Automata unterscheiden sich in einigen
Details, beispielsweise darin, ob urgent-Transitionen unterstiitzt werden oder ob grundsitzlich
von einer synchronen oder asynchronen Kommunikation ausgegangen wird. Die hier vorgestell-
te Variante orientiert sich an derjenigen, die den Extended Hierarchical Timed Automata (ExH-
TA), einer Erweiterung der Timed Automata, zugrunde liegt, da die Semantik der REAL-TIME
STATECHARTS liber diese definiert ist.

Die in Definition 1 verwendeten Clock Constraints sind wie folgt definiert.

Definition 3 (Clock Constraint)
Fiir eine Menge C von Clocks, ist die Menge ©(C') von Clock Constraints ¢ definiert iiber die
Grammatik

p:=x<gc, c<z, T <c, c<ux, z—1y <cgc, T—y<c, Y1 N\ 2

mit x,y € C Clocks und c ist eine Konstante aus Q. (vgl. [Alu99, BY03])

Ein Clock Constraint vergleicht den Wert einer Clock mit einer Konstanten oder mit einer ande-
ren Clock.

Timed Transition System Ein Timed Transition System (TTS) [Alu99] ist, ebenso wie ein
Timed Automaton, ein zustandsbasiertes, zeitbehaftetes Verhaltensmodell in Form eines Gra-
phen. Im Unterschied zum Timed Automaton repréisentieren die Knoten in diesem Graphen je-
doch die tatsidchlichen Zustidnde des Systems, die zusitzlich zur aktuellen Location des dazuge-
horigen Timed Automaton auch durch die aktuellen Werte aller Clocks bestimmt wird. Selbst bei
einem diskreten Zeitmodell ist der Zustandsraum und damit die Grof3e des TTS unendlich. Wird,
wie in dieser Arbeit, ein kontinuierliches Zeitmodell (Clock-Werte aus R{) vorausgesetzt, dann
gibt es sogar iiberabzihlbar viele Zustidnde.
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Der Zustand eines Timed Transition System wird durch ein Paar (/,v) € S x C, charakterisiert,
wobei [ die aktuelle Location und v die aktuelle Clock Bewertung ist. Bei dieser handelt es sich
um eine Bindung aller Clocks des Automaten, die als v € C, = [C' — ]R(J{] definiert ist; sie legt
also die aktuellen Werte aller Clocks fest. Der Startzustand ist (I, v°), wobei v° eine Bindung
ist, die allen Clocks den Wert 0 zuordnet.

Ein Timed Transition System sei hier wie folgt definiert:

Definition 4 (Timed Transition System)

Ein Timed Transition System ist ein Tupel (S, so, >, —) mit Zustandsmenge S, Startzustand
so € S, Alphabet 3 = Y¥p U X und Transitionsrelation T C S x X x S. Dabei sei D die
Menge der moglichen Delays {5\5 €dp= Rar} und X die Menge der Nachrichten (bzw. Syn-
chronisationskandile), einschlieflich des speziellen internen Ereignis 7. Dabei muss I’ folgende
Bedingungen etfiillen (mit s, s', s € S und 0,061,095 € Xp):

5 5 . .. «
1. s — s Ns — s = s =" (, Zeitdeterminismus “)

6146 19 & . .. . e el e
2. MR oy g Ny ot 2y o it o beliebig (,, Zeitadditivitdt )

3.s L gdas=4 (,,Zero-Delay*“)

Auf Basis von Timed Transition Systems kann die Semantik der Timed Automata nach [BY03]
wie folgt definiert werden:

Definition 5 (Semantik der Timed Automata)
Die Semantik eines Timed Automaton wird definiert durch ein Timed Transition System, dessen
Zustinde Paare (1,v) sind und dessen Transitionsrelation T definiert ist durch:

o (I,v) N (lv+0), wennv € I(l) A (v+9) € I(l) fiirein§ € RTy
o (I,v) L (I'0), wenn (I,g,pu,r, ') €T v € g, v =[r Olvund v € I(I')

Dabei sind v,v" € Ry Clock-Bewertungen. v € g bedeutet hier, dass die Clock-Bewertung v
den Time Guard g erfiillt. Entsprechend gibt v € I(l) an, dass v die Invariante von Location |
erfiillt.

Weiterhin ist v + 0 fiir 6 € Ry diejenige Clock-Bewertung, die alle Clocks ¢ € C auf v(c) + §
setzt. Fiir Clock Resets v C C ist [r +— 0]v die Clock-Bewertung, die alle Clocks in r auf 0 setzt
und alle anderen Clocks ¢ € C\r unverdndert liisst.

Zone Graph Ein Timed Transition System eines Timed Automaton kann potentiell unendlich
grof} sein. Um ein solches System analysieren zu kénnen, wurden Zone Graphen [Alu99, BY03]
eingefiihrt, deren Zustinde jeweils mehrere Zustinde des durch sie reprisentierten Timed Tran-
sition Systems mit identischem Zeitverhalten zusammenfassen. Die Zustinde des Zone Graph
beinhalten neben der jeweils aktuellen Location auch eine sogenannte Clock Zone. Letztere re-
prasentiert die Menge aller Clock-Bewertungen, die fiir die gegebene Location eine bestimmte
Clock Constraint (siche Definition 3) erfiillen.
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Eine Clock Zone fasst TTS-Zustinde zusammen, die in derselben Location dasselbe Verhalten
beschreiben. Konkret heiflt das, dass innerhalb einer Clock Zone fiir eine gegebene Location
immer dieselben Transitionen schalten konnen. Eine Clock Zone kann fiir jede Clock eine obere
und eine untere Schranke definieren, sie legt also ein Intervall fest, in dem der Wert der Clock lie-
gen muss, um in dieser Clock Zone enthalten zu sein. Eine Clock Zone fiir n Clocks ist demnach
ein konvexer Korper im n-dimensionalen Raum.

Ein Zone Graph wird, ausgehend von einer gegebenen Clock Zone, die dem Startzustand des
dazugehorigen Timed Automaton (bzw. dessen TTS) entspricht, konstruiert, indem solange die
Nachfolge Zones aller bereits erzeugten Zones konstruiert werden, bis auf diese Weise keine
neuen Zones mehr erzeugt werden konnen. Dafiir wird eine Operation verwendet, welche zu ei-
ner gegebenen Zone eine mogliche Nachfolge Zone fiir diese zuriick liefert, also eine Zone, die
durch Schalten einer Synchronisation oder aber dem Vergehen von Zeit erreicht werden kann.
Die Konstruktion des gesamten Zone Graphen entspricht also der Konstruktion der Abgeschlos-
senheit zu dieser Operation und dem gegebenen Startzustand.

Definition 6 (Clock Zone, Zone, Zone Graph)

Sei A = (L,ly,%,C,1,T) ein Timed Automaton. Eine Clock Zone z ist eine A-Verkniipfung
mehrerer Clock Constraints iiber Clocks in C. Eine Zone zo ist ein Tupel (s, z) mit einer Location
s € L und einer Clock Zone z. Eine Zone beschreibt fiir die Location s die Menge der zuldissigen
Clock-Bewertungen, die dquivalent zueinander sind. Ein Zone Graph wird ausgehend von der
Clock Zone des Startzustands ly konstruiert. Es wird dabei solange eine Nachfolge Zone der
bereits erzeugten Zones konstruiert, bis keine neuen Zones erzeugt werden konnen. Ein Zone
Graph ist entsprechend definiert durch Zustinde die Zones sind und der Transitionen zwischen
zwei Zones, falls A einen Ubergang zwischen diesen Zones erlaubt.

Difference Bound Matrice Difference Bound Matrices [Dil89, CGP00] sind eine effiziente
Form der Reprisentation von Clock Zones iiber eine Matrix. Fiir eine Clock Zone mit n Clocks
erhilt man eine n X n-Matrix, deren i-te Zeile und Spalte zu Clock 7 der Clock Zone gehoren.
Zusitzlich zu den Clocks der Clock Zone wird eine Clock z eingefiihrt, deren Wert immer O ist.
Dies erlaubt es, Vergleiche einer Clock mit einer Konstanten als Differenz iiber z darzustellen,
d.h. z < ¢ wird zu x — zy < c. Der Eintrag d; ; der Matrix hat die Form (c, <), wobei c fiir eine
Konstante oder oo steht und < fiir < oder <. Er kodiert damit die Ungleichung z; — x; < c. Ein
Beispiel fiir eine Difference Bound Matrix zu der Clock Zone 0 < ¢ A ¢ < 10 zeigt Abbildung
2.10.

0 (0,<) (
1

Abbildung 2.10: Difference Bound Matrice fiir eine Clock Zone mit einer Clock.
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Die Eintrige der O-ten Spalte entsprechen den oberen Schranken der Clocks, die Eintrige der
O-ten Zeile entsprechen den negierten unteren Schranken der Clocks. Die Eintrdge auf der Dia-
gonalen sind immer (0, <), da hier eine Clock mit sich selbst verglichen wird.

Difference Bound Matrices erlauben durch eine Normalisierung eine kanonische Darstellung von
Clock Zones und somit einen einfachen Vergleich, ob zwei Clock Zones identisch sind. Diese
Eigenschaft wird fiir die Verifikation der Verfeinerung benotigt.

Der Zustand eines Timed Automaton ist der Zustand des diesem entsprechenden Timed Transiti-
on Systems. Die Semantik von Zustandsiibergiangen und damit die gesamte Semantik des Timed
Automaton wird daher iiber Timed Transition Systems definiert.

2.4.3 Parameterized Real-Time Coordination Pattern

Bei REAL-TIME COORDINATION PATTERNS muss die Anzahl der beteiligten System-Instanzen
bei der Definition des Musters statisch festgelegt werden. Dieser Mangel an Flexibilitét ist aller-
dings beim Modellieren von Situationen problematisch, in denen neue Kommunikationsteilneh-
mer hinzukommen oder vorhandene die Kommunikationsbeziehung verlassen. Derartige dyna-
mische Anderungen der Kommunikationsstruktur kommen bei verteilten eingebetteten Systemen
relativ hiufig vor. Um solche Fille modellieren zu konnen, wurde daher das Konzept der REAL-
TIME COORDINATION PATTERNS zu dem der PARAMETERIZED REAL-TIME COORDINATION
PATTERNS [GHH'06¢, Hir08, HHG08, HHH10, HHPS10] erweitert.

PARAMETERIZED REAL-TIME COORDINATION PATTERNS konnen neben gewohnlichen Rol-
len an deren Stelle auch Multi-Rollen enthalten. Diese stehen jeweils fiir mehrere Instanzen einer
Rolle. Das Rollenverhalten wird daher im Allgemeinen nicht durch ein einfaches, sondern durch
ein parametrisiertes Realtime Statechart beschrieben (siehe Abschnitt 2.4.4). Zusitzlich ist die
Angabe einer Multiplizitit (auch: Kardinalitdt) der Rolle, der oberen Grenze fiir die Anzahl
von Instanzen (n fiir unbeschrinkt), moglich. Optional kann zudem durch ein spezielles Attribut
{ordered} spezifiziert werden, dass die einzelnen Rollen-Instanzen geordnet sein miissen.

Um das Hinzufiigen und Entfernen von Rolleninstanzen zu beschreiben, definiert ein parametri-
siertes Koordinationsmuster zusétzlich eine Menge von Erweiterungsregeln sowie eine Menge
von Reduzierungsregeln. Bei diesen handelt es sich jeweils um zeitbehaftete Graphtransforma-
tionssysteme (Timed Graph Transformation Systems (TGTS)), einer speziellen Form von Graph-
transformationsregeln. Diese Strukturanpassungen werden durch einen Seiteneffekt der Rollen-
verhalten implementiert (siehe Abschnitt 2.4.5). TGTS werden in Abschnitt 2.4.5.1 behandelt.

Weiterhin definiert ein PARAMETERIZED REAL-TIME COORDINATION PATTERN eine Men-
ge von Profilen, sowie zusitzliche Eigenschaften fiir diese. Sie beschreiben das kontinuierliche
Systemverhalten in einer Konfiguration. Fiir diese Arbeit sind diese allerdings nicht von weiterer
Relevanz und es sei daher auf [HirO8] fiir Details verwiesen.

Zusitzlich zu den bereits bei REAL-TIME COORDINATION PATTERNS mdoglichen Einschrin-
kungen des Verhaltens durch Eigenschaften konnen bei PARAMETERIZED REAL-TIME COOR-
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DINATION PATTERNS zusitzlich verbotene Strukturregeln spezifiziert werden, die unsicheren
Konfigurationen des Systems entsprechen (siehe Abschnitt 2.4.5.1).

Abbildung 1.2 zeigt das PARAMETERIZED REAL-TIME COORDINATION PATTERN Convoy
Coordination, mit den Rollen coordinator und member. An Stelle des einfachen Quadrats fiir
eine Rolle, wird eine Multi-Rolle durch zwei iiberlappende Quadrate dargestellt (siehe coordina-
tor Rolle). Multi-Rollen mit der Multiplizitét 1 entsprechen dabei einfachen Rollen.

2.4.4 Parameterized Real-Time Statecharts

PARAMETERIZED REAL-TIME STATECHARTS wurden als Erweiterung der REAL-TIME
STATECHARTS eingefiihrt, um mehrere Instanzen desselben Statecharts mit leicht verdndertem
Verhalten modellieren zu konnen. Die Einfithrung erfolgte in [HirO8] zusammen mit den PA-
RAMETERIZED REAL-TIME COORDINATION PATTERNS, in deren Kontext sie fiir mehrfach
instanziierte Komponenten (welche Multi-Rollen implementieren) verwendet werden.

PARAMETERIZED REAL-TIME STATECHARTS umfassen grundsétzlich die Syntax der gewdhn-
lichen RTSCs, wobei auch die Semantik dieselbe bleibt. Die wesentliche Erweiterung ist, dass
Instanzen von PARAMETERIZED REAL-TIME STATECHARTS ein Parameter k£ zugeordnet wird,
welcher eine eindeutige ID der Instanz darstellt.

Auf den Parameter des PARAMETERIZED REAL-TIME STATECHARTS kann direkt in Guards an
Transitionen zugegriffen werden, in denen diese mit numerischen Konstanten verglichen wer-
den konnen. Die Transition darf dann also nur fiir bestimmte Instanzen schalten, wihrend das
betreffende Verhalten fiir die iibrigen ausgeschlossen wird. Prinzipiell ist es also moglich, fiir be-
stimmte Parameter & vollig eigene Unter-Statecharts (beispielsweise in Form von OR-Zusténden)
zu definieren.

Eine weitere Anwendung der Parameter ermoglichen die in PARAMETERIZED REAL-TIME
STATECHARTS ebenfalls neu eingefiihrten parametrisierten Synchronisationskandile: Sie werden
zusitzlich zu ihrem Namen anhand eines eigenen Parameters identifiziert, der als Index angege-
ben werden kann (also beispielsweise z3! fiir ein Senden iiber Kanal z mit Parameter 3). Dieser
muss fiir eine Synchronisation ebenfalls identisch sein. Der Kanal-Parameter kann in einem PA-
RAMETERIZED REAL-TIME STATECHART durch einen numerischen Ausdruck, beispielsweise
eine Addition oder eine einzelne Variable bestimmt werden. Insbesondere ist aber auch ein Bezug
auf den Parameter des PARAMETERIZED REAL-TIME STATECHARTS moglich.

PARAMETERIZED REAL-TIME STATECHARTS werden wie REAL-TIME STATECHARTS iiber
Timed Automaton definiert. Hierbei handelt es sich allerdings ebenfalls um eine parametrisier-
te Version, also parametrisierte Timed Automaton, die die oben beschriebenen Erweiterungen
gegeniiber Timed Automaton beinhalten.

Definition 7 (Parametrisierter Timed Automaton [Hir08])

Ein parametrisierter Timed Automaton A ist ein 7-Tupel A = (%,8,8° X, I, Sig(l, P),T),
wobei ¥ ein endliches Eingabealphabet, S eine endliche Menge an Locations, S° C S eine
endliche Menge von Start-Locations, X = (x4, ..,x,) eine endliche Menge an Clock Variablen
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mit x; € RT, I eine Zuordnungsfunktion I — C(X), welche den einzelnen Locations eine Menge
an Ungleichungen zuordnet, die so genannten Invarianten, Sig(l, P) eine Menge von Signalen
die mit | parametrisiert und die Eigenschaft P ist hierbei eine spezielle Eigenschaft/Profil des
Automaten. T ist die Menge der Transitionen. C(X) ist eine Menge von Bedingungen iiber Clock-
Variablen aus X. Dabei besteht C(X) aus einer Menge an Ungleichungen der Form x; < ¢V
¢ < x;, wobei < entweder < oder < ist und ¢ € N*. Fiir T, die Menge der Transitionen, gilt
T CSXxYXC(X)x2¥ x Sig(l,p) x S. Eine Transition von Location s nach s' léif}t sich durch
ein 6-Tupel (s,a, o, \, sig, s') beschreiben. Dabei ist a € Y die Beschriftung der zugehdrigen
Kante, ¢ eine Bedingung, die erfiillt sein muss damit die Transition schalten kann und \ C X
eine Anzahl an Clockvariablen, die beim Schalten auf 0 zuriickgesetzt werden. sig C Sig(l, P)
ist ein durch einen Parameter | gekennzeichnetes Signal, dass den Wert p € P iibermittelt.

Die parallele Komposition (Il) zweier parametrisierter Automaten A* und A7 ist wie folgt defi-
niert:

Definition 8 A

Gegeben sei ein parametrisierter Timed Automaton A® := (X! 8§, 8% X I' Sig(l*, P?), T%)
und ein parametrisierter Timed Automaton A7 := (X9 87, 8% X7 17, Sig(l/, P7), T7) wie in
Definition 7 definiert. Jeder Automat verhdilt sich lokal wie ein Timed Automaton. Nur iiber die

parametrisierten Signale Sig(l, P') und Sig(l’, P?) findet eine Synchronisation statt, wenn i =
j ist. Dabei wird P? := P*, falls i < j

2.4.5 Rekonfigurationsverhalten

Rekonfigurationsverhalten wird in der MECHATRONIC UML nicht zustandsbasiert, sondern
durch Graphtransformationen [Roz97] beschrieben, die sich auf den Objektgraphen der aktu-
ellen Konfiguration (auch: Instanzsituation) des Systems beziehen. Graphtransformationen be-
schreiben dabei im Allgemeinen Anderungen eines Graphen, in diesem Fall eine Rekonfiguration
des Systems, also eine Strukturdnderung zur Laufzeit. Der Prozess der graphbasierten Verhal-
tensmodellierung, der in MECHATRONIC UML eingesetzt wird, wird als Story Driven Modeling
bezeichnet.

Rekonfigurationsverhalten wird als Seiteneffekte an Transitionen von (PARAMETERIZED)
REAL-TIME STATECHARTS aufgerufen. Das Rekonfigurationsverhalten wird mittels Story-
Diagrammen spezifiziert, die in Abschnitt 2.4.5.4 behandelt werden.

Bevor in Abschnitt 2.4.5.2 die Graphtransformationen selbst behandelt werden, werden zunichst
Objektgraphen im folgenden Abschnitt 2.4.5.1 betrachtet.

2.4.5.1 Objektgraphen

Wir fiihren im Folgenden Objektgraphen nach Ziindorf ein [ZiinO1]. Es handelt sich hierbei um
gerichtete, typisierte und attributierte Graphen mit Beschriftungen an Kanten und Knoten. Typ-
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informationen werden durch eine Schema Information festgelegt, die zudem die moglichen Attri-
bute und Assoziationen der einzelnen Typen definiert (und einschrinkt). Die Schema Information
wird durch Klassendiagramme definiert. Im Fall der MECHATRONIC UML Komponenten wer-
den diese aus Komponentendiagrammen generiert. Der Graph eines Objektdiagramms wird als
Extension der jeweiligen Schema Information bezeichnet. Ein Objektgraph ist damit wie folgt
definiert:

Definition 9 (Objektgraph)

Ein Objektgraph G ist ein Tupel (SI, Ext) mit SI Schema Information und Ext Extension der
Schema Information.

SI:=(NL,EL, A, IsAs, Assoc, Attrs) mit
e N L, Endliche Menge von Knotenbeschriftungen
e FL, Endliche Menge von Kantenbeschriftungen
e A, Endliche Menge von Attributnamen
e [sAs C Relation(desc € NL,anch € NL), Vererbungsbeziehung

e Assocs C Function((el € EL) — (src € NL, srcCard € {one, many},
assocType € P(AssocTypes := {ordered, qualified, aggregation}),
tgt € NL,tgtCard € {one,many})), Assoziationen

o Attrs C Function((A) — NL x BaseTypes), Attribute von Knoten

BaseTypes sind alle Grunddatentypen wie z.B. Integer, Float, Boolean, String, usw.
Ext = (V, E,nl,av)

V', Endliche Menge von (eindeutig identifizierbaren) Objekten

E C Relation(src € V,el € EL,tgt € V'), Menge von beschrifteten Kanten

nl : V. — NL, Funktion, die jedem Knoten einen Namen zuordnet

av : (N, A) — Attributwerte, Attributwertfunktion, die jedem Attribut eines Knotens
einen Wert zuweist.

Attributwerte sind alle Instanzen der BaseTypes oder Referenzen auf andere Objekte.

2.4.5.2 Graphtransformationssysteme

Graphtransformationen [Roz97] beschreiben Anderungen auf Graphen (hiufig Wirtsgraph gen-
nant). Ein Graph kann dabei z.B. als ein Objektgraph gegeben sein (siehe Definition 9). Die
Anderungen auf den Graphen werden durch Regeln beschrieben. Eine Regel wird iiber jeweils
zwei Teilgraphen definiert. Diese werden nach der Seite bezeichnet, auf der sie in der Regel dar-
gestellt sind. LHS (Left Hand Side) fiir den Graphen auf der linken Seite der Regel und RHS
(Right Hand Side) fiir den auf der rechten.

Die Anwendungsbedingung der Regel wird durch die LHS beschrieben. Als Voraussetzung fiir
die Anwendung der Regel, muss die hierdurch definierte Struktur eine Entsprechung im Wirts-
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graphen haben. Es handelt sich hierbei um einen Homomorphismus der LHS zu einem Teilgra-
phen des Wirtsgraphen. Dies bezeichnen wir mit Matching.

Eine Zuordnung sdmtlicher Elemente eines Graphen zu Elementen (Knoten, Kanten und Label,
einschlieBlich Attributen und Typen) eines anderen Graphen unter Einhaltung von deren Struk-
tur ist ein Homomorphismus. Soll ausgeschlossen werden, dass mehrere Elemente der LHS auf
dasselbe Element des Wirtsgraphen abgebildet werden konnen, wird ein bijektiven Homomor-
phismus (genannt Isomorphismus) gefordert.

Soll die Anwendbarkeit einer Regel ausgeschlossen werden, kommen sogenannte Negative An-
wendungsbedingungen zum Einsatz. Die anderen Elemente des Wirtsgraphen, die in der LHS
nicht enthalten sind, schlieBen eine Anwendung nicht aus, auch wenn sie in einem strukturellen
Zusammenhang mit denen in der LHS enthaltenen stehen.

Die durch die Regel vorgenommene Anderung wird durch die RHS der Regel zusammen mit
der LHS definiert. Fiir die Anderung ist der Unterschied zwischen diesen beiden relevant. Wir
konnen dabei zwischen den Fillen unterscheiden, 1) in denen das Element auf beiden Seiten vor-
kommt. In diesem Fall verbleibt es bei Anwendung der Regel im Wirtsgraphen. 2) Das Element
kommt nur in der RHS vor. Dann wird bei Regelanwendung ein entsprechendes neues Element
im Wirtsgraphen erzeugt. 3) Das Element kommt nur in der LHS vor. In diesem Fall muss das
Element im Matching enthalten sein. Bei Anwendung der Regel im Wirtsgraphen wird das Ele-
ment geloscht.

Hiermit kommen wir nun schlieBlich zu der Definition eines Graphtransformationssystems
(GTS). Ein GTS wird durch eine Menge von Graphtransformationsregeln und einem Typgra-
phen definiert. Ein Zustand eines solchen Systems entspricht dabei einem Graphen.

Definition 10 (Graphtransformationssystem)

Ein Graphtransformationssystem G = (TG, TR) ist ein 2-Tupel aus einem Typgraphen TG
gemdf3 Definition 9 und einer Menge von Transformationsregeln T R. Die Menge GRAP Hrq
bezeichnet die Menge aller Objektgraphen iiber T'G.

Der Typgraph T'G' wird im Rahmen dieser Arbeit durch ein Klassendiagramm beschrieben. Die
Elemente der Menge G RA P Hr sind Objektdiagramme des Klassendiagramms. Damit entspre-
chen das Klassendiagramm der Schemainformation und die Objektdiagramme den Extensions
aus Definition 9. Die Menge 7T'R besteht aus Graphtransformationsregeln.

2.4.5.3 Zeitbehaftete Graphtransformationssysteme

Eine Anforderung der hier betrachteten Systeme ist, auch zeitliche Bedingungen beschreiben zu
konnen. In [HirO8] wurden daher Graphtransformationssysteme zu zeitbehafteten Graphtransfor-
mationssystemen erweitert. Hiermit kann eine Spezifikation erfolgen, so dass die Ausfithrung der
Graphtransformation nur unter bestimmten zeitlichen Bedingungen erfolgen darf oder dass eine
bestimmte Instanzsituation nur fiir eine bestimmte Zeit vorliegen darf. Im Folgenden werden die
durch [Hir08] zusitzlich eingefiihrten Elemente beschrieben.

31



Kapitel 2 Mechatronic UML

Clocks: Clocks wurden basierend auf der Theorie der Timed Automata nach [AD94, Alu99,
CGPOO] eingefiihrt. Durch eine Clock wird das Vergehen von Zeit iiber die Menge R beschrie-
ben. Wie bei einem Timed Automaton kann ein zeitbehaftetes GTS eine Menge von Clocks
haben. In [Hir08] wird eine Abbildung der zeitlichen Elemente eines Timed Automaton auf
Graphtransformationsregeln beschrieben. Im Unterschied zu einem Graphen, der iiber Graph-
transformationsregeln aufgebaut und verindert wird, sind die Elemente eines Timed Automaton
bereits zu Beginn der Ausfiihrung vollstindig vorhanden und verdndern sich auch wihrend der
Ausfiihrung nicht. Daher werden die zeitlichen Elemente mit den Graphtransformationsregeln
assoziiert. Im Folgenden betrachten wir dies genauer.

Clock-Instanzen Zeitliche Bedingungen werden iiber die in Abschnitt 2.4.2.1 beschriebenen
Clocks definiert. Die Werte einer Clock sind abhiingig vom Erzeugungszeitpunkt der Elemente.
Da grundsitzlich eine Clock von mehreren Elementen genutzt werden kann, miisste die Clock
unterschiedliche Werte fiir verschiedene Elemente annehmen konnen, um unterschiedliche Er-
zeugungszeitpunkte von Elementen gerecht zu werden. Hirsch fiihrt daher Clock-Instanzen ein.
Clock-Instanzen gelten fiir eine bestimmte Menge von Elementen aus dem Graphen. Dabei hat
die Clock-Instanz Referenzen auf alle Objekte des aktuellen Graphen. Clock-Instanzregeln kon-
nen automatisch aus den LHS der Anwendungsregeln erzeugt werden, die diese Clock-Instanzen
benutzen.

Time Guards Ein Graphtransformationsssytem mit einem Time Guard zeigt Abbildung 2.11.
Das Beispiel zeigt das Erweitern des Konvois um ein RailCab. Der Time Guard wird als zeitliche
Bedingung iiber die Clock c1 angegeben. Die Transformation der LHS zur RHS ist im Beispiel
nur moglich, wenn der Wert der Clock c1 zwischen 5 und 10 liegt. Im Allgemeinen wird hier
ebenfalls durch einen Time Guard spezifiziert, dass eine Bedingung iiber die Werte einer oder
mehrerer Clocks erfiillt sein muss, damit eine Transition schalten kann.

ID=1 ID=2
: Convoy < coordinates : Coordinator
ID=5
<<create>>

member D= member 5<circt<10

b A A |p=6 Resets: ¢c1:=0
ID=4 ID=3 is

: RailCab _ RailCab

Abbildung 2.11: Erweiterung des Konvois um ein RailCab mit einem Time Guard und einem
Clock Reset
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Resets Durch einen Clock Reset wird der Wert einer Clock auf O zuriick gesetzt. Zeitbehaftete
GTS fiihren Clock Resets aus, wenn die Transformation, an der sie gebunden ist, abgeschlossen
wurde. Abbildung 2.11 zeigt einen Clock Reset fiir Clock-Instanz c1.

Invarianten Invarianten beschreiben einen Teilgraphen, der nur fiir eine bestimmte Zeit im
Graphen vorkommen darf. Invariantenregeln haben nur eine LHS, da die Invariante nur im Gra-
phen gefunden werden muss. Abbildung 2.12 zeigt ein Beispiel fiir eine Invariantenregel. Hiermit
wird ausgedriickt, dass ein RailCab, das nicht im Konvoi ist, nur fiir 10 Zeiteinheiten im System
existieren darf.

: Convoy

><v member

- RailCab

c1<10

Abbildung 2.12: Eine Invariantenregel iiber einen Teilgraphen

2.4.5.4 Story Patterns und Story Diagramme

In der MECHATRONIC UML werden Graphtransformationsregeln durch Story Patterns, einer
speziellen Notation fiir Graphtransformationen, definiert. Sie konnen in Story-Diagrammen, ei-
ner Erweiterung der UML-AKktivititsdiagramme, in einen sequentiellen Kontrollfluss eingebun-
den werden. An Transitionen von REAL-TIME STATECHARTS konnen diese wiederum als Sei-
teneffekte aufgerufen werden.

Story Patterns Story Patterns beschreiben die Spezifikation von LHS und RHS einer Graph-
transformationsregel in einem einzigen Graphen abgekiirzt [ZiinO1]. Elemente, die Vorausset-
zung der Anwendung sind (aber nicht geloscht werden), werden in Story Patterns in schwarz
dargestellt. Zu loschende Elemente (nur in LHS) werden in rot notiert und zudem mit dem Ste-
reotyp << —— >> (alternativ: << destroy >>) versehen. Erzeugte Elemente (nur in RHS)
werden in griin notiert und mit << +-+ >> (oder << create >>) gekennzeichnet. Fiir die An-
wendung eines Story Patterns muss ein Isomorphismus (siehe Abschnitt 2.4.5.2) des durch die rot
und schwarz dargestellten Elemente definierten Subgraphen des Patterns zu einem Subgraphen
des Wirtsgraphen bestehen. Hierdurch wird vermieden, dass eine Regel fiir einzelne Elemente
gleichzeitig den Erhalt und Loschung fordert. Fiir die Kanten geldschter Knoten gilt, dass diese
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ebenfalls entfernt werden, auch wenn dies nicht explizit durch die Regel gefordert wird. So wer-
den ,,dangling edges* vermieden. Das sind Kanten, die nicht zwei Knoten miteinander verbinden
(ein offenes Ende besitzen).

In Abbildung 2.13 wird ein Story Pattern gezeigt, welches die Aufnahme eines RailCabs in den
Konvoi spezifiziert. Die Assoziation vom Objekt Convoy zu dem Objekt RailCab wird in dem
Pattern neu erstellt.

: Convoy < coordinates : Coordinator
<<create>>
member member
is
_RailCab : RailCab

Abbildung 2.13: Ein Story Pattern zur Erweiterung des Konvois um ein RailCab

Das Story Pattern in Abbildung 2.14 beschreibt das Austreten eines RailCabs aus dem Konvoi.
Dazu wird die entsprechende Kante member zwischen dem Objekt Convoi und dem betreffenden
Objekt RailCab entfernt.

: Convoy < coordinates : Coordinator
<<delete>>
member member
; ) is
: RailCab : RailCab

Abbildung 2.14: Ein Story Pattern zur Reduzierung des Konvois um ein RailCab

Story-Diagramme In [Ziin01] wurden Story-Diagramme eingefiihrt, um zusitzlich zu den
regelbasierten Anderungen auf Graphen auch einen Kontrollfluss durch zustandsbasiertes Ver-
halten verbindlich vorzugeben. Story Diagramme sollen damit eine Kombination der UML-
Aktivitdtsdiagramme [Obj05b] mit Story Patterns beschreiben. Hierdurch werden folgen von Ak-
tivitdten festgelegt sowie Fallunterscheidungen in der Syntax der Aktivititsdiagramme. Innerhalb
der einzelnen Aktivititen, die in Story-Diagrammen als Stories bezeichnet werden, konnen Story
Patterns definiert werden. Fiir diese wird im Unterschied zu Graphtransformationssystemen nur
dann Matching gesucht, wenn sie vom Kontrollfluss der Story-Diagramme erreicht werden.
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Zu einer Story kann zudem eine Bedingung spezifiziert werden. Diese Bedingung ist dabei im
Allgemeinen eine aussagenlogische Formel, die mehrere Teilbedingungen iiber die Elemente,
wie Vergleiche von Attributwerten, miteinander verkniipfen kann. Ein Story Pattern wird nur
dann ausgefiihrt, wenn die Bedingung mit ¢rue ausgewertet wird. Zusitzlich kann bei den aus-
gehenden Transitionen der einzelnen Stories danach unterschieden werden, ob ein Matching ge-
funden werden konnte, oder nicht. Kann ein Matching gefunden werden, wird die Transition mit
dem Label [success]| geschaltet, andernfalls die mit dem Label [ failure]. Im Erfolgsfall bleiben
die Objektbindungen der verlassenen Story in der nédchsten giiltig.

Um alle moglichen Matchings eines Story Patterns zu betrachten, werden iterierte Stories einge-
fiihrt, die durch doppelte Rahmen dargestellt werden. So lange ein Matching gefunden werden
kann wird die Story durch eine Transition mit dem Label [eachtime] verlassen. Andernfalls wird
eine zweite ausgehende Transition mit [end]-Label geschaltet.

Durch Story-Diagramme werden Methoden(aufrufe) modelliert. Daher werden sie auch ausge-
nutzt, um Seiteneffekte an REAL-TIME STATECHART-Transitionen zu beschreiben. Eine Beson-
derheit ist dabei, dass innerhalb der einzelnen Stories das this-Objekt immer an dasjenige Objekt
gebunden ist, auf dem die Methode aufgerufen wird. Innerhalb von Story-Diagrammen konnen
ebenfalls Methoden aufgerufen werden. Dies ist mittels Collaboration Messages fiir jedes in-
nerhalb einer Story gebundene Objekt moglich. Der Methodenaufruf wird dazu in der Syntax
der Zielsprache der fiir Story-Diagramme verwendeten Codegenerierung (beispielsweise Java)
textuell in der Story aufgefiihrt. Ein von diesem Text ausgehender Pfeil zeigt auf das Objekt, auf
das sich der Aufruf bezieht. Ist kein Pfeil angegeben, so ist das aktuelle Objekt this gemeint.

Ein Beispiel fiir ein Story Diagramm zeigt Abbildung 2.15. Die Methode addMember () be-
schreibt, dass ein RailCab in den Konvoi aufgenommen wird und anschlieBend die Anzahl der
RailCabs im Konvoi um 1 erhoht wird. Das Objekt Convoy, auf dem die Methode aufgerufen
wird, ist in jeder Story iiber das this-Objekt gebunden und dient als Referenzpunkt fiir das Mat-
ching des Story Patterns.

2.4.6 Verifikation

In Abschnitt 2.4.1 und 2.4.3 haben wir (parametrisierte) REAL-TIME COORDINATION PAT-
TERNS eingefiihrt. Komponenten kénnen mehrere Rollen unterschiedlicher Koordinationsmuster
anwenden. Das Verhalten der Komponente muss das Verhalten der angewandten Rollen verfei-
nern. Die Auftrennung von Kommunikationsverhalten und Komponentenverhalten fiihrt zu ei-
nem kompositionellen Modell, welches in der Verifikation ausgenutzt wird [GTB*03].

Wie bereits in Abschnitt 2.4.1 beschrieben, miissen wir zum einen zeigen, dass das Muster kor-
rekt ist und zum anderen, dass die Komponente korrekt ist. Um die Korrektheit zu zeigen werden
dabei Model Checker (im speziellen UPPAAL) eingesetzt, die die Giiltigkeit einer Eigenschaft
iber das (Teil-)System {iiberpriifen bzw. eine Verfeinerung iiberpriift, um zu zeigen, dass eine
Komponente korrekt eine Rolle verfeinert.
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: Convoy::addMember()

/ this 4 coordinates : Coordinator \

—
(]

<<create>>
merﬁer memti 1: addFollower(rc2)
- - is
rc2 : RailCab rc1 : RailCab

\ {this.size < 10} /

i[success]
[failure]

rc2 < member thi

pos := this.size + 1 size = size + 1

Abbildung 2.15: Ein Story Diagramm zur Erweiterung des Konvois um ein RailCab

Ublicherweise werden die Eigenschaften in Form von temporallogischen Formeln beschrieben.
Diese werden wir im Folgenden Abschnitt 2.4.6.1 niher betrachten. In Abschnitt 2.4.6.2 dis-
kutieren wir den Ansatz der kompositionellen Verifikation und anschlieend in Abschnitt 2.4.7
erldutern wir einige relevante Verfeinerungsbeziehungen.

2.4.6.1 Eigenschaften

Die Spezifikation von Anforderungen an ein System konnen mit Temporallogiken beschrieben
werden. Temporallogiken beziehen sich auf die zeitliche Abfolge von Zustinden oder Ereignis-
sen. Eine temporallogische Formel, ist fiir ein System genau dann erfiillt, wenn dessen Verhalten
die durch die Formel ausgedriickten Einschriankungen einhélt. Eine (formale) Verifikation be-
schreibt den Vorgang der Uberpriifung eines Systems S auf Giiltigkeit einer solchen Formel ¢
(geschrieben: S |= ¢) [BK08, CGPO0O]. Ein vollautomatisches Verifikationsverfahren ist das Mo-
del Checking.

Eine verbreitete Temporallogik, ist die Computation Tree Logic (CTL) [CGPO0O0]. Ihre Formeln
beziehen sich auf den Berechnungsbaum des Systems. Dieser Baum enthilt s@mtliche mogli-
chen Pfade durch das System, ausgehend von dessen Startzustand. Er ist daher fiir Systeme, die
Zyklen enthalten, unendlich gro3. CTL-Formeln konnen aussagenlogische Formeln sein, die fiir
einen Zustand des Systems bzw. einen entsprechenden Knoten im Pfadbaum erfiillt sind, wenn
die Formel fiir die atomaren Aussagen (auch: atomare Propositionen), die fiir diesen Zustand
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gelten, erfiillt sind. Fiir jeden Zustand wird dabei eine Menge von giiltigen atomaren Aussagen
als gegeben vorausgesetzt.

Die temporallogischen Aussagen konnen in CTL durch einen Pfadquantor (E fiir 4 oder A fiir
V), gefolgt von einem femporalen Operator formuliert werden. Ein temporaler Operator bezieht
sich auf eine oder zwei temporallogische Formeln. Der Pfadquantor gibt an, ob die durch den
Rest der Formel definierte Bedingung fiir mindestens einen (E) oder fiir alle (A) Pfade gelten
muss, die vom aktuellen Zustand ausgehen. Der temporale Operator kann einer der folgenden
sein:

e X¢, ,.Next“: ¢ muss fiir den Nachfolge-Zustand des aktuellen Zustands auf dem Pfad
gelten.

e (¢, ,,Globally*: ¢ muss ab dem aktuellen Zustand auf dem gesamten Pfad gelten.
e F'¢,  Finally“: ¢ muss ab dem aktuellen Zustand irgendwann auf dem Pfad gelten.

o oU1, ,,Until*: ¢ muss ab dem aktuellen Zustand irgendwann auf dem Pfad gelten; bis v
(fiir mindestens einen Zustand) gilt, muss immer ¢ gelten.

e in manchen Dialekten: ¢W+1), ,,Weak Until*: ab dem aktuellen Zustand muss auf dem
gesamten Pfad ¢ gelten, bis (fiir mindestens einen Zustand) 1 gilt. Es ist jedoch nicht
erforderlich, dass v jemals gilt.

Eine Beispiel CTL-Formel fiir folgende Aussage: ,,Auf allen Pfaden muss fiir immer gelten, dass
es mindestens einen Pfad gibt, auf dem irgendwann p A ¢ gilt“, ist AG(EFp A q).

Um zusitzlich Zeitbedingungen an den temporalen Operatoren zu erlauben, wurde die Timed
Computation Tree Logic (TCTL) [ACD93] eingefiihrt. Hiermit konnen fiir einen temporalen
Operator O Bedingungen in der Form O, mit ¢ € Ny, ~€ {<, <, = > >}, 0 € {G,F,U}
angegeben werden. Eingeschrinkte Varianten der CTL bzw. TCTL sind die ACTL bzw. ATCTL,
die die Untermengen der (T)CTL-Formeln erlauben, die mit A beginnen und deren temporaler
Operator sich nur auf einfache aussagenlogische Formeln bezieht.

2.4.6.2 Kompositionelle Verifikation

Standard Model-Checking-Verfahren sind in ihrer Laufzeit exponentiell abhiingig von der Grof3e
des Zustandsraums der untersuchten Systeme. Wird ein System in kleinere Subsysteme zerlegt
und die Verifikation jeweils einzeln auf diese angewendet, dann ist die Gesamtlaufzeit der Ve-
rifikation insgesamt deutlich geringer, da die exponentielle Laufzeit fiir kleinere Systeme gilt.
Kann die Grofle der Subsysteme sogar als konstant angenommen werden, dann ist die Veri-
fikation insgesamt nur linear abhingig von der Anzahl der Systeme. Die Voraussetzung fiir
die Korrektheit einer solchen kompositionellen Verifikation (siehe z.B. [GTB*03, JLS00]) ist,
dass aus der Giiltigkeit der iiberpriiften Eigenschaft ¢ fiir alle Teilsysteme 5, .5, ...,.5, des
Systems S auch die Giiltigkeit fiir das Gesamtsystem S = S; || Sz || ... || S, folgt (also:

S1EONSs EON . AS, E o) = (S E o).
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Der grundlegende kompositionelle Verifikationsansatz der MECHATRONIC UML wurde in
[GTB*03] vorgestellt. Eine Erweiterung zur Betrachtung von auseinander driftenden Uhren
wurde in [GHHO6a] betrachtet. Eine Verifikation, die auch eine kompositionelle Anpassung der
Kommunikationsstruktur beriicksichtigt, wird durch den Ansatz vorgestellt in [HHGOS, Suc08,
HHPS10] ermoglicht (siehe auch Abschnitte 2.4.1 und 2.4.3).

Abstraktion ist eine weitere wirksame Technik zur Verbesserung der Skalierbarkeit. Anstatt ein
Model Checking auf einem konkreten System K durchzufithren wird ein abstraktes und meist
kleineres System A an dessen Stelle analysiert. Ein weiterer Vorteil ergibt sich, wenn es mehr
als eine konkrete Implementierung von A gibt, da auch die tibrigen dann nicht mehr geson-
dert verifiziert werden miissen. Daraus, dass A die Uberpriifung besteht, wird geschlossen, dass
auch das konkrete System beziiglich der iiberpriiften Formel korrekt ist. Damit dieser Schluss
AE ¢ = K | ¢ erlaubt ist, muss eine geeignete Verfeinerungsbeziehung von K zu
A bestehen, die eine Ubertragbarkeit von Verifikationsergebnissen fiir Formeln der Art von ¢
(beispielsweise TCTL oder lediglich ACTL, je nach Verfeinerung) garantiert. Im folgenden Ab-
schnitt betrachten wir, wie Eigenschaften einer Verifikation auf einem abstrakten Modell auch
in einer Konkretisierung dieses Modells erhalten bleiben, ohne erneut die Konkretisierung bzgl.
der gestellten Eigenschaften zu iiberpriifen.

2.4.7 Verfeinerungen

Im Rahmen der MECHATRONIC UML konnen Rolleninvarianten und Mustereigenschaften fiir
Koordinationsmuster spezifiziert werden, die sich jeweils nur auf eine beschrinkte Anzahl von
Teilsystemen beziehen und damit eine kompositionelle Verifikation erméglichen [GTB™ 03] (sie-
he Abschnitt 2.4.6.2). Das Model Checking wird dabei auf dem abstrakten Kommunikationsver-
halten der Rollen durchgefiihrt. Eine Ubertragbarkeit der Ergebnisse erfordert somit eine Verfei-
nerungsbeziehung von den Ports der konkreten Komponenten zu den Rollen.

Eine weitere Form der Abstraktion stellt die Delegation von Verhalten an Subkomponenten dar,
deren Portverhalten daher in einer Verfeinerungsbeziehung zum Verhalten des implementierten
Ports stehen muss. Es kann dabei sein, dass eine Verfeinerung ausgeschlossen ist, weil die struk-
turellen Voraussetzungen nicht erfiillt sind: Beispielsweise konnte der Fall auftreten, dass einer
der Ports der analysierten Komponente in der aktuellen Konfiguration nicht implementiert ist, da
eine Subkomponente durch eine Strukturanpassung nicht mehr erreichbar ist. In Kapitel 3 stellen
wir einen Ansatz vor, der auch diese Abhingigkeiten beriicksichtigt.

Im Folgenden werden einige fiir die MECHATRONIC UML relevante Definitionen fiir Verfeine-
rungen aufgefiihrt. Dies sind die Timed Simulation, die Timed Ready Simulation und die Timed
Bisimulation.

Die Definitionen in diesem Abschnitt beziehen sich auf Timed Transition Systems (TTS) nach
Definition 4 (Abschnitt 2.4.2.1). Ein TTS definiert die Semantik eines Timed Automaton nach
Definition 1 (Abschnitt 2.4.2.1). Fiir ein Timed Automata A und K mit TTS T4 und T und
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einer Verfeinerung [J gilt K'TJA genau dann, wenn Tx [Ty gilt. Eine Verfeinerung zweier Timed
Automat kann also tiber die dazugehorigen TTS gezeigt werden.

Fiir die Verfeinerungen ist im Folgenden das externe sichtbare Protokollverhalten relevant. Dies
ist bestimmt durch (externe) Nachrichten und den Zeitabstinden dazwischen. Die im Folgen-
den betrachtete Timed Simulation und Timed Bisimulation werden nach [WL97] als ,,schwache*
Simulationen bezeichnet. Diese unterscheiden sich von den ,,starken® darin, dass sie nicht das
Vorhandensein einzelner Transitionen (Delay-Transitionen oder Transitionen mit internen Ereig-
nissen) fordern, sondern sich auf Transitionsfolgen beziehen, die im Bezug auf das beobachtbare
Verhalten dquivalent sind. Diese werden nach [WL97] als Weak Transition Relation bezeichnet
und sind fiir TTS nach Definition 4 wie folgt definiert:

Definition 11 (Weak Transition Relation)
Sei ein Timed Transition System gegeben mit s, s',s", 8" € S, u € ¥g, 0,89, 01,02 € Xp, 09 = 0,

sowie dem internen Ereignis T € ¥.p. Bezeichne weiterhin —s einen beliebig langen Pfad iiber
ausschlieflich T-Transitionen (— ). Eine Weak Transition Relation ist dann die kleinste Relation
=, fiir die gilt:

I T* u T ..
1. s= s gdw. s — " =" — & fiirbel. " s", und

6 *
2. s=>5 gdw. s— s und

2

3. 5= ¢ gdw. s s A s 2y g A 0 = 01 + 09 fiir bel. s"

Es diirfen nach = vor und nach einem extern sichtbaren Ereignis (Nachricht) ;s beliebig viele
Transitionen mit dem internen Ereignis 7 geschaltet werden (Bedingung 1). Bedingung 2 stellt
sicher, dass beliebig viele 7-Transitionen einer Delay-Transition mit Dauer O entsprechen. Durch
Bedingung 3 wird das Aufteilen einer Verzogerung in eine beliebig lange Folge von Delay-
Transitionen erlaubt, wobei sich diese zu einer Gesamt-Verzdgerung aufaddieren.

2.4.7.1 Timed Simulation

Im Folgenden betrachten wir die Timed Simuluation unter Anwendung der Weak Transition Re-
lation = nach Definition 11 (vgl. [WL97] und [JLS00]). Diese Form der Timed Simulation
ist die ,,schwichste* der hier behandelten Verfeinerungsbeziehungen. Hiermit wird fiir ein Paar
eines abstrakten und eines konkreten Systems gefordert, dass das konkretere System kein sicht-
bares Verhalten definiert, das nicht bereits im abstrakten System definiert wurde.

Definition 12 (Timed Simulation)

Seien T'y und Ty Timed Transition Systems mit Zustandsmengen S 4 bzw. Sk und Startzustinden
504 bzw. s0x. Sei weiterhin () eine Relation ) C S x S4. Dann ist €2 eine Timed Simulation
Tk <pg T, wenn gilt:

1. (s0k,s04) € Q und

Impl.

2. V(sk,54) €N s == 5 35y : 54 == 8% A (8, 84) €Q und
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5 Impl. 5
3 V(sg,54) €EQ: s == sk = 3sy o s4 == 5 A (sh,5,) €Q

/\51:62

Erfiillt Q) die Bedingungen 1 und 2 und ist 3. bis auf 6y = 05 erfiillt, dann ist das hinreichend
dafiir, dass () eine (nicht zeitbehaftete) Simulation T <g T4 ist.

Die Simulationsbeziehung wird durch die {2 Relation umgesetzt, die die korrespondierenden Zu-
stinde des abstrakten und konkreten Systems zuordnet. Die korrespondierenden Zustinde wer-
den dabei induktiv beginnend mit dem Startzustand in der Relation aufgenommen (siehe Bedi-
nung 2 und 3). Es muss dabei fiir alle Zustinde eines konkreten Systems sichergestellt werden,
dass ausgehende Weak Transitions eine Entsprechung im abstrakten System haben. Bedingung
zwel bezieht sich dabei auf Transitionen und Bedingung drei auf die Einhaltung der Zeitinterval-
le. Die Verwendung einer Weak Transition Relation = nach Definition 11 fiihrt dazu, dass das
konkrete System zusétzlich zu den Transitionen mit sichtbarem Verhalten beliebig viele interne

.. .. 5 ) )
Transitionen —> und Delay-Transitionen — schalten kann, sofern sich diese zur Gesamtver-
zogerung aufaddieren.

Erhalt temporallogischer Eigenschaften Nach [CGP00] werden durch nicht zeitbehafte-
te Simulationsbeziehungen der Erhalt von ACTL-Formeln zugesichert (siehe Abschnitt 2.4.6.1).
Da durch Zeitbedingungen zusitzlich Time Stopping Deadlocks auftreten konnen, muss zusétz-
lich fiir eine Timed Simulation nachgewiesen werden, dass genau diese nicht auftreten.

Bedingung 3 sichert zudem zu, dass ATCTL durch die Verfeinerung erhalten bleiben. ATCTL
Formeln beziehen sich auf Zeitintervalle, die eben durch Bedingung 3 zugesichert werden (hier-
durch bleiben die zeitlichen Abstinde dieselben).

Da eine Simulationsbeziehung nicht fordert, dass Verhalten des abstrakten Systems erhalten blei-
ben muss, werden in der Praxis hdufig Bismulationen fiir eine Defintion der Verfeinerungsbezie-
hung verwendet. Im Folgenden werden wir daher auf diese ndher eingehen.

2.4.7.2 Timed Bisimulation

Zusitzlich zu einer Timed Simulation fordert eine Timed Bisimulation, dass sdamtliches im ab-
strakten System mogliche Verhalten vom konkreten System ebenfalls unterstiitzt wird. Das sicht-
bare Protokollverhalten (beobachtbare Verhalten) muss im konkreten System identisch zum ab-
strakten System sein. Hiermit wird eine Timed Simulation (siehe Definition 12) in beide Rich-
tungen gefordert. Eine Timed Bisimulation ist damit wie folgt definiert:

Definition 13 (Timed Bisimulation)
Seien T’y und Ty Timed Transition Systems. Dann ist €2 eine Timed Bisimulation Tk ~rpg T}y,
wenn gilt:

1. Q ist eine Timed Simulation Ty <75 T4 und

2. Qist eine Timed Simulation Ty <rg Tk
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Ist ) eine (nicht zeitbehaftete) Simulation <g in beide Richtungen, dann ist ¢} zumindest eine
(nicht zeitbehaftete) Bisimulation T ~pg T'4.

Erhalt temporallogischer Eigenschaften Nach [CGPO00] erhilt eine Bisimulation CTL-
Formeln. Da die Timed Bisimulation die Bisimulation umfasst, bleiben ebenfalls durch eine Ti-
med Bisimulation CTL-Formeln erhalten. Wie im Fall von Timed Simulationen muss allerdings
zusitzlich sichergestellt werden, dass Time-Stopping Deadlocks ausgeschlossen werden. TCTL-
Formeln bleiben ebenfalls erhalten, da die Zeitintervalle, auf die sich die TCTL-Formeln bezie-
hen, durch die Timed Bisimulation erhalten bleiben. Da eine Timed Bisimulation sehr restriktiv
bzgl. der moglichen Verfeinerungen ist, betrachten wir im Folgenden eine Verfeinerung, die auf
Kompromisse eingeht, um eine grolere Anzahl an Verfeinerungen zu erlauben.

2.4.7.3 Timed Ready Simulation

Eingefiihrt wurde die Timed Ready Simulation in [JLS00]. Motivation fiir diese Verfeinerung
ist, dass auch bei Giiltigkeit einer Timed Simulation T < T4, in der urgent-Transitionen oder
globale Variablen betrachtet werden, nicht garantiert ist, dass bei Einbettung der Systeme in einen
Kontext T auch T || T < Ta || Te gilt. Problematisch hieran ist, dass aus T4 || Tc = ¢
nicht auch Tk || T = ¢ gefolgert werden kann. Die Verfeinerungsbeziehung verliert damit
ihr Giiltigkeit bei paralleler Komposition der Systeme. Um aus Tx; < Tay A Txo < Tao auf
Ti1 || Tka < Tap || Tas schlieBen zu konnen, ist dies aber erforderlich.

Begriindet ist dies damit, dass urgent-Transitionen und globale Variablen in einem Automaten
zur Nicht-Erreichbarkeit von Verhalten in einem anderen Automaten fithren konnen, welcher
dieselben Urgent-Synchronisationen oder Variablenzugriffe anbietet. Um dieses Problem aus-
zuschlieBen werden durch eine Timed Ready Simulation zusitzliche Bedingungen fiir globale
Variablen und urgent-Transitionen eingefiihrt. Eine Timed Ready Simulation sei damit wie folgt
definiert:

Definition 14 (Timed Ready Simulation)
Seien T'y und Ty Timed Transition Systems mit Zustandsmengen S 4 bzw. Sk und Startzustinden
s04 bzw. s0k. Sei weiterhin €) eine Relation 2 C Sy X Sa. Dann ist ) eine Timed Ready
Simulation T <prg T4, wenn gilt:

1. Q ist eine Timed Simulation Ty <7g T4 und

2. Y(sg,54) €Q: 54— sy A e (T)a
Impl. SK L) S/K A\ L)G (Tu)K

Dabei bezeichne (T,,) a, (T,) i jeweils die Menge der urgent-Transitionen in Ty bzw Tk.

Aus Vereinfachungsgriinden haben wir in der Definition auf die Beriicksichtigung von globa-
len Variablen verzichtet, da dies fiir die MECHATRONIC UML nicht relevant ist. Begriindet
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ist dies damit, dass die REAL-TIME STATECHARTS nicht iiber globale Variablen Informatio-
nen austauschen, sondern iiber Nachrichten. Damit ergibt zusitzlich die Forderung, dass urgent-
Transitionen des abstrakten Systems im konkreten System erhalten bleiben miissen.

Erhalt temporallogischer Eigenschaften Da eine Timed Ready Simulation eine Timed
Simulation zusitzlich einschrinkt, bleiben fiir eine Timed Ready Simulation die gleichen For-
meln erhalten wie dies fiir eine Timed Simulation gilt. Zusitzlich bleiben (T)CTL-Formeln fiir
die Teile erhalten, die vollstindig durch urgent-Transitionen definiert sind. Sobald ein Pfad eine
nicht urgent Transition beinhaltet, gilt dies allerdings nicht mehr.

2.5 Hybrides Verhalten

Wie in Kapitel 1 beschrieben, sind die hier betrachteten mechatronischen Systeme hybride Sys-
teme. Hybride Systeme sind dadurch gekennzeichnet, dass sie sowohl aus einem diskreten wie
auch einem kontinuierlichen Anteil bestehen. Ein hybrider Automat [Hen96] stellt eine Erweite-
rung zum Timed Automaton dar (siche Abschnitt 2.4.2.1), da er zusétzlich zu einem diskreten zu-
standsbasierten Verhalten auch ein kontinuierliches Verhalten beschreibt. Neben der Einbettung
von kontinuierlichen Verhalten ermdglicht der hybride Automat wie auch der Timed Automaton
die Spezifikation von Zeitangaben.

In einem mechatronischen System wird das kontinuierliche Verhalten typischerweise durch An-
sidtze der Regelungstechnik beschrieben. Das Verhalten wird durch Differentialgleichungen be-
schrieben, die dafiir sorgen, dass sich das System wie gewiinscht verhilt [F6105].

Allgemein wird dabei zwischen einer Steuerung und Regelung unterschieden. Das Problem einer
Steuerung kann wie folgt beschrieben werden: Gegeben sei das Ziel eines Systems, die Stellgrofle
(control) y und die Zustandsgrofle/Ausgangsgrofle (controlled) x. Die Aufgabe der Steuerung ist
die Beeinflussung von x durch y in der Art und Weise, dass ein gewiinschtes Verhalten trotz
Einwirkung von Storgroflen z (disturbance), die nicht immer bekannt sind, erreicht wird.

Steuerungen reagieren schneller auf a priori bekannte Stérungen, allerdings nicht auf unbekannte
Storungen. Regler reagieren durch einen Regelkreis (Riickkopplung des Ausgangs auf den Ein-
gang) auf jede Art von Stérungen, allerdings nur, wenn die Zustandsgroen und die Abweichun-
gen messbar sind. Das Ziel einer Regelung ist es, die Differenz zwischen einem Vorgabewert und
der Realitédt gegen O zu regeln. Eine géngige Technik fiir die Modellierung von Reglerstrukturen
sind hierarchische Block Diagramme [F6105].

Im Folgenden beschreiben wir den Modellierungsansatz der MECHATRONIC UML zur Spezifi-
kation von hybriden Systemen. Hierbei wird besonderer Fokus auf die Beschreibung von Reg-
lerkonfigurationen (ein Zustand indem eine Menge von Regler(-Instanzen) aktiv sind) und deren
Rekonfiguration gelegt. AnschlieBend werden wir die Verifikation und die Verfeinerung von hy-
briden Verhalten in Abschnitt 2.5.2 nach dem MECHATRONIC UML-Ansatz diskutieren.
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2.5.1 Hybrid Reconfiguration Charts

Aufgrund der steigenden Komplexitit regelungstechnischer Komponenten werden diese ver-
mehrt modular entworfen. Dies hat auch den Vorteil, dass Ressourcen eingespart werden konnen,
da nicht ein Regler, der alle Funktionen umsetzt aktiv sein muss, sondern nur die regelungs-
technische Komponente, die aktuell tatsdchlich bendtigt wird. Die in Abbildung 2.2 dargestellte
RailCab-Komponente bettet z.B. zwei kontinuierliche Unterkomponenten ein. Die Aktivierung
und Deaktivierung, wird dabei von Software iibernommen.

Das Modell der REAL-TIME STATECHART (sieche Abschnitt 2.4.2) wurde dementsprechend er-
weitert zu so genannten HYBRID RECONFIGURATION CHARTS, die die Aktivierung und De-
aktivierung von (kontinuierlichen) Komponenteninstanzen beschreiben konnen. Die Komponen-
teninstanzen werden Zustidnden zugeordnet, die wir Zustandskonfigurationen nennen.

Im Vergleich zum klassischen hybriden Automaten [Hen96] ermdglichen HYBRID RECONFI-
GURATION CHARTS eine modulare Rekonfiguration (siehe Abschnitt 1) zur Laufzeit [BGHO5a].
Wie auch bei hybriden Automaten bettet ein HYBRID RECONFIGURATION CHART Komponen-
teninstanzen in Zustdnde ein und tauscht diese durch einen Zustandswechsel aus. Jedoch bieten
HYBRID RECONFIGURATION CHARTS zusitzlich die Moglichkeiten, die Struktur und den in-
ternen Zustand der Komponenten durch einen Zustandswechsel zu modifizieren. Hierdurch wird
eine Rekonfiguration des Systems ermdoglicht.

Um die beschriebenen Vorteile umzusetzen, verwenden HYBRID RECONFIGURATION CHARTS
im Gegensatz zum hybriden Automaten ein verdndertes kontinuierliches Modell. In diesem Mo-
dell werden die Zustands-, Eingabe- und Ausgabevariablen in Abhingigkeit des jeweiligen Zu-
stands angegeben. Zudem wird die Umschaltung zwischen den Reglern oder kontinuierlichen
Verhalten explizit betrachtet und analysiert, so dass hier keine Storungen auftreten, die zu einer
Beeintrachtigung der Sicherheit bzw. Stabilitit fiihren kénnen [OMT108].

Fiir die Spezifikation der RailCab-Komponente aus Abbildung 2.2 muss definiert werden, in wel-
chen Zustinden des RailCab-REAL-TIME STATECHARTS, welche kontinuierliche Komponente
aktiv ist. Das HYBRID RECONFIGURATION CHART fiir die rear-Rolle zeigt Abbildung 2.16.
Dies ist eine Erweiterung des korrespondierenden Rollenverhaltens der rear-Rolle (sieche Abbil-
dung 2.6) um die Reglereinbettungen in Form von kontinuierlichen Komponenten. In Zustand
noConvoy ist nur der VelocityController aktiv und in Zustand convoy zusitzlich der Distance-
Controller. Der DistanceController wird benétigt, um im Konvoibetrieb zusitzlich den Abstand
zum vorherfahrenden RailCab fiir die Berechnung der Beschleunigung zu beriicksichtigen.

Fiir die Verfeinerung des Systems miissen die Reglerkonfigurationen betrachtet werden, wenn
eine Komponente mehrere Rollen anwendet. Die Komponente befindet sich z.B. in einen nicht
sicheren Zustand, wenn der DistanceController gleichzeitig von zwei Statecharts aktiviert (ge-
nutzt) wird. Dies liegt daran, dass der DistanceController eine einzelne Ressource ist und eine
mehrfach Aktivierung in unterschiedlichen Statecharts zu widerspriichlichen Eingaben fiihren
kann. Dies muss entsprechend bei der Entwicklung des Komponentenverhaltens aufgeldst wer-
den. Der in Kapitel 5 vorgestellte Syntheseansatz 16st diese Konflikte automatisch auf.
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4 noConvoy )
\ \ [cr > 999]
) / convoyProposal < |
default o <=1000
[cr <=999]
startConvoy /
:VelocityController [>
- J
( convoy A
breakConvoy / default
DistanceController | :VelocityController [>

N J

Abbildung 2.16: HYBRID RECONFIGURATION CHART fiir die rear Rolle
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2.5.2 Verifikation und Verfeinerung

Fir allgemeine hybride Systeme ist die Erreichbarkeit nicht entscheidbar, sondern nur die
eingeschriinkte Klasse der Rectangula Automata* [HKPV95]. Selbst fiir diese eingeschrink-
te Klasse ist die Verifikation durch Model Checking nur fiir kleine Beispiele anwendbar
[Hir08, HHPOS8, Dor08].

Daher beschrénkt sich die Analyse der MECHATRONIC UML auf das reine Echtzeitverhalten so-
wie der Erreichbarkeit von konsistenten Konfigurationen mit wohl-definierten kontinuierlichen
Komponenten [Hir08]. Erreicht wird dies durch Abstraktion von dem kontinuierlichen Verhalten
eines HYBRID RECONFIGURATION CHART, indem nur die Clocks betrachtet werden [Bur06].
Auf diesem Modell kann dann wie unter Abschnitt 2.4 beschrieben eine Verifikation und Ver-
feinerung durchgefiihrt werden. Eine Wesentliche Herausforderung besteht daher darin eine fiir
die Analysen giiltige Abstraktion zu beschreiben. Im Folgenden werden wir dies nicht niher
betrachten.

2.6 Timed Story Driven Modeling

Selbstoptimierende, mechatronische Systeme passen ihr Verhalten zur Laufzeit den Umweltbe-
dingungen an. Um diese Anpassungen zu modellieren und zu analysieren, wird unter anderem
eine enge Verzahnung zwischen der Verhaltensbeschreibung dieser Systeme sowie den (kompo-
sitionellen) Strukturanpassungen bendtigt, wie zu Abbildung 1.2 und im Folgenden erléutert.

Abbildung 2.17 illustriert die Notwendigkeit einer Anpassung des Konvois. Damit sich das Rail-
Cab RC3 zwischen den RailCabs RC1 und RC2 im Konvoi einordnen kann, muss der Konvoi
restrukturiert werden. Die Strukturanpassungen des Multi-Ports zur Koordination des RailCab
Konvois wird durch ein Adaptionsverhalten angestolen (siehe Abschnitt 2.4.3 und 2.6.1). Das
Adaptionsverhalten ist wiederum eng verzahnt mit den Portinstanzen, die hierdurch indirekt eine
Strukturanpassung steuern konnen. Eine Portinstanz darf z. B. nicht geloscht werden, wenn diese
noch mit einem RailCab kommuniziert.

Die Beeinflussung des Verhaltens durch eine Strukturanpassung ist inhédrent, da eine Strukturan-
passung das Verhalten verdndert (siehe Abschnitt 2.2). Durch z. B. das Hinzufiigen eines weite-
ren Ports, um ein neues Mitglied im Konvoi aufzunehmen, wird nicht nur einfach ein weiteres
Verhalten parallel zu den anderen ausgefiihrt. Je nach Position des neuen RailCabs im Konvoi
miissen die Abhédngigkeiten zu den direkt benachbarten Ports angepasst werden. Es muss dabei
sichergestellt sein, dass eine Restrukturierung nur dann stattfindet, wenn die beteiligten Ports
in einem dafiir geeigneten Zustand sind (Quiescent State [KM98, ZC06]). Es gilt wieder, dass
keine Restrukturierung durchgefiihrt werden darf, wenn z. B. gerade Konvoiparameter (wie das
Bremsverhalten) ausgetauscht werden.

“Rectangula Automata beschreiben analoge Trajektorien mit teilweise-linearer Entwicklung und Spriingen
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Abbildung 2.17: Beispiel Konvoirestrukturierung

Die in Abschnitt 2.4.3 vorgestellten PARAMETERIZED REAL-TIME COORDINATION PATTERNS
wurden fiir diesen Anwendungsfall entwickelt. Hieriiber ist es allerdings nicht méglich mit den
unterliegenden Formalismen fiir das Verhalten (PARAMETERIZED REAL-TIME STATECHARTS,
siche Abschnitt 2.4.4) und den Strukturanpassungen (TGTS, siehe Abschnitt 2.4.5.3) iiber die
gleichen Objekte, wie Nachrichten oder Ports, das Systemverhalten (Komponenten und Muster)
zu spezifizieren. Wird also ein Seiteneffekt, mit dem eine Strukturanpassung iiber TGTS um-
gesetzt werden kann, implementiert, so kann nicht auf die Objekte des Statecharts zugegriffen
werden. Dies wird aber genau in dem skizzierten Szenario bendotigt, um sicherzustellen, dass die
beiden Statecharts der Portinstanzen fiir RC1 und RC2 in einem aktuellen Zustand sind, der eine
Strukturanpassung erlaubt.

Der unterlagerte Ansatz der Fujaba Tool Suite, der Story Driven Modeling Ansatz von Ziindorf
[ZiinO1], ermdglicht dies allerdings, in dem Statecharts und Graphtransformationssysteme ob-
jektorientiert definiert werden. Der Formalismus zur Verhaltensbeschreibung wird dabei Story
Charts genannt und der zur Beschreibung von Strukturanpassungen Story Patterns, bzw. Story
Diagramme (siehe Abschnitt 2.4.5).

Diese Voraussetzungen nutzen wir aus, um in diesem Abschnitt den Timed Story Driven Mode-
ling Ansatz als eine Erweiterung des Story Driven Modeling Ansatzes um Zeit, der die unterlie-
genden Formalismen der PARAMETERIZED REAL-TIME COORDINATION PATTERNS integriert,
vorzustellen. Unser Ansatz erweitert, bzw. passt daher die Formalismen des Story Driven Mode-
ling Ansatzes (Story Diagramme, Story Pattern und Story Charts) um Zeit an zu TIMED STORY
DIAGRAMS, TIMED STORY PATTERNS und TIMED STORY CHARTS.

Diese Formalismen werden eingefiihrt, indem wir zuerst die einzelnen Elemente des Formalis-
mus durch Abbildung von dem Ursprungsformalismus (z. B. PARAMETERIZED REAL-TIME
STATECHARTS) in den neuen Formalismus (z. B. TIMED STORY CHARTS) beschreiben. Da ge-
rade die Ausfiihrung eines TIMED STORY CHARTS durch eine Kombination einzelner Elemente
gepréagt ist, beschreiben wir zudem eine Abbildung der Ausfithrungssemantik von PARAMETE-
RIZED REAL-TIME STATECHARTS auf TIMED STORY CHARTS, die entsprechend eine Kombi-

46



2.6 Timed Story Driven Modeling

nation aller Elemente beriicksichtigt. Ein formaler Beweis iiber die semantische Aquivalenz der
Formalismen ist ein Ausblick fiir weiterfithrende Arbeiten.

Die Modellierung des Verhaltens sowie der Struktur kann durch diese Vorgehensweise weiter-
hin iiber die in Abbildung 2.1 dargestellten Formalismen durchgefiihrt werden, da die Struk-
turmodellierung unveridndert bleibt und das Verhalten iiber die Semantik von PARAMETERIZED
REAL-TIME STATECHARTS definiert ist. Dies ist wichtig, da z. B. eine Verhaltensspezifikation
mit TIMED STORY CHARTS fiir die meisten Entwickler ungewohnt ist und zudem einen hoheren
Aufwand erfordert, da hier die einzelnen Statechart Objekte und Transitionen explizit spezifiziert
werden miissen (siehe Abschnitt 2.6.4). Die Spezifikation der Strukturanpassungen mit TIMED
STORY PATTERN und TIMED STORY DIAGRAMS wird nicht durch eine andere Syntax ersetzt,
da diese bereits die Syntax von Story Diagrammen aufweisen, die in der MECHATRONIC UML
zur Beschreibung von Strukturanpassungen verwendet werden.

Wir werden zuerst TIMED STORY PATTERNS (siche Abschnitt 2.6.2) und TIMED STORY DIA-
GRAMS (siehe Abschnitt 2.6.3) vorstellen. Anschliefend werden wir TIMED STORY CHARTS
(sieche Abschnitt 2.6.4) auf Basis der TIMED STORY PATTERN und TIMED STORY DIAGRAMS
beschreiben. Grundlegende Arbeiten hierzu wurden in [HHGO8, Hei09, HHZ09, HHH10] vor-
gestellt. Bevor wir auf die Modellierungssprachen eingehen, werden wir in Abschnitt 2.6.1 ein
dominenspezifisches Metamodell fiir MECHATRONIC UML Komponenten beschreiben, auf Ba-
sis dessen die Modellierungssprachen angewandt werden. Als Einfithrung in die Formalismen,
werden wir im folgenden Paragraphen einen Ausschnitt des Eingangs beschrieben Einféadelsze-
narios skizzieren.

Beispielanwendung Abbildung 2.18 und 2.19 zeigt am Beispiel der Coordinator Kompo-
nente die Restrukturierung eines Konvois, ausgelost durch das Hinzufiigen eines weiteren Kon-
voiteilnehmers. Abbildung 2.17 illustriert die Situation, die die Restrukturierung auslost. RC3
mochte an dem Konvoi von RC1 und RC2 teilnehmen und sich zwischen diesen beiden RailCabs
einordnen.

Das Komponentenmodell zeigt die Struktur der Coordinator Komponente (siche Abbildung
2.18). Wie bereits in Abschnitt 1.2 erldutert, ist die Coordinator Komponente verantwortlich fiir
das Berechnen der Konvoiparameter. Das entfaltete Komponentenmodell zeigt, welche Ports fiir
die Koordination von zwei RailCabs miteinander verbunden sind. Mit gestrichelten Linien wird
dabei angedeutet, wie sich das neue RailCab einordnen soll.

updatePort zeigt das TIMED STORY PATTERN, welches den Port fiir RailCab RC3 in den bishe-
rigen Multi-Port der Coordinator Komponente integriert. Dies wird nur erlaubt, wenn das zu dem
Port gehorige Statechart in dem Zustand NoUpdate ist® und die Clock (siehe Abschnitt 2.4) ¢ im
Intervall zwischen fiinf und zehn ist. Damit wird ausgedriickt, dass das Hinzufiigen im Intervall
zwischen fiinf und zehn Zeiteinheiten stattfinden muss.

3 Aus Vereinfachungsgriinden wird in dem Timed Story Pattern nur auf die Verbindung zwischen den Hauptklassen
eingegangen. Z. B. wurden die Port Objekte zwischen den neXxt Assoziationen nicht extra aufgefiihrt.

47



Kapitel 2 Mechatronic UML

updatePart() implementiert im Wesentlichen die gleiche Strukturanpassung wie updatePort. Der
Unterschied ist lediglich, dass Part statt Port Objekte verwendet werden.

updateDel() zeigt die Strukturanpassung der Delegation. In diesem Fall ist das einfach, da ledig-
lich eine Delegation erzeugt werden muss, die die beiden neuen Ports (p3 und pc3) miteinander
verbindet.

Abbildung 2.19 zeigt, wie die einzelnen Story Pattern zur Strukturanpassung der Port-, Part- und
Delegations-Elemente durch ein TIMED STORY DIAGRAM verkniipft werden. Neben dem einfa-
chen Ausfiihren der TIMED STORY PATTERN durch Aufrufen der entsprechenden Methode, wird
Initial eine Clocklnstance angelegt, iiber die nach jedem Aufruf der TIMED STORY PATTERN,
eine Invariante tiberpriift wird und die Clock zuriickgesetzt wird.

In den folgenden Abschnitten 2.6.2 bis 2.6.4 werden wir die einzelnen Formalismen beschreiben,
die wir bereits in dem Beispiel zum Teil verwendet haben. Vorher werden wir in Abschnitt 2.6.1
ein Metamodell fir MECHATRONIC UML Komponenten vorstellen, welches die Formalismen
nutzen, um das Konvoibeispiel illustrativ umzusetzen.

2.6.1 Metamodell

Hierarchische Komponenten sind ein méchtiges Mittel, um das interne Verhalten einer Kompo-
nente von ihrem externen Verhalten zu trennen [SGW94]. Wie bereits in Abschnitt 2.3 vorge-
stellt, unterstiitzt die MECHATRONIC UML hybride hierarchische Komponenten. Um den An-
forderungen von Strukturanpassungen gerecht zu werden, wird allerdings eine Erweiterung des
zugrunde liegenden Metamodells benétigt. Die RailCab-Komponente (siehe Abschnitt 1.2) ist
z. B. mit dem bisherigen Komponentenmodell nicht realisierbar, da das Verhalten welches die
Strukturanpassung steuert, nicht beriicksichtigt ist.

Wie in unseren eigenen Arbeiten [HHGO08, HHH10] und auch in [ZC06] beschrieben hat sich
fiir die Modellierung von Strukturanpassungen eine hierarchische Modellierung durchgesetzt, in
der auf der obersten Ebene das Verhalten fiir die Anpassung beschrieben wird. Diese explizite
Betrachtung ermoglicht es, Strukturanpassungen und das dafiir benotigte Verhalten unabhéngig
von dem Zustandsverhalten der Komponente oder Ports zu betrachten. Wir bezeichnen dies mit
Adaptionsverhalten. Das Adaptionsverhalten muss nun fiir hierarchische Komponenten explizit
fiir Multi-Ports (siehe Abschnitt 2.4.3), Multi-Parts (sieche Abschnitt 2.3) und Delegationen, die
Multi-Ports und Multi-Parts verbinden, spezifiziert werden konnen.

Wir haben daher in [BBB*09, HHH10] einen Ansatz vorgestellt, der fiir die Elemente Multi-
Port, Multi-Part und Delegation eine extra Adaptionsklasse beriicksichtigt. Dieses ermdglicht es
uns speziell fiir diese strukturellen Elemente Adaptionsverhalten zu beschreiben.

Fiir eine spezifizierte Komponente unterstiitzen wir eine automatische Synthese des komponen-
tenspezifischen Klassendiagramms, auf Basis dessen Strukturanpassungen beschrieben werden
konnen. Das Klassendiagramm beinhaltet Klassen fiir jede Komponente, Ports, Parts und fiir alle
Delegationen. Die Struktur des Klassendiagramms basiert auf dem Metamodell fiir Komponen-
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e (= ' :
L b4
_____ ] :PosCalc .
:PosCalc zids
Strukturanpassung Multiport (updatePort(p)) Strukturanpassung Multipart (updatePart(p))
has has
:CoordPort c:ClockInstance :CoordPart cpc:Clockinstance
I I
<<++>>member <<++>>member
member | p3:CoordMember member member | pc3:PosCalc member
position = p; position = p;
next next next next
<++> ‘ <++> <++> <t++> ‘ <t++> <t++>
next next
pl:CoordMember [~———_—| p2:CoordMember pcl:PosCalc —__> | bc2:PosCalc
state state state state
:NoUpdate :NoUpdate :NoUpdate :NoUpdate
active active active active
:Active [5<cAc<10] :Active :Active [5 < cpe A epe < 10] :Active
Strukturanpassung Mulitdelegation (updateDel(Port p3, Port pc3))
4 N\ 4 N\
@ cdl1:CoordDelegation cdl
b <<++>>
member <<++>>| member
:PosCalcDelegation [success] :PosCalcDelegation
<<++>> <<++>>
Q)rt @rt port part
[failure]
p3 pc3 p3 pc3
- J - J

Abbildung 2.18: Konvoirestrukturierung: Uberblick
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4 N 4 N
update() <<+H+>>
cl:Clockinstance this ( ) cl:Clocklnstance this
- updatePort(p); -
id = cup L\ ) id = cup
reset A
<<++>>
<<++>>
rs:ClockReset rs:ClockReset
[cup < 10]
. J .

updatePart(p);

a\ ( ™
cl:Clockinstance this cl:Clocklnstance this
id = cup updateDel(p3,pc3); id = cup
rs:ClockReset @ rs:ClockReset
[cup < 10] ] [cup < 10]
- J

Abbildung 2.19: Konvoirestrukturierung: Story

ten (sieche Abbildung 2.20). Der dort gezeigte Ausschnitt orientiert sich an dem Metamodell von
Komponentenstorydiagrammen (siehe Abschnitt 2.3 [Tic09]). Die Coordinator-Klasse realisiert
dabei die Stellvertreterklasse, um Adaptionsverhalten beschreiben zu konnen. Die Assoziation
zur Port-, ComponentPart-, PortPart- und DelegationTyp-Klasse realisieren die geforderte Ver-
kniipfung zu den Multielementen, um dessen Struktur anpassen zu konnen. Die Selbstassoziation
erlaubt eine Verkniipfung der Adaptionen untereinander.

Abbildung 2.21 verdeutlicht die diskutierte Adaptionsschicht an der Coordinator-Komponente.
Fiir jedes Multielement sowie Delegationen zwischen Multielementen wird eine Adaptions-
schicht angelegt (Multi-Part-Adaption, Multi-Port-Adaption, Delegation-Adaptation), die jede In-
stanz des Multielements (z. B. coordPortParty, ..., coordPortPart;,) koordinieren kann (siche auch
2.4.3).

Ein Beispiel-Klassendiagramm fiir die Coordinator-Komponente ist in Abbildung 2.22 gezeigt.
CoordPort, CoordPart und CoordDelegation reprisentieren die Adaptionsklassen.

Eine durch das Adaptionsverhalten gesteuerte Strukturanpassung kann mit Story Diagrammen,
bzw. Story Pattern beschrieben werden (siehe Abschnitt 2.4). Um Zeit bei der Spezifikation der
Strukturanpassung zu beriicksichtigen fithren wir in Abschnitt 2.6.2 TIMED STORY PATTERN
und in Abschnitt 2.6.3 TIMED STORY DIAGRAM ein.

Strukturanpassungen werden als Seiteneffekt von REAL-TIME STATECHART, die das Adapti-
onsverhalten implementieren, ausgefiihrt. Ein Seiteneffekt wird durch eine Methode in der unter-
liegenden Verhaltensklasse, hier also der Adaptionsklasse, definiert. Hierdurch haben die Story
Diagramme eine Assoziation zu den Multielementen und konnen diese entsprechend strukturell
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isComposedOf P> .

Part
+ name : String

<« typeRef ‘
Component ComponentPart ‘ ConnectorType
+ name : String A
has has
Coordinator v
has - has
v r + name : String T v
* ’ A * *|
Port has PortPart —
+name : String| < typeRef *

has ’
. * V* has
A DelegationType A v

v port ’ portPart
<<reference>>
FujabaCore:: ’InterfacePart }7
UMLClass
+ name : String
: « typeRef : 0..1
Provided |- Provided |gp- AssemblvTvpe
Interface * | InterfacePart <« typeRef 01 youp
. < typeRef . required
Required @~ | Required @ 1 ¥
Interface * | InterfacePart

Abbildung 2.20: Komponenten und -parts Metamodell

51



Kapitel 2 Mechatronic UML
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P y B
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Abbildung 2.21: Multi-Part, -Port, und -Delegation
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-
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Abbildung 2.22: Beispiel-Klassendiagramm
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verdndern (siehe Abschnitt 2.21). Eine Strukturanpassung kann die innere Struktur der Kompo-
nente verdandern, aber nicht direkt die Struktur aulerhalb der Komponente. Es ist jedoch moglich,
dass eine Strukturanpassung iiber Nachrichten oder eine Synchronisation andere Komponenten
ebenfalls zur Strukturanpassung veranlasst, wie dies z.B. iiber die Delegations-Adaption durch-
gefiihrt wird. Es kann so ein kausaler Zusammenhang zwischen verschiedenen Strukturanpass-
ungen bestehen, die aber einzeln nur innerhalb einer Komponente Verdnderungen vornehmen
konnen.

Ein Adaptionsverhalten kann iiber Strukturanpassungen Parts und Ports erzeugen und entfernen,
sowie Assemblies zwischen den Partinstanzen anlegen und entfernen. Die Instanzen eines Ports
oder Parts konnen durch die entsprechenden Adaptionsverhalten erzeugt und entfernt werden.
Uber eine Delegations-Adaption konnen Delegationen zwischen Multi-Ports und -Parts angelegt
und entfernt werden.

Die Statecharts zu einem Port, bzw. einer Komponente, miissen beim Erstellen des Ports, bzw.
der Komponente, mit erzeugt werden. Das Loschen geschieht automatisch iiber die verwendeten
Kompositionsbeziehungen, so dass es ausreichend ist, in einem Story Diagramm nur den Port,
bzw. die Komponente, zu 16schen.

2.6.2 Timed Story Pattern

TIMED STORY PATTERN erweitern Story Pattern [ZiinO1] um zeitliche Bedingungen. Ein weit
verbreiteter Formalismus um zeitliche Bedingungen zu spezifizieren ist der Timed Automata-
Formalismus [AD90, AD94]. Daher wird der Zeitformalismus nach den Timed Automata als
Grundlage dienen. Dies ermoglicht die Spezifikation von Zeitbedingungen fiir das Verdndern
von Strukturen.

In [HirO8] wurden zeitbehaftete Graphtransformationssysteme (Timed Graph Transformation
Systems - TGTS) eingefiihrt, um die Instanziierungsdauer von Elementen und eine kontinuier-
liche Bewegung spezifizieren zu konnen (sieche auch Abschnitt 2.4.5.3). Um einen konsistenten,
gemeinsamen Formalismus zu spezifizieren bendtigen wir allerdings einen Ansatz der basierend
auf einem gemeinsamen Metamodell Strukturverinderungen beschreiben kann.

Da TGTS grundsitzlich den gestellten Anforderungen gerecht werden, definieren wir TIMED
STORY PATTERN als eine Erweiterung von Story Pattern {iber der Semantik von TGTS. Damit
ermoglichen TIMED STORY PATTERN zum einen objektorientierte Strukturen zu verindern und
des Weiteren zeitliche Bedingungen fiir Strukturanpassungen zu spezifizieren. Um die Syntax
von Story Pattern nicht zu verdndern, werden die benotigten Elemente in der Syntax von Story
Pattern definiert.

Die bendtigten Elemente, um zeitliche Bedingungen zu spezifizieren sind: Uhren (Clock-
Instanz), Uhren Resets (Clock Resets) und Zeitbedingungen (Time Guards und Invarianten). Wie
im Timed Automata-Formalismus konnen mehrere Uhren definiert werden, da sich dies fiir die
Modellierung von Zeitbedingungen bewihrt hat [Alu99].

53



Kapitel 2 Mechatronic UML

Da Story Pattern iiber Objekte, bzw. Objektinstanzen, Strukturanpassungen spezifizieren, wird
ein Clock-Objekt eingefiihrt. Wird eine Uhr spezifiziert, dann wird also eine Instanz des Clock-
Objektes angelegt. Daher verwenden wir hier den Begriff der Clock-Instanz.

Um die hier betrachteten Systeme spezifizieren zu konnen, miissen Eigenschaften von reaktiven
Systemen beriicksichtigt werden. Elementar ist daher die Spezifikation von relativen Zeitbedin-
gungen, da hdufig Bedingungen relativ zu einem Ereignis definiert werden miissen.

Das Konzept der Clock Resets wird benotigt, um eine Uhr auf null zuriickzusetzen. Clock Resets
werden ebenfalls durch Objekte definiert.

Um zeitliche Bedingungen zu beschreiben werden wie bei dem Timed Automata-Formalismus
die folgenden Bedingungen ¢ erlaubt: ¢ ::=x ~n | x—y ~ n | ¢A¢ | true | false, mit z,y €
C,~e {<,<,=,>,>},n € N. Wie in [AD94, Alu99] beschrieben haben sich diese Bedingun-
gen als niitzlich herausgestellt und sind im Allgemeinen auch nicht erweiterbar, um z. B. Addi-
tion von Uhren, um die Analysefdhigkeit nicht zu verlieren.

Um die Zeitbedingungen anwenden zu konnen, muss das zugrunde liegende Metamodell um
spezielle Clock-Instanz- und Clock-Reset-Objekte erweitert werden. Das kann entweder ganz
allgemein fiir alle Objekte definiert werden oder einschrinkend fiir eine bestimmte Menge an
Objekten.

Fiir unser Komponentenmetamodell (siehe Abbildung 2.20) ist z. B. eine Einschriankung nur auf
die Objekte notwendig, deren Struktur angepasst werden kann. Daher reicht es aus, der Klasse
Coordinator eine Assoziation dem Clock-Objekt hinzuzufiigen. Dadurch kann ein Story Pattern,
welches durch eine Methode einer konkreten Coordinator Klasse definiert wird, auf die Multi-
Elemente Port, Part und Delegation zugreifen und entsprechend Zeitbedingungen fiir eine Struk-
turanpassung definieren (sieche Abbildung 2.23).

has

ClockInstance } Coordinator
id: Strin * *
\fjalL?e: Dgouble 0-.. 0-..

0..”
reset A

1
ClockReset

Abbildung 2.23: Erweiterung Komponentenmetamodell um Zeit

Im Folgenden beschreiben wir die Uhren-Elemente in der Syntax von Story Pattern. Weiterhin
erldutern wir die Semantik tiber TGTS.

Clock-Instanz Eine Clock-Instanz wird definiert durch ein Clockinstance Objekt mit einem
id und value Attribut (siche Abbildung 2.23). Das value Attribut vom Typ Double beschreibt
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den aktuellen Wert der Clock-Instanz. Die id gibt den Namen der Clock-Instanz an. Durch eine
Assoziation zu einer Clock-Instanz zu den Objekten des Pattern oder allgemein des zugrunde lie-
genden Graphen wird die Zugehorigkeit einer Clock-Instanz zu einzelnen Objekten spezifiziert.
Das Erstellen einer Clock-Instanz wird iiber die Standard-Modifizierer «++» von Story Pattern
erreicht. Clock-Instanzen werden iiber spezielle Clock-Instanzregeln dem Objektgraphen zuge-
wiesen. Da die Regeln aus Hirsch [Hir08] auf Story Pattern anwendbar sind, sei fiir Details auf
diese Arbeit verwiesen. Uber diese Clock-Instanzregeln wird es zudem erméglicht, dass sich ei-
ne Clock-Instanz auf eine Kante des Objektgraphen bezieht, obwohl diese nicht als extra Objekt
definiert wird.

Abbildung 2.24 zeigt die Spezifikation einer Clock-Instanz. Die ClockInstance ¢ wird angelegt,
wenn ein RailCab an einem Convoy teilnimmt.

<<++>>
<<++>> has
c : Clocklnstance } : Convoy
id :=,c"
value := 0
<<HF+>5> <<++>> <<++>>
reset A has\y W member
<<++>>
: ClockReset : RailCab

Abbildung 2.24: Definition einer Clock-Instanz und eines Clock Resets

Clock Resets Ein Clock Reset ist beschrieben iiber ein ClockReset Objekt und der Zugeho-
rigkeit zu einer Uhr liber eine reset Assoziation (siche Abbildung 2.23). Eine ClockReset Instanz
wird automatisch mit einer Clock-Instanz erzeugt. Ein Clock Reset wird spezifiziert, indem das
mit der Clock-Instanz angelegte ClockReset Objekt gebunden wird.

In Abbildung 2.24 ist das Anlegen eines Clock Resets zu sehen. Abbildung 2.25 zeigt ein zu-
riicksetzen der Clock c.

Time Guards Ein Time Guard wird spezifiziert iiber das Bedingungs-Element eines Story
Pattern. Ein Time Guard nimmt Bezug zu einer Clock-Instanz und spezifiziert eine Bedingung
iber den Wert value dieser Instanz. Die Bedingung wird zu einem Booleschen Wert evaluiert. Um
einen Time Guard iiber eine Clock-Instanz zu spezifizieren, muss die Clock-Instanz in dem Story
Pattern gebunden sein. Es werden folgende Bedingungen beriicksichtigt: ¢ :=x ~n |z —y ~
n|oAo|true| false, mit x,y € C,~€ {<, <,=,>,>},n € N (vgl. [AD94, Alu99)).

Abbildung 2.25 zeigt einen Time Guard 5 < ¢ A ¢ < 10. Damit kann eine Ubereinstimmung
mit dem Objektgraphen nur im Intervall fiinf bis zehn erfolgen. Ein neues Konvoimitglied muss
also innerhalb dieses Intervalls hinzugefiigt werden.
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: ClockReset
W reset

: ClockInstance has } : Convoy < coordinates : Coordinator
id=,c"

<<++>>

member, ember

has W 3 4 A

- - is

: RailCab : RailCab
[5<cac<10]

Abbildung 2.25: Clock Reset und Time Guard

Invarianten Eine Invariante wird durch ein Story Pattern ohne rechte Seite durch ein
Bedingungs-Element von Story Pattern spezifiziert. Die Clock-Instanz, iiber die die Invariante
spezifiziert wird, muss in dem Story Pattern gebunden sein.

Abbildung 2.26 zeigt ein Beispiel einer Invariante iiber die Clock c. Die Invariante spezifiziert,
dass ein RailCab nicht linger als zehn Zeiteinheiten ohne Convoy sein soll.

has
c : ClockInstance > : Convoy
id :=,c"
value :=0
has\§y ><v member
: RailCab
{c<10]}

Abbildung 2.26: Invariante

Die Semantik von TIMED STORY PATTERN wird iiber die von TGTS definiert. Da TIMED
STORY PATTERN lediglich eine andere Syntax verwenden und auf Objektgraphen statt allge-
mein auf Knoten agieren, bleibt die Semantik unverdndert (vgl. Definition von Story Pattern
tiber Graphtransformationssysteme [ZiinO1]). Die Definitionen sowie die Semantik von TGTS,
Clock-Instanzregeln und Invariantenregeln [HirO8] sind damit uneingeschrinkt auf TIMED STO-
RY PATTERN anwendbar. Dies gilt auch fiir die Berechnung eines Folgegraphen iiber eine linke
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und rechte Regelseite, da ein Story Pattern, wie in [ZiinO1] beschrieben, hierauf abbildbar ist,
bzw. die linke und rechte Regelseite aus Vereinfachungsgriinden in einer Sicht dargestellt wer-
den.

2.6.3 Timed Story Diagrams

TIMED STORY DIAGRAMS erweitern Story Diagramme um Zeit. Zeitbedingungen werden dabei
in Aktivitdten des Story Diagramms in Form von TIMED STORY PATTERN beriicksichtigt.

Zeitbedingungen in Timed Story Diagrams Eine Zeitbedingung wird in TIMED STORY
DIAGRAMS iiber TIMED STORY PATTERN definiert. TIMED STORY PATTERN konnen an Stelle
von Story Pattern eine Aktivitit spezifizieren.

Im Unterschied zu Story Diagrammen kénnen damit TIMED STORY DIAGRAMS TIMED STORY
PATTERN einbetten. Die Syntax bleibt daher unverindert. Diese Form der Definition fiihrt zu
dem Effekt, dass nur Zeit in einer Aktivitit eines TIMED STORY DIAGRAM durch Anwenden
eines TIMED STORY PATTERN vergehen kann. Wenn auch Zeit zwischen den Aktivitdten verge-
hen soll, muss ein extra TIMED STORY PATTERN eingefiihrt werden, welches entsprechend die
zeitlichen Bedingungen realisiert.

Da die Definition der Semantik von Story Diagrammen unabhingig von den eingebetteten Story
Pattern definiert ist, verdndert sich die Definition der Semantik durch die Beriicksichtigung von
TIMED STORY PATTERN nicht. Entscheidend fiir die Ausfiihrung eines Story Diagramms ist nur
die Anwendbarkeit der eingebetteten Pattern. Die Anwendbarkeit ist wiederum durch das Pattern
selbst definiert (sieche Abschnitt 2.6.2).

2.6.4 Timed Story Charts

TIMED STORY PATTERN und TIMED STORY DIAGRAMS ermoglichen die Beschreibung von
Strukturanpassungen. Die hier vorgestellten TIMED STORY CHARTS schlieen den Timed Story
Driven Modeling Ansatz ab.

TIMED STORY CHARTS beschreiben wie Story Charts [ZiinO1] Zustandsverhalten. Um Ver-
halten fiir Echtzeitsysteme zu beschreiben dessen Struktur zur Laufzeit angepasst wird ist der
Statchart-Ansatz nach Harel [Har87, HPSS87], der den Story Charts zu Grunde liegt, allerdings
ungeniigend. Zum einen fehlt die Moglichkeit Zeitbedingungen zu spezifizieren und zum ande-
ren gibt es keine Moglichkeit die unterschiedlichen Verhaltensvarianten und Instanzen gesondert
zu betrachten.

PARAMETERIZED REAL-TIME STATECHARTS stellen die bendtigten Konstrukte zur Verfiigung
[HHGOS8, Hir08, HHH10] (siehe auch Abschnitt 2.4.4), um Zeitbedingungen sowie Verhalten
spezifisch fiir eine Instanz zu beschreiben. Wir werden daher die Semantik von TIMED STO-
RY CHARTS durch eine Abbildung von PARAMETERIZED REAL-TIME STATECHARTS auf be-
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stimmte TIMED STORY DIAGRAM Elemente definieren. Damit wird ein konsistenter Formalis-
mus fiir Multielemente, die eine dynamische Anderung der Kommunikationsstruktur beschrei-
ben, gewahrt, da TIMED STORY CHARTS durch TIMED STORY DIAGRAMS ebenfalls iiber Sto-
ry Pattern und Story Diagramme definiert werden. Dies stellt damit sicher, dass, wie in dem
einleitenden Beispiel beschrieben, auch in der Strukturanpassung die Elemente des Kommuni-
kationsprotokolls beriicksichtigt werden konnen. Die Beschreibung von Zeitbedingungen wird
tiber TIMED STORY DIAGRAMS durch TIMED STORY PATTERN ermdglicht, womit die unterla-
gerte Semantik liber zeitbehaftete Graphtransformationssysteme (Timed Graph Transformation
Systems) beschrieben ist (sieche Abschnitt 2.6.2).

Um einen gemeinsamen, konsistenten Formalismus zu definieren, miissen TIMED STORY
CHARTS ebenfalls tiber Objekte definiert werden. Eine einfache und weit verbreitete Mog-
lichkeit, um Statecharts objektorientiert darzustellen ist das Zustandsmuster [GHJV95]. Stall-
mann hat einen ersten Ansatz fiir die Abbildung von REAL-TIME STATECHARTS auf Objekte
in [Sta08] vorgestellt. Ereignisse, Zeit, Parametrisierungen und Synchronisationen wurden al-
lerdings nicht beschrieben. Weiterhin fiihren wir in dem hier vorgestellten Ansatz Transitionen
nicht als extra Objekte ein sondern implizit iiber Regeln, da hierdurch keine relevanten Informa-
tionen verloren gehen und zudem eine Analyse erleichtert wird, da nicht explizit Objekte fiir die
Transition erzeugt werden miissen.

Der durch Ziindorf vorgestellte Story Chart Ansatz [ZiinO1] betrachtet zwar nur Statecharts, je-
doch werden Ereignisse beriicksichtigt sowie eine Semantik definiert. Folgend werden die we-
sentlichen Details und Unterschiede zu diesem Ansatz dargestellt.

Der Ansatz von [ZiinO1] beruht auf der Definition eines Framework, welches die Schaltregeln
von Statecharts umsetzen. Das Framework wird mit Story Diagrammen und Story Pattern defi-
niert. Dem zugrunde liegt ein Metamodell fiir Statecharts. Ein konkretes Statechart wird als Ob-
jektgraph des Metamodells spezifiziert. Dieser Objektgraph ist dann Eingabe fiir das Framework.
Das Framework iiberpriift die moglichen zu schaltenden Transitionen und feuert gegebenenfalls,
falls ein Transition schalten kann, Ereignisse nach einer sequentiellen Ausfiihrungssematik.

Neben dem Problem, dass dieser Ansatz keine Zeit, Parametrisierung sowie Synchronisationen
beriicksichtigt, ist der Framework Ansatz nicht gut geeignet, um Analysen durchzufiihren. Es ist
z. B. nicht ohne weiteres zu erkennen, in welcher Reihenfolge Transitionen ausgefiihrt wurden,
da das Schalten einer Transition nur durch eine Framework-Methode umgesetzt ist.

Grundlegende Idee der Umsetzung von TIMED STORY CHARTS ist, dass wir fiir jedes PARAME-
TERIZED REAL-TIME STATECHART Element eine Abbildungsvorschrift bestimmen, wie dieses
Element mit Story Pattern oder einem Story Diagramm (fiir kompliziertere Konstrukte) spezifi-
ziert wird. Darauf basierend beschreiben wir eine Ausfiihrungssemantik, in dem wir die einzel-
nen Elemente durch ein Story Diagramm verkniipfen. Das Story Diagramm spiegelt dabei die
Ausfithrungssemantik von PARAMETERIZED REAL-TIME STATECHART wider. Diese Vorge-
hensweise ermoglicht eine einfache Anpassung der Ausfithrungssemantik durch den vorgeschla-
genen modularen Aufbau. Die einzelnen Elemente (Stories) bleiben dabei unveridndert. Anders-
herum lassen sich einzelne Elemente anpassen, ohne Auswirkung auf die Ausfithrungssemantik.
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Weiterhin ermoglicht dieser Ansatz eine gute Nachvollziehbarkeit der geschalteten Transitionen,
die direkt an den ausgefiihrten Story Diagrammen abgelesen werden konnen.

Die Abbildung wird im Rahmen dieser Arbeit auf die Sprachkonstrukte beschrinkt, die fiir das in
Abbildung 1.2 eingefiihrte Anwendungsbeispiel notwendig sind. Damit werden gemal [HirO8]
flache PARAMETERIZED REAL-TIME STATECHARTS mit einem hierarchischen Zustand unter-
stiitzt. Dies ermoglicht allerdings alle bisherigen Protokolle umzusetzen (sieche [May09]). Eine
vollstidndige Unterstiitzung aller Sprachkonstrukte ist entsprechend ein Ausblick.

2.6.4.1 Ubersicht Abbildung

Der Abbildung von PARAMETERIZED REAL-TIME STATECHARTS in TIMED STORY CHARTS
liegt das in Abbildung 2.27 vorgestellte Metamodell zu Grunde. Zeitbedingungen werden wie be-
reits in Abschnitt 2.6.2 vorgestellt durch ein Clocklnstance sowie ClockReset Objekt ermoglicht.
Die Assoziation des Clockinstance Objekts mit dem Statechart und State Objekt ermoglicht die
Spezifikation von Zeitbedingungen fiir Zustinde sowie fiir das gesamte Statechart. Durch den in
Abschnitt 2.27 vorgestellten Ansatz konnen zudem Zeitbedingungen fiir Transitionen spezifiziert
werden. Weitere Merkmale sind, dass wir durch die parameter Attribute eine Parametrisierung
ermoglichen, in dem fiir unterschiedliche Statechart Instanzen unterschiedliche Parameter ver-
geben werden. Im Folgenden werden wir den Ereignismechanismus erldutern (wir werden dabei
den englischen Begriff Event verwenden) und den Ansatz zusammenfassend diskutieren. Eine
detaillierte Beschreibung der einzelnen Elemente sowie die zusammengesetzte Ausfithrung der
Elemente erfolgt in Appendix A.

Events Ein Event ist definiert durch ein Event Objekt. Der Name des Events wird iiber ein na-
me Attribut angegeben. Ein Event Objekt kann iiber ein Parameter Objekt eine geordnete Menge
von Paramatern zugewiesen werden. Der Wert eines Parameters wird durch eine value Assoziati-
on auf ein Object definiert. Events werden iiber eine Event-Queue verwaltet. Die Queue ist spezi-
fiziert als eine einfache verkettete Liste, dessen Anfang und Ende mit der Event-Queue assoziiert
sind. Eine Event-Queue ist genau einem Statechart zugeordnet. Dies gilt auch fiir Instanzen eines
Statecharts.

Abbildung 2.28 zeigt die Abbildung von PARAMETERIZED REAL-TIME STATECHART-Events.
Das Story Diagramm bindet zunichst die Zustidnde wie in Abschnitt A.1.2 dargestellt. Zusétzlich
wird das erste Event (Event a) aus der Event-Queue des zugehorigen Statecharts gebunden. Wur-
de dieser Graph gebunden, so wird das ausgehende Event mit Namen b erzeugt und der Zustand
gewechselt. Die Details der enqueue und dequeue Methode werden im Folgenden Semantik-
Abschnitt erldutert.

Wie in [GBO03] dargestellt, sind fiir Echtzeitsysteme ein asynchrones Event-Handling Notwen-
dig, um den verteilten Anforderungen der Systeme gerecht zu werden. Die von Harel eingefiihrte
Mikro-Step- ([Har87]) und Super-Step-Semantik ([HN96]) ist fiir ein verteiltes Echtzeitsystem
damit nicht praktikabel, da eine Nullzeit-Ausfiihrung der Transitionen und ein unmittelbares
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head has
1 *
ClockReset EventQueue | 1 0.1 Evert > o. rm—
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Abbildung 2.27: Metamodell fiir die Abbildung von Realtime Statecharts auf Story Diagramme
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Abbildung 2.28: Schalten einer Transition mit Events



2.6 Timed Story Driven Modeling

Konsumieren von Events nicht der Realitit entspricht. Daher wurde in [GB03] ein asynchrones
Event-Handling fiir REAL-TIME STATECHARTS eingefiihrt auf denen auch PARAMETERIZED
REAL-TIME STATECHARTS basieren. Die konkrete Realisierung, ob z. B. nur das erste Element
einer Queue iiberpriift wird oder alle Elemente der Queue, ist abhiingig von dem konkreten platt-
formspezifischen Netzwerkverhalten. Dies wird typischerweise iiber Connectoren zwischen den
Strukturelementen, wie Ports, definiert, die wiederum durch ein Statechart-Verhalten implemen-
tiert werden. Hieriiber lassen sich dann z. B. Nachrichtenverluste implementieren. Grundsétz-
lich wurde in [GBO3] festgelegt, dass unabhéngig von dem konkreten Netzwerkverhalten Fifo-
Queues fiir jedes Statechart definiert werden, die elementar fiir ein asynchrones Event-Handling
sind. Damit werden die eingegangen Events nacheinander in der Reihenfolge ihres Eingangs
bearbeitet. Die definierten Event und Event-Queue Objekte setzen genau diese Semantik um.

Ein Zustandswechsel ist demnach nur moglich, wenn das Trigger-Event in der Queue enthalten
ist. Wird eine Transition geschaltet und ein Event verschickt, so wird dieses Event in eine ausge-
hende Event-Queue gelegt oder direkt in die eingehende Event-Queue des Statecharts, welches
dieses Event konsumieren soll. Durch die dequeue und enqueue Methode wird das konsumieren
der Events umgesetzt. Eine Transition kann demnach nur schalten, wenn die dequeue Metho-
de das geforderte Event binden kann. Ist dies der Fall wird das Event aus der Queue entfernt
und alle ausgehenden Events (Raised-Events) iiber die enqueue Methode der entsprechenden
Queue hinzugefiigt. Durch die vorgebene eindeutige Struktur, auch im Falle eines Multicast, ist
das Einsortieren der ausgehenden Events einfach moglich (siehe Abschnitt 2.6.1). Dieses ge-
hort zum Statechart des Ports, der mit dem Port des sendenden Statecharts iiber eine Assembly
verbunden ist. Die Semantik der PARAMETERIZED REAL-TIME STATECHARTS bleibt so offen-
sichtlich erhalten. Im Folgenden wird noch eine Implementierung fiir die dequeue und enqueue
Methode vorgeschlagen.

Die dequeue Methode versucht das erste Element der Event-Queue zu binden. Ist dies der Fall,
wird dieses Event aus der Queue entfernt® (siche Abbildung 2.29). Die erste Story versucht das
erste Element der Event-Queue zu binden. Kann kein Event gebunden werden, wird das Story
Diagramm iiber die failure Kante verlassen und das Statechart kann die Transition nicht schalten.
Die zweite Story spezifiziert das Entfernen des gebunden Events aus der Event-Queue. Weiterhin
wird der head Zeiger auf das next Element umstrukturiert. Ist dies nicht moglich, befindet sich
nur noch ein Event in der Event-Queue. Damit konnen beide Links geloscht werden.

Das Versenden eines Events wird durch die enqueue Methode umgesetzt. Diese Methode fiigt
das libergebene Event in die assoziierte Queue ein (sieche Abbildung 2.30). Beim Einfiigen des
Events in die Queue wird versucht das Event an die letzte Position einzufiigen. Ist dies nicht
moglich, ist die Event-Queue leer und das Element wird als erstes und letztes Element eingefiigt.
Andernfalls wird die last Assoziation auf das neue Event e umgesetzt und eine next Assoziation
zwischen dem neuen vorletzten und letzten Element eingefiigt.

®Die dargestellte Umsetzung iiberpriift nur das erste Element. Der Vollstindigkeit halber miisste iiber die gesamte
Queue iteriert werden.
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Abbildung 2.30: Enqueue der Event Handling Queue

Diskussion Durch den gemeinsamen Formalismus fiir das Verhalten und die Strukturanpass-
ungen ermoglicht dieser Ansatz im Vergleich zu dem bisherigen MECHATRONIC UML Ansatz
prinzipiell eine Verifikation von Sicherheits- und Lebendigkeitseigenschaften (siehe Abschnitt
2.4.1 und 2.4.6.1), die sowohl Struktur als auch Verhalten betrachten. Im Rahmen aktueller Ar-
beiten wird dies adressiert [HSJZ10, HHPS10, EHH " 11]. Wir werden eine formale Verifikation
von Sicherheits- und Lebendigkeitseigenschaften im Folgenden allerdings nicht ndher betrach-
ten, da dies nicht der Fokus dieser Arbeit ist. In Kapitel 3 werden wir eine Wiederverwendung
von modellierten Komponenten vorstellen, in dem wir auf Basis der TIMED STORY CHARTS
eine Verfeinerung definieren und diese anschlieBend verifizieren.
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Kapitel 3

Verfeinerung in hierarchischen
Komponentensystemen

Fiir die in Abschnitt 2.1 auf Seite 13 vorgestellten Konkretisierungen muss eine Verfeinerung
definiert und tiberpriift werden, um sicherzustellen, dass die durchgefiihrten Konkretisierungen
nicht zu einer Verletzung des bereits verifizierten Protokollverhaltens fiihren. Fiir die betrachteten
Systeme, ist dies eine Herausforderung, da sowohl die Verifikationsergebnisse, wie auch das nach
aullen sichtbare Echtzeitverhalten des iibergeordneten (abstrakten) Protokollverhalten erhalten
bleiben miissen, unter Beriicksichtigung von kompositionellen Strukturanpassungen.

Wir stellen in diesem Kapitel einen Ansatz vor, der genau diese Anforderungen adressiert. Dar-
iber hinaus betrachten wir die Anforderung an eine Verfeinerung moglichst viele Konkretisie-
rungen zuzulassen, um die Wiederverwendung existierender Losungen zu fordern. Im Vergleich
zu bisherigen Ansitzen (wie [JLS00, GRPS02, Bey02, GTB*03, HT04, Bur06, Gie07, OMO7))
konnen wir daher zum einen iiberhaupt durch die Betrachtung der Strukturanpassungen in Kom-
bination mit Echtzeitverhalten eine Verfeinerungsiiberpriifung fiir selbstoptimierende, mechatro-
nische Systeme durchfiihren. Zum anderen erméglicht unsere Verfeinerungsdefinition durch Fo-
kussierung auf die MECHATRONIC UML tatsédchlich einen hoheren Grad an Wiederverwendung
existierender Losungen.

Handelt es sich bei der Wiederverwendung um Multielemente, muss eine Verfeinerung fiir T1-
MED STORY CHARTS definiert werden, da nicht nur das Verhalten, sondern auch die Struktur-
anpassung eine Auswirkung auf die Verfeinerung hat (siehe Kapitel 2.6). Fiir Einfachelemente
muss nur eine Verfeinerung fiir das Verhalten, also REAL-TIME STATECHARTS (sieche Abschnitt
2.4.2), definiert werden. Da die Verfeinerung fiir TIMED STORY CHARTS auf der von REAL-
TIME STATECHARTS aufbaut, definieren wir zuerst eine Verfeinerung fiir REAL-TIME STATE-
CHARTS in Abschnitt 3.1.1 und anschlieBend fiir TIMED STORY CHARTS in Abschnitt 3.1.2. In
Abschnitt 3.2 beschreiben wir eine Verfeinerungsiiberpriifung auf Basis dieser Definitionen.

Im Folgenden werden wir zuerst das in Abschnitt 1.2 eingefiihrte Beispiel konkretisieren, um
hieran die geschilderte Problematik zu verdeutlichen. Die Anforderungen und Voraussetzungen
an die Verfeinerung betrachten wir in dem darauf folgenden Paragraphen auf Seite 67.
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Beispielanwendung Zur Veranschaulichung betrachten wir wieder die Coordinator-
Komponente des RailCab Konvoibeispiels (sieche Abbildung 2.18). Abbildung 3.1 zeigt einen
Ausschnitt des REAL-TIME STATECHARTS der Coordinator-Komponente. Es wird sowohl das
Kommunikationsverhalten der Coordinator-Komponente als auch der eingebetteten PosCalc-
Komponente gezeigt (rechte Spalte der Abbildung). In der linken Spalte wird das Adaptions-
verhalten des Multi-Ports Coordinator, des Multi-Parts PosCalc und der Multi-Delegation ge-
zeigt. Die drei Adaptionsverhalten rufen jeweils die dazugehorige Strukturanpassung auf (siehe
Abbildung 2.18).

Das Kommunikationsverhalten der Multi-Rolle Coordinator wird iiber das Adaptionsverhal-
ten der Multi-Rolle durch eine next[k]-Synchronisationsnachricht angestoen. Innerhalb von
fiinf Zeiteinheiten verschickt das Kommunikationsverhalten eine parametrisierte update(para)-
Nachricht an den Konvoiteilnehmer £, um diesen die aktuellen Konvoiparameter fiir dieses Rail-
Cab zu schicken. Innerhalb der Zeitinvariante von c1 < 25 wird eine ack()-Nachricht von dem
Konvoiteilnehmer erwartet. Wurde bereits allen Konvoiteilnehmern eine update(para)-Nachricht
zugeschickt, so wird dem Adaptionsverhalten mitgeteilt, dass alle Teilnehmer aktualisiert wurden
(done-Synchronisationsnachricht). Ist dies nicht der Fall, wird die néchste Portinstanz iiber die
next[k+1]-Synchronisationsnachricht angestoen, um den zugeteilten Konvoiteilnehmer eben-
falls aktuelle Konvoiparameter zu zuschicken.

Das Adaptionsverhalten der Coordinator-Multi-Rolle, welches parallel zu dem Kommunikati-
onsverhalten ausgefiihrt wird, koordiniert die Portinstanziierung sowie die erzeugten Ports un-
tereinander. Initial befindet sich das Adaptionsverhalten im Zustand NoConvoy. Wird die init-
Port-Synchronisationsnachricht empfangen, wird der Seiteneffekt updatePort(1) ausgefiihrt (sie-
he Abbildung 3.3). Die initPort-Synchronisationsnachricht kann dabei z. B. durch eine Synchro-
nisation mit dem Registry-Port angestoen werden, wenn ein RailCab iiber die gleiche Regis-
trierung verwaltet wird und zudem mit diesem RailCab verhandelt wurde, dass ein gemeinsamer
Konvoi gebildet werden soll.

Der updatePort-Seiteneffekt beschreibt zusitzlich zu dem TIMED STORY DIAGRAM in Abbil-
dung 2.18 die Situation, dass noch kein oder nur ein Port angelegt wurde. Die erste Story iiber-
priift, ob das CoordPort-Objekt bereits eine Verbindung zu einem CoordMember-Objekt hat.
Das CoordPort-Objekt ist die Stellvertreter-Klasse fiir das Adaptionsverhalten, um die einzelnen
Port-Klassen, die durch das CoordMember-Objekt repriasentiert werden, zu verwalten. Wurde
noch kein Port angelegt, so wird der (erste) Port angelegt und mit der iibergebenen Portposi-
tion initialisiert. Fiir die Initialisierung des Konvois, wird diese Regel iiber den updatePort(1)-
Seiteneffekt ausgelost. Wurden bereits Ports hinzugefiigt, so wird iiberpriift, ob der Vorginger-,
bzw. Nachfolge-Port bereits eine next-Assoziation zu einem Port hat. Ist dies nicht der Fall,
wird ein neuer Port und eine entsprechende next-Assoziation zu dem direkten Vorginger-, bzw.
Nachfolger-Port erzeugt. Soll der Port andernfalls zwischen zwei bisherigen Ports eingebunden
werden, wird die letzte Story ausgefiihrt, wie in Abbildung 2.18 beschrieben.

Ist der erste Port erzeugt, wird gewartet, bis die PosCalc-Rolle eine entsprechende Part-
Komponente erzeugt hat und die Delegation eine Verbindung zwischen diesen anlegt. Dies
wird iiber die Synchronisationsnachrichten createPort, addPart, portCreated und partCreated
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erreicht. Ist dies der Fall befindet sich das Adaptionsverhalten der Coordinator-Multi-Rolle ent-
weder in einer Schleife, in der ein weiterer Port hinzugefiigt (initialisiert iiber eine addPort-
Synchronisationsnachricht) oder eine Aktualisierung der Konvoiparameter durch eine next[1]-
Synchronisatonsnachricht ausgeldst wird.

Das Adaptionsverhalten der Rolle PosCalc verhilt sich dhnlich zu dem Adaptionsverhalten der
Multi-Rolle Coordinator. Als Seiteneffekt wird die updatePart()-Methode aufgerufen, die, wie
zu Abbildung 2.18 beschrieben, PosCalc-Parts erzeugt.

Das Kommunikationsverhalten der PosCalc-Rolle unterscheidet sich allerdings merklich von
dem Kommunikationsverhalten der Coordinator-Multi-Rolle (siehe Abbildung 3.1). Es unter-
scheiden sich die Anzahl der Zustinde, die Zustandsnamen sowie die Zeitintervalle. Der Zu-
stand ComputeParam des PosCalc-Kommunikationsverhaltens bettet zudem eine Steuerung zur
Berechnung der Konvoiparameter ein, die periodisch mit aktuellen Parametern aufgerufen wird
und dessen Ergebnisse mittels der parametrisierten Nachricht update verschickt werden. Um
dies zu ermdglichen, bettet die PosCalc-Komponente ebenfalls auf der strukturellen Ebene die
Steuerung CPController ein (siche Abbildung 3.2). Es ist nicht nur das Verhalten unterschiedlich
umgesetzt, sondern auch die verwendeten strukturellen Elemente. Zum einen wird eine Multi-
Rolle restrukturiert und zum andern ein Multi-Part.

Das Delegationsverhalten beschreibt eine alternative Umsetzung fiir das TIMED STORY DIA-
GRAM in Abbildung 2.19. Vorteil ist hier die konsequente Aufteilung in Adaptions- und Kom-
munikationsverhalten. Dies fiihrt wiederum zu einer entkoppelten Spezifikation der Restruktu-
rierungen.

Bisherige Ansiitze, wie in Abschnitt 2.4.7 und 7.2 beschrieben (dies beinhaltet auch die Verfeine-
rungsdefinition der MECHATRONIC UML), wiirden diese Konkretisierung nicht zulassen. Dies
liegt an dem allgemeineren Charakter dieser Ansitze, wodurch keine Relaxierung der Zeit (Zeit-
intervallverschiebungen) erlaubt werden (konnen). Dariiber hinaus wire grundsétzlich eine Ver-
feinerungsiiberpriifung nicht moglich, da keine Strukturanpassungen beriicksichtigt werden. Un-
ser Ansatz wird diese Konkretisierung zu lassen, da wir spezifisch fiir die MECHATRONIC UML
eine Zeitintervallverschiebung in bestimmten Bereichen erlauben kénnen, unter Beriicksichti-
gung von Strukturanpassungen. Im Folgenden werden wir die Anforderungen und Voraussetzun-
gen genauer erldutern.

Anforderungen und Voraussetzungen Um die in der Beispielanwendung diskutierte
Konkretisierung zu erlauben, nutzen wir den spezifischen Ansatz der MECHATRONIC UML und
die damit verbundene Anwendungsdomine aus.

Begrenzte Zeitbedingungen. Der unterlagerte Verhaltensformalismus der MECHATRONIC UML,
die Timed Automata, ermdglichen die Modellierung eines Systems mit anwachsender, nicht be-
schriankter Zeit (Uhren). Dies kann potentiell zu einer nicht Analysierbarkeit des modellierten
Systems fiithren, bzw. eine nicht Implementierbarkeit des Modells.

Die in dieser Arbeit betrachteten harten Echtzeitsysteme (siehe Abschnitt 2.4) fordern allerdings,
dass die ausgefiihrten Berechnungen vorhersagbar in einer bestimmten Zeit ein Ergebnis liefern
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Abbildung 3.1: Verhaltensmodell Coordinator-Komponente
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Abbildung 3.2: Coordinator-Komponente mit eingebetteten Regler
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[But05, Kop97]. In der MECHATRONIC UML, wird dies erreicht, in dem Deadlines fiir die aus-
gefiihrten Berechnungen und Invarianten spezifiziert werden. Hierdurch wird Fortschritt im Sys-
tem erzwungen und ein Wachsen der Zeit iiber alle Grenzen verhindert. Diese Einschrinkungen
fiihren zu einem endlichen System, welches durch z.B. eine Erreichbarkeitsanalyse auf bestimm-
te Eigenschaften iiberpriift werden kann (siehe z.B. [Bur06]). Das Problem des Zeno Schaltens,
womit unendlich viele Schaltvorginge in endlicher Zeit moglich sind, wird hiermit ebenfalls
umgangen, da das Schalten einer Transition einen Fortgang der Zeit erzwingt.

Zeitliche Bedingungen fiir Strukturanpassungen. Die Strukturanpassungen des Systems werden
ausschlieBlich als Seiteneffekte von Statecharts aufgerufen (siehe Adaptionsverhalten in Abbil-
dung 3.1). Eine Transition, die einen Seiteneffekt aufruft, spezifiziert die zeitlichen Bedingungen
der Strukturanpassungen.

Dazu muss zusitzlich separat gepriift werden, ob die WCET der Strukturanpassung die Deadline
der Transition einhalten kann ([BBB09]). Dies gilt auch fiir Transitionen, die keine Struktur-
anpassung ausfiihren, da auch deren Ausfiihrung in einem realen System Zeit verbraucht. Diese
Uberpriifung wird nicht innerhalb der Verfeinerungsiiberpriifung durchgefiihrt, sondern als ein
explizieter zusétzlicher Schritt (siehe Kapitel 6.1).

Asynchrone Echtzeitkommunikation. Eine asynchrone Echtzeitkommunikation ist nach [Dou02]
implizit (immer) durch ein Watchdog Muster in Kombination mit einem Puffer implementiert.
Ein Watchdog Echtzeitkommunikationsmuster erwartet nach jedem Verschicken einer Nachricht
nach einer bestimmten Zeit eine Antwort von dem Kommunikationspartner, bevor weitere Aktio-
nen ausgefiihrt werden. Dieses Muster ist damit Elementar fiir alle REAL-TIME COORDINATION
PATTERNS (siehe auch [May(09]). Diese Informationen iiber den Kommunikationspartner werden
durch unseren Ansatz ausgenutzt, um eine Zeitintervallverschiebung durch eine Konkretisierung
zu erlauben, ohne die Eigenschaften der bisherigen (abstrakten) Kommunikation zu verletzen.

Kontinuierliche Zeit. Die bisherige Verfeinerung der MECHATRONIC UML fiir Rollenverhalten
basiert auf diskreter Zeit [Gie03, GTB'03]. Fiir asynchrone Systeme ist ein diskretes Zeitmo-
dell allerdings nicht anwendbar, da im allgemeinen Fall eine Erreichbarkeitsanalyse nicht mog-
lich ist ([CGPO00]). Fiir physikalische Systeme ist zudem ein kontinuierliches Zeitverhalten in
der plattformunabhingigen Modellierungsphase von Vorteil, da eine Taktung zwangsldufig zu
einem komplizierten Modell fiithrt und zudem héufig nicht eindeutig bestimmbar ist, da z.B. re-
gelungstechnische Modelle typischerweise ebenfalls von kontinuierlicher Natur sind. Ein diskre-
tes Zeitsystem fithrt daher im Allgemeinen zu einem eingeschrinkteren plattformunabhédngigen
Modell. Eine automatische Diskretisierung erst wihrend der Implementierungsphase bzw. Code-
generierungsphase vorzunehmen erleichtert zudem die Entwicklung dieser Systeme und ist, wie
in [MPS95, AMPS98] vorgestellt, fiir Timed Automata moglich. Aus diesem Grund verwen-
den wir kontinuierliche Zeit (auch dense-time genannt). Da sich die Eigenschaften von diskreter
Zeit im Vergleich zu kontinuierlicher Zeit stark unterscheiden [AD94], kann die Definition aus
[GTB'03] nicht (einfach) angewandt werden.

Deterministische Modelle. Ein deterministisches Modell ist Voraussetzung fiir eine Verfeinerung,
da fiir beliebig nichtdeterministische Automaten die Korrektheit der Verfeinerung nicht iiber
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Pfade gezeigt werden kann [AD94]. Dies liegt daran, dass die Auswahl der Pfade im abstrakten
und verfeinerten Verhalten unterschiedlich bestimmt werden konnen.

Die betrachteten Modelle konnen grundsitzlich nichtdeterministisches Verhalten aufweisen. Um
das Verhalten aber tatsdchlich auf ein reales System umsetzen zu konnen, muss es eine Abbil-
dung in ein deterministisches Modell geben (da Rechnerarchitekturen deterministisch sind, bzw.
nur deterministisches Verhalten umsetzen konnen). Wie bereits in [MPS95, AMPS98, Sto02] ge-
zeigt wurde, lassen sich Timed Automata automatisch auf deterministische Automaten abbilden,
wodurch es entsprechend auch eine solche Abbildung fiir REAL-TIME STATECHARTS gibt.

Die in dieser Arbeit definierte Verfeinerung wird daher direkt fiir deterministisches Verhalten
beschrieben.

Wohldefinierte Architektur. Fiir zwei beliebige Strukturen und Verhalten ist es prinzipiell schwie-
rig eine Verfeinerung zu zeigen, wenn keine konkrete Verbindung zwischen den abstrakten und
konkreten Modellen vorliegt.

Durch die wohldefinierte Komponentenstruktur ist eine Verbindung zwischen den Komponen-
ten auf unterschiedlicher Hierarchieebene durch eine Delegation gegeben. Dies kann wiederum
fiir eine Verfeinerung des Verhaltens und der Strukturanpassung ausgenutzt werden, da die be-
teiligten Strukturen und die dazu gehorigen Verhaltensbeschreibungen eindeutig in Verbindung
stehen.

Anforderungen an die Verfeinerung. Die Merkmale der Anwendungsdoméne haben einen we-
sentlichen Einfluss auf die Verfeinerungsdefinition. In unserem Fall ist besonders hervorzuhe-
ben, dass wir sicherheitskritische Echtzeitsysteme betrachten. Hieraus folgt, dass Zeitbedingun-
gen und der Erhalt von Verifikationsergebnissen eine wichtige Rolle spielen. Zudem gibt es die
Forderung, moglichst viele existierende Losungen wiederverwenden zu konnen. Damit ergeben
sich folgende Anforderungen an eine Verfeinerung:

1. Das extern sichtbare Protokoll (die Echtzeit-Nachrichtenkommunikation) des abstrakten
Protokolls muss durch das verfeinerte Protokoll erhalten bleiben.

2. Die auf dem abstrakten Protokoll durchgefiihrten Verifikationen sollen auch fiir die Ver-
feinerung gelten. Dies sind fiir einen kompositionellen Ansatz alle ATCTL Formeln. Das
sind alle TCTL-Formeln (Timed Computation Tree Logic, [ACD93]), die ausschlieBlich
Allquantoren und keine Negationen vor Allquantoren enthalten (siehe Abschnitt 2.4.6 und
2.4.7).

3. Die Verfeinerungsdefinition soll moglichst viele existierende Losungen zu lassen, bzw.
moglichst viele Anderungen an dem abstrakten Protokollverhalten erlauben. Hierdurch
soll die Wiederverwendung existierender Losungen und die Entwicklung von notwendigen
neuen verfeinerten Protokollverhalten vereinfacht werden.

Abbildung 3.4 verdeutlicht die Anforderungen an die Verfeinerung. Das PosCalc Protokollver-
halten soll zum einen das abstrakte Coordinator Protokollverhalten erfiillen und zum anderen
sollen die verifizierten Eigenschaften des Coordinator Protokollverhaltens fiir das PosCalc Pro-
tokollverhalten erhalten bleiben. Diese beiden Anforderungen lassen sich durch eine restriktive
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Verfeinerung, die keine Anderung des Protokollverhaltens erlaubt, einfach erfiillen. Hiermit wird
allerdings die letzte Anforderung nicht erfiillt. In unserem Beispiel fiihrt dies dazu, wie auch in
Abschnitt Beispielanwendung auf Seite 65 beschrieben, dass das PosCalc Protokollverhalten
keine giiltige Verfeinerung des Coordinator Protokollverhaltens ist. Die im Folgenden Abschnitt
beschriebene Verfeinerung zeigt, wie diese kontroversen Anforderungen erfiillt werden konnen.

4 N
SendUndat V [this.parameter == n]
. done!
2 < 6000 2 < 6000 [Ml
initPort? Side Effects:  yone? (c2}] g Ll = 200 JL1  peyqikea): cl <35
- createPort(1)! updatePort(1) next[1]! [this.parameter < ] [1;1]
£ fc2}) 11os10] {c2} | 2] next[k]?
c —— portCreated? 11 {c1} | 1 ack() /
o CreatePort Update
§ 2 <59 EZ:OJ [OddSPCQ (g)io] 2 <60 SendUpdate W Jupdate(para) ( AwaitAck 1
c addPort(n)? c1<5 10,10] | ¢l < 25
Side Effects: updatePort(n) = (10:10] @
createPort(n)!
Abstraktes Verhaltensmodell
Erflllung des Protokolls Erhalt verifizierter Eigenschaften
[this.parameter == n] h
V done! ack()/ [20 < ¢l < 50]
| SendParam Idle [1:1]
2 < 6000 Le2<6000  J|[e1 <200 [this.parameter < ]
1;1
addPart(n)? 2 next[k]’?[ I nextlkr1]t ack() /
Side Effects: updatePart(l)  9°N€?|  next[1]! 1}y 20 < ¢l < 50]
o . !
S {c2}| 11010 {c2} | [1:1]
O 1 y[10:10] partCreated? [1:1] ( ComputeParam _
3 CreatePart Update AwaitAck
o [10;20] [0 < ¢2 < 10] [>{> CPController [>T —
c2 <59 c2 <60 RC C cl <20
{c2} addPart(n)? “param /Oparam =
L Side Effects: updatePart(n) <5 [update(Coparam) )

Verfeinertes Verhaltensmodell

Abbildung 3.4: Anforderungen an die Verfeinerung

3.1 Verfeinerungsdefinition

Zuerst betrachten wir im Folgenden eine Verfeinerung fiir Einfachelemente, die keine Struk-
turanpassung beriicksichtigen. In diesem Fall muss nur eine Verfeinerung fiir das Verhalten
definiert werden. Fiir den Modellierungsansatz MECHATRONIC UML muss also eine Verfei-
nerung fiir REAL-TIME STATECHARTS definiert werden, die wir in Abschnitt 3.1.1 vorstel-
len. Fiir Multielemente muss nicht nur das Verhalten, sondern auch die Strukturanpassung
beriicksichtigt werden. Daher definieren wir eine Verfeinerung fiir TIMED STORY CHARTS
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in Abschnitt 3.1.2, die genau dies beriicksichtigt. Grundlegende Arbeiten hierzu wurden in
[HHGO08, Hei09, HHZ09, HHH10, Bre10, HH11] vorgestellt.

3.1.1 Real-Time Statecharts

Die Anforderungen an eine Verfeinerung fiir REAL-TIME STATECHARTS ergeben sich aus dem
spezifischen Einsatz in der MECHATRONIC UML, wie in Abschnitt Anforderungen und Voraus-
setzungen auf Seite 67 beschrieben. Damit soll durch eine Verfeinerung das nach auflen sichtbare
Verhalten und Verifikationsergebnisse erhalten bleiben. Weiterhin soll die Verfeinerung mog-
lichst viele Konkretisierungen zu lassen.

In Abschnitt 2.4.7 haben wir bereits relevante Verfeinerungen fiir die MECHATRONIC UML vor-
gestellt (die Timed Simulation, Timed Bismulation und Timed Ready Simulation). Diese erfiillen
allerdings nur zum Teil die gestellten Anforderungen. Die auf Simulationen basierenden Verfei-
nerungen erhalten zwar relevante Eigenschaften der Verifikation (<g), jedoch wird hierdurch
nicht gefordert, dass sdmtliches im abstrakten System mogliche Verhalten vom konkreten Sys-
tem ebenfalls unterstiitzt wird. Eine Timed Simulation erhilt zudem die Zeitintervalle T4 (<7g)
der Abstraktion. Die Timed Ready Simulation bezieht sich zusétzlich zur Timed Simulation auf
den Erhalt von urgent-Transitionen (<7pg). Die auf Bisimulation aufbauenden Verfeinerungen
erfiillen den Erhalt beider Richtungen (<g und >g). Eine Timed Bisimulation erhilt zudem die
Zeitintervalle (<rpgg).

All den zeitbehafteten Verfeinerungen ist gemein, dass sie keine Relaxierung der Zeitintervalle
erlauben. Wir werden daher eine relaxierte, zeitbehaftete Bisimulation einfiihren (Relaxed Timed
Bisimulation, RTBS), die die Voraussetzungen durch die MECHATRONIC UML ausnutzt, um
Zeitintervallverschiebungen zu erlauben. In Abbildung 3.5 haben wir zusammenfassend die Be-
ziehung zwischen der Relaxed Timed Bisumlation und der hiermit in Bezug stehenden (Timed)
Bisimulation dargestellt.

Relaxed
| Timed Bisimulation
+ teilweise <RTBS + vollstandige

Einhaltung Einhaltung
Ts-Intervalle Ts-Intervalle

E Bisimulation W + Einhaltung (Timed Bisimulation}

~BS J T's-Intervalle ~TBS

Abbildung 3.5: Beziehung zwischen RTBS und (Timed) Bisimulation

Um eine Uberpriifung der Verfeinerung zu ermoglichen, die wir in Abschnitt 3.2 vorstellen,
betrachten wir im Folgenden eine Definition der Verfeinerung direkt iiber Clock Zones (siehe
Definition 6). Dies ermdglicht uns eine Implementierung der Verfeinerung iiber die Difference
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Bound Matrice, die eine effiziente Repridsentation der Clock Zones durch eine Matrix zur Verfii-
gung stellen (siehe Abschnitt 2.4.2.1).

Um die Clock Zones direkt in der Verfeinerung zu beriicksichtigen, miissen wir die Pfade des ex-
ternen Echtzeitverhaltens direkt darstellen. Hiermit konnen wir iiber die jeweiligen Intervalle und
deren Clock Zone argumentieren. Dies wird iiber sogenannte Timed Traces [YJ94] ermoglicht,
die wie folgt definiert sind.

Definition 15 (Timed Trace)

Sei M ein Timed Automaton (siehe Definition 1) mit extern sichtbaren Ereignissen (Nachrichten)
A = A; U A, mit A; empfangene Nachrichten, A, gesendete Nachrichten und A C Y. Ein Timed
Trace ist ein Ausfiihrungspfad © von M fiir den gilt:

T = (So,to) =50 (So,to @50) =ag (817t1) =5 (Sl,tl () (51)

wobei =5, dem Vergehenlassen einer Zeitspanne O, entspricht und =, einem Zustandswechsel
auf Basis einer Nachricht ag € A.

Ein Zustand eines Traces ist iiber Zones nach Definition 6 wie folgt definiert:

Definition 16 (Zustinde eines Timed Trace)

Sei M ein Timed Automaton. Ein Zustand S eines Timed Trace & zu M ist eine Zone (s, z),
wobei s eine Location aus M und z eine Clock Zone ist. Es bezeichnet S.s die Location des
Timed Automaton und S.z die Clock Zone von S. Es bezeichnet weiterhin z.c die Menge der
Clock Constraints iiber die Clock c der Clock Zone z.

Die Beschrinkung eines Timed Traces auf das extern sichtbare Verhalten fiihrt dazu, dass die
Transitionen eines Timed Traces das interne Verhalten verbergen.

Definition 17 (Transitionen eines Timed Trace)
Seien S,T" Zustdnde eines Timed Trace, € das intern ausgefiihrte Verhalten der Transitionen und
d; Zeitintervalle, dann gilt:

1. S=,T falls S(=.)" =, (=:)'T
2. S=5T falls S(=:)" =a, (=) (=) =4, (=) Tmito=>Y . d;

Mit Hilfe dieser Definition wird es ermoglicht, dass nach jeder extern sichtbaren Transition be-
liebig viele interne Transitionen geschaltet werden konnen (1.). Interne Transitionen kénnen
z .B. Synchronisationen (wie next[k]) und Seiteneffekte (wie updatePort(n)) ausfithren. Dieses
Prinzip wird ebenfalls in der Definition von der Stutter Verfeinerungen nach [BK08] angewandt.
Im Unterschied zu dieser Definition miissen wir das zeitliche Verhalten beriicksichtigen.

Das extern sichtbare Zeitverhalten ist nicht nur von den Transitionen beeinflusst, die extern sicht-
bar sind (also die Transitionen eines Timed Trance), sondern auch von den anderen (internen)
Transitionen, die z.B. ein Clock Reset ausfiihren konnen. Dies ist z. B. der Fall bei dem Uber-
gang des Zustands Idle nach ComputeParam des Kommunikationsverhaltens der PosCalc-Rolle
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(siehe Abbildung 3.1). 2. der Definition 17 stellt sicher, dass die internen Aktionen, die das zeit-
liche Verhalten beeinflussen, ebenfalls durch eine Transition eines Timed Trace beriicksichtigt
werden.

Wie einleitend beschrieben, soll die Definition der Verfeinerung direkt iiber Clock Zones erfol-
gen, da hierdurch direkt der Zusammenhang mit der Implementierung der Verfeinerung ermog-
licht wird. Der in Definition 15 beschriebene Timed Trace angelehnt an der Definition von Yi
und Jonsson [YJ94] beschreibt, wie fiir die Verfeinerung benétigt, das extern sichtbare Verhal-
ten. Clock Zones werden in dieser Verfeinerung jedoch noch nicht beriicksichtigt.

Nachdem die Zustinde und Transitionen eines Timed Trace definiert wurden, stellen wir im
Folgenden eine Definition von Timed Traces vor, die auf diesen Definitionen basierend ebenfalls
Clock Zones beriicksichtigen [HHH10]. In der Literatur sind zwei Definitionen fiir Clock Zones
weit verbreitet, die von Bengston und Yi [BY03] und Alur [Alu99]. Wir werden im Folgenden
aus beiden Definition die Elemente verwenden, die eine fiir Timed Traces einfache Berechnung
der Clock Zones ermoglichen. Wir werden uns daher fiir die Berechnung der Zones an Bengston
und Yi orientieren und fiir Clock Resets an der Definition von Alur.

Definition 18 (Timed Trace iiber Clock Zones)

Sei M ein Timed Automaton mit extern sichtbaren Ereignissen (Nachrichten) A = A; U A, mit A;
empfangene Nachrichten und A, gesendete Nachrichten, A C ¥ und Z eine Menge von Clock
Zones iiber die Clocks C des Automaten. Ein Timed Trace § = (Se, Ry) ist ein Ausfiihrungspfad
von M mit Zustinden S¢ und Transitionen Ry fiir den gilt:

£ = (s0, 20) =50 <80,Zg> a0 (s1,21) =4, <S1,ZI>~-

I 2'={2+dz€ Z,deR}

2. (S0, 20) =, (S0, 20) entspricht (sy, z) = (so, 20 NI (s0)) mit I(sq) Invariante von Zustand
S0

3. (s0,20) =a, (s1,21) entspricht (so,z0) = (s1,((z0 A g)[\ := 0]) A I(s1)) mit 1(sy)
Invariante von sy, g Time Guard der Transition und \ eine Menge von Clocks A C C, die
auf 0 zuriickgesetzt werden.

4. Vs € S¢ : s.z ist nicht leer

Wie in 17 definiert, konnen die Transitionen eines Timed Trace iiber Clock Zones entweder Zeit
vergehen lassen (Delay Transition) oder ein Ereignis empfangen bzw. verschicken. Die Berech-
nung der Clock Zones gibt dabei an wann ein Zustand verlassen und betreten werden darf.

Im Fall einer Delay Transition muss fiir die Berechnung der Clock Zone entsprechend die Inva-
riante (siehe Definition 1) des Zustands beriicksichtigt werden. Eine Invariante eines Zustands
gibt dabei fiir eine Clock eine obere Schranke durch eine Konstante oder eine andere Clock an
(siehe Definition 3 zu Clock Constraints). Die resultierende Clock Zone nach Anwendung der
Invarianten wird berechnet, in dem die Clock Zone des aktuellen Zustands mit den Invarianten
geschnitten wird (siehe Punkt 2 Definition 18).
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Eine Transition die ein Ereignis empfingt oder versendet ist durch mehrere interne Operatio-
nen beschrieben, wie dies der Fall beim Schalten einer Transition eines Timed Automata nach
Definition 1 der Fall ist. Zum Berechnen der Clock Zone miissen folglich die Time Guards der
Transition (welche Schranken gelten fiir die Transition), die Clock Resets (welche Clocks wer-
den auf 0 zuriick gesetzt) sowie die Invarianten des Zielzustands (welche Schranken gelten fiir
das Betreten des Zustands) beriicksichtigt werden. Punkt 3 der Definition eines Timed Trace iiber
Clock Zones beschreibt dies, in dem zuerst die Clock Zone des aktuellen Zustands mit dem Ti-
me Guard g geschnitten wird, anschlieBend die Clock Resets A angewandt werden und dann die
Invarianten des Zielzustands ebenfalls mit der aktuellen Clock Zone geschnitten werden.

Basierend auf der Definition der Timed Traces kann im Folgenden die Verfeinerung eines einzel-
nen Traces definiert werden, die Grundlage fiir die Verfeinerung von zwei Timed Automata sein
wird. In der Definition setzen wir voraus, dass die Namen der Nachrichten sowie Clocks eines
abstrakten Automaten a und eines verfeinerten Automaten k gleich benannt sind.

Definition 19 (Verfeinerter Trace)

Seien &, = (Sea, Rea): &k = (Se k. Re i) Timed Traces iiber Clock Zones (siehe Definition 18)
mit Startzustinden l,, .o fiir Timed Automata M,, M. Sei Q@ C S, x S, eine Abstraktions-
funktion, die eine Location aus M, mit einer Location aus My, assoziiert. Sei weiterhin D(s, c)
eine Relation, die zu einer Zone s und einer Clock c alle Clock Zones seit der letzten Nachricht
vor Zone s liefert, in denen die Clock c zuriickgesetzt wurde. & ist ein verfeinerter Trace zu &,

Sk < &, falls:
1. (la0-S,lko-s) € Qundinl,g.z, 1.2 sind alle Clocks 0

2. Fiir jede Transitiont; € R , mit s, =, s, und Nachricht a, € A, existiert eine Transition
t;j € Rej mit s, =, Sy, wobei (S,.5, s.s) € S, fiir die gilt

o (s..s,8).5) €

e Fiir alle Clocks ¢ in s,.z: Z{leep(sbc)} ubound(z.c) + ubound(s).z.c) =
Z{Z|ZED(S;€7C)} ubound(z.c) + ubound(s),.z.c)

3. Fiir jede Transition t; € R¢ , mit S, =, s, mit a; € A; existiert eine Transition t; € R,
mit S, =4, Sy, wobei (s,.8, sg.s) € €, fiir die gilt
o (s.5,8,.5)€Q

e Fiir alle Clocks c in s;.z: Y cps oy ubound(z) + ubound(s;.z) <
Z{Z|Z6D(8;€7C)} ubound(z) + ubound(s},.z)

4. Alle externen Ereignisse (Nachrichten) sind in &, und &, iiber den gleichen Namensraum
definiert.

Die Verfeinerungsdefinition ist so aufgebaut, dass beginnend mit der Startlocation (Bedingung
1.) zu jeder Location des abstrakten Timed Trace eine korrespondierende Location im verfei-
nerten Timed Trace zugeordnet wird (Bedingung 2. und 3). Bedingung 2. und 3. fordern dies
entsprechend fiir die ein- und ausgehenden Nachrichten. Durch die Bedingung, dass die jeweils
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vorherige Location Teil der Funktion (2 ist, die die Location des abstrakten Trace mit dem verfei-
nerten in Beziehung setzt, wird sukzessive die Relation zwischen den beiden Traces aufgebaut.
Voraussetzung fiir diese Zuordnung ist, dass die Transitionen die gleichen Nachrichten verarbei-
ten.

Wie zu den Transitionen eines Timed Traces erldutert (siche Definition 17) ist zwar fiir das extern
sichtbare Verhalten die Nachrichtenkommunikation der Timed Traces relevant, es miissen jedoch
auch die internen Transitionen beriicksichtigt werden, um die Zeitintervalle mit richtiger oberer
Schranke zwischen zwei Zustinden eines Timed Trace zu bestimmen, die durch Clock Resets an
internen Transitionen beeinflusst werden konnen. ubound in Bedingung 2. und 3. liefert die obe-
ren Schranken der Clock Zones zwischen den Zustinden eines Timed Trace zuriick, falls an den
internen Transitionen eine Clock Reset Operation durchgefiihrt wurde. Ein Timed Trace ist dann
eine giiltige Verfeinerung, wenn die oberen Schranken des Sendeintervalls im Bezug zu dem ab-
strakten Timed Trace gleich bleiben (Bedingung 2.) und das Empfangsintervall mindestens die
gleiche obere Schranke besitzt (Bedingung 3.).

Fiir die Verfeinerung wird das Verhalten des Kommunikationspartners nicht explizit betrachtet.
Bedingung 2. iiber Clocks beim Versenden ist daher notwendig, da eine kleinere oder grofere
obere Schranke dazu fiihren kann, dass der Kommunikationspartner die Nachricht(en) nicht mehr
rechtzeitig empfangen kann. Grund hierfiir ist, dass der Kommunikationspartner potentiell die
obere Schranke beim Empfangen von Nachrichten des abstrakten Timed Trace beriicksichtigt.

Zur Veranschaulichung betrachten wir folgende Timed Traces unserer Beispielanwendung aus
Abschnitt Beispielanwendung auf Seite 65:

Evordinator = (Ldle, 1 < 200)... = jupdate(para) (AwaitAck, cl < 25)...

und
Eposcaie = (Ldle, 1 < 200)... = jupdate(Coparam) (AwaitAck,cl < 20)...

In Q sind enthalten (Idle, Idle) und (Await Ack, Await Ack).
D (22e D(Await Ack.C1)orainarer} UbOUNA(2.) ergibt 200, da ein Clock Reset zwischen Idle
und SendUpdate durchgefiihrt wird. >/ pawaitack,01) py.cu.} WoOUR(2.C) ergibt 205,
die sich aus den Clock Resets zwischen Idle und ComputeParam und ComputeParam
und AwaitAck ergeben. Insgesamt ergibt sich damit fiir &}, im0, €iN€ Summe von
D (22e D(Await Ack.C1)oorginarar} UbOUNA(2.€) + ubound(AwaitAck,C1) = 200 + 25 = 225.
Fir SllpostCalc ergibt sich eine Summe von Z{z|zeD(AwaitAck,Cl)postcalc} ubound(zc) +
ubound(AwaitAck, C1) = 205 + 20 = 225, womit {p, . €ine Verfeinerung von &4, ainator
ist.

Beim Empfangen von Nachrichten ist eine Verkleinerung der oberen Grenze ausgeschlossen, da
der Kommunikationspartner, wie beim Versenden, potentiell das gesamte Intervall des abstrak-
ten Timed Trace ausnutzen kann. Es muss also auch beim Empfangen gefordert werden, dass die
obere Schranke eingehalten wird, wie Bedingung 3. fordert. Zusitzlich wird das Empfangsin-
tervall relaxiert, im dem die obere Schranke durch den verfeinerten Trace iiberschritten werden
darf. Voraussetzung fiir die Giiltigkeit der Relaxierung ist eine asynchrone Echtzeitkommunika-
tion wie in Abschnitt Anforderungen und Voraussetzungen auf Seite 67 beschrieben. Unter der
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Annahme, dass ein Nachrichtenpuffer mindestens die GroBe eins hat und implizit ein Watchdog
Muster bei der Kommunikation implementiert wurde, womit nach dem Verschicken einer Nach-
richt nach einer bestimmten Zeit eine Antwort von dem Kommunikationspartner erwartet wird,
verletzt die Relaxierung nicht die abstrakte Kommunikation.

Zur Illustration fiir das Empfangen von Nachrichten betrachten wir folgende Timed Traces un-
serer Beispielanwendung:

Evordinator = - (Await Ack, c1 < 25) = ,.(), (Complete,cl < 35)...

und
Ehoscate = - (Await Ack, c1 < 20) =404, (Idle,cl < 50)...

In © sind enthalten  (AwaitAck, AwaitAck) und  (Complete, Idle).
D (22eD(Complete.Cl)commaiman} W0OUNA(2.) ergibt 0, da kein Clock Reset zwischen
AwaitAck und  Complete  durchgefithrt — wird. 370 b e o1y py.on.y WbOUNA(2.C)
ergibt ebenfalls 0. Insgesamt ergibt sich damit fiir &2, 4ma0r €iN€ Summe von
D (22eD(Complete.Cl)comainntnr} W0OUNA(2.C) + ubound(Complete,C1) = 0 + 35 = 35. Fur
Epostcalc ergibt sich eine Summe von - b e 01) ey WbOUNA(2.0)+ubound(Idle, C1) =
0+ 50 = 50. £%,,;cu1 ist nach Definition 19 eine Verfeinerung von &2 .. . da fiir das
Empfangen die obere Schranke in dem verfeinerten Timed Trace > der oberen Schranke im
abstrakten Timed Trace sein darf.

Abbildung 3.6 verdeutlicht die moglichen Relaxierungen. Um Uberschneidungen zu vermeiden,
muss die Obergrenze des Empfangsintervalls kleiner sein als die Untergrenze des Sendeinter-
valls. Unter der Annahme, dass es sich um die oben beschriebene Klasse von Kommunikations-
mustern fiir Systeme mit harten Echtzeitanforderungen handelt, tritt diese mogliche Verletzung
nicht auf, da sich Senden und Empfangen von Nachrichten immer abwechseln. Genau genom-
men gilt dies auch fiir mehrere zu empfangende Nachrichten, so lange diese alle durch den Puffer
aufgenommen werden konnen. Gelten diese Voraussetzungen nicht, so darf die Obergrenze fiir
das Empfangen von Nachrichten nicht iiberschritten werden.

Empfangsintervall Sendeintervall Legende:

; Ib ub Ib ub Ib: Untergrenze Zeitintervall

Abstraktion — —
| | | ub: Obergrenze Zeitintervall

Verfeinerung  -----F---- F-g--

A i
\\ muss /,’ beliebig
beliebig

Abbildung 3.6: Zeitintervall- Verfeinerung

Hieraus kann gefolgert werden, dass je nach verwendetem Protokoll auch unterschiedliche Re-
laxierungen fiir das Empfangsintervall angewandt werden konnen. Wir werden im Folgenden
die Relaxierung niher betrachten, in der die Obergrenze fiir das Empfangen des abstrakten Ver-
haltens auch iiberschritten werden darf. Die beschriebene Einschriankung lisst sich allerdings
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einfach ableiten, in dem die Obergrenze des Empfangsintervalls des abstrakten Verhaltens nicht
nur verpflichtend ist, sondern auch nicht iiberschritten werden darf.

Im Folgenden werden wir auf der Grundlage der Verfeinerung eines Timed Traces eine Verfeine-
rung fiir zwei Timed Automata definieren. Gerade durch Wiederverwendung bereits vorhande-
ner Protokolle, kann es grundsitzlich moglich sein, dass eine Verfeinerung auch mehr externes
Verhalten anbietet als ein abstraktes Verhalten. Daher definieren wir vorab einen Schnittstellen-
beschrinkten Automaten basierend auf [Gie0O3], den wir in der Verfeinerung fiir zwei Timed
Automata beriicksichtigen.

Definition 20 (Schnittstellen-beschrinkter Automat)

Sei My = (Sk, Sy, Tk, Invy, Ay, Cy) ein Timed Automaton mit externen Ereignissen (Nach-
richten) A, = A, U A, mit A, empfangene Nachrichten und A, gesendete Nachrich-
ten. Sei M, ein Timed Automaton, der eine abstrakte Schnittstelle iiber Nachrichten A =
A; U A, mit A; empfangene Nachrichten und A, gesendete Nachrichten reprdsentiert. Falls gilt
A; € Ajpund A, C Ay, dann kann ein Schnittstellen- beschrinkter Automat Int(M;) =

(Sints Soris Tints InVing, Aint, Cing) zu My, gebildet werden mit:
® Sint = Sk
o 50, =5
o A=A
o Inv = Invy
o Cip = Cy

Ein Schnittstellen-beschrinkter Automat ist demnach dadurch charackterisiert, dass die Transi-
tionen eines Automaten entfernt werden, die Nachrichten anbieten, die nicht Teil der Schnittstelle
sind.

Als Hilfsmittel definieren wir im Folgenden zudem das extern sichtbare Verhalten iiber Timed
Traces.

Definition 21 (Extern sichtbares Verhalten)
Das extern sichtbare Verhalten eines Timed Automaton M entspricht der Menge seiner Timed
Traces Trace(M).

Die Verfeinerung fiir zwei Timed Automata sei damit wie folgt definiert:

Definition 22 (Verfeinerung)

Seien M, My, Timed Automata mit externem Verhalten Trace(M,) bzw. Trace(My). Sei My,
ein Schnittstellen-beschrinkter Automat zu My. My, ist eine Verfeinerung von M,, My < M,,
falls

1. fiir jeden Trace &, € Trace(M;y;) ein Trace &, € Trace(M,) mit § < &, existiert und
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2. =3¢ € Trace(Myy) : succ(s) = 0 fiir einen Zustand s € &, mit Nachfolgezustand
succ(s) und

3. jeder Trace aus Trace(M,) iiberdeckt wurde. Eine Menge von Timed Traces (siehe Defi-
nition 18) ist iiberdeckt, wenn fiir jeden Trace zwischen je zwei Nachrichten ein Zustand in
der Menge der korrespondierenden Zustinde enthalten ist.

Die Verfeinerung soll nach Abschnitt Anforderungen und Voraussetzungen auf Seite 71 folgende
Anforderungen erfiillen: 1) Erhalt des extern sichtbaren Protokollverhalten, 2) erhalt der Verifi-
kationsergebnisse und 3) moglichst viele Konkretisierungen zu lassen.

Anforderung 1) wird erfiillt, da Bedingung 3. fordert, dass alle Timed Traces des abstrakten
Protokolls durch die Verfeinerung ebenfalls angeboten werden. Durch Bedingung 1. wird zudem
sichergestellt, dass die Schnittstellen-beschriankte Verfeinerung auch nicht mehr Timed Traces
anbietet als dies der Fall fiir das abstrakte Verhalten ist. Eine Ordnung iiber die Nachrichten wird
zudem zugesichert.

Lemma 1
Gegeben seien zwei beliebige Timed Traces &, mit Nachrichtenordnung al, a2, ..., an und Timed
Trace & mit &, < &, dann gilt, dass &, ebenfalls die Nachrichtenordnung al, a2, ..., an einhdlt.

Beweis 1

Die sukzessive Konstruktion einer Verfeinerung zweier Timed Traces nach Definition 19 garan-
tiert, dass in ) nur korrespondierende Zustandspaare aufgenommen werden, die iiber die glei-
chen Nachrichtenfolgen erreicht werden. [

Zusammen durch Bedingung 1. und 3. wird eine Bisimulation durch Nutzung einer Weak Tran-
sition Relation definiert [HH11]. Durch eine Weak Transition Relation wird sich auf Transiti-
onsfolgen bezogen, die im Bezug auf das extern sichtbare Verhalten dquivalent sind. Durch eine
Bisumlation wird zum einen verboten, dass eine Verfeinerung zusitzliches Verhalten gegeniiber
der Abstraktion anbietet und zum anderen, dass sdmtliches mogliches Verhalten der Abstrakti-
on durch die Verfeinerung unterstiitzt wird. Hierdurch bleiben CTL Formeln erhalten und die fiir
einen kompositionalen Ansatz erforderlichen ACTL Formeln [CGPO0O0]. Eine Timed Bisimulation
wird fiir die spitesten Zeitpunkte zu denen eine Nachricht verschickt definiert und damit bleiben
hierfiir TCTL Formeln erhalten [TYO1] und entsprechend auch ACCTL Formeln [Gie03]. Fiir
zu empfangende Nachrichten konnen im Allgemein Zeit-Formeln nicht erhalten bleiben, da die
Schranke hierfiir nach oben erhoht werden kann. Um Time Stopping Deadlocks auszuschlieBen,
wird Bedingung 2. gefordert.

Anforderung 3) wird durch die Definition einer relaxierten Bisimulation adressiert. Hierdurch
wird im Vergleich zu den bisherigen Timed (Bi-) Simulationen eine Verschiebung des Emp-
fangsintervalls erlaubt, ohne dabei den Erhalt des externen Protokollverhaltens zu verletzen.
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3.1.2 Timed Story Charts

Im vorherigen Abschnitt wurde eine Verfeinerung fiir Protokollverhalten basierend auf REAL-
TIME STATECHARTS vorgestellt, mit denen Ports der Multiplizitit eins betrachtet werden kon-
nen. Um Multielemente zu betrachten, die eine dynamische Anderung der Kommunikationss-
truktur ermoglichen, miissen wir neben dem Echtzeitverhalten auch mogliche Strukturanpass-
ungen in einer Verfeinerung beriicksichtigen. Dies ist notwendig, da eine korrekte Verfeinerung
des Statechartverhaltens nicht ausreichend ist, wenn die (kompositionale) Strukturanpassung der
Kommunikationsstruktur in der Verfeinerung zu spit ausgefiihrt wird.

Wir werden in diesem Abschnitt die Verfeinerung fiir Einfachelemente auf Multielemente er-
weitern. Technisch soll die Verfeinerung von REAL-TIME STATECHARTS auf TIMED STORY
CHARTS (siehe Abschnitt 2.6.4) iibertragen werden, die fiir eine dynamische Anderung der Kom-
munikationsstruktur ausgelegt sind.

Um eine Verfeinerung fiir TIMED STORY CHARTS zu beschreiben definieren wir Analog zu der
Verfeinerung fiir REAL-TIME STATECHARTS Timed Traces iiber Clock Zones fiir TIMED STO-
RY CHARTS. Die Semantik der TIMED STORY CHARTS wird iiber zeitbehaftete Graphtransfor-
mationssysteme nach Hirsch [HirO8] beschrieben. Im Folgenden erweitern wir die Definition von
Hirsch fiir zeitbehaftete Graphtransformationssysteme um die explizite Betrachtung von Clock
Zones. Zuerst beginnen wir mit der Definition eines zeitbehafteten Graphen.

Definition 23 (Zeitbehafteter Graph)

Ein zeitbehafteter Graph G, := (G, C, Z) ist ein Tripel bestehend aus einem Objektgraphen G,
einer Anzahl von Clock-Instanzen C und einer Menge von Clock Zones Z iiber die Elemente aus
C.

Die Definition beriicksichtigt zum einen direkt Clock Zones und zum anderen wie in Definition
10 beschrieben eine Typisierung der Objektgraphen iiber ein Klassendiagramm. Die Clock Zones
beschreiben iiber Clock-Instanzen Bedingungen iiber die Clocks, wie dies Analog fiir Zustdnde
eines Timed Transition Systems der Fall ist. Ein zeitbehaftetes Graphtransformationssystem ldsst
sich damit wie folgt definieren.

Definition 24 (Zeitbehaftetes Graphtransformationsystem)

Ein zeitbehaftetes Graphtransformationssystem G; = (G, G°, TR, I R) besteht aus einer Men-
ge an zeitbehafteten Graphen Gy, einem Startgraphen G, einer Menge von Schaltregeln T R
und einer Menge von Invariantenregeln I R. Die Menge GRAP H, beschreibt die Menge aller
zuldissiger zeitbehafteter Graphen.

Fiir die hier betrachteten TIMED STORY CHARTS wird als Typgraph das Metamodell der Kom-
ponenten aus Abbildung 2.20 sowie dessen Statechart Metamodell aus Abbildung 2.27 verwen-
det. Wie in Abschnitt 2.6.4 beschrieben, werden PARAMETERIZED REAL-TIME STATECHARTS
auf TIMED STORY CHARTS abgebildet. Diese Abbildung beschreibt unter anderem, wie Nach-
richten und Clocks auf Objekte der Statechart Metamodell Klasse abgebildet werden. Hieriiber
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wird es ermoglicht im Folgenden analog zu der Verfeinerungsdefinition fiir REAL-TIME STATE-
CHARTS ebenfalls iiber Nachrichten und Clocks zu argumentieren. Damit ist die Grundlage ge-
schaffen, um zunichst einen Zustand eines Timed Trace fiir TIMED STORY CHARTS zu definie-
ren.

Definition 25 (Zustand eines Timed Trace fiir TIMED STORY CHARTS)

Sei Gy = (G4, G°, TR, I R) ein zeitbehaftetes Graphtransformationssystem gemdif3 Definition 24.
Ein Zustand S eines Timed Trace zu G, ist eine Zone (g,z) mit g € GRAPH¢, und z die
dazugehorige Clock Zone. Es bezeichnet S.g den Objektgraphen und S.z die Clock Zone von S.
Es bezeichnet weiterhin z.c die Menge der Clock Constraints iiber die Clock c in z.

Nach Definition 16 werden die Zustidnde eines Timed Traces & eines Timed Automaton M {iiber
eine Zone (s, z) beschrieben, wobei s eine Location aus M ist und z eine Clock Zone. Im Ver-
gleich hierzu ist ein Zustand eines Timed Trace fiir TIMED STORY CHARTS iiber einen Ob-
jektgraphen ¢ € GRAPH, definiert. Da sich die Definition einer Transition hierdurch nicht
dndert, wird im Folgenden fiir Transitionen eines Timed Traces Definition 17 benutzt. Weiter-
hin bezeichne im Folgenden A = A; U A,, mit A; empfangene Nachrichten und A, gesendete
Nachrichten, die extern sichtbaren Nachrichten eines TIMED STORY CHARTS, die iiber das Me-
tamodell aus Abbildung 2.27 definiert wurden. Ein Timed Trace fiir TIMED STORY CHARTS ist
damit wie folgt definiert.

Definition 26 (Timed Trace eines Timed Story Charts)

Sei G; = (G, G°, TR, I R) ein zeitbehaftetes Graphtransformationssystem gemdif3 Definition 24
mit extern sichtbaren Ereignissen (Nachrichten) A = A; U A, des TIMED STORY CHARTS mit
A; empfangene Nachrichten und A, gesendete Nachrichten und Z eine Menge von Clock Zones
iiber Clock-Instanzen C. Ein Timed Trace £ = (S¢, Re) ist eine Folge von Regelanwendungen
aus T'R mit Zustinden S¢ und Transitionen Ry fiir den gilt:

£ = (90, 20) =50 <90,Zg> = ag (g1, 21) =, <91,ZI>~-~
mit
o ' ={z+dz€ Z,deR,}

e (9o, 20) =4, (90, zg> entspricht (go, z0) = <go,zg A I(go)) mit 1(qgo) ist eine auf gy an-
wendbare Invariante

e (g0, 20) =4, (q1,21) entspricht {(go,z0) = (g1, ((z0 A g)[\ := 0]) A I(g1)) mit I(gy) ist
eine auf g, anwendbare Invariante, g ist ein Time Guard der Transition und )\ eine Menge
von Clock-Instanzen \ C C, die auf 0 zuriickgesetzt werden.

o Vs € S¢ : s.z ist nicht leer

Nach Definition 18 ist ein Timed Trace { = (S¢, R¢) eines Timed Automaton A/ definiert als
ein Ausfithrungspfad von A mit Zustinden S¢ und Transitionen Z¢. Im Unterschied zu dieser
Definition wird ein Timed Trace eines TIMED STORY CHARTS iiber eine Folge von Regelan-
wendungen aus T'R definiert, die das Schalten einer Transition und das Vergehen von Zeit be-
schreiben. Zudem wird eine Invariante im Vergleich zu der Definition fiir Timed Automata in
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Form eines Graphen definiert (siche Abschnitt A.1.7) und Clock Resets werden iiber Objek-
te vom Typ ClockReset definiert (sieche Abschnitt A.1.9). Das extern sichtbare Verhalten eines
TIMED STORY CHARTS konnen wir damit wie folgt beschreiben.

Definition 27 (Extern sichtbare Verhalten)

Das extern sichtbare Verhalten eines zeitbehafteten Graphtransformationssystems G, dessen
Transformationsregeln iiber ein TIMED STORY CHART beschrieben sind, entspricht der Menge
seiner Timed Traces Trace(G).

In der Definition werden explizit die Transformationsregeln eines TIMED STORY CHARTS be-
riicksichtigt. Da PARAMETERIZED REAL-TIME STATECHARTS auf TIMED STORY CHARTS ab-
gebildet werden konnen, ist hierdurch direkt ein Bezug zu der Protokollbeschreibung von Mul-
tielementen gegeben. Ein verfeinerter TIMED STORY CHART Trace ldsst sich damit wie folgt
definieren.

Definition 28 (Verfeinerter Trace)

Seien £, = (S¢ 0y Re o), & = (Se ks Re ;) Timed Traces fiir zeitbehaftete Graphtransformations-
systeme G¢ = (G G° TR, IR,) und GF = (G¥, GV, TRy, I Ry,). Sei abs : GF — G2 eine Ab-
straktionsfunktion, die Objekte aus Qf mit Objekten aus G{ assoziiert. Sei weiterhin D, cse(s, ¢)
eine Relation, die zu einer Zone s und einer Clock c alle Clock Zones seit der letzten Nachricht
vor Zone s liefert, in denen die Clock c zuriickgesetzt wurde. &, ist ein verfeinerter Trace zu &,,

&k < &a falls:
1. G C abs(GY) und in s,0.2, Sk.0.2 sind alle Clocks O

2. Fiir jede Transitiont; € Re , mit s, =, S, mit Nachricht a, € A, existiert eine Transition
t; € Rej mit s, =, s}, wobei s,.g C abs(sg.g), fiir die gilt
o 5.9 Cabs(s).qg)
e Fiir alle Clocks ¢ in s,.2: D .cps o) tbound(z.c) + ubound(s,.z.c) =

;o ubound(z.c) + ubound(s),.z.c
Z{z|zED(sk,c)} k

3. Fiir jede Transition t; € Re o, mit s, =, s, mit a; € A; existiert eine Transition t; € Rg¢
mit S, =, Sy, wobei s,.qg C abs(sy.q), fiir die gilt

o s.g Cabs(s).q9)
e Fiir alle Clocks ¢ in s,.z: Y 0 cp o wbound(z) + ubound(s,.z) <
Z{Z|26D(S%7C)} ubound(z) + ubound(s).z)

4. Alle externen Ereignisse (Nachrichten) sind in &, und &, iiber den gleichen Namensraum
definiert.

Im Unterschied zu Definition 19 (verfeinerter Trace eines Timed Automaton) wird hier basierend
auf Definition 25 die korrespondenz zwischen zwei Zustinden iiber eine Abstraktionsfunktion
abs definiert, die die Objekte aus G mit denen der Objekte aus G¢ verbindet. Uber die Teil-
mengenrelation wird sichergestellt, dass alle strukturellen Elemente, wie Ports oder auch PARA-
METERIZED REAL-TIME STATECHARTS Instanzen, sowohl im abstrakten wie auch konkreten
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Verhalten existieren. Eine strukturelle Verfeinerung iiber eine Teilmengenrelation zu beschreiben
wurde bereits durch Heckel und Thone in [HT04, HTO0S5] vorgestellt. Die dort definiert Verfeine-
rung basiert jedoch rein auf der Struktur und der Abfolge der erzeugten Graphen, ohne Betrach-
tung von (Echtzeit-) Verhalten oder den Erhalt von Verifikationsergebnissen.

In der MECHATRONIC UML wird eine Beziehung zwischen den strukturellen Elementen durch
eine Delegation, die Ports der du3eren Komponente mit den Ports der eingebetteten Parts verbin-
det, beschrieben. Da die Rollen der Muster ebenfalls eindeutig in Beziehung mit deren Anwen-
dung durch Komponenten-Ports stehen, wird hier ebenfalls eine Korrespondenz zwischen den
Strukturen beschrieben. Eine giiltige Strukturverfeinerung liegt dann vor, wenn zu jedem Port ei-
nes abstrakten Protokolls ein verfeinerter Port existiert. Ein Beispiel zeigt Abbildung 3.7. Nach
der gegeben Definition entspricht damit Instanzsituation (a) einer giiltigen Verfeinerung und (b)
nicht.

E ,'/‘—
p1:PosCalc

p1:PosCalc
p2:PosCalc :| p2:PosCalc
%
P

co:Coordinator % co:Coordinator %

0

(@) (b)

Abbildung 3.7: Beispiel fiir eine Strukturverfeinerung: (a) zeigt eine giiltige Strukturverfeine-
rung, (b) eine ungiiltige

Analog zu der Verfeinerung fiir REAL-TIME STATECHARTS definieren wir im Folgenden basie-
rend auf der Definition 28 eines verfeinerten Timed Trace eine Verfeinerung fiir TIMED STORY
CHARTS, die entsprechend iiber alle Timed Traces argumentiert.

Definition 29 (Verfeinerung)
Seien G, GF zeitbehaftete Graphtransformationssysteme mit externem Verhalten Trace(GE) bzw.
Trace(GF). GF ist eine Verfeinerung von G¢, G¥ < G, falls

1. fiir jeden Trace &, € Trace(GF) ein Trace &, € Trace(GY) mit &, < &, existiert und

2. =3¢ € Trace(GF) : succ(s) = | fiir einen Zustand s € &, mit Nachfolgezustand succ(s)
und

3. jeder Trace aus T'race(G}) iiberdeckt wurde.

Verfeinerungsdefinition 29 ist aufgebaut wie die Verfeinerungsdefinition 22 fiir REAL-TIME
STATECHARTS. Zusammen durch Bedingung 1 und 3 wird ebenfalls eine Bisimulation unter Be-
riicksichtigung einer Weak Transition Relation definiert [HH11]. Ebenfalls analog zu der Verfei-
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nerungsdefinition fiir REAL-TIME STATECHARTS kann durch Anwendung einer Schnittstellen-
Beschriankung (siehe Definition 20) nicht ausgeschlossen werden, dass Deadlocks entstehen. Es
muss entsprechend sichergestellt werden, dass jeder Zustand im Trace einen Nachfolgezustand
hat. Bedingung 2 stellt dies sicher. Wie zu der Verfeinerungsdefinition fiir REAL-TIME STATE-
CHARTS argumentiert, werden durch diese Verfeinerung ebenfalls die Anforderungen wie in Ab-
schnitt Anforderungen und Voraussetzungen auf Seite 71 beschrieben erfiillt. Fiir Details sei der
Leser auf die Diskussion zu Definition 22 auf Seite 79 verwiesen. Dariiber hinaus wird durch De-
finition 28 eine strukturelle Verfeinerung beschrieben, womit zudem eine dynamische Anderung
der Kommunikationsstruktur durch die Verfeinerung beriicksichtigt wird.

3.1.3 Diskussion

Die in den vorherigen Abschnitten vorgestellte Verfeinerung fiir REAL-TIME STATECHARTS
und TIMED STORY CHARTS erhilt Verifikationsergebnisse des abstrakten Verhaltens sowie das
extern sichtbare Echtzeitkommunikationsverhalten. Bisherige Ansétze unterstiitzen keine Struk-
turanpssungen (z. B. [JLS00]), keine explizite Zeitbetrachtung (z. B. [JLS00, GRPS02, HTO05,
Gie(07]) oder ermoglichen nur eine statische Analyse (z. B. [GRPS02, Gie07]), die keine Rela-
xierung ermdoglicht. Der vorgestellte Ansatz ermdglicht durch die explizite Betrachtung von Zeit
eine Verfeinerung, in der Zeitintervalle relaxiert werden konnen. Da der TIMED STORY CHARTS
Formalismus sowohl Zeit, wie auch Strukturanpassungen beriicksichtigt, werden die geforderten
Anforderungen selbstoptimierender, mechatronischer Systeme erfiillt. Das Connector-Verhalten
wurde in den Definitionen nicht explizit beriicksichtigt. Dies kann jedoch einfach parallel zu dem
Rollenverhalten geschaltet werden, wodurch die Verfeinerungsdefinition nicht beeinflusst wird.

Wie in [ACH94, AD90] beschrieben, ist im allgemeinen Fall die Verifikation der Verfeinerung
iber eine Teilmenge der Traces fiir Timed Automata nicht entscheidbar. Nicht-Determinismus
sowie eine potentiell unendliche Menge an Timed Traces ([AD90, ACH94, YJ94]) sind die
Griinde hierfiir. Durch die beschriebenen Voraussetzungen aus dem modellbasierten Ansatz der
MECHATRONIC UML (vgl. Abschnitt Anforderungen und Voraussetzungen auf Seite 67) kann
aber eine Entscheidbarkeit erreicht werden. Nach Voraussetzung gibt es zu einem Automaten
(oder TIMED STORY CHART) mindestens eine giiltige deterministische Verfeinerung oder das
abstrakte Verhalten ist deterministisch. Weiterhin ist die Menge (Anzahl) der Timed Traces und
Zustande endlich. Wie in [ACH94, AD90] beschrieben kann unter diesen Voraussetzungen die
Entscheidbarkeit der Verfeinerung gefolgert werden.

In den bisherigen untersuchten Anwendungen des RailCabs (siehe auch [May09]), konnen die
hier beschriebenen Verfeinerungskonzepte angewendet werden. Hieraus ist aber auch zu erken-
nen, dass es generell nicht die eine ,,ideale* Verfeinerung fiir eine Anwendungsdomine gibt. In
der Masterarbeit von Christan Brenner [Bre10] wurde daher eine Generalisierung der hier vorge-
stellten Verfeinerungen zu einer parametrisierten Verfeinerung vorgeschlagen. Idealerweise kann
hiermit werkzeuggestiitzt den konkreten Anforderungen entsprechend eine Verfeinerungsbezie-
hung vorgeschlagen und iiberpriift werden.

85



Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

3.2 Verfeinerungsuiberpriifung

Nachdem wir im vorherigen Abschnitt eine Verfeinerung fiir REAL-TIME STATECHARTS und
TIMED STORY CHARTS definiert haben, werden wir in diesem Abschnitt eine Uberpriifung
der Verfeinerung vorstellen. Wie bereits in Abschnitt 3.1.3 diskutiert, wurde die Verfeinerung
moglichst flexibel durch eine Relaxierung von Zeitintervallen ausgelegt, um eine grofe An-
zahl an Wiederverwendungen zu ermoglichen. Damit ist allerdings auch keine statische Ana-
lyse moglich, wie dies z. B. in [GRPS02] vorgestellt wurde. Fiir unseren Ansatz miissen wir
den moglichen Konfigurationsraum aufbauen. Dies wird klassisch durch eine Erreichbarkeits-
analyse ermoglicht (siehe z.B. [BKO08]), die wir im Folgenden vorstellen. AnschlieBend werden
in Abschnitt 3.2.2 eine Verifikation der Verfeinerung basierend auf der Erreichbarkeitsanalyse
vorstellen. Im Folgenden werden wir die Verfeinerungsiiberpriifung fiir TIMED STORY CHARTS
zeigen. Diese ldsst sich ebenfalls auf die der REAL-TIME STATECHARTS anwenden, da die-
se lediglich den Sonderfall einer eins zu eins Multiplizitit zwischen den Strukturen (Ports und
Statechart-Instanzen) darstellen.

3.2.1 Erreichbarkeitsanalyse

Um den moglichen Konfigurationsraum fiir TIMED STORY CHARTS zu berechnen, nutzen wir
eine Erreichbarkeitsanalyse aus. Da unser Ansatz kompositionale Strukturanpassungen beriick-
sichtigt, konnen wir nicht direkt auf klassische Ansétze fiir rein zeitbehaftetes Verhalten zuriick-
greifen, wie z.B. in [BY03] vorgestellt. In [HirO8] wurde eine Erreichbarkeitsanalyse fiir zeit-
behaftete Graphtransformationssysteme (Timed Graph Transformation Systems - TGTS) vorge-
stellt, die wir fiir die Erreichbarkeitsanalyse von TIMED STORY CHARTS anwenden. Dies ist
moglich, da wie in Abschnitt 2.6.4 und 3.1.2 beschrieben TIMED STORY CHARTS auf der Se-
mantik von TGTS basieren.

Ausgangspunkt fiir die Erreichbarkeitsanalyse ist ein Timed Transition System, welches die er-
reichbaren Zustdnde unter Beriicksichtigung der zeitlichen Bedingungen darstellt. Definition 4
beschreibt dieses fiir Timed Automata. Hirsch hat dieses Konzept in [HirO8] auf TGTS {iber-
tragen. Im Folgenden geben wir die notwendigen Definitionen fiir die Erreichbarkeitsanlyse ba-
sierend auf der von TGTS wieder. Im Unterschied zu der Verfeinerungsdefinition, in der die
Betrachtung des extern sichtbaren Verhalten inhdrent ist und dadurch iiber Timed Traces defi-
niert wurde, bietet sich fiir die Verfeinerungsiiberpriifung die Darstellung des erreichbaren Ver-
haltens iiber ein Timed Transition System an. Grund hierfiir ist, dass im Vergleich zu Timed
Traces isomorphe Zustinde, womit bereits identifizierte Zustinde identifiziert werden, nur ein-
mal dargestellt werden. Im Folgenden definieren wir zuerst einen Zustand eines zeitbehafteten
Transitionssystems.

Definition 30 (Zustand eines zeitbehafteten Transitionssystems)

Sei G, = (Gy,G°, TR, IR) ein zeitbehaftetes Graphtransformationssystem gemdf3 Definition
24. Ein Zustand eines zeitbehafteten Transitionssystems zu G, ist ein Tupel s = (g,z) mit g €
GRAPHrq und einer Clock Zone z.
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Um bereits erreichte Zustdnde zu identifizieren, werden fiir TGTS isomorphe Zustinde definiert.
Dies ist analog zu gleichen Zustidnden eines Timed Transition Systems fiir Timed Automata der
Fall, wenn die Graphen, die eine Konfiguration prisentieren, isomorph sind und sie die gleichen
Clock Zones besitzen.

Definition 31 (Isomorphe Zustinde)
Zwei Zustinde Sy = (G1, Z1), Sy = (Gq, Zy) eines zeitbehafteten Transitionssystems sind iso-
morph, gdw. G\ = Gy und 7, = Z,.

Ein erreichbares Timed Transition System fiir TGTS ist damit wie folgt definiert.

Definition 32 (Erreichbares zeitbehaftetes Transitionssystem)

Sei Gy = (T'G,G°, TR, I R) ein zeitbehaftetes Graphtransformationssystem gemdif3 Definition 24
und Z eine Menge von Clock Zones. Das erreichbare zeitbehaftete Transitionssystem ET'T'S mit
Startzustand sy zu Gy ist ein 2-Tupel (V, E) mit

o V={s=1(g,2)|g € GRAPHg \ sy — s,z € Z} ist eine Menge von Zustinden, die
vom Startzustand aus erreichbar sind.

e 50V = <GO, 20), wobei z die Clock Zone ist, in der alle Clocks den Wert 0 haben.

o E={(s1,5)]51,50 € VA5 = syAr€TR}U{(s1,52)|51,52 € V A5 EN So } ist eine
Menge von Transitionen.

Damit kann eine Erreichbarkeitsanalyse analog zu [Hir08] durchgefiihrt werden. Diese nutzt je-
doch die Definition von Alur [Alu99] aus, um Folgezustinde zu berechnen. Hiermit ist es nicht
moglich die Reihenfolge in der Clock Zones erreicht werden bei gleichen Zustinden zu unter-
scheiden (diese werden in einem solchen Fall iiber Federations vereinigt). Zudem ist es hier-
mit auch nicht moglich explizit zwischen Delay- und Action-Transitionen zu differenzieren. Die
Verfeinerungsdefinition 32 fiir TIMED STORY CHARTS setzt dies jedoch voraus. Da die Defini-
tion von Bengtsson und weitere [BY03] genau diese Unterscheidungen ermdoglichen, nutzen wir
diese im Unterschied zu [HirO8] in der Erreichbarkeitsanalyse fiir TIMED STORY CHARTS zur
Berechnung von Folgezustinden (Konfigurationen) aus.

Da die Definition der Verfeinerung auf Timed Traces basiert miissen wir folglich noch zeigen,
dass die Menge der Pfade eines Timed Transition Systems fiir TIMED STORY CHARTS der Men-
ge seiner Timed Traces entspricht.

Theorem 1
Fiir ein TIMED STORY CHART gilt, dass die Menge der Pfade seines zeitbehafteten Transitions-
systems genau der Menge der Timed Traces entspricht.

Beweis 2

Sei G; = (G, G°, TR, I R) ein zeitbehaftetes Graphtransformationssystem gemdif3 Definition 24.
Ein Timed Trace §& = (S¢, Re¢) ist nach Definition 26 eine Folge von Regelanwendungen aus
TR mit Zustinden S¢ und Transitionen Re¢. Nach Definitionen 25 und 30 sind die Zustinde
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von Traces und zeitbehafteten Transitionssystemen gleich definiert. Gegeben durch die Definiti-
on einer Transition eines zeitbehafteten Transitionssystems fiir TGTS mit E = {(s1, s2)|s1, 2 €

V Asi sy Ar € TRYU{(s1,82)|51,50 €V A s LN So }, werden alle moglichen Anwendun-
gen von Transformationsregeln auf jeden Zustand berechnet. Damit werden durch ein solches
Transitionssystem alle moglichen Ausfiihrungspfade dargestellt. Ein Timed Trace beschreibt ge-
nau einen Ausfiihrungspfad. Damit entspricht die Menge aller Timed Traces der Menge aller
Ausfiihrungspfade eines zeitbehafteten Transitionssystemens. [

Neben der oben dargestellten Anpassung der Erreichbarkeitsanalyse von Hirsch zur Berechnung
eines Folgezustands (Folgekonfiguration) miissen wir zudem zwischen Graphtransformationen
unterscheiden, 1) die eine Transition eines TIMED STORY CHARTS ausfiihren und denen, 2)
die Seiteneffekte, Actions oder Hilfsfunktionen ausfithren. Hierdurch wird es ermoglicht, wie
nach der Verfeinerungsdefinition fiir TIMED STORY CHARTS gefordert, dass zum einen durch
1) das Zustandsverhalten iiberpriift werden kann und dass die Elemente aus 2), die z.B. durch
einen Seiteneffekt eine (kompositionale) Strukturanpassung ausfithren konnen, nur aufgerufen
werden, wenn diese auch tatsdchlich in Folge einer Zustandtransformation aus 1) aufgerufen
werden.

Die Folgezustandsberechnung von Hirsch muss zudem von der Berechnung einer Graphtrans-
formationsregel auf mehrere erweitert werden, da TIMED STORY CHARTS durch (Timed) Sto-
ry Diagramme beschrieben werden (siehe Abschnitt 2.6.4), die mehrere Graphtransformationen
durch Stories nacheinander beschreiben konnen. Der Folgegraph ergibt sich damit aus einer Men-
ge von Graphtransformationen.

3.2.2 Verifikation der Verfeinerung

In diesem Abschnitt stellen wir einen Algorithmus zur Verifikation der Verfeinerung von TI-
MED STORY CHARTS vor. Gemid3 der Verfeinerungsdefinition 29 berechnen wir in einem
ersten Schritt die Menge der Traces fiir das abstrakte (7'race(Gf)) und verfeinerte Verhalten
(Trace(GF)). Im néchsten Schritt wird iiberpriift, ob fiir jeden Trace & € Trace(GF) ein Trace
&, € Trace(Gf) existiert, so dass & gemiB Definition 28 eine Verfeinerung von &, ist. Dies
entspricht Bedingung 1 nach Definition 29. Hierbei wird ebenfalls die Verfeinerung auf Dead-
lockfreiheit tiberpriift, wie dies durch Bedingung 2 gefordert wird. Als letztes wird iiberpriift, ob
alle Pfade T'race(G;) tiberdeckt wurden, womit Bedingung 3 adressiert wird.

Fiir die Verfeinerungsiiberpriifung wird angenommen, dass die Verifikation des Protokollverhal-
tens erfolgreich war. Das Verhalten des Kommunikationspartners wird daher in der Verfeine-
rungsiiberpriifung nicht betrachtet. Um Transitionen auszufiihren, die durch eine Nachricht des
Kommunikationspartners aktiviert werden, legen wir eine zusitzliche Transition an, die zu jedem
Zeitpunkt schalten kann, an dem ihre Time Guards erfiillt sind. Weiterhin gehen wir davon, dass
das verfeinerte TIMED STORY CHART nach Definition 20 Schnittstellen-beschrénkt ist.

Algorithmus 3.1 zeigt den Pseudocode zum Uberpriifen einer Verfeinerung nach Definition 29.
Implementiert ist der Algorithmus in Form einer Tiefensuche. Wie einleitend erldutert startet der
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3.2 Verfeinerungsiiberpriifung

Algorithmus mit der Berechnung der erreichbaren Traces fiir ein abstraktes und konkretes TI-
MED STORY CHART in Zeile 2 und 3 (siehe hierzu Abschnitt 3.2.1). AnschlieBend wird in Zeile
4 tberpriift, ob eine Strukturverfeinerung fiir die initialen Strukturen gilt. Durch die Variable
success wird der Zustand der Uberpriifung in Form eines Boolean-Wertes (true oder false) im-
plementiert. Die while-Schleife in Zeile 6, die die Tiefensuche zur Uberpriifung der Verfeinerung
umsetzt, terminiert entsprechend, wenn eine der notwendigen Uberpriifungen fiir die Verfeine-
rung fehlschligt, wodurch success == false gilt oder alle Knoten des TIMED STORY CHART
Graphen untersucht wurden. Wurden alle Knoten untersucht, schligt die Uberpriifung auf einen
Nachfolger in Zeile 8 fehl. Innerhalb der while-Schleife wird das nach Abschnitt Anforderungen
und Voraussetzungen auf Seite 67 endliche Transitionssystem des verfeinerten TIMED STORY
CHARTS expandiert (Zeile 9). Da es sich um ein endliches Transitionssystem handelt, bricht die
Schleife irgendwann ab. Fiir den Fall, dass alle Uberpriifungen erfolgreich waren, wird als letzter
Schritt tiberpriift, ob das abstrakte System iiberdeckt wurde.

In der while-Schleife wird fiir jeden Nachfolger n’ des aktuell expandierten Knotens n gepriift,
ob der Knoten bekannt ist. Ist dies nicht der Fall, wird iiberpriift, ob der Ubergang zwischen die-
sen beiden Knoten mit einer Nachricht versehen ist, womit iiberpriift werden muss, ob es hier-
zu einen korrespondierenden Zustand in dem abstrakten System gibt (siehe Abschnitt 3.2.2.1).
Andernfalls, wird ein Kreis im Transitionssystem geschlossen oder es werden zwei Pfade nach
Definition 31 vereinigt, da die Zustinde isomorph sind. Fiir den Fall das zwischen dem Uber-
gang von n nach n’ eine Nachricht annotiert ist, wird analog zu Fall 1 ein korrespondierender
Pfad gesucht. Handelt es sich um einen Kreis, wird dieser auf Wohlgeformtheit iiberpriift (siehe
Abschnitt 3.2.2.1).

3.2.2.1 Uberpriifung von Pfaden

Kann eine Kante des verfeinerten Systems eine Nachricht empfangen oder versenden, so muss
nach Definition der Verfeinerung ein korrespondierender Pfad im Abstrakten System existieren,
der ebenfalls eine solche Nachricht empfangen oder versenden kann. Die Funktion CHECKPATH
(siehe Algorithmus 3.2) tiberpriift ausgehend von einer Kante (n,n’) des verfeinerten Transi-
tionssystems, die eine Nachricht trigt, auf allen Pfaden beginnend in einem korrespondierend
Zustand, die diese Kante enthalten, ob es hierzu einen korrespondierenden Pfad im abstrakten
Transitionssystem gibt (siehe Zeile 10). Die Uberpriifung schligt fehl, wenn kein Pfad im ab-
strakten Transitionssystem gefunden wird.

Korrespondierende Zustande Fiir einen abstrakten und konkreten Pfad des Transitions-
systems werden durch die Funktion INDCORRESPONDINGSTATES die korrespondierenden Zu-
stande ermittelt (siehe Algorithmus 3.3). Durch die Relaxierung der Zeitintervalle durch die in
Abschnitt 3.1.2 eingefiihrte Verfeinerungsdefinition, miissen wir zwischen gesendeten und emp-
fangenen Nachrichten unterscheiden (Zeile 2). Die Funktion CHECKTIMECONSTRAINTS (siche
Abschnitt Priifen der zeitlichen Bedingungen auf Seite 91) iiberpriift fiir jeden Teilpfad s und ¢
nach Definition 28 die oberen Schranken der Clocks. Fiir jeden dieser Teilpfade wird ebenfalls

89
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Algorithmus 3.1 Uberpriifen der korrekten Verfeinerung

1: function CHECKCORRECTREFINEMENT(TimedStoryChart abs, TimedStoryChart ref)

2: absReach = STARTREACHABILITYANALYSIS(abs)
3: refReach = STARTREACHABILITYANALYSIS(ref)
4: success := CHECKSTRUCTUREREFINEMENT(absReach.initial, refReach.initial)
5: OPEN.pPUSH(refReach.initial)
6: while OPEN # () A success do > Untersuche alle erreichbaren Knoten
7: n := OPEN.POP( )
8: success := refReach. HASSUCCESSOR(n)
9: for all n’ € refReach.EXPAND(n) do
10: if n’ is not known then > Fall 1: Neuer Knoten
11: OPEN.PUSH(n")
12: if (n,n’) has event e then
13: success := CHECKPATH((n,n’))
14: end if
15: else > Fall 2: Knoten schon bekannt
16: if (n,n’) closed cycle then > a) Kante schliefBt einen Kreis
17: if (n,n') has event e then
18: success := CHECKPATH((n,n’))
19: end if
20: success := ISWELLFORMEDCYCLE(n)
21: else > b) Verschmelzung von zwei Pfaden
22: if (n, n') has event e then > Identisch zu Fall 1
23: success := CHECKPATH((n,n’))
24: end if
25: end if
26: end if
27: end for
28: end while
29: if success then
30: success := CHECKCOVERAGE(absReach)
31: end if
32: return success

33: end function
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Algorithmus 3.2 Pfade iiberpriifen
1: function CHECKPATH(Transition (n,n'))
2: for all cs € PreceedingCorrespondingStates do

3: Path refPath := (¢s = n)

4: Transition (a, b) := getEventTrans(cs, n)

5: if (a,b) # null then

6: Path absPath := GETEQUIVALENTPATH(cs, (a, b).event, (n,n’).event)
7: if (absPath = null) then

8: success := false

9: else

10: success := FINDCORRESPONDINGSTATES(absPath, refPath)
11: end if

12: end if

13: if not success then

14: return false

15: end if

16: end for

17: return true

18: end function

nach der Verfeinerungsdefinition eine Struckturverfeinerung iiberpriift (Funktion CHECKSTRUC-
TUREREFINEMENT, siehe Abschnitt Strukturverfeinerung iiberpriifen auf Seite 91). Eine Korre-
spondenz zwischen den beiden Zustinden liegt nur dann vor, wenn beide Bedingungen erfiillt
sind.

Priifen der zeitlichen Bedingungen Zum Uberpriifen der zeitlichen Bedingungen miissen
wir gemdl der Verfeinerungsdefinition fiir TIMED STORY CHARTS (siehe Abschnitt 3.1.2) zwi-
schen Nachrichten unterscheiden, die empfangen oder versendet werden. Der Algorithmus zur
Uberpriifung der zeitlichen Bedingung (siehe Algorithmus 3.4) iiberpriift als erstes, ob der zu
tiberpriifende Zustand des verfeinerten Pfades iiber die gleichen Clocks wie der korrespondierte
abstrakte Zustand verfiigt. Ist dies nicht der Fall, liegt nach der Verfeinerungsdefinition fiir TI-
MED STORY CHARTS eine Verletzung vor. Anschliefend wird nach Definition 28 fiir gesendete
und empfangene Nachrichten die Summen iiber Clock Resets fiir jede Clock einzeln berechnet.
Nur falls jede der Bedingungen erfiillt sind, ist die Uberpriifung erfolgreich.

Strukturverfeinerung lberpriifen Eine Strukturverfeinerung muss auf den initialen Struk-
turen des verfeinerten und abstrakten Transitionssystems durchgefiihrt werden sowie bei der
Uberpriifung auf korrespondierende Zustinde (siehe Abschnitt Korrespondierende Zustinde auf
Seite 89). Der Algorithmus 3.5 basiert auf dem Ansatz nach [HT04] zur Uberpriifung von Struk-
turverfeinerungen. Durch Anwendung einer Abstraktionsfunktion (Zeile 3) wird der abstrakte
Graph (Zustand s) in den Namensraum des verfeinerten Graphen (Zustand t) iibersetzt. Uber
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Kapitel 3 Verfeinerung in hierarchischen Komponentensystemen

Algorithmus 3.3 Korrespondierende Zustidnde iiberpriifen
1: function FINDCORRESPONDINGSTATES(Path absPath, Path refPath)
2: sent := ISSENTEVENT(refPath.lastEvent)

3: absSubPath := GETSUBPATHBETWEENEVENTS(absPath)
4: refSubPath := GETSUBPATHBETWEENEVENTS(refPath)
5: for s € absSubPath do
6: for t € refSubPath do
7: if \CHECKTIMECONSTRAINTS(s, t, absPath, refPath, sent) then
8: continue
0: end if
10: if |CHECKSTRUCTUREREFINEMENT(S, t) then
11: continue
12: end if
13: MARKCORRESPONDING(S, t) > Struktur und Zeit sind passend
14: return true
15: end for
16: end for
17: return false

18: end function

eine Delegation zwischen abstrakten und verfeinerten Port kann die Bestimmung der Abbildung
automatisch erfolgen. Die Uberpriifung der Strukturverfeinerung wird durch das Finden eines
Matchings implementiert (Zeile 4).

Uberpriifung von Kreisen Fiir die in dieser Arbeit betrachteten Systeme enden Pfade eines
zeitbehafteten Transitionssystems eines TIMED STORY CHARTS in einem Kreis (siehe Einlei-
tung Abschnitt 3.2.2). Die Funktion 3.6 zur Uberpriifung von Kreisen wird immer dann aufgeru-
fen, wenn zwei Pfade verschmolzen werden konnen (siehe Algorithmus 3.1). Der Algorithmus
3.6 zur Uberpriifung von Kreisen muss sicherstellen, dass zwischen allen Nachrichten des Krei-
ses korrespondierende Zustinde zwischen dem abstrakten und verfeinerten Pfad existieren.

Ausgangspunkt fiir den Algorithmus ist, dass der Kreis bereits einmal durchlaufen wurde (siehe
Zeile 20 von Algorithmus 3.1). Es reicht allerdings nicht aus den Kreis nur durch einen Lauf
zu iiberpriifen, da auch fiir alle zukiinftigen Ausfiihrungen des Kreises korrespondierende Zu-
stande zwischen aufeinander folgende Nachrichten existieren miissen. Um dies sicherzustellen
tiberpriifen wir den Kreis ein weiteres mal. Wir konnen dabei zwischen den in Abbildung 3.8
dargestellten vier verschiedenen Arten von Kreisen unterscheiden, wobei (a) und (b) zuldssige
Kreise darstellen und (c) und (d) unzulédssige. Die in a und b dargestellten Kreise sind zuldssig,
da zwischen jedem auftreten von Nachrichten innerhalb des Kreises korrespondierende Zustéin-
de identifiziert wurden (in grau). Die in a dargestellten Kreise betrachten die triviale Situation,
dass keine Nachricht in dem Kreis enthalten ist. Die in ¢ dargestellte Situation ist unzuldssig,
da in dem verfeinerten Pfad der korrespondierende Zustand auBlerhalb der Schleife liegt. Situa-
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Algorithmus 3.4 Zeitliche Bedingungen iiberpriifen

1: function CHECKTIMINGCONSTRAINTS(State s, State t, Path absPath, Path refPath, bool

R Al

e e e e e
R AL o S el

20:
21:
22:
23:

sent)

if ! s.clocks C t.clocks then
return false
end if
s’ := succ(absPath.initial)
repeat
for all c € s’ do > Summe der Resets fiir absPath berechnen
> Schranke kleiner als im vorherigen Zustand = Reset durchgefiihrt
if ubound(s’.c) < ubound(prev(s’).c) then
absUBounds(c) += ubound(prev(s).c)
end if
end for
until (s # §)

e > Gleiche Berechnung fiir refPath
for all (doc € s)
if sent A not (absUbounds(c) + ubound(s.c) = refUbounds(c) + ubound(t.c)) then

return false
end if
if not sent A not (absUbounds(c) + ubound(s.c) > refUbounds(c) + ubound(t.c))

then

return false
end if
end for
return true

24: end function

Algorithmus 3.5 Strukturverfeinerung iiberpriifen

1: function CHECKSTRUCTUREREFINEMENT(State s, State t)

2:

3
4
5:
6:
7
8
9:

sCopy := MAKECOPY(s)

sCopy := APPLYABS(sCopy)

if FINDMATCHING(sCopy, t) then > Berechne Matching von sCopy in t
return true

else
return false

end if

end function
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Algorithmus 3.6 Kreise iiberpriifen
1: function ISWELLFORMEDCYCLE(State n)
2: refCycle := refReach.GETCYCLE(n)

3: absCycle := absReach.FINDCORRESPONDINGCYCLE(n, refCycle)
4: correctOrder := HAVESAMEEVENTORDER(absCycle, refCycle)
5: refWellFormed := true
6: for all consecutive events a, b in refCycle do
7: if not 3 correspondingState between a and b then
8: refWellFormed := false
0: break
10: end if
11: end for
12: absWellFormed := true
13: for all consecutive events a, b in absCycle do
14: if not 3 correspondingState between a and b then
15: absWellFormed := false
16: break
17: end if

18: end for
19: return correctOrder A refWellFormed A absWellFormed
20: end function

tion d zeigt eine Inkonsistenz, da im abstrakten Pfad kein korrespondierender Zustand zwischen
Nachricht a und b identifiziert wurde. Die for-Schleifen in den Zeilen 6 und 13 des Algorithmus
iberpriifen die dargestellten Situationen.

Priifen der Uberdeckung Nachdem alle Pfade des verfeinerten Transitionssystems erfolg-
reich iiberpriift wurden, muss noch sichergestellt werden, dass alle Pfade des abstrakten Tran-
sitionssystems iiberdeckt wurden, um die notwendige Bedingung der Bisimulation zu erfiillen
(sieche Bedingung 3 Verfeinerungsdefintion 29 eines TIMED STORY CHARTS). Algorithmus 3.7
zeigt den Pseudocode fiir die Uberpriifung der Pfadiiberdeckung. Es wird dabei das gesamte
abstrakte Transitionssystem expandiert. Die for-Schleifen ab Zeile 4 stellen dabei sicher, dass
zwischen zwei Nachrichten ein Zustand als korrespondierend zu einem Zustand des verfeinerten
Transitionssystems identifiziert wurde.

3.2.3 Diskussion

Der vorgestellte Algorithmus ermdoglicht die Verifikation der Verfeinerung nach Definition 29
in Form einer Erreichbarkeitsanalyse. Im Rahmen aktueller Arbeiten [Bre10] wird eine Variante
umgesetzt, die das Konzept der Testautomaten nutzt, da hieriiber elegant die Verfeinerungsiiber-
priifung zu einer formalen Verifikation von Sicherheits- und Lebendigkeitseigenschaften erwei-
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verfeinert abstrakt verfeinert abstrakt
zulassig
e e a e a e
(a) (b)
verfeinert abstrakt verfeinert abstrakt

a
unzulassig
a a a
b b
() (d)

Abbildung 3.8: Uberpriifung Kreise

Algorithmus 3.7 Uberdeckung des abstrakten Systems priifen

1: function CHECKCOVERAGE(TTS absReach)

2
3
4
5:
6
7
8
9

10:
11:
12:

absReach.FULLEXPAND( )
success ;= true
for all path € absReach do

for all consecutive events a, b on path do
if not 3 correspondingState between a and b then
success := false
break
end if
end for

end for
return success

13: end function
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tert werden kann. In [ABBLO03] wurde bereits ein Ansatz vorgestellt, der aus einer eingeschriank-
ten Klasse von TCTL-Formeln einen Testautomaten synthetisiert, der dann wiederum mit dem
zu iiberpriifenden Modell parallel geschaltet werden kann. In der Erreichbarkeitsanalyse muss
dann gezeigt werden, dass dieser Zustand erreichbar ist. Damit miissen die Algorithmen nur
hinsichtlich der Testautomaten-Synthese erweitert werden.
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Kapitel 4

Integration von Altkomponenten

In der industriellen Praxis kann es hiufig vorkommen, dass Altkomponenten wiederverwendet
werden, um zum einen den Entwicklungsprozess zu beschleunigen und zum anderen auf bewéhr-
te Qualitét zurtickzugreifen. Die Integration von Altkomponenten in eine MECHATRONIC UML
Architektur stellt einen weiteren Anwendungsfall einer moglichen Konkretisierung dar (siehe
Abschnitt 2.1 auf Seite 13). Unser Ansatz unterstiitzt eine Integration von Altkomponenten, in-
dem das Verhaltensmodell fiir die Integration iterativ erlernt wird und auf dessen Basis dann
formal die Integration tiberpriift werden kann.

Das Protokollverhalten der Komponente, mit welcher die Altkomponente interagieren soll, nen-
nen wir Kontext. Eine Integration ist dann erfolgreich, wenn die Kommunikation zwischen
Kontext und Altkomponente fehlerfrei ist. Dies wird durch Sicherheits- und (begrenzte) Le-
bendigkeitseigenschaften spezifiziert (siehe Abschnitt 2.4.1). Dariiber hinaus ist es wichtig zu
tiberpriifen, dass in Abhédngigkeit vom Kommunikationsverhalten das erwartete Reglerverhal-
ten ausgefiihrt wird. Es wird daher ein Ansatz fiir hybride Systeme unter Beriicksichtigung von
Sicherheits- und begrenzten Lebendigkeitseigenschaften benétigt.

Im Vergleich zu bisherigen Ansitzen (z. B. [HNS03b, BJR06, PVY99]) unterstiitzen wir eine
Integration unter Beriicksichtigung von Sicherheits- und begrenzten Lebendigkeitseigenschaf-
ten. Um dies zu ermdglichen wird iterativ das Modell des Verhaltens fiir die Integration der
Altkomponente gelernt. Nach jedem Iterationsschritt wird iiberpriift, ob das erlernte Modell den
Eigenschaften standhilt. Der Kontext wird in der Analyse beriicksichtigt, um nur die hierfiir
spezifischen Kommunikationen zu betrachten.

Zusitzlich zu dem iterativen Erlernen des Zustandsverhaltens integrieren wir die Moglichkeit,
regelungstechnisches Verhalten fiir einen bekannten Zustand mit Hilfe klassischer Verfahren der
Systemidentifikation zu identifizieren. So wird das Ein-/ Ausgangsverhalten linearer Systeme
etwa durch Ubertragungsfunktionen beschrieben [Ise92]. Sind die Ubertragungsfunktionen be-
kannt, konnen auch Rekonfigurationen identifiziert werden.

Dieser Ansatz stellt damit ein Hilfsmittel fiir den Ingenieur dar, um bereits friih Konflikte auf
Modellebene zu identifizieren. Derzeit wird die Integration von Altkomponenten mit Reglerver-
halten am Ende des Entwicklungsprozesses wihrend der Systemintegrationsphase durchgefiihrt.
Typischerweise testet dabei der Ingenieur die Altkomponente (nur) in Hardware-In-The-Loop
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Szenarien oder direkt in der realen Anwendung. Hier entdeckte Fehler sind nur unter groem
Ressourceneinsatz zu beheben und daher teuer (z.B. [BNO3]).

Anforderungen und Voraussetzungen Zur Veranschaulichung betrachten wir wieder
einen Ausschnitt des einleitenden Konvoi-Beispiels (sieche Abbildung 1.2). Wie bereits in den
Abschnitten 2.3 und 2.6.1 beschrieben, ist die Architektur der MECHATRONIC UML durch
Komponenten (sieche Abbildung 4.1, RailCab und LegacyRailCab), Ports und den Verbindun-
gen zwischen Ports gegeben.

Die Kommunikation zwischen den Komponenten ist definiert durch PARAMETERIZED REAL-
TIME STATECHARTS, bzw. REAL-TIME STATECHARTS (vgl. Abschnitt 2.4.1). Da wir hier ei-
ne konkrete Integrationssituation betrachten, miissen wir im Folgenden auch nur REAL-TIME
STATECHARTS beriicksichtigen. In Abbildung 4.1 wird das DistanceCoordination-Muster ge-
zeigt. Die Kommunikationsmuster werden in dem Beispiel durch die Rollen front und rear spe-
zifiziert. Das Kommunikationsverhalten wird mit REAL-TIME STATECHARTS beschrieben. In
Abschnitt 2.4.1 wurden bereits die Rollenverhalten fiir die front- und rear-Rolle spezifiziert.

Die Integration einer Altkomponente, wie dem LegacyRailCab, ohne eine Zustandsspezifikation
des Kommunikationsverhaltens fordert eine Herleitung eines solchen Modells von der Kompo-
nentenschnittstelle und gegebenenfalls vom Quellcode der Altkomponente, um die bendtigten
Analysen fiir eine Integration durchfiihren zu konnen.

In dem in Abbildung 4.1 gezeigten Beispiel ist nur das Verhalten der front-Rolle bekannt.
Es muss gezeigt werden, dass das unbekannte Kommunikationsverhalten der LegacyRailCab-
Komponente mit dem erwarteten Verhalten des DistanceCoordination-Musters die Spezifika-
tion (Sicherheits- und Lebendigkeitseigenschaften, wie front.convoy implies rear.convoy und
Deadlock-Freiheit (A[] not deadlock)) nicht verletzt.

Grundsitzlich muss es sich hierbei nicht um ein Koordinationsmuster handeln. Es ist auch mog-
lich, dass hier ein Protokollverhalten ohne vorherige Musterspezifikation mit einer Altkompo-
nente verbunden wird oder wie Abbildung 2.1 darstellt ein Protokollverhalten an eine eingebet-
tete Altkomponente delegiert wird.

:Convoy i A [] not deadlock =
A
.~ front.convoy implies rear.convoy |

:RailCab T

Abbildung 4.1: Architektur mit LegacyRailCab

Um tiberhaupt eine Altkomponente modellbasiert integrieren zu konnen, gehen wir davon aus,
dass einige Informationen der Altkomponente zur Verfiigung gestellt werden. Eine Vorausset-
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zung ist, dass die Altkomponente eine Schnittstelle zur Verfiigung stellt, die alle eingehenden
und ausgehenden Nachrichten fiir die Kommunikation definiert, alle Signale definiert die durch
die eingebetteten Regler benotigt werden sowie alle relevanten Informationen fiir die Ausfithrung
spezifiziert (wie z. B. die Ausfithrungsperiode).

Im Bereich sicherheitskritischer Systeme, sind diese Voraussetzungen keine Einschrinkung,
da sie elementar fiir eine Integration sind (z. B. [HMSN10a]). Ein Automobilhersteller kann
z. B. keine Altkomponente ohne Angabe der Ausfiihrungsperiode, unter der die Altkomponente
die spezifizierten Eigenschaften erfiillt, integrieren.

Die Informationen, die durch eine Altkomponente zur Verfiigung gestellt werden konnen stark
variieren. Grundsitzlich konnen wir allerdings zwei Fille unterscheiden. 1) die Altkomponente
bietet zusiitzliche Schnittstellenoperationen an, um den aktuellen Zustand zu erfragen' oder 2)
dies ist nicht der Fall. Fiir den zweiten Fall konnen wir zudem unterscheiden zwischen einer a)
Black Box (der Quellcode ist nicht zugreifbar) und b) einer White Box (auf den Quellcode kann
zugegriffen werden). Wir haben entsprechend fiir diese drei Fille Algorithmen entwickelt: Gray
Box Checking fiir Fall 1), Black Box Checking fiir Fall 2a) und White Box Checking fiir Fall
2b).

Eine Integration ist dann erfolgreich, wenn die Spezifikation nicht verletzt wird. Dies kann dabei
1) durch eine formale Verifikation der Altkomponente mit dem Kontext (z. B. front-Rolle) ge-
zeigt werden oder 2) durch eine Verifikation der Verfeinerung des abstrakten Rollen Verhaltens
(z. B. rear-Rolle) gegeben durch ein REAL-TIME COORDINATION PATTERN. Es muss also ge-
zeigt werden, dass: Kontext (front Rolle) || erlerntes Verhalten (erlernte rear Rolle) |=
¢ (front.convoy implies erlerntes rear.convoy) A =6 (Deadlock — Freiheit) fiir 1) und
erlerntes Verhalten (erlernte rear Rolle) < abstraktes Rollenverhalten (rear Rolle) fiir

2).

Eine Verfeinerung kann auch durch eine parallele Komposition gezeigt werden, in dem aus dem
abstrakten Rollenverhalten (z. B. front-Rolle) ein Testautomat erstellt wird [JLS0O0]. Ein Test-
automat wird durch Komplementbildung erstellt. Zusitzlich wird das Verhalten, welches nicht
durch das abstrakte Verhalten erfiillt wird, durch einen extra Fehlerzustand und entsprechenden
Transitionen, die in diesen Fehlerzustand fiihren, dargestellt. Die Analyse muss dann folglich
zeigen, ob dieser Fehlerzustand erreicht werden kann. Dies wird, wie oben fiir 1) beschrieben,
durch eine parallele Komposition des Testautomaten mit dem verfeinerten Verhalten erreicht.
Wir werden daher im Folgenden die Integration nur fiir 1) zu zeigen.

Ubersicht Im Folgenden stellen wir als erstes den Gray Box Checking Ansatz vor, da hier der
grundlegende Ansatz des iterativen Erlernens des Kommunikationsverhaltens einer Altkompo-
nente sowie der schrittweisen Uberpriifung des erlernten Verhaltens vorgestellt wird. Anschlie-
Bend betrachten wir, wie Zustinde im Falle der Black- und White Box erlernt werden konnen.
Dann diskutieren wir in Abschnitt 4.4, wie wir das regelungstechnische Verhalten zu einem Zu-
stand identifizieren konnen. Der Gray Box Checking Ansatz wurde grundlegend in den Arbeiten

' AUTOSAR-Komponenten bieten z. B. diese Informationen an.
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[HHO7, HHO8a, GHHO8a, Bre08, BGH"08] vorgestellt. Eine geeignete Testumgebung wurde in
[GHHPO7, Pri07] beschrieben. Der Gesamtansatz inklusive des Black- und White Box Checking
wurde in [HBB*09, HMSN10b, HMSN10a, BBB*09, HMS*10] vorgestellt.

4.1 Gray Box Checking

In diesem Abschnitt betrachten wir die Integration von Altkomponenten, deren Schnittstelle
Operationen zur Verfiigung stellen, um den aktuellen Zustand der Altkomponente zu erfragen.
Wie bereits in Paragraph Anforderungen und Voraussetzungen auf Seite 98 im iibergeordneten
Abschnitt erldutert, bieten einige Klassen von Altkomponenten diese Informationen an. Gera-
de im Bereich sicherheitskritischer Systeme ist die Bereitstellung aktueller Zustandsinforma-
tionen durchaus tiblich, um (eindeutig) zu identifizieren, welche Aktionen das System ausfiihrt
[Sto96, PulO1, Dun02].

Fine Reihe von Ansitzen existieren, die entweder einen reinen Black-Box-Ansatz und
Automaten-Lernen verfolgen (z. B. [HNSO03a]) oder einen White-Box-Ansatz propagieren, die
ein Modell aus Quellcode extrahieren [DKU06, CDH*00, HS99]. Keiner dieser Ansiitze betrach-
tet allerdings Echtzeitsysteme oder nutzt das Wissen eines Kontextes und Komponenten aus, um
auch fiir grolere Systeme skalieren zu konnen. Weiterhin vermeiden diese Ansitze keine falsch
positive oder falsch negative Ergebnisse. Dies gilt iibrigens auch fiir den gesamten klassischen
Reverse Engineering Bereich, der sich im Wesentlichen auf die Unterstiitzung der Dokumenta-
tion von Altkomponenten fokussiert (siehe z. B. [MJST00]). Damit sind all diese Ansitze nicht
fiir die hier betrachteten sicherheitskritischen Systeme geeignet.

Abbildung 4.2 gibt eine Ubersicht iiber unseren Ansatz. Initial nehmen wir an, dass die Altkom-
ponente in einen Startzustand oder allgemein in einem sogenannten Quiescent Zustand ist (sieche
[KMO8, ZCO06]). Informationen iiber die Initialisierung der Altkomponente, die sie in einen sol-
chen Zustand versetzt, nehmen wir als bekannt an.

Unser Ansatz erweitert das aktuelle Wissen liber die Altkomponente mit chaotischem Verhalten.
Dieses chaotische Verhalten spezifiziert jedes mogliche Kommunikationsverhalten auf der einen
Seite und auf der anderen Seite, kann die Altkomponente zu jedem Zeitpunkt in einen Deadlock
eintreten. Dieses Verhalten stellt damit eine Uberapproximation des Kommunikationsverhaltens
der Altkomponente dar: zu jedem Zeitpunkt wird das mogliche Gesamtverhalten spezifiziert, je-
doch muss nicht das mogliche Gesamtverhalten tatsdchlich durch die Altkomponente unterstiitzt
sein.

Das chaotische Verhalten wird dann in Kombination mit dem Kontextverhalten via Model
Checking formal verifiziert unter Beriicksichtigung von Sicherheits- und begrenzten Lebendig-
keitseigenschaften (Schritt 1 und 2 in Abbildung 4.2). Wenn die Uberpriifung zu einem Gegen-
beispiel fiihrt, dient dieses als Testeingabe fiir die Altkomponente (Schritt 3). Wenn das Gegen-
beispiel durch die Altkomponente bestitigt wird, haben wir ein wirkliches Gegenbeispiel gefun-
den. Ist dies nicht der Fall, nutzen wir das beobachtete Verhalten der Altkomponente aus, um das
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bisher erlernte Verhalten zu verfeinern (Schritt 4). Dieser Vorgang wird solange fortgesetzt, bis
entweder ein Gegenbeispiel gefunden wird oder alle moglichen Traces des Kontexts betrachtet

wurden.
! o ¢

[extrahiere Kontextj [ synthetisiere ]]@ beobachtetes Verhalten

Verhalten Verhalten

Gegenbeispiel ®
(Eingabevektor)

]\/[contezt A[legacy

®

[Gegenbeispiel bestatigt]

[Eigenschaften erlillf] o oois

Abbildung 4.2: Iteratives Lernen und Uberpriifen: Gray Box Checking

Uberprife Kombination ] S

]V[legacy ) A/[contea:t

Im Folgenden stellen wir die Grundlagen fiir den Lernansatz vor. Anschliefend priasentieren wir
in den Abschnitten 4.1.2 und 4.1.3 unseren iterativen Lern- und Uberpriifungs-Ansatz.

4.1.1 Formalisierungen

Da eine Implementierung aufgrund der aktuellen Hardwarearchitekturen nur diskret erfolgen
kann, betrachten wir hier entsprechend auch nur diskrete Zeit. Der Kontext muss also in einer
entsprechenden plattformspezifischen Verfeinerung vorliegen (siehe 3.1.1 und 6.1). Dies ist aber
ohnehin notwendig, um eine Ausfithrung zusammen mit der Altkomponente zu ermdglichen.
Hieraus folgern wir, dass ein Automatenmodell mit diskreter Zeit ausreichend ist, um das Ver-
halten der Altkomponente zu erlernen und um eine kompositionelle Verifikation kombiniert mit
Testen und Beobachtung zu ermoglichen (siehe Anforderungen und Voraussetzungen auf Seite
98).

Die Vereinfachung ist gerechtfertigt mit den folgenden Annahmen, die giiltig fiir die betrachteten
Systeme hat: 1) die Uhren laufen ausreichend synchron. Dies ist gewohnlich fiir sicherheitskriti-
sche Systeme und bedeutet, dass die Zeit in den Komponenten gleich schnell verlduft, bzw. eine
Zeitverschiebung bekannt ist (siehe Abschnitt 2.4.6). 2) ein diskretes Zeitmodell ist ausreichend
um alle Zeiteigenschaften zu spezifizieren, da die Infrastruktur nicht unendlich schnell reagieren
kann.

Das vereinfachte Echtzeit-Automatenmodel und dessen Echtzeitverarbeitung ist wie folgt defi-
niert:

Definition 33 (Diskreter Echtzeit-Automat)
Ein diskreter Echtzeit-Automat ist ein 5-Tupel M = (S,1,0,T, Q) mit einer endlichen Menge
S von Zustinden, Eingangs-Nachrichten I, Ausgangs-Nachrichten O, einer Menge von Tran-
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sitionen T C S x p(I) x p(O) x S, wobei p(x) die Potenzmenge der Eingangs-/Ausgangs-
Nachrichten angibt und () die initiale Zustandsmenge. Das Schalten einer Transition entspricht
genau einer Zeiteinheit.

Das Verhalten ist charakterisiert durch Ausfiihrungspfade.

Definition 34 (Regulirer- und Deadlock-Ausfiihrungspfad)

Ein reguldrer Ausfithrungspfad ist eine Sequenz von Zustdnden s; € S und Eingangs-/Ausgangs-
Nachrichten A;/B; € I/O mit 1 = $1,A;/By,Sa,..., wobei fiir jede Nachricht i > 1
eine Transition (s;, A;, By, si11) € T existiert. Ein Deadlock-Ausfithrungspfad ist eine Se-
quenz von Zustinden s; € S und Eingangs-/Ausgangs-Nachrichten A;/B; € 1/O mit
T = $1,A1/B1,S2,...5., An/B,, wobei fiir jede Nachricht 1 < i < n eine Transition
(si, Ai, Biy siv1) € T existiert und weiterhin /3s,11 € S mit (Sp, Ap, Bp,Spy1) € T. [M]
beschreibt alle reguldiren und Deadlock-Ausfiihrungspfade. Wir schreiben 7|;,0, um einen Aus-
fiihrungspfad zu einer beobachtbaren Sequenz einzuschrinken und |s, um die Zustandssequenz
zu beschreiben.

Diese vorgestellte Definition hat Ahnlichkeiten mit dem Konzept von Prozessalgebren. Wihrend
reguldre beobachtbare Sequenzen Ausfithrungspfade in CSP [Hoa85] oder anderen Prozessalge-
bren sind, sind Deadlock-Sequenzen vergleichbar mit Fehlern in CSP. Prozessalgebren abstra-
hieren allerdings von Zusténden.

Die Zeitsemantik eines Automaten ist dadurch definiert, dass eine Transition genau eine Zeitein-
heit benotigt. Aus Vereinfachungsgriinden werden wir allerdings in Beispielen, die in Abschnitt
2.6 benutzte Syntax clock > Konstante verwenden. Mit der hier vorgestellten Zeitseman-
tik miissten entsprechenden der Konstanten viele Zwischen-Transitionen oder ein Zihler iiber
Selbsttransitionen benutzt werden.

Aus Vereinfachungsgriinden bezeichne im Folgenden .S;, I;, O;, T}, und (); Elemente des diskre-
ten Echtzeit-Automatens M;. Zwei Automaten M und M’ mit unterschiedlichen Eingabe- und
Ausgabe-Mengen (INI" = () und ONO’ = () bezeichnen wir komponierbar (engl. composable).
Wenn zudem I N O’ = (und O N I’ = () gilt, dann sind sie orthogonal zueinander.

Spezifikation von Eigenschaften Eigenschaften werden, wie in Abschnitt 2.4.6 beschrie-
ben, mit Timed CTL (TCTL) Bedingungen (¢) und Invarianten (1)) spezifiziert. Ein Echtzeit-
Automat M wird um eine Propositionsmenge P erweitert und ein beliebiger Zustand s € S
wird mit allen Propositionen aus P durch eine Markierungsfunktion L : S — (P) annotiert
welche diese erfiillen. Ein Echtzeit-Automat M = (S, 1,0, T, ()) wird entsprechend zu einem
6-Tupel M = (S,1,0,T, L, Q) erweitert. Die Markierungsmenge £(M ) bezeichnet die Menge
aller Propositionen aus P, die durch die Markierung betrachtet werden.

In den folgenden Formel-Definitionen lassen wir aus Vereinfachungsgriinden jegliche syntakti-
schen Details von TCTL wegfallen und schreiben M |= ¢ wenn ein Automat ) eine Bedingung
oder Invariante ¢ erfiillt.
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Das spezielle Symbol § wird benutzt um auszudriicken, dass ein deadlock erreicht werden kann.
Ein Deadlock ist ein Zustand ohne jegliche ausgehende Transition. M |= —4 driickt damit aus,
dass M keinen Deadlock beinhaltet.

Parallele Komposition Werden mehrere Komponenten komponiert, so werden diese paral-
lel ausgefiihrt. Die Kommunikation wird durch eine synchrone Kommunikation formalisiert, so
dass Senden und Empfangen von Nachrichten innerhalb des gleichen Zeitschritts stattfinden. Da
wir allerdings grundlegend eine asynchrone Nachrichten-Semantik verfolgen, fiihren wir expli-
zite Nachrichtenpuffer durch einen extra Automaten ein. Diese expliziten Automaten sind zudem
gefordert, um Verbindungscharakteristiken, wie Nachrichten-Ausfall, zu spezifizieren (siehe Ab-
schnitt 2.4).

Die Kombination von zwei komponierten Automaten wird durch eine Verbindung der Eingabe
und Ausgabe-Nachrichten erreicht. Im Unterschied zu Definition 2 stellen wir im Folgenden eine
angepasste parallele Komposition fiir die diskreten Echtzeit-Automaten vor. Dies ist notwendig,
da Zeit nicht explizit iiber Clocks, sondern Transitionen kodiert ist.

Definition 35 (Parallele Komposition)

Fiir zwei diskrete Echtzeit-Automaten M = (S,1,0,T,L,Q) und M’ = (5", I', 0", T', L', @Q’),
welche komponierbar zueinander sind (I N I' = () und O N O" = (), definieren wir ihre parallele
Komposition ausgedriickt durch M| M’ als Automat (S”,1",0",T",L", Q") mit S" = S x
ST =1TUl,0"=0U0, Q" = Q xQ, und ((s1,5)), A", B",(s92,5)) € T", wenn
(s1,A,B,s9) € T und (s}, A, B, s,) € T existiert mit A” = AU A" und B = BU B
Zusditzlich muss (AN O') = B’ und (A’ N O) = B gelten. Die Markierung L" fiir (s,s") € S"”
wird hergeleitet aus L"((s,s")) = L(s) U L'(s).

Eine Transition in 7" ist damit eine Kombination von zwei Transitionen in jedem Automaten,
wenn alle benétigten lokalen Eingaben durch den anderen Automaten erfiillt werden ((ANO’) =
B’ und (A’NO) = B). Die nicht lokalen Eingaben und Ausgaben sind einfach eine Vereinigung
beider Automaten.

Verfeinerung Die Definition einer Verfeinerung ist essentiell, um zu beschreiben, dass ein
Protokollverhalten einer Altkomponente eine korrekte Implementierung eines abstrakten Rollen-
verhaltens ist. Im Unterschied zu der Verfeinerung definiert in Abschnitt 3.1.1 miissen wir hier
Automaten mit diskretem Zeitformalismus betrachten. Die Verfeinerung ist wie folgt definiert.

Definition 36 (Verfeinerung)
Ein diskreter Echtzeit-Automat M = (S,1,0,T,L,Q) ist eine Verfeinerung des diskreten
Echtzeit-Automaten M' = (8", I', O',T", L', Q") (M T M') wenn gilt:

Vr=...se[M3n' =...s €  M']:7w|j0 =7"|1jor N L(s) = L'(s) 4.1)

Vr=...s,A/Be [M]3r=...s,A/B e [M']:7|j0="1"r0o (4.2)
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Damit gilt, dass fiir jeden Pfad in einer Altkomponente M Gleichung 4.1 zusichert, dass es einen
zugehorigen Pfad in dem abstrakten Automaten M’ existiert. Aus Gleichung 4.2 folgt weiterhin,
dass fiir jeden Deadlock-Pfad in M ebenfalls ein moglicher Deadlock-Pfad in M’ existiert. Damit
wird eine Ordnung hergestellt, wie fiir Simulationsbeziehungen gefordert [CGP00]. Womit gilt,
dass aus C eine Simulationsbeziehung (=) folgt. Entsprechend der Definition bleibt das extern
sichtbare Echtzeitverhalten | /o erhalten und zudem aufgrund des Erhalts einer Simulationsbe-
ziehung auch die geforderten Sicherheits- und begrenzten Lebendigkeitseigenschaften [BKOS].
7|1 so konnen wir zudem einfach relaxieren, wie in Abschnitt 3.1.1 beschrieben, um weitere Ver-
feinerungen zu erlauben. Fiir die folgenden Definitionen und den in den Abschnitten 4.1.2 und
4.1.3 beschriebenen Lernansatz hat das allerdings keine Auswirkung.

Kompositionelle Bedingungen Im Folgenden betrachten wir ausfiihrlicher, welche Klas-
sen von Bedingungen durch Komposition und Verfeinerung fiir unseren spezifischen diskreten
Echtzeitautomaten erhalten bleiben.

Definition 37 (Kompositionelle Bedingungen)
Eine Bedingung ¢ ist kompositionell, wenn fiir jeden diskreten Echtzeit-Automaten My, M, und

(My |= ¢) = (M| M |= @) V (My|| M3 |= 6)) und (4.3)
((My E M) A (M |= ¢)) = (M = ¢) 4.4)

Allgemein gilt, dass CTL-Formeln durch Bisimulations-Beziehungen erhalten bleiben. ACTL-
Formeln bleiben durch Simulations-Beziehungen erhalten (<) [CGPOO]. Die vorgestellte Verfei-
nerung impliziert eine Simulations-Beziehung und erhilt daher ACTL-Formeln und zusétzlich
Deadlock-Freiheit.

Lemma 2
Fiir einen diskreten Echtzeit-Automaten M und M’ mit M T M’ gilt M' |= =0 = M = —6.

Beweis 3

Bedingung 4.1 sichert zu, dass fiir jeden Zustand s € S wenigstens ein Zustand s' € S’ mit
(s,s") € Q existiert. Ist M' ohne Deadlock, dann folgt daraus, dass s' mindestens eine ausge-
hende Transition hat und Bedingung 4.2 stellt sicher, dass dieses auch fiir s gilt. Damit gilt, dass
auch M frei von einem Deadlock ist.

Invarianten, untere und obere Zeitschranken sowie ACTL-Formeln sind im generellen Bedingun-
gen, die sich nur auf alle moglichen Pfade beziehen. Durch die Bedingung, dass die Zustands-
markierungen disjunkt sind, kann die Anzahl der Zustandssequenzen mit gleicher Markierung
nicht erhoht werden und damit sind diese kompositionell.

Deadlock-Freiheit ist ebenfalls kompositionell. Dies folgt aus Konstruktion von Bedingung 4.3
und durch Lemma 2 fiir Bedingung 4.4.
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Kompositionalitét gilt also fiir Deadlock-Freiheit, obere Schranken fiir maximale Nachrichten-
Verzogerungen, untere Schranken fiir die minimale Verzogerung von Nachrichten und fiir Inva-
rianten. Formeln der Form AG(—p; V (AF|; 4 p2)) konnen damit erfiillt werden. Formeln, die
z. B. Lebendigkeitseigenschaften ohne Zeitbeschrinkung definieren, konnen nicht erhalten wer-
den. Im Allgemeinen ist dies allerdings fiir harte Echtzeitsysteme nicht notwendig, da zu einer
Bedingung auch immer eine zeitliche Einschrinkung per Definition gefordert wird.

Parallele Komposition & Verfeinerung Nun miissen wir noch zeigen, dass die parallele
Komposition unserer diskreten Echtzeit-Automaten auch die Verfeinerung nach Definition 36
erhdlt.

Lemma 3

Fiir einen beliebigen diskreten Echtzeit-Automaten M, einen Automaten My und einer Verfeine-
Beweis 4

Fiir M,|| M} konnen wir aus der Konstruktion der parallelen Komposition folgern, dass nur
Pfade und Deadlock-Pfade resultieren, die auch in M, || M, existieren. Daher sind Bedingung
4.1 und 4.2 durch M || My und M || M, erfiillt.

Weiterhin miissen wir zeigen, dass kompositionelle Bedingungen und Deadlock-Freiheit erhalten
bleiben.

Lemma 4

Fiir Ml, MQ und Mé mit M2 EI/O Mé, ]1 N (02 - Oé) = @, 01 N (]2 - Ié) = @, und ;C(Ml) N
(L(My) — L(M))) = 0 und einer beliebigen kompositionellen Bedingung ¢ gilt

(My[|M; | ¢ A=6) = (My|| My |= ¢ A —0) (4.5)

Beweis 5

Da ¢ und = kompositionell sind und aus Definition 37 konnen wir fiir My = Ma|1; 01000
folgern, dass My||M} = ¢ A =5 oder M,|| M} = 0 gilt. Durch Lemma 2 und 3 gilt zudem
M ||MY &= ¢ A =d. Durch I; N (Oy — O%) = O und Oy N (I — 1)) = 0 folgt weiterhin, dass M
MY nur I/O-Nachrichten hinzufiigt, welche nicht M, behindern und daher gilt, dass M, || M, die
gleiche erreichbare Zustandsmenge und Transitionen haben, womit M || My |= =4 gilt. Da ¢ nur
iiber Zustdnde interpretiert wird und Markierungen identisch fiir L(¢) C L(MJ) und ¢ sind, ist
damit Bedingung 4.5 bewiesen.

Unvolistandiger Automat Um inkrementell die Genauigkeit eines Verhaltensmodells zu
verbessern, fithren wir das Konzept von unvollstindigen Automaten ein.

Definition 38 (Unvollstindiger Automat)

Ein unvollstindiger Automat ist ein 6-Tupel M = (S,1,0,T,T,Q) mit M = (S,1,0,T, Q) ist
ein Automat und T C S x p(I) x p(O) beschreibt die bekannten nicht unterstiitzten Kommuni-
kationen. Um sicherzustellen, dass T und T konsistent sind, verlangen wir

—(3s,A,B,s' : (s,A,B,s) € T A(s,A,B) €T).
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Das Verhalten ist ebenfalls durch Ausfiihrungspfade charakterisiert.

Definition 39 (Unvollstindige Ausfiihrungspfade)

Ein regulirer Ausfithrungspfad eines unvollstindigen Automaten ist eine Sequenz von Zustdn-
den s; € S und Eingangs-/Ausgangs-Nachrichten A;/B; € I/O mit m = s1,A1/By, $a,. ..,
wobei fiir jede Nachricht i > 1 eine Transition (s;, A;, B;, s;+1) € T existiert. Ein Deadlock-
Ausfiithrungspfad ist eine Sequenz von Zustinden s; € S und Eingangs-/Ausgangs-Nachrichten
A;/B; € 1/O mit m = s1, A1/ By, Sa, . .. Sp, An/ By, wobei fiir jede Nachricht 1 < i < n eine
Transition (s;, A;, By, siy1) € T existiert und weiterhin (s,, An, B,) € T gilt. [M)] beschreibt
alle reguliiren und Deadlock-Ausfiihrungspfade.

Die Definition der Ausfithrungssequenz hebt hervor, dass Deadlock-Ausfiithrungspfade eines un-
vollstindigen Automaten nur angenommen werden, wenn diese explizit durch 7" definiert wurden
und nicht implizit, wenn keine Transition in 7' gegenwirtig ist.

Ein Automat ist deterministisch, wenn fiir jeden Zustand s sowie Nachrichten A und B gilt,
dass [{(s, A, B, s') € T'}| < 1. Ein unvollstandiger Automat ist deterministisch, wenn fiir jeden
Zustand s sowie Nachrichten A und B gilt, dass [{(s, A, B,s") € T} U{(s, A, B) € T}| < 1.

Fiir einen unvollstindigen Automaten beschreiben wir einen Vervollstandigungsschritt als eine
beliebige Erweiterung von S, T oder T, welche wieder in einen unvollstindigen Automaten
resultiert. Letztendlich wird ein unvollstindiger Automat vollstindig, wenn jede mogliche Kom-
munikation entweder durch T verboten ist oder in 7 ist:

Vs e S, A€ p(l),BepO): (I e€S:(s,AB,s)eTxor (s, A B)eT).

Chaotischer Automat und Hille Betrachten wir die Verfeinerungsdefinition 36, konnen
wir ein maximales Verhalten identifizieren, welches wir durch einen chaotischen Automaten
definieren. Dieser chaotische Automat ist eine Abstraktion von allen moglichen Verhalten, da
jede mogliche Eingabe-Sequenz akzeptiert wird, genauso wie Deadlocks.

Definition 40 (Chaotischer Automat)

Fiir eine gegebene Eingabe- und Ausgabemenge I und O, wird der chaotische Automat
M. = (S.,1,0,T,,Q.) wie folgt definiert: Die Zustandsmenge S, ist definiert durch S, =
{ss, sv}. Die Transitionen sind definiert durch T, = {(sy, A, B,sy)|A € p(I),B € p(O)} U
{5, A, B,ss) A € p(1), B € p(O)} und Q. = {55, ¢}.

Abbildung 4.3 stellt einen chaotischen Automat nach Definition 40 dar. Aus dieser Abbildung
ist zu sehen, dass sy und ss mogliche initiale Zustinde sind. Wihrend s; jede Kommunikation
blockiert, akzeptiert sy jede mogliche Kommunikation. Die moglichen Eingabe- und Ausgabe-
Kombinationen werden mit **’ gekennzeichnet.

Wenn zudem Bedingungen relevant sind, fligen wir weitere Zustinde sy und s; fiir jede mogliche
Bedingung P’ von P ein. Es ist jedoch effizienter sy und ss mit einer neuen Proposition p’ zu
markieren, da hierdurch keine weiteren Zustinde eingefiihrt werden miissen. Weiterhin miissen
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Abbildung 4.3: Maximal chaotisches Verhalten: der chaotische Automat

dann alle Propositionen p € P in denen p auftritt durch (p V p’) ersetzt werden, genauso wie alle
—p durch (—p V p’) ersetzt werden.

Da wir an einer sicheren Abstraktion des Protokollverhaltens der Altkomponente interessiert
sind, fithren wir eine besondere Vervollstindigung ein, die sogenannte chaotische Vervollstindi-
gung. Die chaotische Vervollstindigung resultiert in einen willkiirlichen chaotischen Verhalten.

Definition 41 (Chaotische Hiille) _
Gegeben sei ein unvollstindiger Automat M = (S,1,0,T,T,Q), dann leiten wir die dazugehd-
rige chaotische Hiille M’ = (5',1,0,T", Q") wie folgt ab:

1. verdoppele die Zustandsmenge und beriicksichtige den chaotischen Automaten: S’ = (S X
{0 w (S x{1}) W S, und

2. passe die Transitionsmenge der Verdoppelung so an, dass alle nicht spezifizier-
ten Kommunikationen entweder nicht unterstiitzt werden oder in den hinzugefiigten
chaotischen Automaten fiihren: T = {((s,0), A, B,(s,0)|(s,A,B,s") € T} W
{((s,0),A, B, (s, 1)|(s,A,B,s") € T} W {((s,1),A4,B,(s,0)|(s,A,B,s") € T} W
{((s,1),A,B,(¢,1)|(s,A,B,s") € T}w {((s,1),A,B,sy)ls € S,a € p(I),B €
9(0),(s,A,B) & T} w{((s,1),A,B,ss)ls € S,a € p(I),B € 9(0),(s,A,B) &
TYywT,.

Wir beschreiben die chaotische Hiille von M mit chaos(M).

In dieser Konstruktion gilt: ' = {(s,0)|s € Q} W {(s,1) € Q}. Die Zustidnde (s, 0) repri-
sentieren den Fall, dass keine Erweiterung angenommen wird, welche in einen Deadlock fiihrt.
Die Zustidnde (s, 1) représentieren den Fall, dass alle moglichen Erweiterungen angenommen
werden, welche entsprechend in das Chaos fiihren. Dies wird représentiert durch ss und sy. Aus
dieser Definition ist zudem ersichtlich, dass das chaotische Verhalten (hochgradig) nichtdetermi-
nistisch ist, wihrend das reale Altkomponenten-Verhalten deterministisches Verhalten aufweist.

Beobachtungs-Konformitat & Verfeinerung

Definition 42 (Beobachtungs-Konformitiit)
Ein unvollstindiger Automat M ist beobachtungs-konform beziiglich eines Automaten M., wenn
[M] € [M,].
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In unserem Fall haben wir die Beobachtung iiber Zustinde definiert. Typischerweise wird dies
iber Pfade definiert. Fiir den hier betrachteten Gray-Box-Checking-Ansatz ist das allerdings
unpraktisch, da wir die Zustidnde der Altkomponente kennen.

Theorem 2
Wenn M ein beobachtungs-konformer unvollstindiger Automat beziiglich einer konkreten deter-
ministischen Altkomponente M, ist, dann gilt, dass M, T chaos(M).

Beweis 6

Aus der Verfeinerungs-Bedingung 4.1 folgt direkt [M] C [M,], da ss und sy alle positiven und
negativen Propositionen durch die diskutierten Anpassungen der Formeln erfiillen. Bedingung
4.2 ist erfiillt, da die chaotische Hiille per Konstruktion garantiert, nur zusdtzliches Verhalten
hinzuzufiigen, welches immer in einen Deadlock fiihren kann. [J

4.1.2 Initiale Verhaltenssynthese

Gegeben sei ein konkreter Kontext M/ mit abstrakten Modell Mg, fiir das gilt, dass der konkre-
te Kontext eine Verfeinerung des abstrakten ist (M, T My). Weiterhin sei eine konkrete Alt-
komponente M, mit versteckten internen Details gegeben. Die generelle Frage, die unser Gray-
Box-Checking-Ansatz zu beantworten hat ist, ob eine gegebene Bedingung ¢ so wie Deadlock-
Freiheit (—0) erfiillt sind.

Da wir sicherheitskritische Systeme betrachten, muss unser Ansatz entweder eine Garantie ge-
ben, dass beide Eigenschaften erfiillt sind oder ein Gegenbeispiel liefern, welches eine Verlet-
zung der Bedingungen aufweist. Allerdings kann gewohnlich nicht der gesamte Zustandsraum
von M, traversiert werden, da der Zustandsraum der parallelen Ausfithrung mit M¢||M,. zu groB
ist, um vollstindig alle Eigenschaften zu iiberpriifen.

Um dieses Problem zu 16sen, erstellen wir eine Serie von Abstraktionen M ; von M,. Es handelt
sich hierbei um sichere Abstraktionen (siehe Definition 41), um entsprechend zuverlissige Veri-
fikationsergebnisse zu ermdglichen. Die Abstraktionen werden nach und nach akkurater, so dass
letztendlich gezeigt werden kann, dass entweder die Integration korrekt ist oder ein entsprechen-
des Gegenbeispiel gefunden wurde. Dabei ist immer die folgende Relation erfiillt:

M, M! (Vi>0). (4.6)

Unser Ansatz startet mit der initialen Synthese eines Modells der Altkomponente basierend auf
den bekannten Schnittstellen-Informationen. Wir gehen dabei davon aus, dass die ausgetauschten
Nachrichten entweder direkt zueinander passen oder eine Abbildung, die z.B. den Namensraum
oder auch die Typen aufeinander abbildet, bekannt ist.

In einem ersten Schritt erstellen wir einfach A/? basierend auf den bekannten Informationen der
Schnittstelle von M,. M ZO wird erstellt durch Bestimmung des initialen Zustands sy von M,. und
durch Herleitung eines Automaten: M} = ({so, I, I,0,{s,}). Wie in Paragraph Anforderungen
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und Voraussetzungen auf Seite 98 beschrieben, setzen wir voraus, dass die Altkomponente Initial
in einem wohldefinierten Zustand ist.

Unter Ausnutzung der chaotischen Hiille (sieche Definition 41) leiten wir eine erste Approxima-
tion her: M? = chaos(M}). Mit Theorem 2 stellen wir sicher, dass M? eine sichere Abstraktion
von M, ist (M, T M?).

Lemma 5
Fiir das initiale Modell M? = chaos(M}) fiir M} erstellt fiir den initialen Zustand sy von M,
ausgedriickt durch den Automat M = ({so, I, 1,0, {s,}) gilt M, © M_.

Beweis 7
Aufgrund des Theorems 2 kinnen wir folgern, dass M? eine sichere Abstraktion von M, ist, da
M} beobachtungs-konform zu M, ist. (]

@~ noConvoy::default
@~ noConvoy::default .%GoConvoy::default)
(b)

()

Abbildung 4.4: Trivialer initialer Automat, der den bekannten initialen Zustand beriicksichtigt
(4.4(a)) und das initiale Verhalten einer Altkomponente (4.4(b))

In Abbildung 4.4(a) wird der initiale, triviale Automat dargestellt. Der Automat besteht aus ei-
nem initialen Zustand noConvoy::default.

Der resultierende Automat nach Anwendung der chaotischen Hiille auf den trivialen unvollstin-
digen Automaten dargestellt in Abbildung 4.4(a), welcher nur den bekannten initialen Zustand
noConvoy::default darstellt, ist in Abbildung 4.4(b) dargestellt. Die Abbildung verdeutlicht, dass
der initiale Zustand verdoppelt wurde und das einer dieser Zustinde verbunden ist mit jeglichen
moglichen Kommunikationen durch die beiden chaotischen Zustinde sy and ss5. Wie bereits wei-
ter oben erldutert, stellt **’ alle moglichen Eingabe- und Ausgabekombination dar.

Abbildung 4.5 zeigt das bekannte Kontextverhalten, die front-Rolle, die wir im Folgenden fiir
die iterative Verhaltenssynthese beriicksichtigen. Da der hier beschriebene Gray-Box-Checking-
Ansatz aus Vereinfachungsgriinden nicht fiir hierarchisches Kontextverhalten definiert wurde,
beschreibt 4.5 im Wesentlichen nur eine flache Représentation des front-Rollenverhaltens (siehe
Abschnitt 2.4.2). Dies stellt keine Einschriankung fiir die Einsatzmoglichkeit des Ansatzes dar.
Die Automaten konnen lediglich komplexer werden, da Hierarchien durch mehrere Zustiande und
Transitionen flach ausgedriickt werden.

Der Startzustand des Statecharts ist der noConvoy-Zustand. Der Automat verweilt in diesem Zu-
stand bis eine convoyProposal-Nachricht empfangen wird. Danach wird in den answer-Zustand
gewechselt. In diesem Zustand entscheidet der Automat nichtdeterministisch die Konvoianfrage

109



Kapitel 4 Integration von Altkomponenten

convoyProposal/

—~ /convoyProposalRejected

@ noConvoy::default

nfoConvoy::answer

/startConvoy

/breakConvoy

— breakConvoyProposal/ —
convoy::break yrrop convoy::default

/breakConvoyRejected

Abbildung 4.5: Bekanntes Kontextverhalten

abzulehnen (convoyProposalRejected) oder den Konvoi zu starten (startConvoy). Ist letzteres der
Fall, schaltet der Automat in den convoy-Zustand und verweilt dort, so lange eine breakConvoy-
Proposal-Nachricht empfangen wird. Der Automat entscheidet dann wieder nichtdeterministisch
diese Anfrage anzunehmen oder abzulehnen.

4.1.3 Iterative Verhaltenssynthese

Auf Basis der initialen Verhaltenssynthese (siehe Abschnitt 4.1.2), beschreiben wir in diesem
Abschnitt unseren iterativen Verhaltenssynthese-Ansatz. Als erstes iiberpriifen wir, ob die ge-
gebenen Bedingungen fiir das initial synthetisierte Verhalten erfiillt sind. Ist dies nicht der Fall,
testen wir die Altkomponente basierend auf dem Gegenbeispiel, welches die Verletzung der Be-
dingung aufzeigt. Wihrend der Testdurchfithrung beobachten wir die Altkomponente. Wenn das
Gegenbeispiel durch die Altkomponente bestitigt wird, ist die Integration fehlgeschlagen. An-
dernfalls verwenden wir den beobachteten Trace, um das Verhalten zu erlernen. Das neu synthe-
tisierte Verhalten ist dann der Startpunkt fiir die nédchste Iteration.

Formaler Verifikationsschritt Die iterative Verhaltenssynthese startet mit der Uberpriifung
der hergeleiteten Abstraktion aus der initialen Verhaltenssynthese (sieche Abschnitt 4.1.2). Uber-
priift wird, ob ein Gegenbeispiel fiir die geforderte Bedingung ¢ existiert. Wir {iberpriifen daher
firs > 0

M| M = ¢ A —6. 4.7)

Wenn die Uberpriifung erfolgreich ist, haben wir tatsichlich bewiesen, dass die Bedingungen
auch fiir M¢|| M, und M¢|| M, gelten miissen.

Lemma 6
Gegeben sei ein konkreter Kontext M mit abstrakten Modell M und eine konkrete Altkompo-
nente M, mit hergeleiteter Abstraktion M., so dass der konkrete Kontext eine Verfeinerung des
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abstrakten Kontextes ist (M¢ T M¢) und das M} eine giiltige Abstraktion der Altkomponente
M, ist (M, © M?), dann gilt fiir jede kompositionelle Bedingung ¢:

MM =¢ = MM, = ¢. (4.8)

Beweis 8

Wie in Abschnitt 4.1.1 gezeigt, bleibt eine Verfeinerung (C) durch eine parallele Komposition (||)
erhalten. Wenn also M¢ © M¢ gilt, dann kénnen wir daraus schliefen, dass M¢||M: T M¢|| M
ebenso gilt. Gilt M, T M!, dann konnen wir damit ebenso folgern, dass M¢||M, T M¢|| M
gilt. Da die Verfeinerung die Bedingung ¢ erhiilt, konnen wird aus M¢||M! = ¢ folgern, dass
M¢||M, [= ¢ ebenfalls gilt. O

Wenn die Uberpriifung allerdings nicht erfolgreich ist, wird ein Gegenbeispiel erstellt. Das Ge-
genbeispiel ist ein Pfad 7 fiir M¢||M¢, welcher eine Verletzung aufzeigt, dass ¢ nicht fiir die
Abstraktion erfiillt ist. Dieses Gegenbeispiel eingeschrinkt auf M! wird benutzt, um die Alt-
komponente zu testen.

Beobachtung 4.1 zeigt das Gegenbeispiel der Uberpriifung des initialen chaotischen Verhaltens.
Das Gegenbeispiel ist relativ lang bezogen auf die Groe des initialen Automaten. Als erstes
schickt die chaotische Hiille eine convoyProposal-Nachricht dem Kontext zu. Danach schickt
der Kontext eine convoyProposalReject-Nachricht. Dann schickt die Hiille wieder eine convoy-
Proposal-Nachricht und der Kontext entscheidet sich einen Konvoi zu erstellen, in dem er eine
startConvoy-Nachricht verschickt. Nachdem der Konvoi erstellt wurde, versucht der Kontext den
Konvoi aufzulosen, wihrend die Hiille in den ss Zustand wechselt und damit ein Deadlock ma-
nifestiert ist.

Beobachtung 4.1: Initiales Gegenbeispiel

1 rcl.noConvoy, legacyRC.s_all,

2 legacyRC.convoyProposal!, shuttlel.convoyProposal?

3 rcl.answer, legacyRC.wait,

4 rcl.convoyProposalRejected!, legacyRC.convoyProposalRejected?
5 rcl.noConvoy, legacyRC.s_all

6 legacyRC.convoyProposal!, shuttlel.convoyProposal?

7 rcl.answer, legacyRC.wait

8 rcl.startConvoy!, legacyRC.startConvoy?

9 rcl.convoy, legacyRC.s_all

0 legacyRC.breakConvoyProposal!, rcl.breakConvoyProposal?
1

—_

rcl.break, legacyRC.s_delta

Testschritt Wenn der Test der Altkomponente mit dem Gegenbeispiel aufdeckt, dass der Pfad
7 auch in der Altkomponente moglich ist, konnen wir daraus schlie3en, dass wir einen Fehler in
der Integration gefunden haben.
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Lemma 7

Gegeben sei ein konkreter Kontext M mit abstrakten Modell M ¢ und eine Altkomponente M, mit
abgeleiteter Abstraktion M, so dass der konkrete Kontext den abstrakten verfeinert (M¢ = M¢)
und dass die Abstraktion der Altkomponente giiltig ist (M, T M?), dann gilt:

(MM, mHo N meMIM,) = MM, ¢ (4.9)

Beweis 9

Da 7 eine Verletzung von —¢ nachweist und ¢ ein Ausfiihrungspfad von ME|| M, ist, konnen wir
daraus folgern, dass M¢|| M, = ¢ gilt. O

Im Folgenden wenden wir unsere Vereinfachungen an, um die Bedingungen P’ anzupassen, an-
statt diese iiber die chaotische Hiille auszudriicken, welche alle moglichen unterschiedlichen
Teilmengen der atomaren Bedingungen P unterscheiden wiirde (siehe Definition 40). Unter An-
wendung dieser Vereinfachung miissen wir nur ¢ auf M¢||M,, 7 auswerten, um zu iiberpriifen,
dass das Gegenbeispiel durch die Altkomponente bestitigt wird. Dies kann nur passieren, wenn
7 Zustidnde in der chaotischen Hiille (sy or ss) aufsucht.

Daher ist garantiert, dass in diesen Fillen 7 nicht ein realer Ausfithrungspfad von M¢|| M, ist,
da die konkreten Zustinde niemals Zustdnde der chaotischen Hiille beinhalten. Dies ist notwen-
dig, da ansonsten durch die kiinstlichen Deadlocks ermdglicht durch die chaotische Hiille, um
Verhalten zu lernen, keine sichere Abstraktion gewihrleistet wére.

In dem hier betrachteten Fall von Gray Box Checking, wo wir die konkreten Zustinde der Alt-
komponente beobachten kénnen, konnen wir davon ausgehen, dass fiir Ausfithrungspfade die
Kodierung (s,7) miti € {0, 1} dquivalent zu einem Zustand s sind (siehe Definition 41). Damit
sind Ausfithrungspfade, die nur diese Zustidnde besuchen, auf Ausfithrungspfade der Altkompo-
nente abbildbar. Diese Ausfiihrungspfade konnen damit reale Gegenbeispiele auffinden.

Wenn der Ausfiithrungspfad nicht durch Testen der Altkomponente bestétigt wird, nutzen wir die
beobachtete Differenz zwischen 7 und der Beobachtung 7’ der Altkomponente, um ein verbes-
sertes M1 herzuleiten.

Wenn wir die Altkomponente in unserem Beispiel basierend auf dem Gegenbeispiel in Beobach-
tung 4.1 mit Hilfe der Techniken beschrieben in Abschnitt 6.1.1 testen, beobachten wir den Pfad
dargestellt in Beobachtung 4.2.

Die in Abschnitt 6.1.1 beschriebenen Techniken ermoglichen uns wihrend der Testausfithrung
einer Altkomponente nur die relevanten Ereignisse aufzunehmen, die Notwendig fiir eine deter-
ministische Wiederholung sind. Dies ist fiir die betrachteten Systeme wichtig, da hiermit eine
gleichbleibende Instrumentierung realisiert wird, die einen sogenannten Probe-Effekt fiir Echt-
zeitsysteme verhindern kann.

Ein Probe-Effekt kann zu unterschiedlichen Verhalten wihrend der Test und realen Ausfithrung
der Altkomponente fiihren, da sich durch die Instrumentierung z.B. das zeitliche Verhalten ver-
dndern kann. Unser Ansatz ermdglicht eine deterministische Wiederholung auf Basis der Be-
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obachtung der ausgehenden Nachricht convoyProposal an Port rearRole und der eingehenden
Nachricht convoyProposalRejected am gleichen Port.

Wenn wir detaillierter das Verhalten der Altkomponente wihrend der deterministischen Wieder-
holung beobachten, mit allen relevanten Instrumentierungen fiir die Beobachtung der Zustinde
und Zeit, zeigt der Pfad einen Konflikt mit dem erwarteten Verhalten basierend auf dem initialen
Gegenbeispiel (siche Beobachtung 4.3).

Im néchsten Abschnitt werden wir zeigen, wie wir einen Konflikt manifestieren, wihrend wir
das synthetisierte Verhalten basierend auf den beobachteten Pfaden iiberpriifen.

Beobachtung 4.2: Beobachtete relevante Ereignisse fiir die deterministische Wiederholung: blo-
ckierender Zustand
1 [Message] name="convoyProposal", portName="rearRole", type="outgoing"
2 [Message] name="convoyProposalRejected", portName="rearRole", type=
incoming

Beobachtung 4.3: Beobachtung aller relevanter Ereignisse: blockierender Zustand

[CurrentState] name="noConvoy"

[Message] name="convoyProposal", portName="rearRole", type="outgoing"

[Timing] count=1

[CurrentState] name="convoy",

[Message] name="convoyProposalRejected", portName="rearRole", type=
incoming

(O O R S

Lernschritt In dem hier gezeigten Lernschritt wenden wir die beobachtete Differenz zwi-
schen 7 und dem beobachteten Verhalten der Altkomponente 7’ an, um ein verbessertes Mf“
herzuleiten. M!*! wird wieder aus chaos(M;*') hergeleitet. Durch Theorem 2 gilt per Konstruk-
tion:

M, C M (4.10)

Dies gilt, da 7’ ein beobachtbares Verhalten von M, ist und alle weiteren Verhalten von M, f“
auch in M} vorhanden sind.

Fiir das Lernen konnen wir zwei Schritte unterscheiden. Zum einen kann ein noch nicht beob-
achtetes Verhalten 7’ aufgenommen worden sein. Dann kénnen wir wie folgt vorgehen:

Definition 43 (Lernen)

Gegeben sei ein unvollstindiger deterministischer Automat M = (S,1,0,T, T, Q) und ein re-
guldirer Ausfiihrungspfad w, dann konnen wir den deterministischen unvollstindigen Automaten
M = (S, 1,0,T".T,Q') herleiten, welcher sich aus dem Lernen von  (beschrieben durch
learn(M,)) wie folgt ergibt: ' = SU{s & S|t =...s...},T' =TU{(s,A,B,s) ¢ T|r =
.s(A,B)s ... und Q' = QU{s € Qr=s...}.
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Zum anderen konnen wir den Fall betrachten, dass der Test blockiert wird. In diesem Fall haben
wir einen Deadlock-Ausfithrungspfad 7 der Form ... s(A, B) mit (A, B) wurde in Zustand s
blockiert. Das Lernen wird dann wie folgt ermoglicht:

Definition 44 (Lernen - Deadlock)

Gegeben sei ein deterministischer unvollstindiger Automat M = (S,1,0,T,T,Q) und ein
Deadlock-Ausfiihrungspfad m = ...s(A, B), wobei die letzte Kommunikation blockierend ist.
Wir leiten dann den deterministischen unvollstindigen Automaten M' = (S,1,0,T, T/, Q) her.
Dieser resultiert aus dem Lernen auf Basis von m (bezeichnet durch learn(M,m)) wie folgt:

T =TU{(s,A, B)}.

In beiden Fillen ist das erlernte Verhalten eine sichere Abstraktion, wie im folgenden Lemma
beschrieben.

Lemma 8

Gegeben sei ein konkreter Kontext M mit abstrakten Modell M und einer konkreten Altkompo-
nente M, mit abgeleiteter Abstraktion M!. Weiterhin sei der konkrete Kontext eine Verfeinerung
des abstrakten Kontext (M¢ C M¢) und das erlernte Verhalten sei giiltig (M? ist beobachtungs-
konform zu M,), dann gilt fiir jeden moglichen Ausfiihrungspfad m von ME||M,.:

M, & M fiir Mi+! = chaos(learn(Mj, 7). (4.11)

Beweis 10
Es folgt aus der Konstruktion, dass learn(M},7) wie M} beobachtungs-konform zu M, ist.
Durch Theorem 2 folgt die Verfeinerung fiir chaos(learn(M;, 7). O

Um in der Lage zu sein einen Pfad zu erstellen, der die Abstraktion verbessert, nutzen wir aus,
dass die Implementierung M, deterministisch ist, wihrend M moglicherweise Nichtdetermi-
nismen beinhaltet. Dies ist keine Einschridnkung fiir sicherheitskritische Systeme, da hier Nicht-
determinismen oder pseudo Nichtdeterminismen nicht erlaubt sind. Ansonsten wiirden wichtige
Eigenschaften dieser Systeme, wie Vorhersagbarkeit, verletzt werden.

Bezogen auf unser Beispiel, zeigt Abbildung 4.6 das synthetisierte Verhalten. Zuerst ist die Alt-
komponente in Zustand noConvoy::default. Nachdem die Nachricht convoyProposal verschickt
wurde, wechselt die Altkomponente in Zustand noConvoy::wait.

/convoyProposal
@ noConvoy::default noConvoy::default

Abbildung 4.6: Synthetisiertes Verhalten: Konflikt mit der Umgebung
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Mehrfache Iterationen Mit dem in den vorherigen Paragraphen vorgestellten Vorgehen,
konnen wir systematisch eine Serie von Abstraktion Mg, Mi, ..., M} herleiten, so dass wir
schrittweise unser Wissen iiber die Altkomponente M, verbessern. Im Unterschied zu bisherigen
Lernansitzen garantiert die Serie von Abstraktion immer eine giiltige Verfeinerung, so dass unser
Verfahren terminiert, sobald wir ein erstes n gefunden haben mit M¢||M” = ¢. Diese Aussage
impliziert, dass ¢ zudem fiir das reale System, die Altkomponente, gilt (M¢|| M, = ¢). Wenn, im
Gegensatz, wir ein n erreichen, fiir welches das zugehorige Gegenbeispiel 7,, zudem in der rea-
len Implementierung M¢|| M., festgestellt werden kann, weist das Gegenbeispiel auf einen realen
Konflikt in der Integration hin.

Theorem 3

Gegeben sei ein konkreter Kontext M mit abstrakten Modell M¢, so dass der konkrete Kontext
eine Verfeinerung des abstrakten ist (M T NM¢) und eine konkrete Altkomponente M, mit einer
Reihe von hergeleiteten Abstraktionen {M!|0 < i < n}. Diese Abstraktionen seien konstruiert,
wie unter Lemma 8 vorgestellt. Hieraus konnen wir entscheiden, ob eine Bedingung ¢ fiir M¢|| M,
gilt oder wir konnen die Serie der Abstraktionen fortsetzen.

Beweis 11

Wir kénnen via Induktion zeigen, dass M} beobachtungs-konform zu M,Y0 < i < n ist. Der erste
Schritt der Induktion ist (Induktionsanfang): Lemma 5 garantiert, dass wir immer wenigstens
ein erstes Element M) in der Serie der Abstraktion finden. Daher ist die Bedingung fiir n = 0
gegeben. Der Induktionsschritt wird mit Hilfe von Lemma 8 gezeigt. Es gilt, dass wenn eine Serie
von Abstraktionen fiir i fortgesetzt werden kann, Lemma 8 garantiert, dass die Bedingungen auch
fiir 1 + 1 gelten.

Wenn wir die Serie nicht fortsetzen konnen, dann haben wir entweder bewiesen, dass ¢ fiir
M¢E||\ MY gilt oder wir haben gezeigt, dass das Gegenbeispiel 7, auch in M¢|| M, enthalten ist.
Durch Lemma 6 haben wir bewiesen, dass die Bedingung ¢ fiir M¢|| M, gilt. Lemma 7 garantiert
zudem, dass die Bedingung ¢ stets durch M¢|| M, verletzt wird.

Daher garantiert unser Ansatz entweder die Reihe von Abstraktionen fortzusetzen oder wir haben
einen Beweis, dass die Bedingung ¢ erfiillt oder nicht erfiillt ist. 1]

Fiir Altkomponenten mit endlich vielen Zustinden, konnen wir zudem garantieren, dass der
Lernprozess terminiert. Gehen wir also davon aus, dass die Altkomponente eine endliche Anzahl
an Zustdnden und Transitionen hat sowie deterministisches Verhalten aufweist. Hierfiir konnen
wir zeigen, dass jedes Mal wenn wir ein Gegenbeispiel nicht in der Testphase beobachten kon-
nen, chaotisches Verhalten durch vorher unbekannte Zustinde und Transitionen ersetzt werden.
Daher ist die Anzahl der noch nicht bekannten Zustidnde und Transitionen mit jeder Iterationsrun-
de strikt monoton abnehmend. Da die Anzahl nicht kleiner Null sein kann, ist eine Terminierung
garantiert.

Im Folgenden zeigen wir einen weiteren Iterationsschritt an unserem Beispiel. Basierend auf
dem synthetisierten Verhalten gezeigt in Abbildung 4.6, berechnen wir eine chaotische Hiille und
iberpriifen diese mit dem Kontext. Beobachtung 4.4 zeigt das Gegenbeispiel. Die Bedingung A[]
not (rearRole.Convoy and frontRole.noConvoy) ist verletzt. Der Pfad zeigt, dass die Verletzung
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nur im synthetisierten Teil des Modells ist. Damit haben wir bewiesen, dass die Altkomponente
im Konflikt mit dem Kontext ist. Dariiber hinaus zeigt dieses Beispiel, dass unser Ansatz in der
Lage ist, schnell, nach wenigen Iterationsschritten, einen Fehler in der Integration aufzudecken.

Beobachtung 4.4: Gegenbeispiel mit Konflikt im synthetisierten Verhalten

1 shuttlel.noConvoy, shuttle2.noConvoy
2 shuttle2.convoyProposal!, shuttlel.convoyProposal?
3 shuttlel.answer, shuttle2.convoy

Der Ansatz unterstiitzt neben einer schnellen Konflikterkennung zudem eine systematische und
gleichzeitig automatische Vorgehensweise, um alle relevanten Eingabekombinationen in Bezug
auf den Kontext und den gestellten Bedingungen zu testen. Die Eingabe fiir das Testen ist die
gleiche, wie durch das Gegenbeispiel dargestellt in Beobachtung 4.5. Der Beobachtungspfad
zeigt, dass alle Kommunikationen durch die Altkomponente ausgefiihrt wurden, wie durch die
Testeingabe erwartet. Das in Abbildung 4.7 gezeigte synthetisierte Verhalten bestitigt diese Be-
obachtung. Die Uberpriifung des synthetisierten Verhaltens zusammen mit der chaotischen Hiil-
le manifestiert einen Deadlock in der chaotischen Hiille und nicht nur in dem synthetisierten
Verhaltensteil. Daher konnen wir das Gegenbeispiel in der nichsten Iteration fiir Testeingaben
ausnutzen.

Beobachtung 4.5: Erfolgreicher Lernschritt: Beobachtung aller relevanter Ereignisse

1 [CurrentState] name="noConvoy::default"

2 [Message] name="convoyProposal", portName="rearRole", type="outgoing"

3 [Timing] count=1

4 [CurrentState] name="noConvoy::wait"

5 [Message] name="convoyProposalRejected", portName="rearRole", type=
incoming

6 [Timing] count=2

7 [CurrentState] name="noConvoy"

8 [Message] name="convoyProposal", portName="rearRole", type="outgoing"

9 [Timing] count=3

10 [CurrentState] name="noConvoy::wait"

11 [Message] name="startConvoy", portName="rearRole", type=incoming

12 [Timing] count=4

13 [CurrentState] name="convoy"

4.2 Black Box Checking

Im vorherigen Abschnitt haben wir gezeigt, wie wir fiir Altkomponenten ein Verhalten iterativ
erlernen und iiberpriifen konnen, wenn der aktuelle Zustand des Systems beobachtbar ist. Gene-
rell konnen wir nicht voraussetzen, dass der aktuelle Zustand des Systems beobachtbar ist. Wie
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convoyProposalRejected/

¢ /convoyProposal
@ - noConvoy::default noConvoy::wait

startConvoy/

convoy::default

Abbildung 4.7: Korrekt synthetisiertes Verhalten in Bezug auf den Kontext

in Paragraph Anforderungen und Voraussetzungen auf Seite 98 erldutert, betrachten wir daher in
diesem Abschnitt zudem den Fall, dass der Zustand nicht beobachtbar ist und auch nicht auf den
Quellcode zuriickgegriffen werden kann. Im Folgenden Abschnitt 4.3 betrachten wir den Fall,
dass wir auf den Quellcode zugreifen konnen.

Wie unter anderem in Abschnitt 4.1.1 erldutert, konnen wir die betrachtete Klasse an Altkompo-
nenten auf deterministische Systeme eingrenzen. Wie in Definition 33 gezeigt, miissen wir daher
einen deterministischen Automaten der Altkomponente erlernen.

In Abschnitt 4.1 haben wir diskutiert, dass im Allgemeinen Lernalgorithmen fiir deterministische
endliche Automaten nicht fiir die hier betrachteten sicherheitskritischen Systeme geeignet sind,
da diese keine Korrektheitsaussagen treffen konnen. Wir zeigen im Folgenden, wie wir den L*
Algorithmus von Angluin [Ang87] erweitern konnen, damit dies doch ermoglicht wird.

Wir werden im Folgenden zeigen wie wir eine kompositionelle Analyse fiir die Betrachtung
von Black-Box-Komponenten durchfiihren konnen. Generelle Idee ist dabei das Verfahren von
[Ang87] fiir die Doméne mechatronischer Systeme anzupassen. Das heil3t insbesondere, dass wir
ein- und ausgehende Nachrichten, Kontextverhalten und Zeit beriicksichtigen.

Der Ansatz erweitert im Wesentlichen den Gray-Box-Checking-Ansatz um das zusétzliche Er-
lernen eines Zustands. Dazu fiihren wir nach [Ang87] so genannte Zugehorigkeitsanfragen (engl.
Membership Queries) und Aquivalenzanfragen (engl. Equivalence Queries) ein, die wir im Fol-
genden Abschnitt ndher erldutern. Weiterhin verwenden wir einen Konformitétstest nach Vasi-
levskii und Chow [Vas73, Cho78], der eine Korrektheitsaussage einer Aquivalenzanfrage unter-
stiitzt. Der Black-Box-Checking-Ansatz besteht damit aus folgenden Schritten (siche Abbildung
4.8):

1. lernen eines Kandidaten des Protokollverhaltens der Altkomponente (mit erweitertem
Angluin Ansatz),

2. kompositionelle Uberpriifung des Kandidaten aus 1. unter Beriicksichtigung des Kontext-
verhaltens und Sicherheits-/Lebendigkeitseigenschaften an die Integration.

a) Wenn aus 2. ein Gegenbeispiel erfolgt, dann wird liberpriift, ob dieses Gegenbeispiel
durch die Altkomponente bestitigt wird. Ist dies der Fall, ist die Integration fehler-
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haft. (Das Verhalten kann und sollte trotzdem vollstindig erlernt werden, um eine
Anpassung des Kontextes zu ermoglichen.). Ist dies nicht der Fall, wird mit 1. unter
Beriicksichtigung des Gegenbeispiels fortgefahren.

b) Folgt aus 2. kein Gegenbeispiel, dann wird iiberpriift, ob das erlernte Verhal-
ten dquivalent zur Altkomponente ist (Konformititstest mit Vasilevskii und Chow
[Vas73, Cho78]).

3. Folgt aus der Aquivalenzpriifung (2.(b)), dass der Automat #quivalent ist, ist die Lernpha-
se abgeschlossen und die Integration korrekt. Ist dies nicht der Fall, wird auf Basis der
Ergebnisse der Aquivalenzpriifung mit 1. fortgefahren.

Der Black-Box-Checking-Ansatz fithrt damit, wie der Gray-Box-Checking-Ansatz ebenfalls, ite-
rativ ein Lernen und Uberpriifen durch. Der wesentliche Unterschied ist, dass zum einen ein Ler-
nansatz integriert werden muss, um auch Zustinde zu identifizieren, die im Gray-Box-Checking-
Ansatz an der Schnittstelle beobachtbar waren. Ein weiterer Unterschied ist der Konformitétstest,
der eine Aquivalenz zwischen erlernten Verhalten und Altkomponente durchfiihrt.

In [HNSO3b] wurde der Ansatz von Angluin um Mealy-Automaten erweitert. Entsprechend ist
die grundlegende Idee, die Eingaben und Ausgaben auf einen akzeptierenden Automaten ab-
zubilden nicht neu. Zeit, Sicherheits- und Lebendigkeitseigenschaften sowie Kontextverhalten
werden durch den Ansatz allerdings nicht betrachtet.

Kontext—|
)
( automat

.\

] erweiterter L* erlernter Automat Uberpriife Kombination
Algorithmus A{lcgacyv Montent
Alt- . "
komponente fahre Konformi [Eigenschaften ertillt]
tatstest aus

Gegenbeispiel

Gegenbeispiel
[ ] (Eingabevektor

fuhre Altkompo-
nente aus

[&quivalent]

[reproduziert]

& erlernter Gegen-— J
Automat beispiel

Abbildung 4.8: Iteratives Lernen und Uberpriifen: Black Box Checking
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4.2.1 L* Lernalgorithmus

Ein Problem vieler Lernalgorithmen ist, dass diese selbst fiir einen deterministischen endli-
chen Automaten nicht polynomielle Laufzeiten aufweisen, wie Gold in [Gol78] gezeigt hat.
Pitt [Pit89] hat zudem gezeigt, dass diese Klasse von Automaten auch nicht in polynomieller
Laufzeit 16sbar ist, wenn Aquivalenzanfragen benutzt werden. Aquivalenzanfragen nehmen dem
Lernalgorithmus die Uberpriifung ab, ob der erlernte Automat lquivalent zur Black Box (Alt-
komponente) ist. Erst mit der Einfiihrung von zusitzlichen Zugehorigkeitsanfragen, wie dies
Angluin [Ang87] gezeigt hat, konnen Algorithmen in polynomieller Laufzeit fiir das Lernen
eines deterministischen endlichen Automaten beschrieben werden.

In [Ang87] beschreibt Angluin einen Algorithmus, der einen Automaten zu einer reguldren Spra-
che mit Hilfe von Anfragen und Gegenbeispielen konstruiert. Dieser Algorithmus wird unter dem
Namen L* eingefiihrt. Ausgabe dieses Ansatzes ist ein minimaler deterministischer endlicher
Automat.

Voraussetzung fiir den Algorithmus ist die Moglichkeit Anfragen stellen zu konnen. Es muss also
gepriift werden konnen, ob ein vom Algorithmus gegebenes Wort in der Sprache der Altkompo-
nente enthalten ist. Des Weiteren muss eine Aquivalenzpriifung durchgefiihrt werden konnen.
Dabei muss gepriift werden, ob die Sprache, die durch einen vorlidufigen erlernten Automaten,
auch Kandidat genannt, repriasentiert wird, dquivalent zu der gesuchten Sprache ist. Sollte dies
nicht der Fall sein, so muss ein Gegenbeispiel zuriickgeliefert werden. Im Allgemeinen wird das
Erlernen eines deterministischen endlichen Automaten aus einer Altkomponente mit regulérer
Inferenz bezeichnet.

Reguléare Inferenz Regulire Inferenz betrachtet das System als Black Box. Es wird ange-
nommen, dass die betrachtete Black-Box-Altkomponente durch einen endlichen deterministi-
schen Automaten modelliert werden kann. Das sich daraus ergebende Problem ist die Identifi-
zierung der regulidren Sprache £(M) der Altkomponente M.

Ein Lerner, der zu Beginn nur das Alphabet ¥* von M kennt, versucht die Sprache £(M) da-
durch zu erlernen, dass er Anfragen an einen Lehrer und an ein Orakel stellt. £(M) wird durch
Zugehorigkeitsanfragen (membership queries) an den Lehrer erlernt. Es wird tiberpriift, ob eine
Zeichenkette w € X* in £(M) enthalten ist.

Weiterhin ist zum Erlernen der Sprache noch eine Aguivalenzanfrage (equvalence query) not-
wendig. Diese fragt das Orakel, ob der erlernte Automat A korrekt ist. Dies ist der Fall, wenn
L(A) = L(M). Ansonsten wird ein Gegenbeispiel gegeben. Typischerweise fragt der Lerner
eine Sequenz von Zugehorigkeitsanfragen und nutzt die Antworten, um einen vermuteten Auto-
maten (Kandidat) zu erstellen. Ist der Kandidat stabil (verdndert sich nicht gegeniiber vorherigen
Iterationen), wird eine Aquivalenzanfrage an das Orakel gestellt, um herauszufinden, ob das
Verhalten dem der Black-Box-Altkomponente entspricht. Ist dies der Fall, terminiert der Algo-
rithmus. Andernfalls wird ein Gegenbeispiel zuriickgegeben, um A zuriickzuweisen. In diesem
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Fall werden weitere Zugehorigkeitsanfragen gestellt, bis der nichste mogliche Automat erstellt
ist und so weiter.

Der regulére Inferenzalgorithmus von Angluin organisiert die Informationen, die durch Anfragen
und Antworten erlangt werden, in einer so genannten Beobachtertabelle. Die in dieser Tabelle
gespeicherten Zeichenketten bestehen dabei aus einem Préfix und einem Suffix. Die Prifixe sind
Indizes fiir die Reihen, wihrend die Suffixe die Spalten der Tabelle indizieren. Ein Prifix ist eine
Zeichenkette, der zu einem Zustand des Systems fiihrt. Ein Suffix wird genutzt, um die Prifixe
auseinanderzuhalten, die zu verschiedenen Zustinden fiihren.

Zusiitzlich fithren wir noch den Konkatenationsoperator - fiir Worter ein: S -7 = {s-t : s €
S,teT}.

Dariiber hinaus fithren wir zwei Mengen S und E ein. Die Menge S wird Priafix-Menge genannt.
E heift Suffix-Menge. S und E werden jeweils mit dem leeren Wort ({¢}) initialisiert.

Nun konnen wir die Beobachtungstabelle an sich definieren.

Definition 45 (Beobachtungstabelle)

Wir bezeichnen eine Beobachtungstabelle mit T. Die Zeilen werden aus der Menge S U S - A
gebildet, die Spalten aus E. Die Eintrdge der Zellen geben an, ob die Konkatenation des Zeilen-
und des Spalten-Wortes in der gesuchten Sprache enthalten ist. Wir definieren also T'(s,e) = 1
wenn s - e € L(M), sonst 0.

Um eine Zeile der Tabelle zu bezeichnen, fithren wir noch die row-Funktion ein. row(s) bezeich-
net dabei das Tupel aus allen Werten der Tabelle in der Zeile zu s. Wenn zwei Zeilen (s; und s3)
die gleichen Werte enthalten gilt also row(s;) = row(sz).

Konstruktion eines Automaten Auf Basis der Definition der Beobachtungstabelle be-
trachten wir im Folgenden, wie wir einen Automaten aus dieser Tabelle bilden konnen.

Der grundlegende Ansatz von Angluin beschreibt dies fiir akzeptierende Automaten, wie im
Folgenden definiert. In Abschnitt 4.2.2 werden wir diesen entsprechend fiir die in Definition 33
beschriebenen einfachen Echtzeit-Automaten erweitern.

Definition 46 (Akzeptierender Automat)

Ein endlicher akzeptierender Automat M wird als 5-Tupel (Q, qo, A, X, 0) definiert. () ist eine
Menge von Zustianden. qq € () ist der Start-Zustand. A C Q) ist die Menge der akzeptierenden
Zustinde. X ist das Eingabe-Alphabet und ¢ ist die Ubergangsfunktion mit Q x ¥ x Q.

Unseren Automaten definieren wir nun aus der Beobachtungstabelle wie folgt:

Definition 47 (Akzeptierender Automat abgeleitet aus Beobachtungstabelle)
e Q= {row(s):se S}

o gy = row(e)

e H(row(s),a) =row(s - a)
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o F'={row(s):se S,T(s)=1}

Dieser Automat ist wohldefiniert, wenn die Voraussetzung erfiillt ist, dass er abgeschlossen und
konsistent ist.

Abgeschlossenheit In der Ubergangsfunktion wird als Funktionsterm row(s-a) verwendet.
Nach der Definition fiir die Zustinde Q = {row(s) : s € S} ist jedoch nicht garantiert, ob ein
passender Zustand existiert. Es muss also ein Element ¢ € S geben, fiir das die row-Funktion den
gleichen Funktionswert hat wie row(s - a). Diese Bedingung wird Abgeschlossenheit genannt.

Definition 48 (Abgeschlossenheit)
Eine Tabelle T ist genau dann abgeschlossen, wenn gilt:
Vse S,ae A: 3t e S :row(t)=row(s-a).

Konsistenz Aus der Definition der Ubergangsfunktion folgt aber noch ein weiteres Problem.
Nach den bisherigen Definitionen konnte sie fiir einen Kombination aus row(s), @ mehrere Funk-
tionswerte haben, wenn zwei unterschiedliche Werte fiir s existieren, fiir die die row-Funktion
aber den gleichen Wert ergibt. Dies folgt aus der Konkatenation mit einem beliebigen, aber festen
Element a eingesetzt in die row-Funktion, die dann entsprechend zwei unterschiedliche Werte
ergibt. Dann wiirde der zu row(s) zugehorige Zustand mit der Eingabe a Transitionen auf meh-
rere unterschiedliche Zustidnde haben und wire nicht mehr deterministisch. Wir definieren also
als Bedingung, dass dieses nicht auftreten darf und nennen diese Bedingung Konsistenz.

Definition 49 (Konsistenz)
Eine Tabelle T ist genau dann konsistent, wenn gilt:
Vsi1,80 € S,a € A:row(sy) = row(sy) = row(sy - a) = row(sy - a).

Lernansatz Der Lern-Algorithmus geht iterativ vor (siehe Algorithmus 4.1). In jedem Durch-
lauf wird zunichst die Konsistenz und Abgeschlossenheit sichergestellt. Dabei wird die Tabelle
gegebenenfalls um neue Zeilen oder Spalten ergénzt, die mit Hilfe von Zugehorigkeitsanfragen
an den Lehrer gefiillt werden.

Ist die Tabelle nicht abgeschlossen, so existiert offenbar ein s € S und ein a € A, fiir das kein
t € S existiert, fiir das gilt: row(¢) = row(s - a). Um das zu verhindern, wird das Wort s - a zu
der Menge S hinzugefiigt. Damit konnen wir einfach ¢ = s - @ wihlen und die Bedingung der
Abgeschlossenheit ist zumindest fiir das gewéhlte s und a wieder hergestellt.

Wenn die Tabelle nicht konsistent ist, muss es nach der Definition ein s; € S, ein sy € S
und ein @ € A geben, fiir die gilt: row(s;) = row(ss), aber nicht row(s; - a) = row(ss - a).
Da sich die Zeilen unterscheiden, muss es mindestens einen unterschiedlichen Eintrag in einer
Spalte geben. Das zur Spalte gehorende Suffix e € F wird ausgewéhlt. Damit wissen wir, dass
T(sy-a-e)#T(sy-a-e).
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Nun kénnen wir die Voraussetzung row(s;) = row(s,) vermeiden, in dem wir die Suffix-Menge
E um a - e erweitern. Dadurch enthalten beide Zeilen row(s,,) die Werte T'(s,, - a - €), von denen
wir eben gezeigt haben, dass sie ungleich sind. Damit gilt auch row(s;) # row(ss) und die
Konsistenz ist fiir diesen Fall wiederhergestellt.

Ist die Tabelle dann sowohl konsistent als auch abgeschlossen, so kann ein Automat konstruiert
werden. Dieser so konstruierte Automat akzeptiert alle bereits gelernten Worter. Da er aber noch
nicht zwangsweise genau die gesuchte Sprache akzeptiert, wird eine Aquivalenzanfrage an das
Orakel gestellt. Wenn das Orakel die Aquivalenz bestiitigt, haben wir einen Automaten gefunden,
der die Sprache akzeptiert. Andernfalls wird ein Gegenbeispiel erzeugt, um das wir die Tabelle
erweitern. Dann wird mit dem nichsten Durchlauf begonnen.

Algorithmus 4.1 L*
1: loop

2 repeat

3 if 7" ist nicht konsistent then

4 Ergénze ¥ um gefundenes a - e

5: Fiille neue Spalten mit Hilfe des Lehrers

6: end if

7

8

9

if 7" ist nicht abgeschlossen then
Ergéinze S um gefundenes s - a
: Fiille neue Zeilen mit Hilfe des Lehrers
10: end if

11: until 7" ist abgeschlossen und konsistent

12: Erzeuge Automat

13: Priife mit dem Orakel, ob der Automat korrekt ist

14: if Automat ist korrekt then

15: Beende duflere Schleife und gebe den Automaten zuriick

16: else

17: Fiige Gegenbeispiel und alle seine Prifixe zu der Menge S hinzu
18: end if

19: end loop

Die Komplexitit des L* Algorithmus ist wie folgt. Die obere Grenze fiir die Anzahl der Aquiva-
lenzanfragen betrédgt n (n ist die Anzahl der Zustinde von M). Die obere Grenze fiir die Anzahl
der Zugehorigkeitsanfragen betrigt O(|X|n?m).

Beispiel Angluin Um den Algorithmus zu demonstrieren, wéhlen wir als ein einfaches Bei-
spiel einen Ausschnitt des REAL-TIME COORDINATION PATTERNS Convoy aus. Wir betrach-
ten den Fall, dass eine ConvoyRequest-Nachricht verschickt wird und auf eine Antwort ge-
wartet wird. Das Warten wird durch eine spezielle Nachricht simuliert, wie in Abschnitt 4.2.2
vorgestellt. Das Schalten einer Transition entspricht einem Zeitschritt. Fiir jeden zu warteten-
den Zeitschritt wird eine solche Nachricht verschickt. Konkret ergibt sich damit die Sprache
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U = convoyRequest, €. Um die Beobachtungstabellen moglichst klein zu halten ersetzen wir
convoyRequest durch a und ¢, durch b. Das Eingabealphabet ist damit A = {a,b}. Wie oben
beschrieben werden die Mengen S und E jeweils mit {¢} initialisiert>. Der initiale Zustand ist
also folgender:

e A={a,b}
o U =ab*
. 5={¢)
o F={¢}

Die Beobachtungstabelle sieht damit wie folgt aus:

1o

€
e |0
a |1
b |0

Diese Tabelle ist zwar konsistent, aber offensichtlich nicht abgeschlossen, da es fiir die Konka-
tenation aus ¢ - a kein Element s € S gibt, fiir das row(e - a) = row(s) gilt. Daher ergidnzen wir
die Menge S um eben dieses Element € - a = a.

Damit ist nun S = {e€, a}. Wenn wir die Tabelle damit erweitern und die neuen Zeilen mit Hilfe
des Lehrers fiillen, sieht sie wie folgt aus:

T1 €
€ 0
a 1
b 10
aa | 0
ab | 1

Diese Tabelle ist nun sowohl abgeschlossen, als auch konsistent. An dieser Stelle wird also ein
vorldufiger Automat konstruiert und dann auf Aquivalenz zu der gesuchten Sprache iiberpriift.
Der konstruierte Automat sieht wie folgt aus:

@

a

’Im Vergleich zu der bisherigen visuellen Syntax von Zustinden in dieser Arbeit (siehe z. B. Abbildung 2.5),
werden wir im Folgenden, wie dies iiblich fiir akzeptierende Automaten ist, die Zustinde als Kreise und nicht
als Rechtecke mit abgerundeten Ecken darstellen.

123



Kapitel 4 Integration von Altkomponenten

Offensichtlich ist er jedoch nicht dquivalent mit der gesuchten Sprache L. Das Orakel wird daher
ein Gegenbeispiel zuriickliefern. Dieses konnte z.B. das Wort ba sein, dass der Automat akzep-
tiert, aber nicht in der Sprache L enthalten ist.

Daher erweitern wir die Menge S um das Gegenbeispiel und alle seine Prifixe, in diesem Fall
{ba,b}. Nun ist also S = {¢, a, b, ba}. Die neue (und wieder iiber den Lehrer gefiillte) Beobach-
tungstabelle sieht wie folgt aus:

baa
bab

Q
=
SOOI~ ON

Diese Tabelle ist nun zwar abgeschlossen, aber nicht konsistent. Als Gegenbeispiel konnen wir
row(e) = row(b) finden, darow(e-a) # row(b-a). Der Unterschied besteht in der bisher einzigen
Spalte e, also ergdnzen wir die Menge £ um € - a - € = a. Also ist £ = {¢,a}. Die um die neue
Spalte erweiterte Tabelle sieht nun so aus:

baa

bab

T() €| a
€ 01
a 110
b 00
ba 1010
aa | 010
ab | 110
bb 1010

00

00

Da diese Tabelle nun wieder abgeschlossen und konsistent ist, wird wieder ein Automat erzeugt.
Dieser sieht nun so aus:
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a,b

Dieser akzeptiert nun genau die Sprache L, das Orakel wird also die Aquivalenz bestitigen und
der Algorithmus terminiert.

4.2.2 L* fir mechatronische Systeme

Zum einen miissen wir jetzt noch zeigen, wie wir den grundlegenden Algorithmus von Angluin
fiir einfache diskrete Echtzeit-Automaten, wie in Definition 33 beschrieben, erweitern. Zum an-
deren miissen wir die Zugehorigkeitsanfragen und Aquivalenzanfragen umsetzen, da diese nicht
durch den Angluin Ansatz vorgegeben sind.

Erweiterung von L* fiir diskrete Echtzeitautomaten Die beschriebenen diskreten Echt-
zeitautomaten unterscheiden sich von den akzeptierenden Automaten in der Hinsicht, dass diese
Eingangs-Nachrichten / und Ausgangs-Nachrichten O empfangen, bzw. verschicken konnen,
durch das Schalten einer Transition.

Eine Transition eines akzeptierenden Automaten ist markiert durch ein Wort aus . Offensicht-
lich konnen wir daher eine Kombination aus Eingaben und den korrespondierenden Ausgaben
durch ein Wort aus X darstellen. Entsprechend muss fiir jede Kombination von Eingaben und
Ausgaben ein Wort spezifiziert werden.

Dies fiihrt zum einen zu einer hoheren Laufzeit des Angluin Ansatzes, da die Anzahl der Wor-
ter durch die Kombinationen ansteigt. Aufgrund der Zeitsemantik von den diskreten Echtzeit-
Automaten, wo das Schalten einer Transition einen Zeitschritt (Tick) entspricht, ist die Darstel-
lung einer Eingabe/Ausgabe-Kombination an einer Transition fiir die betrachteten Echtzeitsyste-
me nicht realistisch, da nicht in Nullzeit Nachrichten gleichzeitig empfangen und verschickt wer-
den konnen. Daher stellen wir Eingabe/Ausgabe-Kombination durch aufeinander folgende Tran-
sitionen, getrennt durch einen Zustand, mit entsprechenden Wortern aus X dar, die die Eingabe-
und Ausgabe-Nachrichten reprisentieren.

Um die Zeitsemantik von diskreten Echtzeit-Automaten vollstdndig zu beriicksichtigen, fiihren
wir zudem spezielle Leere-Worter ¢; ein, die ein Zeitvergehen reprisentieren, wie wir dies Be-
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reits schon in der Beispielanwendung illustriert haben (siehe Paragraph 4.2.1 auf Seite 122). Fiir
den Lernalgorithmus fiihrt dies ebenfalls zu keiner Verdnderung, da die Worter fiir den Algo-
rithmus nicht gesondert betrachtet werden miissen. Lediglich die Testumgebung muss fiir jede
geschaltete Periode ein Leeres Wort ¢; als ausgehende Nachricht der Altkomponente erstellen.
Im Folgenden definieren wir den erweiterten akzeptierenden Automat fiir den Lernansatz:

Definition 50 (Erweiterter akzeptierender Automat)

Ein endlicher erweiterter akzeptierender Automat M ist ein akzeptierender Automat mit
(Q, g0, A, Xiny Zout, €,0). Q, qo sowie A ist definiert wie in Definition 46 gezeigt. Die Menge
Yin beschreibt das Eingabealphabet, X, das Ausgabealphabet und €' ist eine spezielle Nach-
richt, die einen Zeittick darstellt. § ist die Ubergangsfunktion mit Q X (X, ® Lou @ €') X Q.

Um den Algorithmus weiterhin terminieren zu lassen, muss eine obere Grenze fiir die Anzahl
der zu warteten Transitionen bekannt sein. Dies ldsst sich aus der bekannten Ausfithrungsperiode
herleiten, da typischerweise pro Periode eine Transition geschaltet wird. Weiterhin miissen wir
von der Altkomponente die Information erhalten, wie lange/wie viele Perioden auf eine Antwort
gewartet werden muss. Unter diesen Voraussetzungen, ermoglicht das hier vorgestellte Verfahren
einen minimalen deterministischen Echtzeit-Automaten zu erlernen.

Zugehorigkeitsanfragen Wie in Abschnitt 4.2.1 dargestellt, beantwortet der Lehrer Zuge-
horigkeitsanfragen (-tests) an die Altkomponente und stellt Gegenbeispiele zur Verfiigung, wenn
die Aquivalenz nicht gegeben ist. Zugehorigkeitsanfragen werden allgemein durch Testen des
Systems realisiert. Die durch den L* Algorithmus ermittelten Eingabefolgen dienen entspre-
chend als Testeingaben fiir die Altkomponente.

Um die Anzahl der Zugehorigkeitsanfragen moglichst gering zu halten, kdnnen wir zudem aus-
nutzen, dass die betrachteten Systeme Prifix-Abgeschlossen sind. Dies gilt im Allgemeinen fiir
reaktive Systeme, zu denen auch mechatronische Systeme gehoren.

Ist daher ein Wort « in der Sprache enthalten und /3 ist ein Prifix von «, dann ist auch 3 Element
der Sprache. Damit werten wir jeden Prifix eines Eintrags der Beobachtungstabelle ebenfalls
mit ¢rue aus, wenn denn ein entsprechender Eintrag mit ¢true ausgewertet wurde und damit Teil
der Zielsprache ist: 30’ € prefiz(o) AN T(0) = 1 = T(¢') = 1. Andersherum konnen wir
auch die Anfragen ausschlieBen, fiir die wir bereits gezeigt haben, dass ein Prifix false ist:
0’ € prefiz(o) NT(0) =0= T(o) =0.

Wir erweitern zudem Angluin’s Algorithmus um Gegenbeispiele des Model Checking, des

schrittweise erlernten Verhaltens der Altkomponente mit dem Kontext.

Wenn ein Gegenbeispiel durch die Altkomponente bestétigt wird, ist die Integration fehlerhaft.
Andernfalls nutzen wir dieses Gegenbeispiel, um den folgenden Kandidaten zu erlernen. Die
Beriicksichtigung des Kontextes ermoglicht uns gezielter das relevante zu erlernende Verhalten
zu ermitteln und frithzeitig Fehler in der Integration zu ermitteln.

Abbildung 4.8 stellt dieses Vorgehen dar. Die Formalisierung sowie die Terminierung im Fehler-
fall ist identisch zu dem in Abschnitt 4.1 vorgestellten Gray-Box-Checking-Ansatz. Womit der
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Black-Box-Checking-Ansatz ebenfalls iterativ das Verhalten iiberpriifen kann und reale Fehler
identifizieren kann.

Falls die Uberpriifung des Kontextes mit dem Kandidaten der Altkomponente ergibt, dass die
gestellten Sicherheits- und Lebendigkeitseigenschaften erfiillt sind, miissen wir, wie in Abschnitt
4.2.1 beschrieben, noch eine Aquivalenzpriifung durchfiihren. Diese beschreiben wir im nichsten
Abschnitt.

Im Idealfall muss damit eine Aquivalenzpriifung nur einmal durchgefiihrt werden. Wir ermégli-
chen mit diesem Ansatz daher nicht nur eine frithe Fehlererkennung, sondern auch im Vergleich
zu bisherigen Lernansitzen eine Vermeidung der Aquivalenanfragen, die vergleichsweise zu den
Zugehorigkeitsanfragen und dem Model Checking teuer ist.

Aquivalenzanfragen Das beschriebene Lernverfahren benotigt ein Orakel, welches iiber-
priift, ob der erlernte Kandidat dquivalent zu der Black-Box-Altkomponente ist. Ist dies nicht der
Fall, wird ein Gegenbeispiel angegeben.

Der Konformitiitstest ist ein weitverbreiteter Ansatz, um die Aquivalenz zu iiberpriifen. Kon-
formititstests bieten ein systematisches Verfahren an, um Antworten fiir Aquivalenzanfragen zu
ermitteln. [PVY99] oder [Ber06] sind z.B. Lernansétze die hierauf basieren.

Wie auch diese Ansétze, basieren die meisten Konformititstest-Ansétze auf dem Verfahren von
Vasilevskii und Chow [Vas73, Cho78], aufgrund der guten Laufzeiteigenschaften.

Entsprechend Vasilevskii und Chow existiert eine obere Grenze fiir die Gesamtldnge einer Test-
sequenz. Diese ist O(k?[|%|'~*1). Die Laufzeit ergibt sich damit quadratisch aus der Anzahl der
Zustinde k, aus der Anzahl der erlernten Zustinde / sowie aus der exponentiellen Differenz der
Anzahl der Zustinde k des Systems und des erlernten Kandidaten / iiber dem Alphabet.

Falls in unserem Fall das Model Checking kein Gegenbeispiel liefert, wird eine Aquivalenzan-
frage mittels des Verfahrens von Vasilevskii und Chow durchgefiihrt. Eingabe in das Verfahren
ist der Kandidat der Altkomponente M = (S,0(1/0),T,Q), die Altkomponente M, sowie die
obere Anzahl an erwarteten Zustinden der Altkomponente k. Der Algorithmus bestitigt entwe-
der die Aquivalenz oder gibt ein Gegenbeispiel zuriick, welches wiederum als Eingabe fiir den
erweiterten L* Algorithmus verwendet werden kann (siehe Abbildung 4.8).

Um eine Aquivalenz zu bestimmen, wird ein Spannbaum fiir M und seinen korrespondierenden
Pfaden 7 bestimmt. In einem ersten Schritt wird auf Basis eines solchen Spannbaums beginnend
von dem initialen Zustand jeder Zustand durch eine abgeleitete Sequenz aus dem Spannbaum
erreicht. Im Folgenden wird iterativ versucht auf Basis dieses Spannbaums, dem Eingabealphabet
sowie einer Separations-Funktion s f ein Gegenbeispiel zu finden. Die Funktion garantiert dabei
Pfade zu finden, die in M, und nicht in M sind, wenn M, Zustdnde enthilt, die noch nicht in M
enthalten sind [GPYO02].

Unter der Annahme, dass eine obere Schranke fiir die Zustinde bekannt ist, kann durch das vor-
gestellte Verfahren tatséchlich sichergestellt werden, dass entweder ein Fehler in der Integration
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festgestellt wird oder die Integration unter Beriicksichtigung der Sicherheits- und Lebendigkeits-
eigenschaften durch die oben beschriebene iterative Uberpriifung korrekt ist.

Ein Problem des beschriebenen Black-Box-Checking-Ansatzes ist, dass die obere Anzahl an
Zustianden typischerweise nicht bekannt ist. Um die obere Anzahl an Zustinden zu ermitteln,
konnen wir uns, aufgrund der Eigenschaften der betrachteten Systeme, an dem Kontextverhalten
orientieren. Grund hierfiir ist, dass die betrachteten Systeme hiufig eine Art Watchdog-Muster in
dem Kommunikationsverhalten implementieren (siche Kapitel 3 auf Seite 67). Die damit gefor-
derten Sende - und Empfangs-Sequenzen lassen auf einen Zustand jeweils zwischen dem Senden
und Empfangen schliefen. Eine sichere obere Anzahl an Zusténden ist damit natiirlich nicht ge-
geben. Eine Moglichkeit, um sicher zu sein, dass eine passende obere Grenze gefunden wurde,
ist das Mehrfachausfiihren des Black-Box-Checking mit unterschiedlichen Obergrenzen. Da der
ermittelte Automat ein minimaler ist, folgt aus einem gleichen erlernten Verhalten, dass die klei-
nere Obergrenze ausreichend ist.

Der Black-Box-Checking-Ansatz wurde im Rahmen der Projektgruppe ReCab [BBBT09] durch
die FRiT S Tool Suite umgesetzt. Hierbei wurden zum einen Anwendungsbeispiele aus dem
RailCab Projekt umgesetzt [BBBT09, HBBT09] sowie auch ein Beispiel aus der industriellen
Praxis [HMSN10a, HMSN10b, HMS*10]. Detaillierter werden wir die Umsetzung sowie die
Evaluierungen in Abschnitt 6.3.1.3 betrachten.

4.3 White Box Checking

Im Vergleich zu dem Gray-Box-Checking-Ansatz und Black-Box-Checking-Ansatz, beschreiben
wir fiir den hier vorgestellten White-Box-Checking-Ansatz keine expliziten Iterationen, um das
Verhalten zu erlernen und zu iiberpriifen. Dies liegt im Wesentlichen daran, dass bereits eine
Reihe von Ansitzen fiir Quellcode-Analysen existieren, die grundsitzlich gut anwendbar sind,
da diese bereits iterative Ansidtze umsetzen. Unterliegend basieren diese Verfahren ebenfalls auf
der Idee einer Abstraktion, die nach und nach durch Gegenbeispiele konkretisiert wird.

Ziel unseres White-Box- Verifikationsverfahrens ist es, die Kommunikation zwischen einer Alt-
komponente, fiir die Quellcode aber kein Modell vorliegt und einer mit MECHATRONIC UML
entwickelten Komponente zu verifizieren. Dazu wird zunéchst C-Code fiir die als Modell vorlie-
gende Komponente (den Kontext des Altsystems) generiert. Dieser wird zusammen mit dem des
Altsystems in ein spezielles Framework eingebettet, welches Scheduling, Nachrichtenaustausch
und Zeitverhalten simuliert. Das resultierende Gesamtsystem schlieBlich wird mittels (Quellco-
de) Model Checking verifiziert.

Aufgabe des Verifikationsframeworks ist es, ein generisches Kommunikationsszenario zwischen
den beiden Komponenten zu beschreiben, in dem bestimmte Abldufe als unsicher identifiziert
werden konnen. Um diese Abldufe zu finden, verwenden wir vorhandene Quellcode-Model Che-
cker. Diese unterstiitzen jedoch weder die Verifikation von Echtzeitverhalten noch eine parallele
Ausfithrung der beiden Komponenten. Beides wird allerdings von den betrachteten Systemen
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gefordert. Aus diesem Grund werden Zeit und parallele Ausfithrung explizit durch das Frame-
work simuliert, wodurch indirekt eine Beriicksichtigung derartigen Verhaltens durch den Model
Checker ermoglicht wird.

Die Aufgaben des Frameworks sind die periodische Ausfiihrung der fiir die Kommunikation re-
levanten Prozeduren innerhalb jeder Periode jeweils fiir die Altkomponente und dessen Kontext.
Dabei werden Perioden und Zeit aktualisiert und die ausgetauschten Nachrichten zum passenden
(virtuellen) Zeitpunkt vom Sendepuffer der sendenden in den Empfangspuffer der empfangenden
Komponente verschoben. Die iibrige Funktionalitit, wie die Verwaltung dieser Puffer, die Simu-
lation von Zeit innerhalb der Perioden sowie die Betrachtung von Zeitbedingungen wird iiber
Funktionen bereitgestellt, die durch die Komponenten (Altkomponente und Kontext) aufgerufen
werden.

Hauptaufgabe fiir unseren Ansatz ist es folglich, die zur Verfiigung stehenden Informationen
geeignet in die Eingaben der moglichen Modell Checker zu transformieren, ohne die Semantik
unserer Modelle zu verletzen. Dies ist notwendig, da ansonsten die Analysen nicht giiltig sind.
Im Besonderen miissen wir daher eine Simulation der Zeit, der Perioden sowie eine geeignete
Nachrichtenkommunikation auf Quellcode-Ebene umsetzen.

Wir werden im Folgenden zwei Ansitze diskutieren, die einen iterativen Analysansatz auf
Quellcode-Ebene unterstiitzen. AnschlieBend werden wir einen Ansatz einer Verifikationsumge-
bung diskutieren. Vorher werden wir noch auf einige Voraussetzungen und Annahmen eingehen.

Voraussetzungen und Annahmen Fiir die Durchfiihrung der Verifikation werden neben
dem C-Quellcode der Altkomponente auch die Namen der durch das Framework aufzurufenden
Funktionen (Initialisierung, periodisch auszufiihrende Haupt-Prozedur) benétigt. Dies beinhaltet
die aufzurufenden Funktionen zum Nachrichtenaustausch sowie die Funktionen zum Ermitteln
der Systemzeit. Weiterhin muss eine Zuordnung der Nachrichten im Kontext zu der entsprechen-
den internen Codierung auf der Seite der Altkomponente gegeben sein.

Um den Zeitbedarf von Prozeduren im Altsystem beriicksichtigen zu konnen, miissen diese zuvor
instrumentiert werden: Bei Ausfithrung jeder Prozedur mit Zeitbedarf muss die Funktion ,,con-
sumelegacyTime(int BCET, int WCET)* mit passenden Werten fiir Best- und fiir Worst-Case
Ausfiihrungszeiten aufgerufen werden. Sind diese Werte nicht vorab bekannt, miissen diese zu-
niichst durch eine WCET Analyse der Altkomponente beispielsweise mittels Bound-T? ermittelt
werden.

Quellcode-Analysewerkzeuge BLAST (Berkeley Lazy Abstraction Software Verification
Tool*) ist ein Werkzeug, welches eine Gegenbeispiel-getriebene Verifikation auf Basis eines vor-
liegenden Programmcodes in C durchfiihrt [HIMS03].

3http://www.tidorum.fi/bound-t/
“http://mtc.epfl.ch/software-tools/ blast/
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Als interne Reprisentation des Quellcodes wird zunéchst ein Kontrollflussautomat (CFA) kon-
struiert. Zu dieser ersten Abstraktion wird ein mit Priadikaten und den entsprechenden Knoten-
namen des CFA annotierter Erreichbarkeitsbaum konstruiert. Durch eine Erreichbarkeitsanalyse
wird in diesem ein Fehlerpfad gesucht. Wird auf diese Weise ein Fehler gefunden, so gibt eine
symbolische Ausfiihrung des entsprechenden Codefragments Aufschluss dariiber, ob dieser dem
Quellcode nach moglich ist, oder ob es sich um eine Fehlererkennung aufgrund einer zu unge-
nauen Abstraktion handelt. Wéhrend bei einem echten Fehler die Analyse abgebrochen werden
kann, muss bei einem falsch-positiven Fehler eine Verfeinerung der Abstraktion durchgefiihrt
werden.

Um die hierzu erforderlichen zusitzlichen Pridikate zu ermitteln, wird ein Theorembeweiser
eingesetzt. AnschlieBend wird erneut ein Fehlerpfad gesucht. Das durch Blast umgesetzte Prin-
zip wird als ,,Counterexample Guided Abstraction Refinement* (CEGAR), also gegenbeispiel-
getriebene Abstraktionsverfeinerung bezeichnet.

Bei CBMC und SATABS handelt es sich um zwei White-Box-Verifikationswerkzeuge zur Ana-
lyse von C- und C++-Programmen, die an der Carnegie Mellon Universitit (teilweise in Zu-
sammenarbeit mit der ETH Ziirich und IBM) entwickelt wurden. Beide werden auch unter der
Bezeichnung CPROVER zusammengefasst und sind in der Verwendung dhnlich.

Beide Werkzeuge wurden als Alternative zu Blast in Betracht gezogen, weil sie eine bessere Un-
terstiitzung einiger C-Programmkonstrukte (insbesondere von Arrays) bieten und sie zusétzlich
zu C auch C++ unterstiitzen.

CBMC (C Bounded Model Checker’) ist ein Werkzeug fiir Bounded Model Checking, einer Va-
riante des Model Checking, bei der die Schleifen eines Programms nur endlich oft durchlaufen
werden [CKLO04]. Fiir die Anzahl an durchzufiihrenden Iterationen kann eine obere Grenze spezi-
fiziert werden. Programme, die Schleifen enthalten, welche ofter als erlaubt durchlaufen werden,
werden daher von CBMC nur unvollstidndig analysiert. Es ist also im Vergleich zu anderen Mo-
del Checking Varianten zu beachten, dass die Abwesenheit von Fehlern nur bei Vorhandensein
und Kenntnis besagter oberer Grenze gezeigt werden kann.

SATABS® fiihrt dhnlich wie Blast eine gegenbeispiel-getriebene Verifikation mit iterativer
Abstraktionsverfeinerung durch [CKSYO05]. Dieses Werkzeug kann also vollstindiges Model
Checking durchfiihren. Wie bei Blast miissen dazu aber geeignete Priddikate gefunden werden,
um eine Verfeinerung auf Basis eines Gegenbeispiels durchfiihren zu konnen. Werden keine Pri-
dikate gefunden, so kann die Verifikation fehlschlagen.

Bei der Anwendung von Blast auf praxisorientierte Beispiele wurde festgestellt, dass das Werk-
zeug Arrays im untersuchten Programm nicht korrekt behandelt. Da Arrays in vielen Program-
men vorkommen, beispielsweise in Form von Sende- oder Empfangspuffern, ist dieses Problem
gravierend. Noch problematischer ist der ergebnislose Abbruch des Werkzeugs SATABS bei Be-
riicksichtigung von Zeitbedingungen durch unser Framework.

Shttp://www.cprover.org/cbmc/
Ohttp://www.cprover.org/satabs/
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Beide Werkzeuge weisen zudem eine teilweise mangelhafte Stabilitdt auf und haben fiir die un-
tersuchten Szenarien eine im Vergleich zu CBMC oft deutlich ldngere Laufzeit selbst bei kleinen
Beispielen. Da alle zwei Werkzeuge in der Verwendung recht dhnlich sind, werden neben CBMC,
SATABS und Blast in unserer Implementierung zumindest teilweise ebenfalls unterstiitzt. Sie ist
allerdings fiir CBMC optimiert und miisste fiir eine vollstindige Anwendbarkeit der iibrigen
Model Checker teilweise modifiziert werden.

Die fiir uns interessanten Funktionalititen, die CBMC und SATABS anbieten, sind praktisch
identisch. Auch die Syntax der Kommandozeilenparameter und die Formatierung der Program-
mausgabe ist sehr dhnlich, da beide Werkzeuge an derselben Universitét (und teilweise von den-
selben Personen) entwickelt wurden. Mit minimalem Zusatzaufwand konnen daher beide Werk-
zeuge, statt nur einem, verwendet werden.

CBMC und SATABS bieten jeweils die Moglichkeit an, Assertions zu spezifizieren, also An-
nahmen iiber die Giiltigkeit eines booleschen Ausdrucks iiber Programmvariablen an einer be-
stimmten Stelle im Programmablauf. Bei Ungiiltigkeit der Formel wird die jeweilige Stelle im
Quellcode als ein Fehlerzustand behandelt, nach dem der Model Checker sucht.

Nichtdeterministisches Verhalten im Programm kann jeweils iiber spezielle Funktionen definiert
werden: Fiir alle in C verfiigbaren Datentypen fiir primitive Variablen existiert eine Prozedur, die
nichtdeterministisch einen beliebigen Wert im jeweiligen Wertebereich zuriickgeben kann. Zu-
sdtzlich kann dieser durch Annahmen eingeschrinkt werden; dies sind Garantien an den Model
Checker, dass fiir einzelne Variablen bestimmte Ausdriicke gelten.

Blast kann Spezifikationen von Korrektheitsbedingungen auf verschiedenen Ebenen nutzen.
Letztendlich werden diese jedoch immer auf eine Erreichbarkeitsanalyse zuriickgefiihrt, bei der
nach Fehlerzustinden gesucht wird.

Die einfachste Moglichkeit, diese Zustinde zu spezifizieren ist, sie direkt durch Definition einer
bestimmten Markierung im C-Quelltext des untersuchten Programmes anzugeben. Ebenfalls im
Quelltext lassen sich, dhnlich wie bet CBMC und SATABS, Assertions angeben. Dies entspricht
damit einer zu UPPAAL (siehe Abschnitt 2.4) sehr @hnlichen Vorgehensweise, da die Analysen
ebenfalls auf reine Erreichbarkeitsprobleme eines Fehlerzustands reduziert werden [JLS00].

Eine abstraktere Variante zur Definition fehlerhaften Verhaltens bietet Blast’s Spezifikationsspra-
che [BCH'04]. Diese besteht aus zwei Ebenen: Zum einen kénnen so genannte Beobachterauto-
maten spezifiziert werden, durch die temporale Abhingigkeiten zwischen Programmereignissen
tiberpriift werden konnen. Zum anderen kdnnen in einer speziellen Scriptsprache relationale An-
fragen (,,relational queries‘‘) formuliert werden, die sich auf diese Automaten beziehen.

Eine in dieser Sprache definierte Spezifikation kann mit einem zu Blast gehdrenden Werkzeug
automatisch in eine entsprechende Instrumentierung des untersuchten Programms umgewandelt
werden.

Die einzigen Varianten, die in unserer Implementierung verwendet werden, sind Fehlermarkie-
rungen und Assertions.
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Wie CBMC und SATABS unterstiitzt auch Blast die Formulierung nichtdeterministischen Ver-
haltens im Quellcode durch Definition einer bestimmten Variablen. Die Moglichkeiten, die Blast
hier anbietet sind allerdings gegeniiber denen der beiden CPROVER Werkzeuge eingeschrinkt:
Die spezielle Variable BLAST NONDET kann nur zur Modellierung von binédren Entscheidun-
gen eingesetzt werden. Uber den Umweg einer Schleife lisst sich allerdings auch eine nichtde-
terministische Auswahl aus einem grofleren Wertebereich realisieren.

Simulationsumgebung und Codegenerierung Analog zum Gray Box- und Black Box
Checking sind wir besonders daran interessiert, das Kommunikationsverhalten der Altkompo-
nente mit dem entwickelten Kontext auf Fehler zu untersuchen. Dabei liegt das Altsystem als
C-Code vor, der mit dem C-Model-Checker direkt analysiert werden kann. Der Kontext anderer-
seits ist jedoch als REAL-TIME STATECHART gegeben, also in einer Form, die diesem Werkzeug
nicht zugénglich ist.

Somit ist es erforderlich, das durch das Modell definierte Verhalten in eine Form zu transformie-
ren, die dem C-Model-Checker als Eingabe dienen kann. Dies wird durch die Erzeugung von
C-Quellcode aus dem Modell realisiert. Fiir die Verifikation geniigt, zumindest fiir eine Uberprii-
fung des Kommunikationsprotokolls ohne Beriicksichtigung von Zeit, eine einfache Abbildung
von Zustdnden und Transitionen des Modells auf Variablen und Kontrollstrukturen eines entspre-
chenden C-Programms.

Schnittstelle zwischen Kontext und Altkomponente sind dabei die beiden als bekannt angenom-
mene Funktionen ,,sendMsg(Message m)“ und ,,receiveMsg():Message®, die das Senden und
Empfangen von Nachrichten erméglichen. Es wird also eine komplett nachrichtengekoppelte
Kommunikation ohne Zugriff auf einen gemeinsamen Speicher vorausgesetzt. Durch geeigne-
te Implementierung dieser Funktionen kann das Kommunikationsverhalten des Kontexts dem
C-Model-Checker gegeniiber sichtbar gemacht werden.

Kommunikation Die Moglichkeiten zur Erkennung von Fehlern im Kommunikationsverhal-
ten sind abhidngig vom verwendeten Kommunikationsmodell. Daher werden im Folgenden der
Fall der synchronen und der der asynchronen Kommunikation getrennt behandelt.

Wie bei dem Gray Box und Black Box Checking kann bei synchroner Kommunikation jedes
Empfangen einer Nachricht, fiir die kein Verhalten definiert ist, als Fehler betrachtet werden.
Das kann bereits auf Modellebene durch Transitionen fiir nicht definierte Nachrichten von je-
dem anderen Zustand aus zu einem speziellen Fehlerzustand F' ausgedriickt werden. Fiir jeden
Zustand Z, Z! = F, mit ausgehenden Transitionen fiir die Eingangsnachrichten m1, m2, ...
werden also Transitionen fiir die Nachrichten * \ {m1,m2,...} von Z zu F angelegt.

Durch eine dhnliche Konstruktion Iédsst sich das Komplement des erlaubten Verhaltens einer Rol-
le bilden (siehe Paragraph Anforderungen und Voraussetzungen auf Seite 98). Durch Verifikation
der Kommunikation mit einem Altsystem kann dann iiberpriift werden, ob letzteres eine giiltige
Verfeinerung dieser Rolle ist.
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Dieser Fehlerzustand muss dem C-Model-Checker gegeniiber als solcher bekannt gemacht wer-
den. Da der C-Model-Checker jedoch nur Zustinde im Code (bzw. dem entsprechenden CFA)
kennt, muss bei der Codegenerierung der Code fiir jede Transition in den Fehlerzustand als feh-
lerhaft markiert werden. Dies kann bei allen zwei Werkzeugen durch Spezifikation von Asserti-
ons geschehen. Bei Blast kann auch ein Label ,,ERROR* einen Fehler markieren.

Alternativ kann in Blast mittels der Blast-Spezifikationssprache eine derartige Transition durch
ein passendes Muster erkannt werden. Voraussetzung ist allerdings, dass der entsprechende
Quellcode mittels dieses Musters von dem zu anderen Transitionen gehdrigen unterschieden wer-
den kann.

Anstatt einen Fehlerzustand bereits auf Modellebene einzufithren, kann auch ein zum Kon-
textmodell passender Blast-Beobachterautomat erzeugt werden, der priift, dass Nachrichten nur
durch die in diesem Modell definiertem Verhalten eintreffen konnen. Konkret muss dazu (auto-
matisch) fiir jede Nachricht ein Ereignis mit zum generierten Code passendem Muster definiert
werden, das diesen Code erkennt und den Zustand des Beobachterautomaten passend umschal-
tet. Weiterhin muss fiir dieses Ereignis ein Guard definiert werden, der priift, dass der aktuelle
Zustand in der Menge von Zustinden enthalten ist, in denen diese Nachricht empfangen werden
darf.

Eine solche Spezifikation muss nicht notwendigerweise aus demselben Modell erzeugt werden,
wie der C-Quellcode. Beides lisst sich prinzipiell entkoppeln, solange die Muster im Modell
zum erzeugten Code passen. Vorteil dieser Generierung von Spezifikationen aus Automaten ist
moglicherweise eine hohere Flexibilitidt (bei Entkopplung von der Codesynthese); Nachteil sind,
zumindest bei der hier beschriebenen Art der Verifikation, Redundanzen zur Codesynthese.

Aufgrund der Bevorzugung von CBMC vor Blast wird in unserer Implementierung von den
Blast-Beobachterautomaten kein Gebrauch gemacht. Auch die Spezifikation von Fehlern auf
Modellebene wurde nicht weiter betrachtet.

Bei asynchroner Kommunikation kénnen Deadlocks nicht direkt festgestellt werden, wie bei
synchroner Kommunikation. Sie manifestieren sich hier iiber Invarianten oder Deadlines. Da
diese nicht fiir die Altkomponenten festgelegt werden konnen, konnen Deadlocks in diesem nur
indirekt iiber den Kontext festgestellt werden.

Zeitbedingungen Die Beriicksichtigung von Zeitbedingungen in der Verifikation ist einer-
seits fiir die von uns betrachteten echtzeitkritischen Systeme sehr wichtig, wird andererseits aber
von keinem C-Model-Checker unterstiitzt. Um das Werkzeug selbst nicht verdndern zu miissen,
stellen wir daher ein Framework sowie eine Codegenerierung zur Verfiigung, die diese Anforde-
rungen erfiillen.

Um Zeit in die Verifikation einbeziehen zu konnen, ist es erforderlich, diese zu simulieren. Dazu
kann die aktuelle Zeit in einer Variablen erfasst werden, die bei Ausfithrung von Funktionsaufru-
fen oder primitiven Anweisungen um die entsprechende Ausfithrungszeit erhoht wird. Diese ist
nicht nur von der Art der Anweisung abhiingig, sondern auch von Parametern, globalen Variablen
oder anderen EinflussgroB3en.
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Die maximale Ausfiihrungszeit von Funktionen ldsst sich fiir eine gegebene Plattform durch
eine WCET-Analyse (z.B. Bound-T) ermitteln. Der addierte Wert muss also zwischen eins (bzw.
einer ermittelten minimalen Ausfiihrungszeit) und der WCET liegen. Diese kann bei allen drei
betrachteten Werkzeugen durch Konstrukte im C-Quellcode realisiert werden.

Die Verwendung dieser Moglichkeit macht allerdings eine Instrumentierung des untersuchten
Programms erforderlich: In jeder Funktion muss (z.B. am Anfang oder am Ende) eine eigene
spezielle Prozedur aufgerufen werden, die die erwidhnte Erhohung der simulierten Zeit durch-
fiihrt. Da der Zeitbedarf der durch die Instrumentierung eingefiigten Operationen selbst nicht
beriicksichtigt wird, kann dadurch kein ,,Probe Effect auftreten; das analysierte Systemverhal-
ten kann lediglich durch die explizit simulierte Zeit beeinflusst werden.

Durch diese simulierte Zeit kann zeitabhiingiges Verhalten des Kontextes, das durch Guards und
Invarianten im Modell spezifiziert wird, umgesetzt werden. Zeitabhingiges Verhalten innerhalb
der Altkomponente andererseits ist nicht derart explizit formuliert und lésst sich nur unter be-
stimmten Voraussetzungen beriicksichtigen. Dazu gehoren ein diskretes Zeitmodell und die Ab-
wesenheit von Verhalten, welches von der absoluten Systemzeit abhingt. Auch fiir die Kommu-
nikation kann durch entsprechende Anpassung der receive- und send-Funktionen einfach Zeit
simuliert werden.

Unter der Voraussetzung, dass die Altkomponente nur durch eine einzelne, bekannte Funktion
die Zeit aktualisiert, kann auch diese Zeit simuliert werden. Dazu kann diese Funktion durch eine
eigene Variante ersetzt werden, die die virtuelle Zeit zuriickliefert.

Diese Simulation von Zeit erhoht zunéchst generell die Genauigkeit der Verifikation, da die Ab-
hingigkeit des Verhaltens von Kontext und Altkomponente von Echtzeitbedingungen beriick-
sichtigt wird. Die Verifikation von zeitabhéngigen Systemen wire ohne diese Simulation zwangs-
laufig fehlerhaft bzw. ungenau (falsche Positive und/oder falsche Negative). Es ist zu beachten,
dass durch die Kommunikationsbeziehung zwischen Kontext und Altkomponente das Verhal-
ten beider Systeme abweichen kann, wenn auch nur eines davon zeitabhéngig ist und dies nicht
beriicksichtigt wird (oder werden kann).

Durch eine solche Simulation von Zeit lassen sich aber auch Korrektheitsbedingungen mit di-
rektem Bezug zur Zeit iiberpriifen, beispielsweise die Forderung, dass Zustidnde (des Kontextes)
nach einer bestimmten Zeit verlassen werden miissen oder dass nach Empfangen einer Nachricht
nur ein maximaler Zeitraum bis zum Senden der Antwort vergehen darf. Die Uberpriifung sol-
cher Bedingungen ist durch Vergleich der virtuellen Zeit mit den entsprechenden Einschrinkun-
gen moglich. Die Bedingungen miissen, wie oben diskutiert, in Code bzw. Assertions iibersetzt
werden.

Die Genauigkeit bei der Uberpriifung von Zeitschranken hiingt von der Genauigkeit der ermittel-
ten WCET Zeiten und davon ab, ob das zeitabhingige Verhalten sowohl von Kontext als auch von
der Altkomponente korrekt simuliert wird. Selbst wenn sich die Echtzeitbedingung nur auf eines
der Systeme bezieht und das unberiicksichtigte Zeitverhalten im anderen liegt, kann die Verifi-
kation der Bedingung dadurch fehlerhaft werden, aufgrund indirekter Verhaltensabhiingigkeiten
iber die Kommunikation.
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4.3 White Box Checking

Parameter Das durch das Framework beschriebene Szenario kann teilweise durch Parame-
ter definiert werden. Diese konnen den Umfang des verifizierten Verhaltens mafigeblich beein-
flussen. Dadurch konnen die Laufzeit des Verfahrens einerseits und die Einschrinkungen, unter
denen das System korrekt ist, andererseits gesteuert werden.

Das Zeitverhalten beider Komponenten kann jeweils an zwei Stellen beeinflusst werden (siehe
Abbildung 4.9): Zum einen kann die Ausfithrung des Systems um einen nichtdeterminstisch
ausgewdhlten Wert in einem wéhlbaren Bereich verzogert werden. Zum anderen kann auch fiir
die Verzogerung der Ausfithrung der Hauptprozedur innerhalb einer Periode ein solcher Bereich
angegeben werden. Die nichtdeterministische Auswahl kann dann in jeder Periode eine andere
sein. Je groBer diese Bereiche gewihlt werden, umso mehr mogliche Abldufe muss der Model
Checker beriicksichtigen, was zu einer inakzeptabel langen Laufzeit des Verfahrens fiihren kann.

Legende:
<¢----p : Verzdgerung
: Task Altkomponente

Globale Systemzeit : Task Kontext-Komponente
\H\\HH‘H\H\\\\‘\H\HH\‘H\HHH‘HHHH\‘\HHH
0 20 40 50
i Zeit Altkomponente
.‘""’HHHH\‘HH\H\‘HHHH\‘\HHH\‘HH\H\‘HHH
Ole--» 10 <« 20 <--oe- » 40 <0

receiveMsg() sendMsg(m)

A v
\WE SEETCEETE >H H
sendMsg(m) El
A V receiveMsg()

Zéit Kontext-Komponente
HHH\‘HHHH\ H FTTTTTTTTTTT

[ ’HHH\H‘\HHHH‘
| O 10 20 |@------ > <> 50

Periode

Abbildung 4.9: Parameter White Box Checking

Fiir den Kontext Idsst sich neben der FIFO-Queue eine weitere Queue hinzuschalten, aus der
nicht zwangslédufig die erste, sondern die erste im aktuellen Zustand behandelbare Nachricht ent-
nommen wird. Dadurch wird ein Blockieren des Komponentenverhaltens aufgrund nicht behan-
delbarer Nachrichten verhindert. Letzteres wird bei Verwendung reiner FIFO-Queues als Dead-
lock erkannt. Bei Verwendung der nicht-FIFO-Variante ist dieses Kriterium aber nicht giiltig.
Deadlocks konnen hier jedoch indirekt iiber verletzte Invarianten festgestellt werden.

Neben diesen beschriebenen Voraussetzungen muss eine Quelle-Codegenerierung zur Verfiigung
gestellt werden, die die Ausfithrungssemantik nicht verletzt. Da unsere Modelle auf REAL-TIME
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Kapitel 4 Integration von Altkomponenten

STATECHARTS basieren konnen wir auf den grundlegenden Ansatz von [Bur06] zuriickgreifen,
der eine Abbildung der wesentlichen Modellelemente diskutiert hat.

4.4 ldentifikation von Reglerverhalten

Neben dem Kommunikationsverhalten sind auch die verschiedenen Reglerverhalten (-modi) fiir
ein mechatronisches System von hoher Wichtigkeit. Das Verhalten des Systems / der Altkom-
ponente ist malgeblich von dem Reglerverhalten abhéngig. Es ist daher wichtig zu identifizie-
ren, welches Reglerverhalten in welchem Zustand aktiv ist. Erfiillen die Protokollverhalten die
geforderten Sicherheitseigenschaften, ldsst sich daher noch nicht darauf schlielen, ob das Reg-
lerverhalten tatsidchlich den Anforderungen entspricht. Es kann z.B. sein, dass sich ein hinterher
fahrendes RailCab im Convoy befindet, jedoch der Distanz-Regler nicht aktiv ist.

Systemidentifikation [Gra72, Ise92, FPWO98, Lju98] ist das Verfahren, mit dem es mdglich ist,
kontinuierliche Systeme zu identifizieren. Als Systemidentifikation wird der Ansatz bezeichnet,
welcher es ermdoglicht aus beobachteten Ein- und Ausgangswerten eines Reglers, bzw. Systems,
Riickschliisse auf das Verhalten zu schlieen. Das kontinuierliche Verhalten kann als mathema-
tisches Modell durch eine Ubergangsfunktion beschrieben werden. Das Modell stellt eine Ab-
straktion des realen Systems dar und beschreibt fiir die Problemstellung hinreichend die Prozesse
oder das Verhalten des Systems. Durch Techniken der Systemidentifikation kann ein Modell er-
stellt oder die Parameter eines Modells eingestellt werden. Das Modell des Systems ermoglicht
es, zukiinftige Ausgangssignale vorherzusagen und das dynamische Verhalten des Systems durch
Simulationen zu untersuchen.

Das (diskrete) Protokollverhalten und das (kontinuierliche) Reglerverhalten fithren zu einem hy-
briden System. Hybride Systemidentifikationsansétze sind in der Regelungstheorie bekannt; auf-
grund ihrer schlechten Laufzeiten und der schlechten Erkennungsgenauigkeiten des Verhaltens
sind sie allerdings im Allgemeinen nicht gut anwendbar [Ljul0].

Unser Ansatz adressiert dieses Problem, indem das hybride Systemidentifikationsproblem redu-
ziert wird auf ein lineares Systemidentifikationsproblem. Hierzu teilen wir die Identifikation in
zwel Schritte auf. Der erste Schritt ist die Identifikation des Protokollverhaltens basierend auf den
beschriebenen Ansitzen. Der zweite Schritt ist die Identifikation des Reglerverhaltens innerhalb
der erkannten Zusténde des Protokollverhaltens.

Eine solche Aufteilung ist nur fiir Komponenten méglich, die durch Zustandsverhalten gesteuert
werden. Dies ist z.B. fiir viele Anwendungen im Bereich der Automobil-Bordelektronik der Fall.
Handelt es sich allerdings um eine Komponente, die primir eine regelungstechnische Aufgabe
erfiillt, unabhiingig von einem Zustandsverhalten, ldsst sich dieses Verfahren nicht anwenden.
Beispiele hierfiir konnen Motorregelungen sein.

Der AUTOSAR-Standard zeigt allerdings, dass z.B. fiir die Automobilindustrie diskret gesteu-
erte Systeme von hoher Relevanz sind, da die Spezifikation der Schnittstelle von Komponenten
sogenannte Modi unterstiitzen, die den aktuellen Zustand der Komponente reprisentieren. Im
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4.4 Identifikation von Reglerverhalten

Fall der Motorregelungen ist zudem auch anzumerken, dass mittlerweile moderne Automatik-
Motorregelungen unterschiedliche Zustinde je nach Benutzerprofil besitzen und damit der hier
vorgestellte Ansatz ebenfalls Anwendung finden kann. Im Rahmen dieser Arbeit wurde aller-
dings keine Evaluierung durchgefiihrt, wie weitreichend der hier skizzierte Ansatz tatsdchlich
Anwendung findet.

Die Systemidentifikation erfolgt durch Simulation des Systems. Wir fithren dabei das System
in die einzelnen Zustinde, indem wir jeden Pfad, der den Zustand erreicht, ausfiihren, da un-
terschiedliche Pfade zu unterschiedlichen Reglerverhalten fiihren konnen. Die konkrete Eingabe
fiir die Systemidentifikation ist eine spezifizierte Testtrajektorie oder eine realistische Ausfiih-
rung des Systems in seiner Umgebung.

Als Testtrajektorien konnen z.B. Sprungantworten oder Impulsantworten genutzt werden. Eine
Sprungantwort beschreibt die Reaktion eines Systems (einer Altkomponente) am Ausgang auf
eine angelegte Sprungfunktion am Eingang. Eine Impulsantwort eines Systems beschreibt die
Reaktion des Systems (der Altkomponente) am Ausgang auf einen angelegten Impuls.

Basierend auf dem ein- und ausgehenden Verhalten wird dann z.B. eine Ubergangsfunktion fiir
lineare Systeme ermittelt. Wenn alle Ubergangsfunktionen bekannt sind, kénnen Rekonfigura-
tionen durch unterschiedliche Ubergangsfunktionen in aufeinander folgenden Zustinden erkannt
werden.

Umsetzung Zur Erstellung der Modelle, wird das System zunichst einer Diagnose unterzo-
gen. Die Aufzeichnung der kontinuierlichen Werte wird manuell vom Benutzer durchgefiihrt.
Dies geschieht in einem externen Werkzeug, in dem die Altkomponente ausgefiihrt und iiber-
wacht werden kann.

Dieser Prozess ist je nach Anwendungsfall und Doméne sehr unterschiedlich und muss von ei-
nem Doménenxperten in einem ihm bekannten Werkzeug durchgefiihrt werden. Der hier vorge-
stellte Ansatz unterstiitzt den Import einer MATLAB Datei (*.mat). Diese muss die kontinuierli-
chen Eingangs-, Ausgangs- und Zeitdaten des zu identifizierenden Verhaltens enthalten.

Um aus den zeitlich gemessenen Ein- und Ausgangssignalen zu einem Modell zu gelangen muss
eine gute Modellstruktur gefunden werden, die das beobachtete Verhalten moglichst gut wider
gibt. Es gibt eine Vielzahl von Modellstrukturen fiir die Identifikation linearer Modelle. Bei-
spielsweise gibt es das lineare Autoregressionsmodell (AR) oder das Moving-Average-Modell
(MA) [Lju9s].

Eine konkrete Evaluierung des Ansatzes ist durch Integration der Matlab System Identification
Toolbox erfolgt’. Die Systemidentifikation versucht dabei mittels der Methode ‘“Minimierung
des Vorhersagefehlers” die Modellparameter fiir unbekannte GesetzmiBigkeiten zu bestimmen.
Es werden nur Daten im Zeitbereich unterstiitzt. Der Grad des Modells wird automatisch aus
dem Bereich 1-10 gewihlt. Die Modellstrukturen AR sowie ARMA (eine Addition aus AR und
MA) werden ebenfalls unterstiitzt. Mit Hilfe dieser Werkzeugunterstiitzung war es uns moglich

Thttp://www.mathworks.com/products/sysid/
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unterschiedliche Regler in unserem Convoy Beispiel mit einer Altkomponente zu identifizieren,
womit wir auch Rekonfigurationen erkennen konnten [BGH 08, BBB*09, HBB™09, BBB*09].

Der Systemidentifikationsansatz hat, trotz der Werkzeugintegration, immer noch eine sehr hohe
Abhingigkeit zu Entwicklern aus der Regelungstechnik, da die Systemidentifikation an sich trotz
vieler Forschungsaktivititen immer noch ein hochgradiger manueller Akt ist, der entsprechendes
Expertenwissen benotigt.

4.5 Diskussion

In diesem Kapitel haben wir eine Synthese des Kommunikationsverhaltens fiir mechatronische
Altkomponenten durch Kombination von einer kompositionellen Verifikation, modellbasierten
Testen und Lernansitzen vorgestellt. Diese Ansitze ermdglichen eine kontextspezifische Kon-
flikterkennung in frithen Lernschritten. Weiterhin ermoglichen wir dem Ingenieur das regelungs-
technische Verhalten und Rekonfigurationen zu identifizieren. Im Vergleich zu klassischen An-
sdtzen, die erst in der Integrationsphase eine Integration von Altkomponenten erméglichen, sind
wir damit insgesamt in der Lage frith Konflikte zu erkennen und Kosten zu sparen.

Die prisentierten X-Box-Checking-Ansitze decken einen grofen Bereich an Techniken ab, um
Altkomponenten mit unterschiedlichen zur Verfiigung stehenden Informationen in ein Kompo-
nentenmodell zu integrieren. Unsere Evaluierungen in Kooperation mit der Industrie und dem
RailCab-Projekt bestitigen diese Aussage [HMSN10a, HMSN10b, HMS*10].

Nach Moglichkeit versuchen wir fiir die Verhaltenserkennung den Gray-Box-Checking-Ansatz
zu verwenden, da dieser die besten Laufzeiteigenschaften aufweist. Dies ist allerdings nur mog-
lich, wenn der Zustand der Altkomponente sicher erkannt werden kann. Ist dies nicht der Fall,
wird je nach Informationsstand der White-Box-Checking- oder Black-Box-Checking-Ansatz an-
gewandt.
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Kapitel 5
Synthese von Komponentenverhalten

Die in den Kapiteln 3 und 4 vorgestellten Ansétze unterstiitzen die Komposition und Wieder-
verwendung von Komponenten in dem modellgetriebenen Entwicklungsansatz MECHATRO-
NIC UML durch eine Definition und Uberpriifung einer Verfeinerung in hierarchischen Kom-
ponentensystemen und durch Integration von Altkomponenten. Bei der Komposition kann zu
dem die Anforderung entstehen, dass Abhingigkeiten zwischen den verschiedenen Kompositio-
nen beriicksichtigt werden miissen. In diesem Abschnitt stellen wir einen Ansatz vor, der kon-
struktiv durch eine formale Abhingigkeitsbeschreibung das Synchronisationsverhalten (gesamte
Komponentenverhalten) synthetisieren kann. Hiermit betrachten wir den letzten Anwendungsfall
einer Konkretisierung nach Abschnitt 2.1 auf Seite 13.

Um die Komplexitit bei der Entwicklung eines Systems zu beherrschen ist eine Dekomposition
des Systems in separate Einheiten eines der weitverbreitetsten Paradigmen in der Softwaretech-
nik [Dij76]. Hierdurch werden Software-Entwicklungsziele wie Wartbarkeit, Adaptierbarkeit,
Erweiterbarkeit und Wiederverwendung gefordert. In der MECHATRONIC UML wird dies durch
eine Dekomposition des Systems in Komponenten und Kommunikationen zwischen Komponen-
ten, die das Protokollverhalten beschreiben, erreicht (siehe z.B. Abschnitt 2.4.1). Die Kommuni-
kationen werden dabei durch Muster (REAL-TIME COORDINATION PATTERNS) spezifiziert, die
die Kommunikation strukturell in Rollen und einem Konnektor zwischen diesen aufteilen. Die
Rollen, an denen eine Komponente beteiligt ist, beschreiben das Verhalten einer Komponente.

Eine der wesentlichen Aufgaben, um eine solche getrennte Entwicklung zu unterstiitzen,
ist die komponentenspezifische Komposition separater, womdglich abhédngiger Rollen (Pro-
tokolle) [TOHS99]. Fiir die hier zu betrachtende Verhaltenskomposition werden Ansitze in
[Mil89, GVO06] vorgestellt. Die Komplexitit von mechatronischen Systemen fordert iiber diese
Ansitze hinaus die Betrachtung von Echtzeitbedingungen sowie von Sicherheits- und begrenzten
Lebendigkeitseigenschaften fiir die Komposition (sieche Abschnitt 2.4.1 und 2.4.6.1).

Aktuelle komponentenbasierte Ansitze, wie die MECHATRONIC UML (siehe Abschnitt 2.4.2)
oder der Ansatz von Gossler und Sifakis [GS03], unterstiitzen diesen Entwicklungsschritt, indem
manuell Abhingigkeiten durch einen zusétzlichen Beobachterautomaten oder Synchronisations-
automaten spezifiziert werden (sieche Abbildung 2.9). Dies ist allerdings schon allein fiir eine
einfache Abhingigkeit schwierig umzusetzen. Ein Entwickler muss, um protokolliibergreifende
Anforderungen einer Komponente zu implementieren, folgendes beriicksichtigen:
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e das Gesamtverhalten der beteiligten Rollen (Produktautomat von Registree und Rear),

e die gestellten Anforderungen (unregistered-Zustand der Rolle Registree und convoy-
Zustand der Rolle Rear diirfen nicht gleichzeitig aktiv sein),

e das eingeschrinkte Verhalten muss eine Verfeinerung der jeweiligen Rollen sein.

Eine Anforderung selbstoptimierender Systeme ist zudem, dass das Verhalten moglichst flexibel
auf unterschiedliche Szenarien zur Laufzeit reagieren soll, damit zwischen Alternativen (z.B. im
Konvoi fahren oder nicht) optimiert werden kann. Das bedeutet wiederum, dass das Verhalten
der Rollen nur so wenig wie moglich eingeschrinkt werden sollte.

Um nur die beschriebene einfache Anforderung an die Komposition der Rollen Registree und
Rear umzusetzen, muss der Entwickler an den richtigen Stellen in den jeweiligen Protokol-
len Synchronisationen (z.B. die notInConvoy-Synchronisation aus Abbildung 2.9) mit einem
ebenfalls zusitzlich zu spezifizierenden Synchronisationsautomaten einfithren. Damit werden
bestimmte Pfade oder Zustidnde eingeschrinkt. Da der Entwickler nicht weil}, ob damit die An-
forderung an die Komposition erfolgreich umgesetzt wurde, muss er zudem eine Uberpriifung
durchfiihren. Die Uberpriifung kann vorzugsweise durch einen Model Checker (in unserem Fall
Uppaal) durchgefiihrt werden. Es muss also zudem die gestellte Anforderung in Form einer
Sicherheits- oder Lebendigkeitseigenschaft fiir den Model Checker spezifiziert werden. Wer-
den Fehler festgestellt, so muss manuell, mit Hilfe der Gegenbeispiele, das Verhalten angepasst
werden. Der Entwickler weil} allerdings zu keinem Zeitpunkt wihrend der Entwicklung, ob die
Anforderung iiberhaupt realisierbar ist. Vielleicht findet der Entwickler ein Verhalten, welches
die Anforderung umsetzt, jedoch keine giiltige Verfeinerung darstellt, die auch tiberpriift werden
muss. Wurden all diese Schritte erfolgreich durchgefiihrt, so ist immer noch unbekannt, ob mehr
Verhalten eingeschrinkt wurde als notwendig. Das eigentliche Ziel der Dekomposition, nimlich
eine Wiederverwendung von Protokollen zu ermoglichen, ist durch eine manuelle Umsetzung
damit fraglich.

Wir stellen einen Syntheseansatz vor (siehe Abschnitt 5.2), der eine wohldefinierte automati-
sche Komposition von Protokollverhalten unter Beriicksichtigung von Kompositionsregeln (sie-
he Abschnitt 5.1), die die Abhingigkeiten zwischen den Protokollen beschreiben, unterstiitzt.
Die definierten Kompositionsregeln erhalten Sicherheitseigenschaften. Dies ist eine wesentliche
Voraussetzung fiir sicherheitskritische Systeme. Die Komposition beriicksichtigt zudem eine Ver-
feinerungsbeziehung, die wir Rollen-Konformitdt nennen (siehe Abschnitt 5.3). Auf diese Weise
bleiben Lebendigkeitseigenschaften erhalten. Mit unserem Ansatz kann der Entwickler expli-
zit eine verbotene Situation spezifizieren, ohne zusitzliches Verhalten fiir eine Beobachtung zu
beschreiben und ohne eine Instrumentierung der Protokollverhalten vorzunehmen. Zudem kann
der Entwickler die einzelnen Abhédngigkeiten getrennt voneinander spezifizieren, da die Abhin-
gigkeiten automatisch durch den Synthesealgorithmus aufgeldst werden. Der Entwickler muss
folglich manuell nur noch eine Spezifikation der Abhingigkeiten durchfiihren.

Nach dem wir den Ansatz in den Abschnitten 5.1 bis 5.3 vorgestellt haben, werden wir weite-
re Anwendungsfille des Ansatzes in Abschnitt 5.4 betrachten und Abschlieend in Abschnitt
5.5 den Beitrag diskutieren. Bevor wir mit den Details beginnen, werden wir die Anforderun-
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gen und Voraussetzungen unseres Ansatzes im Folgenden Anhand des RailCab Anwendungsbei-
spiels beschreiben. Hierzu werden wir uns dem Konvoi-Szenario bedienen und eine Einbettung
des Beitrags in die MECHATRONIC UML skizzieren.

Anforderungen und Voraussetzungen Im Folgenden verdeutlichen wir unseren Ansatz,
in dem wir das Konvoi-Beispiel aus Abbildung 2.17 um eine Basisstation (sieche Abbildung 5.1)
erweitern. Die Basisstation ist fiir die Energieversorgung sowie fiir das Management der Rail-
Cabs auf einem dedizierten Streckenabschnitt zustédndig. RailCabs nutzen diese Information, um
Unfille zu vermeiden und um Konvois zu bilden.

Wir spezifizieren das System mit zwei REAL-TIME COORDINATION PATTERNS (siche Ab-
schnitt 2.4.1) Registration und DistanceCoordination sowie zwei Komponenten BaseStation und
RailCab (sieche Abbildung 5.2). Fiir die Kommunikation und die Komponenten gelten die in Ab-
bildung 2.1 gezeigten Eigenschaften bzgl. der Verfeinerungs- und Synthesebeziehung sowie die
Bestimmung des Gesamtverhaltens.

Join Convoy

Legende:
RC: RailCab \

BS: Basisstation

Abbildung 5.1: Beispiel Konvoirestrukturierung mit Basisstation

In Abbildung 5.2 sind die beteiligten Rollen des REAL-TIME COORDINATION PATTERNS Re-
gistration dargestellt (registrar und registree). Die Rollen des DistanceCoordination-REAL-TIME
COORDINATION PATTERNS sind front und rear. Das Verhalten der Rollen wird durch REAL-
TIME STATECHARTS spezifiziert (siche Abschnitt 2.4.2).

Abbildung 5.3 und 5.4 zeigen stark vereinfachte Protokollverhalten der rear-Rolle und der regis-
tree-Rolle. Die Vereinfachung wird lediglich eingefiihrt, um die Synthese anschaulich an einem
Beispiel zu illustrieren. Wir gehen zudem auch nicht niher auf die Gegenstiicke der Rollen, dies
sind die front-Rolle und die registrar-Rolle, ein.

Initial befindet sich die rear-Rolle in dem Zustand noConvoy und sendet eine startConvoy-
Nachricht. Die Uhr cr wird auf null zuriickgesetzt, bevor der convoy-Zustand betreten wird.
Im Intervall zwischen 200 und 1000 Zeiteinheiten kann die breakConvoy-Nachricht empfangen
werden, da die Invariante des Zustands convoy cr < 1000 und der Time Guard der ausgehenden
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Abbildung 5.2: Kombination von separaten Protokollen in der MECHATRONIC UML

Transition c¢r > 200 ist. Andernfalls kann im Zeitintervall 400 bis 1000 periodisch eine upda-
te-Nachricht verschickt werden. Falls beide Transitionen gleichzeitig schaltbar sind, erfolgt die
Entscheidung nichtdeterministisch.

Die Rolle registree ist Initial im Zustand unregistered, sendet eine register-Nachricht und setzt
die Uhr zuriick. Im Intervall zwischen 800 und 2000 Zeiteinheiten wird periodisch eine life-
tick-Nachricht verschickt oder im Intervall von 500 bis 2000 Zeiteinheiten eine unregistered-
Nachricht verschickt. Um beide Entscheidungen in der abstrakten Rolle zu ermoglichen, ist die
Entscheidung nichtdeterministisch.

/register

{ce}

/startConvoy

noConvoy convoy cr <= 400 unregistered ce >= 800
/update ce <= 2000}</lifetick
{Cr} ce >= 500 {ce}
breakConvoy/ /unregister

Abbildung 5.3: Vereinfachte rear-Rolle Abbildung 5.4: Vereinfachte Registree-Rolle

Um das Verhalten einer Komponente zu bestimmen, werden spiter im Entwicklungsprozess,
die separat entwickelten REAL-TIME COORDINATION PATTERNS (bzw. ihre Rollen) angewandt
(siehe Abbildung 5.2). Die Dekomposition hat auf der einen Seite dazu gefiihrt, das System be-
herrschbar zu machen. Auf der anderen Seite fiihrt dies zu dem Problem, dass das Verhalten der
unabhiéngig entwickelten Protokolle Abhéngigkeiten aufweisen kann, die wihrend der Entwick-
lung von REAL-TIME COORDINATION PATTERNS (bzw. ihren Rollen) nicht betrachtet werden.
Wihrend des Prozesses der Verhaltensbeschreibung einer Komponente, muss daher zusitzlich
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zu den separat entwickelten Rollen, die durch eine Komponente angewandt werden sollen, Ab-
hingigkeiten zwischen den Rollen betrachtet werden.

In unserem RailCab Beispiel (Figure 5.2) wendet die RailCab-Komponente die REAL-TIME
COORDINATION PATTERNS Registration und DistanceCoordination an. Wihrend die beiden
Muster unabhingig voneinander entwickelt wurden, muss fiir die gleichzeitige Anwendung bei-
der Muster gelten:

Im Konvoi-Modus muss jeder Teilnehmer des Konvois an einer Basisstation regis-
triert sein.

Dies ist eine (typische) Anforderung, die moglicherweise gewollt wihrend der Entwicklung der
Rollen nicht beriicksichtigt wurde, um die Muster moglichst abstrakt und damit weitreichend
einsetzen zu konnen. Hiermit werden eine Erhohung der Wiederverwendung der einzelnen Rol-
len und gleichzeitig eine Verringerung der Komplexitit erreicht. Wie in [TOHS99] beschrieben
kann es aber auch vorkommen, dass Abhéngigkeiten zwischen separaten Teilen im System erst
durch Anforderungen entstehen, die spéter im Entwicklungsprozess bekannt werden.

Entsprechend dieser Anforderung, besteht eine Abhédngigkeit zwischen den Rollen rear und re-
gistree, wenn sie durch die RailCab-Komponente angewandt werden. Um diese Abhéngigkeit zu
beschreiben, muss das Verhalten der registree-Rolle und das Verhalten der rear-Rolle verfeinert
und miteinander synchronisiert werden.

Allgemein  konnen  wir zwischen mehreren unterschiedlichen  Synchronisations-
Anwendungsfillen unterscheiden (siehe Abbildung 5.5). Der 1. Fall betrachtet eine Syn-
chronisation auf gleicher Hierarchieebene. Das Gesamtverhalten abhéingiger Protokollverhalten
(M{,, M{, und Mfk) ergibt sich dabei durch ein gemeinsames Synchronisationsverhalten
(M7). Im Fall einer Synchronisation auf unterschiedlichen Hierarchieebenen ergibt sich das
Gesamtverhalten zudem aus dem Verhalten eingebetteter Komponenten (M7 ; und My ,). Der
dritte Fall ergénzt die ersten beiden um einen Multi-Port.

Diese drei Anwendungsfille betrachten eine lokale Synchronisation einer (hierarchischen) Kom-
ponente. Dariiber hinaus kann eine Synchronisation auch verteilt auf Musterebene stattfinden. Da
der 1. Fall grundlegend die Synchronisation zwischen abhédngigen Protokollverhalten betrachtet,
werden wir im Folgenden vertiefend diesen Fall betrachten. Anschlieend werden wir diskutie-
ren, wie die anderen Fille ebenfalls abgedeckt werden kdnnen.

Eine wesentliche Aufgabe der Synthese ist es, dass neben dem Einhalten der Kompositionsre-
geln, die Eigenschaften der Rollenverhalten! nicht verletzt werden. Entsprechend muss fiir den
Ansatz eine geeignete Verfeinerungsdefinition fiir zeitkontinuierliche Echtzeitsysteme beschrie-
ben werden. Zusammen mit den Kompositionsregeln, einer Verfeinerungsdefinition sowie den
Rollenverhalten ermoglichen wir eine automatische Synthese des Komponentenverhaltens.

Zur Beschreibung der Verfeinerungsdefinition werden wir auf die in Abschnitt 3.1 diskutierte
Verfeinerung zuriickgreifen. Im Rahmen dieser Arbeit haben wir uns fiir eine implementierungs-
nahe (operationale) Definition einer Verfeinerung entschieden. Hiermit wird es uns im Vergleich

!Ohne Einschrinkung des Ansatzes bezeichnen wir die separaten Protokolle mit Rollenverhalten.
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Abbildung 5.5: Synchronisationsverhalten Komponente: Anwendungsfille

zu deklarativen Ansitzen (siehe z.B. [AB11]) ermdglicht, die nur iiber Mengen und nicht iiber
die Ordnung von Nachrichten sprechen, einen Algorithmus (einfach) umzusetzen. Dies fiihrt
allerdings dazu, dass wir die beschriebene Verfeinerung aus Abschnitt 3.1 nicht direkt eins zu
eins iibernehmen konnen, sondern diese um die hier betrachteten Modelle anpassen miissen. Das
bedeutet im Speziellen, dass wir hier mehrere abstrakte Modelle betrachten miissen (potentiell
mehrere Rollenverhalten) und als Konkretisierung ein parallel Produkt dieser Rollenverhalten.
Die Eigenschaften der Verfeinerung veridndern sich dadurch nicht.

Eingabe in den Algorithmus sind Kompositionsregeln und die separaten Rollenverhalten (siehe
Abbildung 5.6). Wenn die Synthese moglich ist, ohne das extern sichtbare Verhalten zu verlet-
zen, dann ist die Ausgabe ein parallel komponiertes Komponentenverhalten, welches die Ein-
gabeverhalten sowie die Kompositionsregeln kombiniert. Wenn die Synthese nicht moglich ist,
wird eine Konfliktbeschreibung zuriickgegeben. Grundlegende Arbeiten des Ansatzes wurden in
[HSGO08, HGH™ 09, Eck09, EH09, EH10a] vorgestellt.

5.1 Kompositionsregeln

Mit Kompositionsregeln konnen Abhédngigkeiten zwischen Rollenverhalten spezifiziert werden.
Aufgrund des unterliegenden Timed Automata Formalismus ermoglichen wir die Beschreibung
von Abhingigkeiten zwischen Zustidnden und Nachrichten bzw. Sequenzen von Nachrichten, die
jeweils auch zeitlich tiber die definierten Uhren ausgeprigt sein konnen. Damit kann iiber alle
Elemente des Formalismus eine Abhédngigkeit beschrieben werden.

Wir teilen Kompositionsregeln in Zustands-Kompositionsregeln und  Nachrichten-
Kompositionsregeln ein. Zustands-Kompositionsregeln ermdéglichen entsprechend die Syn-
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Synthese Komponentenverhalten )

Konfliktbeschreibung

Kompositionsregeln
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nentenverhalten

[Rollenkonform]

Abbildung 5.6: Ansatz Komponentenverhaltenssynthese

chronisation zwischen abhidngigen Zustandskombinationen zu beschreiben. Nachrichten-
Kompositionsregeln beschreiben mogliche Synchronisation zwischen Ereignissen und
Sequenzen von Ereignissen. Beide Formalismen beinhalten zudem die Spezifikation von
Zeitinformationen fiir die Synchronisation.

Um den Anforderungen der betrachteten Systeme gerecht zu werden, miissen zudem Kompositi-
onsregeln allgemein Sicherheits- und begrenzte Lebendigkeitseigenschaften ausdriicken kénnen
(siehe z.B. Abschnitt 2.4 oder [Lam77, Hen92]).

Sicherheitseigenschaften konnen durch Zustands-Kompositionsregeln spezifiziert werden, indem
verbotene Zustandskombinationen der parallel ausgefiihrten Rollenverhalten definiert werden.
Nachrichten-Kompositionsregeln konnen Sicherheitseigenschaften ausdriicken, indem zusétzli-
che Zeitbedingungen bestimmten Transitionen hinzugefiigt werden.

Lebendigkeitseigenschaften konnen durch Zustands-Kompositionsregeln und Nachrichten-
Kompositionsregeln ausgedriickt werden, indem weitere Zeitbedingungen Zustandsinvarianten
von Zustands-Kombinationen der parallelen Ausfithrung der Rollen hinzugefiigt werden.

Im Folgenden werden wir diese beiden Formalismen genauer vorstellen.

5.1.1 Zustands-Kompositionsregeln

Wenn Rollen anwendungsspezifisch durch Komponenten angewandt werden, kann es sein, dass
einige Zustandskombinationen der parallel geschalteten Rollen aufgrund von Systemanforderun-
gen nicht erlaubt sind. Entsprechend wird ein Formalismus benétigt, der durch Synchronisation
der beteiligten Rollenverhalten bestimmte Zustandskombinationen einschrinkt. Dariiber hinaus
stellen wir die Anforderung an den Formalismus, dass er fiir den Systementwickler einfach zu
benutzen ist, ohne einen neuen Formalismus zu erlernen.

Um diese Anforderungen zu erfiillen, werden die Zustands-Kompositionsregeln direkt iiber
die Zustinde der separaten Rollenverhalten definiert. Die gestellte Anforderung aus Para-
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graph Anforderungen und Voraussetzungen auf Seite 141 kann z.B. wie folgt mit Zustands-
Kompositionsregeln ausgedriickt werden:

ry = —((unregistered,true) A (convoy, true)).

Syntaktisch besteht eine Zustands-Kompositionsregel aus einer Menge von Zustands-Pridikaten,
die auf einen Booleschen-Wert (wahr oder falsch) abgebildet werden, die alle zusammen von ei-
ner Negation umgeben sind. Die Priadikate sind zudem {iiber eine Verundung oder Veroderung
miteinander verbunden. Ein Zustands-Pridikat spezifiziert einen Zustand in Kombination mit ei-
ner Menge an Uhr-Bedingungen. Die Uhr-Bedingungen werden dabei nur iiber bereits bekannte
Uhren der Rollenverhalten definiert. In der Zustands-Kompositionsregel r; sind die Zustands-
Pridikate (unregistered, true) und (convoy, true) jeweils mit einem ¢rue verbunden. Das be-
deutet, dass fiir alle Uhr-Bewertungen, die Zustandskombination von unregistered und convoy
nicht erlaubt ist.

Im Folgenden wollen wir noch eine entschirfte Anforderung betrachten, die Aussagt, dass die
Zustandskombination von unregistered und convoy erlaubt ist, allerdings nicht ldnger als 50
Zeiteinheiten. Diese Anforderung beschreibt damit eine begrenzte Lebendigkeitseigenschaft, da
dieser Zustand eventuell betreten werden kann, aber innerhalb von 50 Zeiteinheiten wieder ver-
lassen werden muss. Die Folgende Zustands-Kompositionsregel beschreibt diese Eigenschaft:

ro = —((unregistered,true) A (convoy, cr > 50)).

Damit konnen Zustandskombinationen auch nur fiir bestimmte Zeitintervalle verboten werden.

Im Folgenden definieren wir erst die erlaubten Uhr-Bedingungen fiir Zustands-Pridikate. Hier-
mit wird es moglich sein, Zustandsinvarianten einzuschrianken. Eine Anforderung ist, dass die
Eigenschaften der unterliegenden Timed Automata nicht verletzt werden diirfen, da ansonsten
ein Automat synthetisiert werden konnte, der die Semantik der Timed Automata verletzen konn-
te. Damit ist es nicht erlaubt, die Untergrenze der Invarianten zu veridndern, da Invarianten nur die
obere Grenze der Verweildauer in einem Zustand begrenzen (siche Abschnitt 2.4.2 und [Alu92]).
Dies wird iiber nach oben geschlossenen Uhr-Bedingungen erreicht.

Definition 51 (Nach oben geschlossene Uhr-Bedingungen)
Sei eine Menge C von Uhren gegeben, die Menge ®,,.(C') C ®(C') von nach oben geschlossenen
Uhr-Bedingungen ist induktiv definiert durch

pu=x~n|z—y~n|eAe|true,

mitz,y € C, ~¢ {>,>}, neN.
Nach oben geschlossene Uhr-Bedingungen erlauben nur Uhr-Bedingungen oder Vereinigun-
gen von Uhr-Bedingungen zu beschreiben, die eine Untergrenze fiir eine Uhr oder die Dif-

ferenz zwischen zwei Uhren betrachten. Durch die einbezogene Negation einer Zustands-
Kompositionsregel wird damit das Uhr-Intervall nach oben eingeschrinkt. In Kompositionsregel
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o bedeutet das Zustands-Prédikat (convoy, cr > 50) durch die umgreifende Negation, dass die
Zustandsinvariante von cr < 1000 auf cr < 50 eingeschridnkt wird.

Damit kdonnen wir Zustands-Pridikate wie folgt definieren.

Definition 52 (Zustands-Pradikate)
Fiir einen Timed-Automata A = (L,1°,%,C,I,T), einen Zustand (Location) | € L und ei-
ne nach oben geschlossene Uhr-Bedingung o € &,.(C), ist die Menge T'(A) von Zustands-
Pridikaten v = (1, o) definiert durch:

T(A) = L x $,.(C).

Wie schon in den Beispielen 7; und 7o gezeigt, besteht ein Zustands-Pridikat aus einer Kom-
bination von einem Zustand und nach oben geschlossenen Uhr-Bedingungen fiir einen Timed
Automata A. Damit werden verbotene Uhr-Intervalle ¢ fiir einen Timed Automata Zustand [ be-
schrieben. Wenn alle Uhr-Intervalle verboten werden sollen, wird dies durch (1, true) fiir einen
Zustand [ ausgedriickt, da true € ¢,.(C).

Auf Basis dieser Definitionen konnen wir Zustands-Kompositionsregeln im Folgenden definie-
ren.

Definition 53 (Zustands-Kompositionsregel)

Fiir zwei Timed Automata Ay = (L1,19,%,,C1, I, Ty) und Ay = (L, 19,59, Co, I3, Ty), ist die
Menge R° (A, Ay) von moglichen Zustands-Kompositionsregeln p definiert durch die folgende
Grammatik:

p = ~(py)
Py = (py) Apy) | (p7) V (py) [ Y

mit vy € I'(A;) UT'(As) (siehe Definition 52).

Zustands-Kompositionsregeln kombinieren mehrere Zustands-Pridikate fiir zwei verschiedene
Timed Automata. Die Pridikate werden explizit als verboten gekennzeichnet durch die Negation.
Beispiele hierfiir sind die Kompositionsregeln r1 und 2.

In Abschnitt 5.2 werden wir zeigen, wie wir Zustands-Kompositionsregeln automatisch
auf separate Rollenverhalten anwenden konnen. Im Folgenden werden wir Nachrichten-
Kompositionsregeln definieren.

5.1.2 Nachrichten-Kompositionsregeln

Um auf Basis von Nachrichten und Sequenzen von Nachrichten die separaten Rollenverhal-
ten zu synchronisieren, beschreiben wir im Folgenden Nachrichten-Kompositionsregeln. Fiir die

147



Kapitel 5 Synthese von Komponentenverhalten

Nachrichten-Kompositionsregeln gilt wie auch fiir die Zustands-Kompositionsregeln die Anfor-
derung an den Formalismus, dass er fiir den Systementwickler einfach zu benutzen ist, ohne
einen neuen Formalismus zu erlernen.

Daher beschreiben wir die Nachrichten-Sequenzen ebenfalls in der Syntax von Timed Au-
tomata. Um das extern sichtbare Echtzeitverhalten der Rollen nicht zu verletzen, fiigen
Nachrichten-Kompositionsregeln keine weiteren Nachrichten dem Verhalten hinzu. Nachrichten-
Kompositionsregeln konnen allerdings den beobachteten Nachrichten-Sequenzen weitere Zeit-
Bedingungen hinzufiigen. Dies wird sowohl in Form von Time Guards wie auch Zustands-
Invarianten ermoglicht, womit sowohl Sicherheits-, wie auch begrenzte Lebendigkeitseigen-
schaften spezifiziert werden konnen.

Fiir unsere Rollen rear und registree (siehe Abbildung 5.3 und 5.4) nehmen wir noch eine weitere
Anforderung an. Ein RailCab muss an einer Basisstation mindestens 2500 Zeiteinheiten regis-
triert sein, bevor ein Konvoi gestartet werden kann. Da diese Anforderung mehr als ein Rollen-
verhalten betrifft, muss die Anforderung als ein Synchronisationsverhalten beschrieben werden,
um das Verifikationsergebnisse bzw. das extern sichtbare Verhalten nicht zu verletzen. Offen-
sichtlich kann diese Anforderung auch nicht durch eine Zustands-Kompositionsregel umgesetzt
werden, da als Voraussetzung die startConvoy-Nachricht empfangen werden muss. In Abbildung
5.7 ist entsprechend die Nachrichten-Kompositionsregel eca; spezifiziert.

Der Nachrichten-Kompositionsregel-Automat eca; schaltet von Zustand ec_initial nach Zustand
ec_registered, wenn die Nachricht register von der registree-Rolle verschickt wird. Beim Schal-
ten der Transition wird ebenfalls die Uhr ec_c1 zuriickgesetzt. Aus dem Zustand ec_registered
wird entweder zuriick in den Zustand ec_initial gewechselt, wenn die Rolle registree die Nach-
richt unregister verschickt oder es wird in Zustand ec_registeredConvoy geschaltet, wenn
die Nachricht startConvoy von der rear-Rolle verschickt wird. Die Transition von Zustand
ec_registered nach ec_registeredConvoy ist zudem mit dem Time Guard ec_c1 >= 2500 an-
notiert. Damit wird erreicht, dass der korrespondierende Zustand des Rollenverhaltens erst 2500
Zeiteinheiten in dem entsprechenden Zustand verweilen muss, bevor ein Konvoi gebildet werden
kann. Der Zustand ec_registeredConvoy wird verlassen, wenn die registree-Rolle eine unregis-
ter-Nachricht verschickt. Damit wird insgesamt die Anforderung spezifiziert.

[register

ec_registered

ec_initial

/unregister

ec_c1>=2500
/unregister /startConvoy

ﬁec_registeredConvoyj

Abbildung 5.7: Nachrichten-Kompositionsregel eca
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Nachdem nun informal Nachrichten-Kompositionsregeln eingefiihrt wurden, definieren wir diese
im Folgenden formal.

Definition 54 (Nachrichten-Kompositionsregeln)

Seien Ay = (L1,19.%,Cy, 11, Ty) und Ay = (Lo,19,%,Cy, I5,Ty) zwei Timed Auto-
mata. Eine Nachrichten-Kompositionsregel Ay € RA(Ay, Ay) ist ein Timed Automaton
(LE, l%, g, Cg, I, TE>, mit

o Ly ist eine endliche, nicht-leere Menge an Zustdinden,
o 1% C L ist der initiale Zustand,
o X C Xy U2 ist eine endliche Menge an beobachtbaren Nachrichten,

o [: L — 94.(Cg) weist jedem Zustand eine nach unten geschlossene Zeitbedingung zu,

Cg ist eine endliche Menge an Uhren, mit Cp N (Cy U Cy) = &,

Ty C Ly x ¥g x &(Cg) x 298 x Ly ist eine endliche Menge von Transitionen t =
(l,e,g,m 1) € Tg, mit

| € Lg ist der Quellzustand,

e € Y ist die beobachtete Nachricht,
g € @(Ck) ist der Time Guard,

r C Ckg ist eine Menge von Uhren, die zuriickgesetzt werden sollen, und

l' € Lg ist der Zielzustand.

Nachrichten-Kompositionsregeln sind damit iiber Nachrichten der beteiligten Rollenverhalten
Aj und A, definiert, womit kein weiteres externes Echtzeitverhalten hinzugefiigt werden kann.
Damit beobachten Nachrichten-Kompositionsregeln lediglich die beteiligten Rollenverhalten.

Eine weitere Einschrinkung ist, dass die Menge der Uhren disjunkt mit den beteiligten Rollen-
verhalten ist. Auf diese Weise wird garantiert, dass die Nachrichten-Kompositionsregeln nicht
die Zeitintervalle der Nachrichten-Sequenzen der Rollenverhalten verletzen. Andernfalls wire es
moglich, dass vorher verifizierte Deadlines der Rollenverhalten nicht mehr eingehalten werden
konnen.

Zusammenfassend konnen damit Nachrichten-Kompositionsregeln eine Sequenz von Nachrich-
ten beobachten und moglicherweise weitere Zeitbedingungen den korrespondierenden Transitio-
nen und Zustdnden hinzufiigen.

In dem néchsten Abschnitt werden wir betrachten, wie Nachrichten-Kompositionsregeln auto-
matisch durch unsere Synthese angewandt werden.
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5.2 Synthese

In diesem Abschnitt stellen wir eine Synthese von Statecharts fiir das Komponentenverhalten vor.
Eingaben in die Synthese sind Kompositionsregeln sowie Rollenverhalten, die iiber die Kom-
positionsregeln eingeschriankt werden sollen (siehe Abbildung 5.6). Aus Vereinfachungsgriin-
den werden wir im Folgenden nur zwei separate Rollenverhalten betrachten. Der Ansatz kann
allerdings einfach auf beliebige Anzahlen an separaten Automaten erweitert werden, in dem
die Definitionen, die zwei Eingabe-Automaten betrachten einfach auf eine Menge von Eingabe-
Automaten erweitert werden.

Die Syntheseaktivitit ,,synthetisiere Komponentenverhalten® teilen wir in vier verschiedene Ak-
tivitditen auf, welche wir im Folgenden niher betrachten. Als erstes wird die parallele Kom-
position berechnet (sieche Abschnitt 5.2.1). Auf diesen parallel komponierten Rollenverhal-
ten werden die Kompositionsregeln angewandt. Die verbotenen Zustands-Kombinationen der
Zustands-Kompositionsregeln werden dabei entfernt (sieche Abschnitt 5.2.2) und die spezifizier-
ten Nachrichten-Kompositionsregeln werden in das parallel komponierte Verhalten integriert
(sieche Abschnitt 5.2.3). Da die Anwendung der Kompositionsregeln zu einer Verletzung der
Eigenschaften der Rollenverhalten fiihren kann, wird im letzten Schritt iberpriift, ob die Eigen-
schaften nicht verletzt wurden (siehe Abschnitt 5.3).

5.2.1 Parallele Komposition

Wie wir schon in Definition 2 fiir Timed Automata gezeigt haben, fiihrt die parallele Komposition
zu einem expliziten Modell der parallelen Ausfiithrung der separaten Verhalten. Diese parallele
Komposition ist Voraussetzung, um die Kompositionsregeln anzuwenden, da die Kompositions-
regeln fiir die parallele Ausfiithrung der separaten Rollenverhalten ausgelegt sind. Die parallele
Komposition der vereinfachten Rollenverhalten rear und registree ist in Abbildung 5.8 darge-
stellt. An dem Beispiel ist zu sehen, dass die nebenldufige Umsetzung der Nachrichten immer
noch zu einer parallelen Ausfithrung von unterschiedlichen Nachrichten fiihrt, da die Transitio-
nen eines Timed Automata in Nullzeit schalten und Zeit nicht unbedingt in Zustéinden verbraucht
werden muss.

Ein moglicher Pfad in diesem Automaten ist z.B. von register von (noConvoy,unregistered)
nach (noConvoy,registered), gefolgt durch startConvoy von (noConvoy,registered) nach (con-
voy,registered), wihrend alle Uhrenwerte Null bleiben. Damit treten register und startConvoy
parallel auf.

5.2.2 Anwendung von Zustands-Kompositionsregeln
Zustands-Kompositionsregeln, wie in Abschnitt 5.1.1 definiert, beschreiben Sicherheits- und

Lebendigkeitseigenschaften, die durch die parallele Anwendung der separaten Rollenverhalten
nicht verletzt werden diirfen. Ziel ist es, im Vergleich zum reinen Model Checking, nicht nur zu
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t /startConvoy
| {e |
(noConvoy,unregistered) (~ (convoy,unregistered) }— cr >= 400
(_ cr<=1000 )3 /update
b er>=200 | fer}
breakConvoy/
/unregister [register /unregister Iregister
ce >= 500 {ce} ce >= 500 {ce}
/startConvoy
e
((noConvoy,registered) ( (convoy,registered) \—cr>= 400
(_ce <= 2000 ) ler<=1000 && ce <= 200@3 /update
el T T a»>=200 ] ef |

ce >= 800 /lifetick  breakConvoy/  ce >= 800 /lifetick

Abbildung 5.8: Beispiel eines parallelen Kompositionsautomaten (Rollen rear und registree)

tiberpriifen, dass diese Eigenschaften erfiillt sind, sondern automatisch das Modell so anzupas-
sen, dass keine Verletzung dieser Eigenschaften eintritt. Entsprechend muss der im vorherigen
Abschnitt definierte parallele Kompositionsautomat von separaten Rollenverhalten, um diese Ei-
genschaften angepasst werden, so dass z.B. bestimmte Zustandskombinationen verboten werden.

Verdeutlichen kénnen wir dies durch Anwendung der Kompositionsregeln r; und 75 (sieche Ab-
schnitt 5.1.1) auf den im vorherigen Abschnitt gezeigten parallelen Automaten (siehe Abbildung
5.8).

Als erstes wenden wir r; = — ((unregistered, true) A (convoy, true)) an. Hiermit wird spezifi-
ziert, dass fiir jeden Zeitbereich die Zustandskombination unregistered und convoy nicht erlaubt
sind. In unserem Beispiel trifft dies nur fiir den kombinierten Zustand (convoy,unregistered) zu.
Der resultierende Automat ist in Abbildung 5.9 gezeigt.

Wenden wir stattdessen die relaxierte Kompositionsregel 7, an, so ist der kombinierte Zustand
(convoy,unregistered) fiir das Zeitintervall cr < 50 giiltig. Abbildung 5.10 beinhaltet ent-
sprechend die Zustandskombination (convoy,unregistered). Das bisherige Intervall ¢ < 1000
wurde entsprechend durch das kleinere ¢r < 50 ersetzt, da dies aus der Auswertung von
cr < 1000 A er < 50 folgt. Diese Einschrinkung fiihrt dazu, dass die Nachrichten update
sowie breakConvoy nicht in diesem Zustand verarbeitet werden konnen da beide einen Time
Guard besitzen, dessen untere Schranke grofler 50 ist. Die extern sichtbaren Echtzeiteigenschaf-
ten bleiben allerdings erhalten, da im Folgenden kombinierten Zustand (convoy,registered) diese
Nachrichten verarbeitet werden konnen.

Verallgemeinert gilt damit als erster Schritt fiir einen gegeben parallel komponierten Zustand [
und einer gegeben Zustandsregel r, zu iiberpriifen, ob die Invarianten von [ durch r beeinflusst
wird.
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!

[(noConvoy,unregistered)]

/unregister [register
ce >= 500 {ce}

/startConvoy
| {or |
( (noConvoy,registered) ( (convoy,registered) )—cr>= 400
(_ce <= 2000 ) cr <= 1000 && ce <= 200@3 /update
el | T as=200 | (el |

ce >= 800 /lifetick  breakConvoy/  ce >= 800 /lifetick

Abbildung 5.9: Anwendung von Zustands-Kompositionsregel 4

t /startConvoy
| fed |
(noConvoy,unregistered) ( (convoy,unregistered) \ cr >= 400
(_ cr<=50 jj/update
I cor>=200 | fery
breakConvoy/
/unregister Iregister /unregister Iregister
ce >= 500 {ce} ce >= 500 {ce}
/startConvoy
| fer |
((noConvoy,registered) ( (convoy,registered) —cr>= 400
(_ce <= 2000 ) ler<=1000 && ce <= 2000)3 /update
el T Ta>=200 ] ef |

ce >= 800 /lifetick  breakConvoy/  ce >= 800 /lifetick

Abbildung 5.10: Anwendung von Zustands-Kompositionsregel 7
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Definition 55 (Zustands-Pridikat-Evaluierung)

Gegeben seien zwei Automaten Ay = (L1,19,3,,Cy, I, T1) und Ay = (Lo, 19,35, Cy, I, T))
sowie ihre parallele Komposition Ap = Ay || Ay = (Lp,1%,%p,Cp, Ip, Tp), ein korrespondie-
render parallel komponierter Zustand (Location) |, = (11, l2), ein Zustands-Prddikat v = (1, ¢)
mitl € LiULyund ¢ € @,.(C1)UP,.(Cy). Die Zustands-Pridikat-Evaluierung ist eine Funktion
v: Lp — ®,.(Cp)U{false}, definiert durch:

L) = {go, iff (L= 1)V (1 =1).

false, else.

Die Zustands-Pradikat-Evaluierung gibt die verbotenen Zeitbereiche in Form von Zeitbedingun-
gen fiir einen parallel komponierten Zustand ([, /) und ein gegebenes Zustands-Prédikat (I, )
zuriick. Wenn einer der Zustinde referenziert in dem komponierten Zustand gleich [ ist, dann ist
die verbotene Menge an Zeitbereichen genau durch ¢ beschrieben. Wenn keiner dieser Zustand
gleich [ ist, so ist ¢ nicht anwendbar und wird damit durch false beschrieben. Dies bedeutet,
dass fiir den Zustand (/1 l5) kein Zeitbereich durch das Zustands-Pradikat (I, ¢) restriktiert wird.

Beispielhaft wird dies durch das Zustands-Préadikat v; = (convoy, cr > 50) und die Zustinde
(noConvoy, unregistered) und (convoy, registered) in der folgenden Gleichung gezeigt:

11 ((noConvoy, unregistered)) = false,

71 ((convoy, registered)) = cr > 50.

Jede Zustands-Kompositionsregel besteht aus einer Negation der Zustands-Pradikate oder ei-
ner Konjunktion und Disjunktion der Zustands-Pradikate. Die Evaluierung einer Zustands-
Kompositionsregel muss entsprechend diese Fille auch betrachten.

Die Negation einer Zustands-Kompositionsregel wird einfach durch die Negation des Ergebnis-
ses der nicht-negierten Regel evaluiert. Dies ist einfach durch Anwendung Boolescher-Algebra
moglich. Die Negation einer nach oben geschlossen Zeitbedingung wird durch Invertierung des
Relationalen-Operators > nach < und > nach < erreicht. Die Konjunktion und Disjunktion wird
evaluiert durch die Anwendung der korrespondierenden Booleschen Operatoren auf die Evalu-
ierung der Regeln. Atomare Zustands-Pridikate werden wie oben beschrieben evaluiert (siehe
Definition 55).

Beispielhaft zeigen wir durch folgende Gleichung die Evaluierung der Zustands-
Kompositionsregel r; fiir die komponierten Zustinde (convoy, unregistered):

r1((convoy, unregistered))
= —((unregistered, true) A (convoy, true))
= —(true A true)
= —true

= false.
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Da die Evaluierung von 7((convoy,unregistered)) false ergibt und die Invariante
I((convoy, unregistered)) ebenfalls false ergibt, wird der Zustand (convoy, unregistered)
aus dem parallel komponierten Automaten entfernt.

Auf Basis dieser Definitionen beschreiben wir im Folgenden die Definition der Zustands-
Kompositions-Konformitdt eines Timed Automata.

Definition 56 (Zustands-Kompositions-Konformitiit)

Lasse Ap = Ay || Ay = (Lp,1%,%p, Cp, Ip, Tp) die parallele Komposition von Timed Automata
Ay und A, sein. Weiterhin sei RY C R°(A;, Ay) eine Menge von Zustands-Kompositionsregeln
spezifiziert iiber Ay und As. Der zustands-kompositions-konforme, parallel komponierte Timed
Automaton Asc = (Lsc, %0, Xsc, Csc, Isc, Tsc) ist definiert durch:

° LSC:LP\LR,mitLR:{lp | lp S Lpandv,ol,...,pn S Rfl(lp)/\pl(lp)/\/\
pn(ly) = false},

lg'C = l?; = lg—; € Lgc,

e Yso = Yp,
o /oo : Lgc — @(Csc) mit ]SC(lp) = Ip(lp) A pl(lp) VANPIRAWAN ,On(lp),v Pl Pn € RS,
o Csc =Chp,

TSC g LSC X ZSC X @(Cgc) X QCSC X Lgc, mit (lp, e,q,r, lp/) & TSC = (lp, €,q,r, lp/) €
Tp A lp, lp/ € Lgc.

Fiir eine gegebene Menge an Zustands-Kompositionsregeln R;, wird der zustands-kompositions-
konforme Timed Automaton definiert als ein Timed Automaton, fiir den gilt, dass jede der Kom-
positionsregeln p € R? auf jeden Zustand angewandt wurde [p € Lp.

Die Menge an zustands-kompositions-konformen Zustinden Lgc, ist die Menge von Zustinden
Lp, ohne den Zustinden in Lg, welche durch die Zustands-Kompositionsregeln eingeschréinkt
wurden. Die eingeschridnkten Zustinde Ly sind entsprechend die Zustinde, wo die Invariante
Ip(l,) in Konjunktion mit jeder der Zustands-Kompositionsregeln mit p,,(,) als false evaluiert
wurden.

Der initiale Zustand /2 des zustands-kompositions-konformen Automaten ist der gleiche als der
des parallel komponierten Automaten, so lange wie dieser nicht durch Anwendung von Zustands-
Kompositionsregeln entfernt wurde. Die Menge an Ereignissen und die Menge an Uhren ist die
gleiche.

Die Invariante jedes Zustands Isc([,) ist definiert durch die Konjunktion der urspriinglichen
Invariante /p([,) mit jeder Evaluierung der Zustands-Kompositionsregel p,,(1,,).

Die Menge an Transitionen 7s¢c eines zustands-kompositions-konformen Timed Automaton, ist
die Menge an Transitionen 7 des parallel komponierten Timed Automaton, ohne die Transi-
tionen, welche eingehende oder ausgehende Transition einer verbotenen Zustandskombination
sind.
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Nachdem wir in diesem Abschnitt beschrieben haben, wie wir Zustands-Kompositionsregeln
anwenden, werden wir i1m nédchsten Abschnitt die Anwendung von Nachrichten-
Kompositionsregeln betrachten.

5.2.3 Anwendung von Nachrichten-Kompositionsregeln

Im letzten Abschnitt haben wir beschrieben, wie wir Zustands-Kompositionsregeln anwen-
den. In diesem Abschnitt betrachten wir die Anwendung von Nachrichten-Kompositionsregeln.
Nachrichten-Kompositionsregeln spezifizieren zusitzliches Synchronisationsverhalten fiir die
parallel komponierten Rollenverhalten (sieche Abschnitt 5.1.2). Entsprechend beschreiben wir
in diesem Abschnitt wie Nachrichten-Kompositionsregeln auf einen parallel komponierten,
zustands-kompositions-konformen Automaten angewandt werden.

Ahnlich wie die parallele Komposition definiert fiir die parallele Ausfiihrung von Rollenverhal-
ten (siehe Abschnitt 5.2.1), ist die Anwendung von Nachrichten-Kompositionsregeln vergleich-
bar mit der Komposition in der Prozessalgebra [Mil89] oder dem vernetzten Timed Automata-
Formalismus [YPD94]. Der wesentliche Unterschied ist, dass die Nachrichten-Kompositions-
Automaten nur Synchronisationsnachrichten betrachten und keine weiteren externen Nachrich-
ten Hinzufiigen. Entsprechend ist das Ergebnis ein Produktautomat, wobei die Zusténde der par-
allelen Komposition mit den Zustidnden des Nachrichten-Kompositions-Automaten multipliziert
werden. Weiterhin werden die Transitionen des Nachrichten-Kompositions-Automaten mit den
Transitionen des Automaten der parallelen Komposition synchronisiert. Diese Synchronisati-
on verdndert nicht das externe Verhalten, da der Nachrichten-Kompositions-Automat nur eine
Beobachtung durchfiihrt. Dies stellt ebenfalls einen Unterschied zu der Komposition der Pro-
zessalgebra und der vernetzten Timed Automata dar. Diese Einschrinkung ist notwendig, wie in
Abschnitt 5.1.2 definiert, um gerade das externe Rollenverhalten nicht zu verletzten, da das fiir
die betrachteten Systeme nicht erlaubt ist.

Durch einen Nachrichten-Kompositions-Automaten kann die Menge an Uhren-Zuriicksetzungen
der synchronisierten Transitionen veriandert werden, sowie die Time Guards der synchronisierten
Transitionen und die Zustands-Invarianten der korrespondierenden parallel komponierten Zu-
stande. Die hinzugefiigten Uhren sind dabei disjunkt von denen des parallel komponierten Auto-
maten. Auf diese Weise wird erreicht, dass die zusétzlichen Zeitbedingungen nicht die Zeitinter-
valle des parallel komponierten Automaten verletzen. Damit bleiben die Verifikationsergebnisse,
die Deadlines der Rollenverhalten betrachten, immer noch erhalten.

Im Folgenden wenden wir die Nachrichten-Kompositionsregel eca; (sieche Abbildung 5.7) auf
die parallele Komposition der vereinfachten Rollenverhalten an (siehe Abbildung 5.8). Die Zu-
standskompositionsregel r; wurde bereits angewandt (sieche Abbildung 5.9).

Dies resultiert in den in Abbildung 5.11 gezeigten Timed Automaton. Jeder Zustand des Auto-
maten bezieht sich auf die Zustdnde der Rollenautomaten sowie die Zustinde der Nachrichten-
Kompositionsregel. Weiterhin sind nur die Zustidnde in dem Automaten enthalten, die von dem
Startzustand des Kompositionsautomaten (noConvoy, unregistered, ec;nitial) durch synchro-
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nisierte Transitionen erreichbar sind. Der Zustand (noConvoy,unregistered, ec.egistered)
kann beispielsweise nicht von dem Startzustand aus erreicht werden und ist daher nicht in dem
Automaten enthalten.

Informell ist der Aufbau wie folgt. Ausgehend von dem  Startzustand
(noConvoy, unregistered, ecynitial), gilt fiir jede ausgehende Transition des parallelen
Zustands, dass der Nachrichten-Kompositionsautomat ebenfalls seinen Zustand wechselt,
falls der Nachrichten-Kompositionsautomat genau die gleichen Nachrichten referenziert. In
diesem Fall sind die Time Guards und Clock Resets des Nachrichten-Kompositionsautomat
in den Synchronisations-Transitionen der parallelen Komposition integriert. Dies ist der
Fall fiir die /register-Transition von (noConvoy,unregistered) nach (noConvoy,registered)
in dem parallel komponierten Timed Automaton und von ec_initial nach ec_registered in
dem Nachrichten-Kompositionsautomaten. Das Clock Reset ec_c1 wurde der Transition
hinzugefiigt. Der Time Guard ec_c1 >= 2500, der Transition /startConvoy von (noCon-
voy,registered,ec_registered) nach (convoy,registered,ec_registeredConvoy), wurde ebenfalls
hinzugefiigt. Zudem konnen Zustandsinvarianten durch Konjunktion hinzugefiigt werden, wie
fiir die Zustands-Kompositionsregeln beschrieben.

Weiterhin ist anzumerken, dass ein Zustand eines Nachrichten-Kompositionsautomaten nur
wechselt, wenn der Nachrichten-Kompositionsautomat tatsdchlich die gleichen Nachrich-
ten referenziert, wie der entsprechende Zustand des Kompositionsautomaten. Ein Beispiel
hierfiir ist die breakConvoy/-Transition von Zustand (convoy,registered,ec_registeredConvoy)
nach (noConvoy,registered,ec_registeredConvoy). In diesem Fall wechselt der Nachrichten-
Kompositionsautomat nicht den Zustand, da ec_registeredConvoy keine ausgehende Transition
fiir die Nachricht breakConvoy/ referenziert.

(noConvoy,unregistered, (noConvoy,registered, otiok
ec_initial) ec_registeredConvoy) llifetic

} ce<=2000 ] {ce}
. {ce}

. /unregister

lunregister Iregister cr >= 200

ce >= 3500 {ce} /startConvoy breakConvoy/

/startConvoy
| fert

(noConvoy,registered, (convoy,registered, or >= 400
ec_registered) ec_registeredConvoy) Jupdate

\ce <= 2000 ) \er <= 1000 && ce <= 2000/(cr}

feetl |} _er>=200 | feetl |
ce >= 800 /lifetick  breakConvoy/  ce >= 800 /lifetick

Abbildung 5.11: Anwendung von Nachrichten-Kompositionsregel eca;

Die beschriebene Anwendung von Nachrichten-Kompositionsregeln zeigt wie Zeitbedingungen
an Transitionen und Zustandsinvarianten hinzugefiigt werden. Dies wird erreicht durch eine Syn-
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chronisation zwischen dem parallelen komponierten Timed Automaton und dem Nachrichten-
Kompositionsautomaten, ohne Instrumentierung des parallel komponierten Timed Automaton.
Dies hat damit den Vorteil gegeniiber klassischen Beobachterautomaten, dass der zu beobachten-
de Automat (in unserem Fall der parallel komponierte Timed Automaton) nicht durch zusitzliche
Synchronisations-Nachrichten veridndert wird.

Im Folgenden stellen wir die formale Definition des nachrichten-kompositions-konformen Timed
Automaton vor, welcher ein zustands-kompositions-konformer, parallel komponierter Timed Au-
tomaton ist, auf den ein Nachrichten-Kompositions-Automat angewandt wurde.

Definition 57 (Nachrichten-Kompositions-Konformitiit)

Lasse Asc = (Lsc, losc: Ysc,Cse, Isc, Tse) ein zustands-kompositions-konformer, par-
allel komponierter Timed Automaton sein, welcher aus den Timed Automaton A, =
(Ll,l?,Zl,C’l,]l,Tl) und A2 = (Lz,lg,ZQ,CQ,IQ,TQ) mit Cl N 02 = O und 21 N 22 = o
entstanden ist. Weiterhin lasse Ap = (Lg, 1%, Y g, Cp, Ip, Tg) € RA(Ay, As) ein Nachrichten-
Kompositions-Automat fiir Ay und A, sein. Wir definieren den nachrichten-kompositions-
konformen und zustands-kompositions-konformen, parallel komponierten Timed Automaton

Agc = (Lgc, %, Yo, Cre, Inc, Tre) mit

[ ) LEC g L1 X L2 X LE’ mit (11712,le> € LEC lﬁcal,l2> € LSC und [SC’((Z17Z2>> A [E(le) #
false) and (11,15, 1.) ist erreichbar durch Tgc,

lpe = (0,05, 1), iff (0,15, 1) € Lec,

Yipe = 21 Uy,

Igc : Lge — ®(C1) U ¢(C) U (Cr) mit Ipc((l1,1s,1.)) = Isc((l1,12)) A Ig(le),
Cpc =CLUCyUC,

Tece C Lpe X Ype X ®(Cpe) x 29E¢ x Lie, mit

- ((llal%le)velvglvrb (lllal2716)) € TEC And
((lla l2)a €1,91,71, (lll7 ZZ)) S TSC A
\V/l ! € LE : (l67el7g€7r€7lel> ¢ TE’

(I, 1o, 1e), €2, ga, 72, (L1, 15", 1e)) € T <
(L1, 12), €2, g2, 72, (51752 ) € Tsc A
\V/l ! € LE . (l€7627g67r€7 5/) ¢ TE’

l17 l27 ) €1,91 N Ge, 71 U Te, (llla l2’ le,)) € TEC g
ly, 52) €1,91,71, (11 12)) € Tsc N (le, €1,3Ge;Te, le/) € Tk,

lla l27 ) €1, 91 A Jes T1 U Te, (l17l2/7 le,)) S TEC g
ly, l2) €2,302, 72, (51752 ) € Tsc N (lea €2, e, Te, le,) € Tk

- (
(
- (
(

A~ N /SN /N

Der nachrichten-kompositions-konforme Automat bildet das explizite Modell fiir die parallele
Ausfiihrung der Rollenautomaten. Dabei beriicksichtigt der Automat die spezifizierten Zustands-
Kompositionsregeln und die Nachrichten-Kompositionsregeln.
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Die Zustinde des nachrichten-kompositions-konformen Automaten Lgc sind eine Untermen-
ge des Kreuzprodukts von L, X Ly X Lg. Es werden nur solche Zustinde beriicksichtigt, die
zustands-kompositions-konform sind, deren Invariante Ipc((l1,l2,1.)) = Isc((l1,12)) A Ig(l)
nicht gleich false ist und welche erreichbar durch die Transition 7T dieses Automaten sind.

Die Invarianten eines nachrichten-kompositions-konformen Zustands (l1, l2,[.) werden durch
Konjunktion der Invariante des zustands-kompositions-konformen Zustands /s (1, l2) und der
Invariante des nachrichten-kompositions-konformen Zustands /z([.) erstellt.

Die Definition der Transition Tz von Agrc konnen wir in vier Fille unterscheiden. Die ersten
beiden Fille beschreiben die Transitionen, welche nicht zwischen Asc und Ag synchronisiert
werden. Dabei wird unterschieden, ob A; oder A; den Zustand wechselt. In beiden Fillen gibt
es keine korrespondierende Transition in 7, welche synchronisiert werden konnte. Die anderen
beiden Fille beschreiben, dass eine Synchronisation zwischen Agc und Ag stattfindet. Dabei
wird ebenfalls unterschieden, ob A; oder A, seinen Zustand wechselt.

Zusammengesetzte Transitionen, welche eine Transition ¢, € T des Nachrichten-
Kompositions-Automaten referenzieren, aber nicht eine Transition ¢, € Tsc des zustands-
konformen Automaten, werden nicht beriicksichtigt. Dies liegt daran, dass die Transitionen
te € T’y nicht mit den Transitionen des zustands-konformen Automaten synchronisiert werden
konnen. Diese Transitionen konnen also immer dann existieren, wenn eine Anwendung einer
Zustands-Kompositions-Regel die Nachrichten aus A; oder A, entfernt, die die Nachrichten-
Kompositions-Regel beobachtet. Da die Regeln unabhéngig von der Anwendung der Regeln
spezifiziert werden, kann ein Entwickler der Regeln dies nicht beriicksichtigen.

Im Folgenden bezeichnen wir einen zustands-kompositions-konformen und nachrichten-
kompositions-konformen, parallel komponierten Timed Automaton mit kompositions-konform.

In diesem und im vorherigen Abschnitt haben wir vorgestellt, wie wir Kompositionsregeln spe-
zifizieren und automatisch anwenden konnen. Durch das Hinzufiigen von Zeitbedingungen und
das Entfernen von Zustandskombinationen schrinkt die Anwendung von Kompositionsregeln
das Zeitverhalten der parallelen Rollenautomaten ein. Es kann daher passieren, dass relevantes
Verhalten entfernt wird, wenn ein Zeitintervall gleich Null ist oder wenn ein einzelner Zustand
einer Rolle vollstindig entfernt wird. Damit kann eine Verletzung der Eigenschaften der Rol-
lenautomaten, welche vor der Anwendung der Kompositionsregeln verifiziert wurden, nicht ver-
hindert werden. Im folgenden Abschnitt werden wir daher einen Ansatz vorstellen, der solche
Verletzungen der Eigenschaften entdeckt.

5.3 Erhalt von Rollenverhalten

Die in den beiden vorherigen Abschnitten vorgestellten Kompositionsregeln sind so einge-
schrinkt, dass eine Verletzung von (zeitlichen) Sicherheitsanforderungen der Rollenverhalten
verhindert werden kann. Es kann jedoch nicht vermieden werden, dass die Anwendung von ei-
ner Kompositionsregel zu einer Verletzung des sichtbaren Echtzeitverhaltens fiihrt.
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Die Anwendung der Kompositionsregel 7y = —((registered,true) A (convoy,cr > 100))
auf den komponierten Timed Automaton aus Abbildung 5.8 resultiert in einer neuen Zustands-
Invariante (cr<=100 && ce<=2000) fiir den Zustand (convoy,registered,ec_registeredConvoy).
Eine Konsequenz aus dieser Anwendung ist, dass die ausgehende Nachricht breakConvoy/ der
Transition nicht mehr aktiviert werden kann, da der Time Guard cr>=200 nicht mehr mit
true ausgewertet werden kann. Das resultierende Verhalten ist entsprechend nicht mehr in dem
kompositions-konformen Automaten enthalten.

Gerade wenn mehrere Kompositionsregeln spezifiziert werden, sind die Verletzungen der Rolle-
neigenschaften nicht einfach durch einen Entwickler zu erkennen. Die alleinige Anwendung von
Regel r, auf den urspriinglichen parallel komponierten Automaten (sieche Abbildung 5.8) wiirde
zum Beispiel nicht die Ausfiihrbarkeit der breakConvoy/-Transition verhindern, da der Auto-
mat in den Zustand (unregistered,convoy) wechseln kann und dort die Transition breakConvoy/
ausfithren kann.

Um dieses Problem zu adressieren, definieren wir in diesem Abschnitt auf Basis der Verfeine-
rungsdefinition in Abschnitt 3.1 die Rollenkonformitit (sieche Abschnitt 5.3.1)). Hiermit wird
tiberpriift, ob die Verfeinerungsbeziehung zwischen dem urspriinglichen parallel komponierten
Timed Automaton und den kompositions-konformen Timed Automaton eingehalten wird. Da wir
hier zusitzlich explizit das parallele Verhalten aller beteiligter Rollen an der Synthese beriick-
sichtigen miissen, konnen wir nicht die Verfeinerungsiiberpriifung aus Abschnitt 3.2 anwenden.
Die zu erhaltenen Eigenschaften der Verfeinerungsdefinition dndern sich hierdurch jedoch nicht.
In Abschnitt 5.3.2 beschreiben wir zudem, wie ein kompositions-konformer Automat angepasst
werden kann, falls ein Deadlock bei der Uberpriifung der Rollenkonformitit identifiziert wurde.

5.3.1 Rollenkonformitat

Aufgrund der kontinuierlichen Zeitsemantik implizieren Timed Automata einen unendlichen Zu-
standsraum. Eine geeignete diskrete Abstraktion der Timed Automata wird daher benétigt, um
eine Analyse zu ermdglichen. Der Zone Graph (siehe Definition 6) ist ein weitverbreitetes Ver-
fahren, um den unendlichen Zustandsraum der Timed Automata in endlich viele Zustinde zu
abstrahieren.

Der Ansatz zur Uberpriifung der Rollenkonformitit ist daher wie folgt aufgebaut: (1) der Zone
Graph fiir den zustands- und nachrichten-kompositions-konformen Produktautomaten wird er-
stellt. (2) Es wird tiberpriift, ob der aus (1) erstellte Zone Graph eine Verfeinerung der einzelnen
Rollen-Automaten ist.

Der erste Schritt des Ansatzes ist die Konstruktion des Zone Graphen, um das Modell aller er-
reichbaren Transitionen, unter Beriicksichtigung des zeitlichen Verhaltens, zu erhalten. Ein Aus-
schnitt®> des Zone Graphen konstruiert aus dem kompositions-konformen Automaten der rear-

2Wir zeigen hier nur einen Ausschnitt des Zone Graphen, da der vollstindige Graph 186 Zone Zustinde und 396
Transitionen besitzt.
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Rolle, der registree-Rolle und der Kompositionsregeln 1 and ecas (siehe Abbildung 5.11) zeigt
Abbildung 5.12.

Der Ausschnitt beinhaltet den initialen Zone Zustand ((noConvoy,unregistered,ec_initial),cr==ce
& ce==ec_c1 & ec_c1==0) sowie einen direkten und neun indirekte Nachfolger. Der Pfad /re-
gister, /lifetick, /lifetick, /startConvoy, /lifetick, breakConvoy/, /unregister zeigt zum Beispiel einen
Ablauf, in dem jeder Zustand mindestens einmal besucht wurde.

noConvoy,unregistered,ec_initial
(cr==ce & ce==ec_c1 & ec_c1==0)

register!,true,{ce,ec_c1}

noConvoy,registered,ec_registered
(ce==ec_c1 & ec_c1==0)

register!,true,{ce, eWSter' true {}ﬁfetlck' true {ce}

noConvoy,unregistered,ec_initial noConvoy,registered,ec_registered .
(ce<=2000 & ce<=cr & ce==ec_c1) (ce==0 & ec_c1<=2000 & ec_c1<=cr) registerl,true {ce,ec_c1}

startConvoy!,(ec_c1>=2500),{cr} lifetick!,true {ce}wlsterl true,{}

noConvoy,registered,ec reglstered | noConvoy,unregistered,ec_initial
(ce==0 & ec_c1<=cr) lifetick!,true {ce} (ce<=2000 & ce<=ec_c1 & ec_c1<=cr & ec_c1-ce<=2000)

\Sta‘nConvoyl (ec_c1>=2500),{cr}

convoy,registered,ec_registeredConvoy
(2500<=ec_c1 & cr==0 & ce<=2000)

'/n‘etlck' true,{ce}

convoy,registered,ec_reglsteredConvoy
(cr<=1000 & cr-ec_c1<=-2500 & ce=—0)

registerl,true,{ce,ec_c1}

unregister!,true,{}

noConvoy,unregistered,ec_initial
(ce<=2000 & ce<=ec_c1 & ec_c1<=cr)

breakConvoy?,(cr>=200
lifetick!,true,{ce} Y2 a4

breakConvoy?,(cr>=200),{}

startConvoy!,true,{cr} noConvoy,registered,ec_registeredConvoy noConvoy,registered,ec_registeredConvoy
0<=cr & cr<=1000 & cr-ec_c1<=-2500 & ce<=cr) (200<=cr & cr<=1000 & cr<=ce & cr-ec_c1<=-2500 & ce<=2000)

A%ﬂ’true,{} infetick!,true,{ce} lstartConvoy!,true,{cr}llifetick!,true_{ce} Nfgister!,true,{)

Abbildung 5.12: Ausschnitt eines Zone Graphen des Konvoi-Beispiels (siehe Abbildung 5.11)

In einem rollen-konformen, kompositions-konformen Timed Automaton ist jeder Pfad der ur-
spriinglichen parallelen Komposition des Rollen-Automaten ebenfalls unter Beriicksichtigung
von Zeitverzogerungen und internen Verhalten enthalten. Um dies in einem gegebenen Zone
Graphen herauszufinden, miissen wir iiberpriifen, ob jeder Zone Zustand immer noch alle Nach-
richten des korrespondierenden Timed Automaton-Zustands anbietet. Fiir den Zone Zustand
((noConvoy,unregistered,ec_initial),cr==ce & ce==ec_c1 & ec_c1==0) miissen wir zum Beispiel
iberpriifen, ob die Nachrichten /register und /startConvoy angeboten werden, da dies die Nach-
richten der ausgehenden Transition des Zustands (noConvoy,unregistered) des urspriinglichen
parallel komponierten Automaten sind (sieche Abbildung 5.11).
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Die Uberpriifung des angebotenen Verhaltens, muss explizit beriicksichtigen, dass beliebig viele
Nachrichten-Transitionen der anderen parallelen Rolle dazwischen sein konnen. Diese sogenann-
ten transitiven Delay-Transitionen werden inhdrent durch Zone Graphen beriicksichtigt. Problem
ist allerdings, dass dabei keine transitiven Transitionen der anderen Rollen betrachtet werden.
Damit miissen diese explizit in der Uberpriifung beriicksichtigt werden.

Um diesen Ansatz beispielhaft zu zeigen, inspizieren wir den initialen Zone Zustand ((noCon-
voy,unregistered,ec_initial),cr==ce & ce==ec_c1 & ec_c1==0), ob dieser die Nachrichten /re-
gister und /startConvoy anbietet. /register wird direkt durch den Zone Zustand angeboten. Die
/startConvoy-Nachricht miissen wir suchen, indem wir nur Transitionen mit Nachrichten der re-
gistree-Rolle verfolgen, da /startConvoy eine Nachricht der rear-Rolle ist. Diese Transition kann
auf dem Pfad /register, /lifetick, /startConvoy gefunden werden sowie auf dem Pfad /register,
/lifetick, /lifetick, ..., /startConvoy. Entsprechend bietet der initiale Zone Zustand die gleichen
Nachrichten wie der korrespondierende Timed Automaton-Zustand an. Wir bezeichnen einen
solchen Zustand mit konsistent.

Fiir zu sendende Nachrichten ist dieser Ansatz ausreichend. Fiir zu empfangende Nachrichten
muss zusitzlich iiberpriift werden, ob der letzte Zeitpunkt der urspriinglichen Transition durch
diesen Zustand eingehalten wird. Wir zeigen dies am Beispiel der ausgehenden breakConvoy/-
Transition des Zone Zustands ((convoy,registered,ec_registeredConvoy), 2500<=ec_c1 & cr==0
& ce<=2000). Das Zeitintervall, in dem die breakConvoy/-Transition aktiviert wird, wird wie
folgt berechnet (siehe Definition 6): (1) lasse Zeit auf der Zone des Start-Zustands vergehen,
(2) schneide die resultierende Zone aus Schritt (1) mit der Invariante des korrespondierten,
kompositions-konformen Timed Automaton-Zustands und (3) schneide die resultierende Zone
aus Schritt (2) mit den Time Guards der korrespondierten, kompositions-konformen Timed Au-
tomaton Transition.

Dieses Zeitintervall muss mit dem Zeitintervall des urspriinglichen parallel komponierten Ti-
med Automaton verglichen werden. Das urspriingliche Zeitintervall wird auf die gleiche weil3e
mit den Zustands-Invarianten und Time Guards des urspriinglichen Timed Automaton erstellt.
Bei dem Vergleich beider Zeitintervalle, muss berticksichtigt werden, dass das kompositions-
konforme Zeitintervall auch spiter starten kann. Es miissen also nur die oberen Grenzen mitein-
ander verglichen werden.

Um zu iiberpriifen, ob die Clock Zones gleich sind, subtrahieren wird die kompositions-konforme
Zone von der urspriinglichen Zone. Wenn das Ergebnis eine leere Zone ist, sind beide Intervalle
gleich und die betrachtete Transition des Zone Graphen bietet das Verhalten der breakConvoy/-
Nachricht an. Wenn das Ergebnis eine nicht-leere Zone ist, muss nach einer anderen Transition
gesucht werden (wobei, wie oben beschrieben, wieder nur Transitionen der registree-Rolle ver-
folgt werden). Wird keine Transition gefunden, wird der Zone Zustand als inkonsistent markiert.

Die gesamte Prozedur iiberpriift jeden Zone Zustand des Zone Graphen, ob er konsistent ist. Die
inkonsistenten Zustinde und korrespondierende eingehende und ausgehende Nachrichten wer-
den entfernt. Nachdem all diese Zone Zustinde entfernt wurden, miissen nochmal alle anderen
Zone Zustdnde uiberpriift werden, da sich das angebotene Verhalten durch die Entfernung der
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Transitionen verdandert haben kann. Wenn zu jeder Zeit alle Zone Zustidnde konsistent sind und
der initiale Zone Zustand nicht entfernt wurde, ist der resultierende Timed Automaton rollen-
konform.

Durch das Entfernen von Zone Zustinden entspricht der rollen-konforme Timed-Automaton
nicht mehr dem korrespondierenden Zone Graphen, da einige Pfade, die in einen Deadlock fiih-
ren, entfernt wurden. Dies kann allerdings durch Hinzufiigen von Time Guards wieder behoben
werden, wie in Abschnitt 5.3.2 beschrieben.

Wir fahren fort mit der Formalisierung des Ansatzes. Wie oben beschrieben, miissen wir zwi-
schen zu sendenden und zu empfangenden Nachrichten unterscheiden, da die zu empfangenden
Nachrichten die oberen Grenzen des urspriinglichen Zeitintervalls beriicksichtigen miissen. Wei-
terhin miissen wir zwischen dem angebotenen Verhalten eines Timed Automaton-Zustands, der
parallelen Komposition der Rollen-Automaten und dem angebotenen Verhalten eines Zone Zu-
stands, des kompositions-konformen Timed Automaton, unterscheiden. Wir fangen an mit der
Definition des angebotenen Verhaltens eines Timed Automaton-Zustands. Hiermit wird das an-
gebotene Verhalten eines Timed Automaton-Zustands berechnet.

Definition 58 (Angebotenes Sendeverhalten (Timed Automaton Zustand))

Fiir einen Timed Automaton A = (L,1°,%, C, I, T) ist das angebotene Verhalten eines Zustands
(einer Location) | € L und einer Clock Zone ¥ € W (C') definiert durch die Funktion of fers :
L x ¥(C) — 2%, mit

of fersi(1,9) = {/e|3 (I, Je,g,m,I') € T : (9" ANI(1) A g) # false)}.

Das angebotene Sendeverhalten eines gegebenen Timed Automaton-Zustands / und einer Clock
Zone 1 ist gegeben durch alle zu sendenden Nachrichten, die von dem Zustand [ ausgehend von
der Zone 1) erreichbar sind. Das sind im Wesentlichen all die Nachrichten, die als ausgehende
Nachrichten des Zustands [ markiert sind. Zudem muss allerdings iiberpriift werden, ob die Tran-
sition ausgehend von der gegeben Zone aktiviert werden kann. Entsprechend miissen wir (1) auf
der Eingabe Zone 1) Zeit vergehen lassen, (2) diese mit der Invariante des Zustands [ schneiden
und (3) die Zone mit dem Time Guard der Transition schneiden. Auf diese weille finden wir
heraus, ob die korrespondierende Nachricht fiir eine ausgehende Transition in dem gegebenen
Intervall ¥ angeboten wird oder nicht.

Beispielhaft zeigen wir dies an dem Zustand ((convoy,unregistered),cr<=50) des zustands-
konformen Automaten (siehe Abbildung 5.10). Wir nehmen zudem an, dass die ausgehende
breakConvoy/-Transition mit einer eingehenden Nachricht /breakConvoy markiert wurde. Die
Eingangs Zone ist gegeben mit (cr = 0 A ce > 0). Die folgende Berechnung zeigt, ob die
/breakConvoy-Nachricht angeboten wird:

(cr=0Ace>0)"A (er <50) A (er > 200)
= (cr < ce) A (er <50) A (er > 200)
= (er <ceAcer <50) A (er > 200)
= false.
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Da das Ergebnis false ist, ist die einzige angebotene Nachricht des Zustands
((convoy,unregistered),cr<=50) /register, da:

of fers((convoy, unregistered),cr < 50), (cr =0 A ce > 0)) = {/register}.

Wir fahren fort mit der Definition des angebotenen Empfangsverhaltens eines Timed Automaton-
Zustands. Das angebotene Empfangsverhalten muss die obere Grenze des urspriinglichen Inter-
valls beriicksichtigen und kann von dem unterem Intervall abstrahieren. Entsprechend muss die
untere Grenze aus den Clock Zones entfernt werden. Dies nennen wir schwdchste Verzogerungs-
Vorbedingung (siehe auch schwichste Vorbedingung in [BYO03, p. 106]) und ist wie folgt defi-
niert.

Definition 59 (Schwichste Verzogerungs-Vorbedingung auf Clock Zones)
Fiir eine Clock Zone 9 € ©(C) ist die schwichste Verzogerungs-Vorbedingung, beschrieben mit
VY, definiert durch:

W ={v | V/eiVeceCVscR,:
VeeC:6<V(c)=v(c)=1(c)— 6}

Die schwdichste Verzogerungs-Vorbedingung auf einer Clock Zone entfernt alle unteren Schran-
ken in der Zone. Dabei miissen Bedingungen iiber Clock-Differenzen berticksichtigt werden.
Entsprechend miissen alle moglichen Werte ¢ von jeder Clock Zone subtrahiert werden, so lan-
ge wie die Bewertung nicht negativ wird. Fiir eine gegebene Clock-Bewertung v/ miissen al-
le Clock-Werte groer oder gleich Null nach der Subtraktion von delta sein. Die schwichste
Verzogerungs-Vorbedingung wird wihrend der Berechnung des angebotenen Empfangsverhal-
tens angewandt.

Definition 60 (Angebotenes Empfangsverhalten (Timed Automaton Zustand))

Fiir einen gegebenen Timed Automaton A = (L,I1°,%,C,1,T) ist das angebotene Verhalten
eines Zustands (einer Location) | € L und einer Clock Zone 9 € W(C') definiert durch die
Funktion of fers : L x W(C) — 2%, mit

of fers:(1,9) ={(e/,9.) | I e/, g,m1) €TV, =O"ANII)Ag)*:
V. # false)}.

Im Unterschied zu dem angebotenen Sendeverhalten ist das angebotene Empfangsverhalten eine
Menge von Nachrichtenpaaren e/ und einer Clock Zone 9J.. Die Berechnung, ob eine korrespon-
dierende Transition der Nachrichten aktiviert ist, ist die gleiche wie fiir die zu empfangenden
Nachrichten. Allerdings wird hier das resultierende Zeitintervall genutzt, um die Zone zu re-
présentieren, wo die Nachricht e/ aktiv ist. Die unteren Grenzen werden wie oben beschrieben
entfernt.

Beispielhaft zeigen wir dies an dem Zustand ((convoy,registered),cr<=1000 && ce <=2000)
und der ausgehenden breakConvoy/-Transition (sieche Abbildung 5.10). Die Berechnung der
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korrespondierenden Clock Zone 1J, wird im Folgenden vorgestellt, wobei die Eingabe Zone
(er <50 A ce = 0) gegeben ist durch:

DbreakConvoy/
= ((er <50 A ce=0)TA (cr <1000 A ce < 2000) A (er > 200))*
= ((er —ce <50 Ace < cr) A (er <1000 A ce < 2000) A (er > 200))¥
= ((cr —ce <50 Ace <erAcr <1000) A (cr > 200))%
= (cr —ce <50 Ace <erAcr <1000 A cr > 200)%
= cr—ce <50Ace<crAcr<1000.

Bis hier her haben wir die Berechnung des angebotenen Verhaltens eines Timed Automaton-
Zustands definiert. Im Folgenden definieren wir das angebotene Verhalten von Zone Zustinden
von kompositions-konformen, parallel komponierten Timed Automaton. Wir miissen dabei be-
riicksichtigen, dass fiir eine gegebene Nachricht, Nachrichten von anderen Rollen als internes
Verhalten der korrespondierenden Komponente aufgefasst werden konnen. Wir definieren daher
eine transitive Transitionsbeziehung fiir den Zone Graphen, um das angebotene Verhalten eines
Zone Zustands zu berechnen.

Definition 61 (Transitive Transitionsbeziehung (Zone Graph))

Fiir einen Zone Graphen Z, = (Se,s°, %, C, To), erstellt aus einem kompositions-konformen
Timed Automaton A = (L,1°,%,C, I, T), welcher wiederum aus dem Timed Automata A; =
(Ly,19,%,C1, I, Ty) und Ay = (L, 19,39, Cy, I, Ty) zusammengesetzt ist, definieren wird die
Menge von transitiven Transitionen 7', durch:

Ty ={((s,6,8"), 8pre) | ((5,€,8"), 8pre) € Try V ((5,€,8), Spre) € T}
mit

T ={((s,e1,8),8pre) | Te1 €X1:(s,e1,8) € To, Spre =SV
(Fex € By: (s,e9,58") € To, Spre = 8" A
Je; € X : ((s",e1,8), Spre) € Ty}

Tr, = {((s,€2,8),Spre) | Tea € Lo (s,e2,5) € To,Spre =SV
(Fer €3y :(s,e1,8") € To, Spre = 8" A
Jey € X i ((8",€9,8), Spre) € Try) }-

Eine transitive Verzogerung wird damit nicht explizit beriicksichtigt, wie dies typischerweise
der Fall ist fiir transitive Transitionsbeziehungen fiir zeitbehaftete Transitionssysteme [WL97,
TYO1], sondern implizit durch die Konstruktion des Zone Graphen. Zudem beriicksichtigen wir
explizit den Zone Zustand s,,. durch Annotation an jeder transitiven Transition. Hierdurch wird
direkt eine Transition mit der korrespondierenden Nachricht angeboten, womit ein Vergleich
der Zeitintervalle der empfangenden Nachrichten ermdglicht wird. Der Zone Zustand s, wird
letzter Vorgdnger genannt.
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Beispielhaft zeigen wir die transitive Transitionsbeziehung an dem Zone Zustand ((noCon-
voy,unregistered,ec_initial),cr==ce & ce==ec_c1 & ec_c1==0) des Zone Graphen aus Abbildung
5.12. Nehmen wir an das T’ _;, _,cgistree die Menge der transitiven Transitionen fiir die registree-
Rolle reprisentiert und das 7’ _g, .. die fiir die rear-Rolle reprisentiert. Es werden nur die
ausgehenden transitiven Transitionen des initialen Zone Zustands betrachtet. Da die erste und
einzige ausgehende Transition des initialen Zone Zustands mit register annotiert ist, ist die einzi-
ge transitive Transition in Bezug auf die Nachrichten der registree-Rolle die /register-Transition:

T‘r—sl—registree = {((517 /T@giSt@T, $2>7 Sl)}7
mit

s1 = ((noConvoy,unregistered, ec_initial), cr = ce = ec_cl = 0) und

ss = ((noConvoy, registered, ec_registered), ce = ec_cl = 0).

Fiir die rear-Rolle miissen wir die /startConvoy-Transition untersuchen, indem wir den Pfad /re-
gister, /lifetick, /startConvoy and /register, /lifetick, /lifetick, /startConvoy betrachten. Die Menge
T, ,cqr enthilt entsprechend zwei transitive Transitionen:

Ty s —rear = {((81, /startConvoy, s5), s3), ((s1, /startConvoy, sg), s4) }

mit
s3 = ((noConvoy,registered, ec_registered),
ce =0 Aec_cl <2000Aec_cl <ecr),
sy = ((noConvoy,registered, ec_registered),ce = 0 A ec_cl < cr) und
s¢ = ((convoy,registered,ec_registeredConvoy),

ec_cl > 2500 A er = 0 A ce < 2000).

s5 wurde nicht dargestellt. Die Menge aller ausgehender transitiven Transitionen 7’-_, von s, ist
die Vefelnlgung der Menge TT—sl—rear und TT—sl—registree: TT—Sl = TT—51—regist7’ee U TT—51—7“ea7"-

Die transitive Transitionsbeziehung wird in der Berechnung des angebotenen Verhaltens eines
Zone Zustands angewandt. Im Folgenden werden wir das angebotene Verhalten definieren. Wir
beginnen mit der Definition des angebotenen Sendeverhalten.

Definition 62 (Angebotenes Sendeverhalten (Zone Zustand))

Fiir einen Zone Graphen Z, = (Se,s°,%, C,Te) eines kompositions-konformen Timed Auto-
maton A = (L,1°,%,C, I, T) (erstellt aus den Timed Automata A, = (Ly,19,%,,C, I, Ty) und
Ay = (Lo,19,%5,Cy, I, Ty)), ist das angebotene Verhalten eines Zone Zustands (1,1) definiert
durch die Funktion: of fers : L x W(C) — 2% mit

of fersi(s) = {/e| ((s,/e,s'), sprc) € Tr}-
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Das angebotene Sendeverhalten eines Zone Zustands bestimmt die Menge der sendenden Nach-
richten eines bestimmten Zone Zustands s. Diese Nachrichten sind all die Nachrichten welche
erreichbar sind durch transitive Transitionsbeziehung ausgehend von s. Da fiir das Senden von
Nachrichten das Zeitintervall in welchem die Nachricht aktiviert wird nicht relevant ist, wird
der Zone Zustand s,,. nicht betrachtet. Die Menge der angebotenen zu versendenden Nachrich-
ten fiir den initialen Zone Zustand ((noConvoy,unregistered,ec_initial),cr==ce & ce==ec_c1 &
ec_c1==0) des Zone Graphen aus Abbildung 5.12 wurde im vorherigen Beispiel berechnet und
ist entsprechend {/register, /startConvoy}. Wir fahren mit der Definition des angebotenen
Empfangsverhalten fort.

Definition 63 (Angebotenes Empfangsverhalten (Zone Zustand))

Fiir einen Zone Graphen Z 4 = (Se, s°, %2, C, Tg) eines kompositions-konformen Timed Automa-
ton A = (L,1°%,C,I,T), welcher aus den Timed Automata A; = (L1,19,%,,Cy, 11, Ty) und
Ay = (Lo, lg, Yo, Cy, I, Ty) zusammengesetzt wurde, ist das angebotene Verhalten eines Zone
Zustands (1,19) definiert durch die Funktion of fers : L x ¥(C) — 2% mit

of ferse(s) ={(e/,9.) | F((s,¢/,s),(,9)) € T,,3(l,e/,g9,m,1) €T,
e = (VAT A g)* 0. # false}.

Ahnlich zu dem angebotenen Empfangsverhalten eines Timed Automaton-Zustands (siehe De-
finition 60), besteht das angebotene Empfangsverhalten eines Zone Zustands aus Tupeln von
empfangenden Nachrichten e/ und korrespondierenden Clock Zones ¥J.. Die Clock Zones repri-
sentieren das Zeitintervall in dem die Nachricht angeboten wird. Fiir dieses Zeitintervall wird der
letzte Vorginger der transitiven Transitionsbeziehung beriicksichtigt. Dies wird benétigt, da sich
die Clock Zone moglicherweise entlang der Transitionen und den Zustédnden dazwischen verin-
dern kann. Daher wird die Clock Zone direkt vor der Transition, die die Nachricht ¢/ anbietet,
benotigt, um das Zeitintervall fiir das Ereignis zu bestimmen. Das Zeitintervall wird genauso
berechnet, wie zu dem angebotenen Empfangsverhalten eines Timed Automaton-Zustands be-
schrieben (siehe Definition 60). Ein Beispiel fiir die Berechnung des angebotenen Verhaltens
wurde bereits in diesem Abschnitt zur Beschreibung der transitiven Transitionsbeziehung ge-
zeigt.

Um zu verifizieren, ob ein Zone Zustand, welcher aus dem kompositions-konformen Automa-
ten abgeleitet wurde, konsistent ist, muss iiberpriift werden, ob die Menge von angebotenen
Nachrichten dquivalent zur Menge der angebotenen Nachrichten der urspriinglichen parallelen
Komposition der Rollenautomaten ist. Fiir die zu sendenden Nachrichten ist es ausreichend zu
iberpriifen, ob die Menge der erreichbaren Nachrichten dquivalent ist. Fiir die zu empfangen-
den Nachrichten miissen zudem die Zeitintervalle beriicksichtigt werden, in welchen die korre-
spondierenden Transitionen aktiviert wurden. Da die untere Grenze von beiden Zeitintervallen
entfernt wurde, muss fiir den Vergleich nur eine Clock Zone von der anderen subtrahiert werden
(siehe folgende Definition).

Definition 64 (Subtraktion auf Clock Zones)
Fiir zwei Clock Zones 91,05 € ©(C) ist die Subtraktion ¥, — ¥, definiert durch

’192—191:{V ’ VE’192/\V¢191}.
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Die Subtraktion auf Clock Zones ist ebenso definiert wie die Subtraktion auf Mengen, da eine
Clock Zone aus einer Menge von Clock-Bewertungen besteht (sieche Definition 6). Wenn also
eine Clock Zone ¢; von einer Clock Zone ¥, subtrahiert wird, dann entfernen wir einfach alle
Clock-Bewertungen, die in v/; und 1J, enthalten sind von v),. Das Ergebnis ist die modifizierte
Menge 1J,. Wenn die resultierende Menge leer ist, dann sind ¢/; und J, dquivalent. Diese Eigen-
schaft wird ausgenutzt, um die Gleichheit von Clock Zones fiir die Uberpriifung der Konsistenz
zwischen dem kompositions-konformen Automaten und der urspriinglichen parallelen Kompo-
sition zu bestimmen.

Auf Basis dieser Definition kénnen wir im Folgenden die Rollen-Konformitat definieren.

Definition 65 (Rollen-Konformitiit)

Lasse A = (L,1°,3,C,I,T) ein kompositions-konformer, parallel komponierter Timed
Automaton sein, welcher aus den Timed Automata A, = (Li,19,%,Cy, 1, Ty) und
Ay = (Lo, lg, Y9, Cy, I3, Ty) und den nachrichten-kompositions-konformen Automaten Apc =
(Lec, %0, Xec, Cre, Inc, Tre) erstellt wurde. Weiterhin lasse Zy = (Se,s°, %, C,Ty) den
korrespondierenden Zone Graphen sein und lasse Ap = (Lp, l?;, Yp,Cp,Ip,Tp) die parallele
Komposition A, || Az sein. Wir definieren A als rollen-konform wenn,

37 = (Sg C Se, 8", 2,0, T, C Te)
und

\V/ ((ll,lg,le),ﬁ) € Sé) .
of fersi(((l1,12,1e),9)) = of fersi((l1, 1), ) A
of fers:(((l1,12,1.),9)) D of fers:((l1,12),9),

mit (I1,ly) € Lp und

(e/,9.) € of fers:(((l,12,1c), D)) = (ey/,Ve,) € of fers:((l1,12),V) &
e/ =ep/ N, — V. = false.

Ein kompositions-konformer Timed Automaton A ist rollen-konform zu der parallelen Kompo-
sition Ap = A; || Ay der urspriinglichen Rollenautomaten A; und A,, wenn ein korrespondie-
render Zone Graph 7', existiert, wobei jeder Zone Zustand konsistent ist. Der Zone Graph kann
dabei moglicherweise weniger Zone Zustinde und korrespondierende Transitionen als die ur-
spriinglichen Automaten aufweisen. Es gilt daher, dass jeder Zone Zustand ((l1, l2,l.),9) € Z';
ausgehend von der Zone ¥ das gleiche Verhalten anbietet wie der korrespondierende Zone Zu-
stand ([, ls) € Ap. Weiterhin gilt, dass ein Zone Zustand das gleiche Verhalten anbietet, wenn
die Menge der zu sendenden Nachrichten gleich ist und wenn die Menge der zu empfangen-
den Nachrichten des Zone Zustands alle (e¢/,vJ).) Tupel des urspriinglichen Automaten enthilt.
Es konnen also auch mehr Tupel enthalten sein, da empfangende Nachrichten angeboten sein
konnen, deren Zeitintervall kleiner als das urspriingliche ist.

Die Analyse des gesamten Beispiels ergibt, dass der kompositions-konforme Timed Automa-
ta rollen-konform ist. Um zudem zu zeigen, dass dieser auch eine korrekte Verfeinerung der
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Rollenautomaten ist, miissen wir zudem z.B. mit UPPAAL iiberpriifen, dass der kompositions-
konforme Timed Automata keine Time Stopping Deadlocks enthélt. Dies ist fiir unser Beispiel
der Fall, womit der Automat eine korrekte Verfeinerung der Rollenautomaten ist.

Da die Definition der Rollenkonformitit nicht verlangt, dass der urspriingliche Zone Graph 74
des synthetisierten kompositions-konformen Automaten dquivalent zu Z’; ist, kann es sein, dass
die Time Stopping Deadlock Analyse fehlschligt, obwohl der kompositions-konforme Automat
rollen-konform ist. Um dieses Problem zu beheben miissen die Zone Zustinde des urspriingli-
chen Zone Graphen Z 4, welche nicht konsistent sind, entfernt werden, um die Situationen zu
vermeiden in denen der Timed Automaton Transitionen ausfiihrt, die in einen Deadlock fiihren.
Im Folgenden Abschnitt stellen wir vor, wie dies erreicht werden kann.

5.3.2 Erhalt von Deadlock Freiheit

Fiir einen rollen-konformen, kompositions-konformen Timed Automaton A ist nicht zugesichert,
dass es einige Pfade gibt, die nicht korrekt das Verhalten der korrespondierenden Rollenautoma-
ten verfeinern. Dies liegt daran, dass der Zone Graph Z/; des rollen-konformen Automaten weni-
ger Zone Zustinde haben kann als der Zone Graph Z 4 des kompositions-konformen Automaten.
Hierdurch kann es Zone Zustinde in Z’; geben, die in einen Time Stopping Deadlock fiihren. Im
Folgenden stellen wir einen Ansatz vor, der automatisch durch Anpassung des Zone Graphen an
diesen kritischen Stellen die Deadlock Freiheit erhilt. Hierdurch kann ein manuelles eingreifen
des Entwicklers zum Teil verhindert werden.

Um den Ansatz beispielhaft darzustellen, passen wir die Rollen rear und registree an, wie in
Abbildung 5.13 und Abbildung 5.14 dargestellt. Beide Automaten kénnen nun hochstens eine
Zeiteinheit in jedem Zustand verweilen. Weiterhin miissen sie wenigstens eine Zeiteinheit in
den Zustdnden convoy und registered verweilen. Wenn die Automaten zuriick in den initialen
Zustand wechseln, wird die korrespondierende Uhr zuriickgesetzt.

[/startConvoy

{cr}

Iregister

{ce}

breakConvoy/ /unregister

Abbildung 5.13: Modifizierte einfache rear- Abbildung 5.14: Modifizierte einfache regis-
Rolle tree-Rolle

Wir wenden nun auf der parallelen Komposition dieser Automaten die Zustands-
Kompositionsregel 71 = —((unregistered, true) A (convoy, true)) an. Der resultierende kom-
ponierte Automat ist kompositions-konform (siehe Abbildung 5.15).

Um nun festzustellen, ob der Automat rollen-konform ist, erstellen wir den korrespondieren-
den Zone Graphen (siehe Abbildung 5.16). Bis auf der Zustand ((convoy,registered),cr-ce==-1
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!

((noConvoy,unregistered) )
( cr<=18&ce<=1 )

{ce}

/unregister [register
ce>= 1

/startConvoy
{ce} | e
((noConvoy,registered) ( (convoy,registered) )
(_cr<=18%ce<=1 ( cr<=18&&ce<=1
{ertd or>= 1 |

breakConvoy/

Abbildung 5.15: Kompositions-konformer Automat der vereinfachten Rollenautomaten

& ce==1), welcher keine ausgehenden Transitionen besitzt und damit in einen Deadlock fiihrt,
ist jeder Zone Zustand dieses Zone Graphen konsistent. Wenn wir diesen Zustand entfernen,
erhalten wir einen Zone Graphen, indem jeder Zone Zustand die bendtigten Ereignisse des ur-
spriinglichen Rollenautomaten anbietet. Dann ist der kompositions-konforme Timed Automaton
auch rollen-konform.

Der Zone Graph enthilt damit Pfade, welche nicht die bendtigten Nachrichten der ein-
zelnen Rollenautomaten korrekt anbieten. Dies sind all die Pfade, welche in den Zustand
((convoy,registered),cr-ce==-1 & ce==1) iiber die startConvoy-Transition fithren. Daher miissen
wir diese Transition entfernen, um einen Timed Automaton zu erhalten, indem keine Ausfiih-
rung einer Transition in einen Deadlock fiihrt. Im Folgenden definieren wir das Entfernen solcher
Transitionen.

Definition 66 (Entfernen einer Transition eines Zone Graphen)

Gegeben sei ein Zone Graph Z, = (Se, s°, %, C, Te) eines kompositions-konformen Timed Au-
tomaton A = (L,1°,%,C,I,T), eine Timed Automaton Transition t = (l,e,g,7,1') € T, ein
initialer Zone Zustand s = (1,9) € Sg und eine Zone Graph Transition to = (s,e,s’). Die
Transition tg wird von dem Timed Automaton A entfernt, und daher auch von dem Zone Gra-
phen Z 4, durch ersetzen des Guards g der Transition t mit dem Guard g,, definiert durch:

gr = g A (true — (9" A I(1))).

Um also diese Zone Graphen Transitionen von dem korrespondierenden Timed Automaton zu
entfernen, ersetzen wir den Time Guard der Transition ¢ durch den modifizierten Time Guard
gr. Dieser Time Guard teilt den urspriinglichen Time Guard g mit dem Intervall, welches nicht
beschrinkt ist. Dieses Intervall wird durch Subtraktion des beschrinkten Intervalls des initialen
Zone Zustands von der universellen Menge von Clock-Bewertungen mit ¢rue berechnet. Das
Ergebnis ist ein Guard g,, welcher die Clock-Bewertungen des urspriinglichen Guards g beinhal-
tet und die Clock-Bewertungen des Guards entfernt, welche die Transition in dem betroffenen
Zustand [ aktiviert.
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noConvoy,unregistered
(cr==ce & ce==0)

‘Aister!,true,{ce}

noConvoy,registered
(cr<=1 & ce==0)

unregister!,(ce>=1),{ce} startConvoy!,true{cr}

noConvoy,unregistered
(cr==1 & cr-ce==1 & ce==0)

unregister!,(ce>=1),{ce}

. ist
register!,true,{ce} i@?:%fgc'j‘i?;’

y

noConvoy,registered
(cr==1 & cr-ce==1 & ce==0)

startConvoy!,true,{cr} breakConvoy?,(cr>=1),{cr}

convoy,registered
(cr==ce & ce==0)

breakConvoy?,(cr>=1),{cr}

noConvoy,registered
(cr-ce==-1 & ce==1)

startConvoy!,true,{cr}

convoy,registered
(cr-ce==-1 & ce==1)

Abbildung 5.16: Zone Graph des vereinfachten kompositions-konformen Timed Automaton (sie-
he Abbildung 5.14)
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Fiir den Guard der /startConvoy-Transition des kompositions-konformen Timed Automaton, er-
gibt die Berechnung den in Abbildung 5.17 dargestellten Guard. Beachte, dass der Guard eine
Disjunktion beinhaltet, die nach Definition der Clock Constraints nicht erlaubt ist (siehe Defini-
tion 3). Dies kann durch Aufteilung der Transition in zwei Transitionen mit den gleichen Nach-
richten und Clock Resets aufgeldst werden. Die Time Guards werden von den unterschiedlichen
Bedingungen des urspriinglichen disjunktiven Time Guards bestimmt. Aus Vereinfachungsgriin-
den haben wird das nicht in dem Beispiel gezeigt.

!

( (noConvoy,unregisteredﬂ
( cr<=18&ce<=1 )

{ce}

/unregister Iregister

ce>= 1
(ce-cr<1)|(ce>1&cr-ce<=-1)
/startConvoy
{ce} | {cn \l’

( (noConvoy,registered) ( (convoy,registered) )
(cr<=18&ce<=1 ( cr<=1&&ce<=1 |
et} or>= 1 |
breakConvoy/

Abbildung 5.17: Modifizierter rollen-konformer Automat aus Abbildung 5.15

Der Zone Graph fiir die modifizierten rollen-konformen Automaten zeigt Abbildung 5.18. Je-
der Pfad dieses Zone Graphen verfeinert das Verhalten der beteiligten Rollenautomaten korrekt.
Entsprechend haben wir erfolgreich die Transition entfernt, die in einen Deadlock fiihrt.

Es ist allerdings auch moglich, dass Time Stopping Deadlocks existieren, die nicht nur durch
Analyse der ausgehenden Transitionen der Zone Zustinde gefunden werden konnen. Trotz unse-
rer Analyse muss entsprechend immer noch mittels eines Model Checkers nach Time Stopping
Deadlocks gesucht werden.

In unserem Beispiel hat UPPAAL einen Deadlock iiber folgenden Pfad entdeckt: (/register, ce =
cr = 0), (/startConvoy, ce = cr > 0), (deadlock, ce > 0 N\ cr = 0). Dies ist ein Deadlock, da der
Zeit Guard der einzigen ausgehenden Transition des Zustands (convoy,registered) wenigstens fiir
eine Zeiteinheit in dem Zustand verweilen muss. Aufgrund der Zustandsinvariante und dem Wert
von ce, der groBter als Null ist, ist dies allerdings nicht moglich.

Eine Konsequenz hieraus ist, dass der Entwickler diese Deadlocks manuell entfernen muss. Bei
der Anpassung diirfen keine Zeitintervalle verletzt werden, da hierdurch die Simulationsbezie-
hung zwischen der urspriinglichen parallelen Komposition und dem kompositions-konformen
Automat verletzt wiirde. Nachdem die Deadlocks entfernt wurden muss der Timed Automaton
noch einmal auf Rollenkonformitit iiberpriift werden. Ist dieser Test erfolgreich, ist der resultie-
rende Timed Automaton eine korrekte Verfeinerung der beteiligten Rollen.
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noConvoy,unregistered
(cr==ce & ce==0)

‘Mr!,true,{ce} \

noConvoy,registered

(cr<=1 & ce==0)
Mr!,(ce&ﬂ ).{ce} \startConvoy!,(ce-cr<1)|(1<ce & cr-ce<=-1),{cr}

noConvoy,unregistered
(cr==1 & cr-ce==1 & ce==0)

unregister!,(ce>=1),{ce}

l register!,true {ce} c&?:géf?jﬁf )d

noConvoy,registered
(cr==1 & cr-ce==1 & ce==0)

breakConvoy?,(cr>=1),{cr}

KitartConvoy!,(ce-crd )|(1<ce & cr-ce<=-1),{cr}

convoy,registered
(cr==ce & ce==0)

breakConvoy?,(cr>=1),{cr} /
noConvoy,registered

(cr-ce==-1 & ce==1)

Abbildung 5.18: Deadlock-freier Zone Graph des modifizierten Automaten aus Abbildung 5.17

Offensichtlich konnen auch diese komplizierteren Deadlocks automatisch entfernt werden, in
dem ganze Pfade angepasst werden, die in einen Deadlock fiithren kénnen. Dies fiihrt dazu, dass
die in UPPAAL entwickelten Algorithmen zur Deadlock-Erkennung grof3tenteils nachimplemen-
tiert werden miissten, um eine automatische Anpassung zu ermdglichen. Im Rahmen dieser Ar-
beit wurde hierauf verzichtet.

5.4 Weitere Anwendungsfalle

Wie zu Abbildung 5.5 beschrieben, konnen wir weitere Anwendungsfille von abhéngigen Rol-
lenverhalten betrachten. Es ist moglich, dass eine Synchronisation auf unterschiedlichen Hierar-
chieebenen stattfindet. Damit ist gemeint, dass die abhéngigen Verhalten zum Teil durch eine ein-
gebettete Komponente umgesetzt sind, die in der Synchronisation beriicksichtigt werden miissen.
Ein weiterer Fall sind Multi-Ports, deren Verhalten erst zur Laufzeit durch Strukturanpassung-
en ausgeprigt wird. Neben diesen lokalen Abhingigkeiten, konnen auch Abhéngigkeiten direkt
auf Muster-Ebene entstehen, wenn diese allgemein, komponentenunabhingig, aufgelost werden
sollen. Im Folgenden diskutieren wir, wie der vorgestellte Ansatz mit diesen Anwendungsfillen
umgehen kann.
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Synchronisation auf unterschiedlichen Hierarchieebenen Wenn wir gezeigt haben,
dass die eingebettete(n) Komponenten(n) eine korrekte Verfeinerung der iibergeordnete(n) Kom-
ponente(n) ist, bzw. sind, miissen wir in der Synthese lediglich das Portverhalten der eingebet-
teten Komponente(n) beriicksichtigen. Die Delegation zum {iibergeordneten Port kann einfach
iber das synthetisierte Verhalten erfolgen, wie in Abbildung 5.5 dargestellt. Es muss dabei, wie
fiir den schnittstellen-beschrinkten Automaten definiert (siehe Definition 20), eine Filterung der
Ereignisse durchgefiihrt werden, damit nur die fiir einen Port relevanten Ereignisse weiterge-
leitet werden. Durch eine eindeutige Bezeichnung der Nachrichten durch die Schnittstelle des
ibergeordneten Ports ist dies einfach realisierbar.

Synchronisation von Multi-Ports Als grundlegender Formalismus wurde fiir die Synthe-
se Timed Automata verwendet. Daher konnen grundsitzlich keine Strukturanpassungen in der
Synthese beriicksichtigt werden, wie dies durch ein Adaptionsverhalten ermoglicht wird.

Fiir den Fall, dass das Adaptionsverhalten alle Abhidngigkeiten beriicksichtigt, kann eine Syn-
chronisation mit dem Adaptionsverhalten durchgefiihrt werden. Nach der grundlegenden Idee
der Adaptionsverhalten wie in [HHGOS] prisentiert, gilt dies fiir PARAMETERIZED REAL-TIME
COORDINATION PATTERN.

Wurde ein PARAMETERIZED REAL-TIME STATECHART allerdings nicht nach diesen Kriterien
umgesetzt, so kann eine Synthese nur durchgefiihrt werden, wenn die Obergrenze der Anzahl
der Instanzen bekannt ist. So kann fiir die gesamte Anzahl der Portinstanzen ein gemeinsames
Verhalten synthetisiert werden.

Verteilung von Verhalten Wenn Anforderungen iiber mehrere Rollen unterschiedlicher
Muster definiert werden, so ergibt die Synthese ein Verhalten, welches potentiell verteilt von
mehreren Komponenten ausgefiihrt werden kann. Da die Synthese ein Gesamtverhalten synthe-
tisiert, muss, um ein verteiltes ausfithren zu ermoglichen, dass Verhalten wieder zuriick in die
einzelnen Rollen verteilt werden. Ausgehend von den bekannten Rollenverhalten miissen die
einzelnen Zustdnde der jeweiligen Rollen identifiziert werden und die Konkretisierungen, wie
z.B. Synchronisation zwischen den Rollen, beriicksichtigt werden.

Im Allgemeinen ist dies das gleiche Problem wie Standard Syntheseansitze beschreiben, die le-
diglich einen globalen ,,Controller* synthetisieren (z.B. [HKPOS]). Eine einfache Moglichkeit
dieses Problem generell zu 16sen ist, dass jeder der Rollenverhalten das Gesamtverhalten anwen-
det. Die Synchronisationsnachrichten werden dann verteilt verschickt. Es muss dabei beriicksich-
tigt werden, dass die Synchronisation zusétzlich Zeit durch die vernetzte unterliegende Struktur
benotigt. Um das Verhalten lokal moglichst klein zu halten, kann zudem das nicht bendotigte
Verhalten der anderen Rolle aus dem Gesamtverhalten geschnitten werden.
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5.5 Diskussion

Mit dem hier vorgestellten Ansatz bieten wir eine Unterstiitzung zur Beschreibung von Abhin-
gigkeiten zwischen Rollen, die eine Komponente anwendet, an und ermoglichen unter Beriick-
sichtigung der abhingigen Rollen eine automatische Synthese des Komponentenverhaltens. Die-
ser Ansatz ist grundsitzlich auf beliebige abhingige Timed Automata anwendbar, womit die
skizzierten Szenarien aus Abbildung 2.1 umgesetzt werden konnen.

Gibt es Anforderungen, die beliebig strukturelle Abhingigkeiten zwischen Multi-Ports erfordern,
so ist eine effiziente Umsetzung allerdings nicht gegeben. Dies liegt daran, dass explizit die
Automaten aller Portinstanzen, deren obere Anzahl bekannt sein muss, beriicksichtigt werden
miissen. Ein Ausblick fiir weiterfithrende Arbeiten ist daher, TIMED STORY CHARTS direkt als
unterliegenden Formalismus fiir die Synthese zu betrachten.

Wie in der Einleitung gefordert, unterstiitzt der vorgestellte Syntheseansatz den Entwickler bei
der Beriicksichtigung von Abhéngigkeiten. Bis auf die Formalisierung der Abhéngigkeit in Form
von Kompositionsregeln, automatisiert die Synthese alle weiteren Schritte.

Nachdem die Synthese erfolgreich war, kann prinzipiell aus dem synthetisierten Modell Code
generiert werden. Da es sich hier immer noch um einen Timed Automaton handelt, kann die
Codegenerierung der MECHATRONIC UML nur genutzt werden, wenn das Modell zuriick in ein
REAL-TIME STATECHART oder HYBRID RECONFIGURATION CHART gefiihrt wird. Im Rah-
men dieser Arbeit wurde dies allerdings nicht weiter betrachtet.

Muss der synthetisierte Automat noch weiter um spezifische Seiteneffekte oder plattformspezi-
fische Informationen, wie eine WCET (sieche Abschnitt 2.4.2), erweitert werden, so ist dies auf
Grund der GroB3e des parallel komponierten Automaten ungiinstig. Im Idealfall werden daher die-
se anwendungsspezifischen Informationen vor der Synthese den Rollenautomaten hinzugefiigt.
Die Zuriickfithrung des synthetisierten Verhalten zu separaten Rollenverhalten, wie in Abschnitt
5.4 diskutiert, stellt eine alternative hierzu dar, falls die Informationen zu Beginn der Synthese
noch nicht vorhanden sind. Allerdings beinhaltet dieses Modell immer noch den notwendigen
Synchronisationsanteil.
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Werkzeugunterstutzung

Diese Arbeit stellt nicht nur die Konzepte zur Entwicklung hierarchischer Komponentensyste-
me vor, in deren Mittelpunkt die Wiederverwendung von Komponenten und Kommunikationen
zwischen Komponenten steht, sondern auch eine Werkzeugunterstiitzung. Wir werden dabei im
Besonderen in Abschnitt 6.1 die Unterstiitzung fiir eine Codegenerierung und Laufzeitumgebung
erldutern, um tatsidchlich auch werkzeugtechnisch einen modellgetriebenen Ansatz zu unterstiit-
zen. In Abschnitt 6.2 wird die Umsetzung des Werkzeugs vorgestellt und dabei deren grobe
Architektur erlautert. Abschlieend werden wir eine Validierung des Ansatzes in Abschnitt 6.3
vorstellen.

6.1 Ausfluhrung

In Abschnitt 2.1 haben wir unseren Ansatz zur Modellierung und Analyse hierarchischer Kom-
ponentensysteme vorgestellt. Um selbstoptimierende, mechatronische Systeme zu adressieren,
unterstiitzt der Ansatz kompositionelle Strukturanpassungen. Hiermit wird es ermoglicht, kom-
plexe Systeme durch einen modularen Aufbau und notwendige Erzeugungen zu beschreiben.

Ein offensichtliches Problem ist allerdings, dass wir fiir eine konkrete Umsetzung die Anforde-
rungen eingebetteter Echtzeit-Systeme beriicksichtigen miissen. Insbesondere miissen wir daher
die Ressourcen-Beschrinkungen von Mikrocontrollern betrachten. Damit diirfen die beschrie-
benen Erzeugungen nur in den gegebenen Ressourcen-Beschrinkungen des Speichers und der
CPU-Kapazitit ausgefiihrt werden.

Wir verfeinern daher unsere Modelle plattformspezifisch durch die Beriicksichtigung von
Ressourcen-Beschriankungen. Unser Ansatz ermoglicht es, ebenso wie bisherige Ansitze, vor-
hersagbar die Ressourcen einzuhalten. Zudem erlauben wir flexible Ressourcen-Anpassungen
zur Laufzeit, die prinzipiell wieder beliebige Erzeugungen ermdglichen.

Fiir HYBRID RECONFIGURATION CHARTS kann die Codegenerierung unverindert zu der von
Burmester [Bur06] genutzt werden, deren Umsetzung wir in [BGH07] gezeigt haben. Speziell
miissen wir hier die Codegenerierung und Laufzeitanalyse der Seiteneffekte betrachten, die die
Erzeugungen mit Story Diagrammen beschreiben (siehe Abschnitt 6.1.2). Dariiber hinaus stellen
wir im Folgenden vor, wie wir eine geeignete Laufzeitumgebung auf Basis der in [Bur06] vor-
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gestellten anbieten konnen, um auch als Verifikations- und Simulations-Umgebung zu dienen,
wie dies durch die beschriebenen Integrations-Ansitze fiir Altkomponenten benotigt wird (siehe
Abschnitt 6.1.1).

6.1.1 Laufzeitumgebung

Die Laufzeitumgebung erweitert die Implementierungssprache um Konzepte der Modellierungs-
sprache MECHATRONIC UML. Grundlegend ist die Laufzeitumgebung wie eine offene Archi-
tektur aufgebaut, die architektonische und mechanistische Entwurfsmuster unterstiitzt, wie Kom-
ponentenmanagement, Komponenteninteraktion und Nachrichtenverteilung [Dou99, Gom00,
Dou02].

Zusitzlich unterstiitzt diese Laufzeitumgebung eine Integration des IPANEMA-Frameworks
[Hon98], um eine Codegenerierung fiir hybride Systeme zu unterstiitzten [Bur06, BGH07].
Fiir Details des IPANEMA-Frameworks sei auf [Bur06] verwiesen.

Im Folgenden werden wir auf die notwendigen Konzepte der Laufzeitumgebung eingehen, um
eine Simulationsumgebung fiir die Integrationsverfahren (siche Abschnitt 4) beschreiben zu kon-
nen. Die grundlegenden Konzepte der Laufzeitumgebung wurden in [GHO6a] auf Basis von
[HenO5] vorgestellt.

Die Laufzeitumgebung (sieche Abbildung 6.1) kapselt den Anwendungsentwickler vor betriebs-
systemspezifischer Programmierung. Sie dient als eine Abstraktionsschicht, um die Modellse-
mantik im Kontext einer spezifischen Programmiersprache zu unterstiitzen. Integriert in die mo-
dellbasierte Entwicklung mit der Fujaba Real-Time Tool Suite wird damit eine Schnittstelle fiir
die automatische Codegenerierung angeboten.

Durch die vorgegebene offene Architektur wird dem Entwickler durch Spezialisierung ermog-
licht, benutzerspezifische Anforderungen zu realisieren. Konkret werden abstrakte Komponen-
ten und Ports angeboten, die durch Spezialisierung benutzerspezifisch erweitert werden kdnnen.
Hierdurch wird eine Infrastruktur zur Ausfithrung der Komponenten bereitgestellt.

Generated Code for
Mechatronic UML models

Component Port

Network

Abstract operating system

Abbildung 6.1: Schichtenarchitektur der Laufzeitumgebung
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Die Kommunikation findet via Nachrichten statt. Durch das Proxy- und Nachrichtenschlangen-
sowie Broker-Entwurfsmuster wird eine Entkopplung zwischen den Kommunikationspartnern
erreicht. Um den Einsatz im Echtzeitbereich zu gewdhrleisten, wird das Pool-Allokations-
Entwurfsmuster angewandt. Fiir die Details zu den Mustern verweisen wir auf [Dou02].

Fiir den Echtzeitbetrieb teilt sich die Initialisierungsphase von Komponenten in init, lookup und
register auf. Wihrend der Initialisierungsphase wird der benotigte Speicher allokiert. Wihrend
der Registerphase werden angebotene Rollen bekannt gemacht (LookupService) und anschlie-
Bend bendtigte Rollen wihrend der Lookupphase durch Anfrage an den LookupService aufge-
sucht. Falls der Ort des Kommunikationspartner a priori bekannt ist, kann die Registrierung und
der Lookup via dem LookupService umgangen werden, um statisch eine Kommunikation aufzu-
bauen.

Komponentenschicht Die Basis-Klassen der Komponentenschicht sind in Abbildung 6.2
gezeigt. Die Klasse Komponente basiert auf der RealtimeThread-Klasse und die Klasse Realti-
meThread erbt von der Thread-Klasse.

RealtimeThread

Component

+Component(SchedulingParameters, PeriodicParameters)

+initInteraction()

+lookup(RTInterface, RTEntry, Integer)
+register(RTInterface, RTEntry, Boolean, Proxy, Skeleton)
+providedUnidirectionalRegister(Skeleton)
+requiredUnidirectionalRegister(Proxy)
+providedBidirectionalRegister(Skeleton)
+requiredBidirectionalRegister(Proxy)
+servicelsUsedRequest(Proxy)
+servicelsUsedAnswer(Proxy): Message
+init()

+registerService()

+lookupService()

+control()

Abbildung 6.2: Basis-Klassen der Komponentenschicht

Wir bieten zudem eine einfache Schedulable-Klasse an, die es ermdglicht spezifische Scheduler
zu implementieren. Die Component-Klasse erbt entsprechend von dieser Klasse.

Eine Komponente wird immer periodisch ausgefiihrt (siche Abbildung 6.3). Der RealtimeThread
fiihrt die Component aus, welche periodisch ConcreteComponent durch die Methode control
aufruft. Die periodische Synchronisation mit dem Scheduler wird durch den Aufruf der Methode
waitForNextPeriod ermoglicht.
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:RealtimeThread ‘ ’ :Component ‘ ’ :ConcreteComponent
- Execute() . waitForNextPeriod() | E’%gr(':kd' t
_ control() | . Period in
t=now: - - - J Jitter
t+P+) - - - -

waitForNextPeriod(),
|

Abbildung 6.3: Ausfithrungssequenz einer Komponente

Portschicht Die Interaktion zwischen Komponenten basiert auf einer nicht-blockierenden
Kommunikation via Nachrichten. Die Komponenteninteraktion wird durch das Proxy-Muster
kombiniert mit einem Nachrichten-Schlangen-Muster [Dou02] umgesetzt. Um die Echtzeitei-
genschaften der betrachteten Doméne zu adressieren, wird zusitzlich das Pool-Allokations-
Muster angewandt, um ein Speicher-Management zu ermdglichen.

Die Schnittstelle der Portschicht ist in Abbildung 6.4 gezeigt. Ein Skeleton ist ein Rollenanbie-
ter und ein Proxy ist ein Rollennutzer. Ein Port erbt von der Proxy-Klasse, wenn der Port eine
Bedarfsschnittstelle implementiert (required-Schnittstelle, siehe Abschnitt 2.3), andernfalls wird
von der Skeleton-Klasse geerbt. Es ist natiirlich auch moglich von beiden Klassen zu erben. Die
Schnittstelle des Proxy und Skeleton bietet einfach ein senden und empfangen von Nachrichten
an.

Connection

+Connection(Integer, Integer)

+portSend(Message)
+portReceive(): Message

—t

’ Proxy ‘ ’ Skeleton ‘

Abbildung 6.4: Basis-Klassen der Portschicht

Eine Sequenz von interagierenden Komponenten wird in Abbildung 6.5 gezeigt. In der Abbil-
dung wird gezeigt, wie eine Komponente mit einem Port (Proxy oder Skeleton) verbunden ist
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und wie die Netzwerkschicht mit der Portschicht verbunden ist. Das senden einer Nachricht
(send(Message)) wird ausgelost durch die ConcreteComponent. Die Nachricht wird dann durch
den Framework-Port zur SendQueue weitergeleitet. Die Netzwerkschicht tiberpriift periodisch
ob sich eine Nachricht in der SendQueue befindet. Ist dies der Fall, wird die Nachricht iiber das
Netzwerk der ReceivingQueue des Kommunikationspartners zugeschickt. Im Falle einer lokalen
Kommunikation wird die Nachricht direkt in die Empfangsschlange gelegt.

| :ConcreteComponent | [ :ConcreteProxy | [ :Connection | | :SendQueue | [ :ReceiveQueue| [ :NetworkSend | | :NetworkReceive |
T T T T T T

M send(Message) |

portSend(Message) marshalling()

copy()

write(Message) |

I I
v rea(SerializeContainer)
I I I I
! ! ! copy() } network >
? o : =
i I X [ A, recave
I I I I f
| | | | write(M es%ge)l S
I I I
| | 1 T copy()
I I I
M receive() } T sttt S =
I

Abbildung 6.5: Eine Nachrichtensequenz

Simulations- und Verifikationsumgebung Die Anforderungen an die Simulations- und
Verifikationsumgebung ergeben sich im Wesentlichen aus den in Abschnitt 4 vorgestellten Inte-
grationsverfahren. Die Umgebung muss daher in der Lage sein, eine deterministische Wieder-
holung zu unterstiitzen, um die bendtigten Mehrfachausfithrungen der Integrationsverfahren zu
ermoglichen. Hierzu gehort auch, dass ein Scheduling sowie Zeit simulativ unterstiitzt werden
muss.

Um eine deterministische Wiederholung fir MECHATRONIC UML Modelle zu ermoglichen,
miissen wir in der Lage sein 1) alle relevanten Ereignisse fiir eine deterministische Wiederholung
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zu beobachten und 2) die Ausfiihrung der Komponenten und Ports wihrend der Wiederholung
zu kontrollieren (sieche Abbidildung 6.6).

Observe
Control

Simulation
SchedulingH Time HEvents

Abbildung 6.6: Beobachtung und Kontrolle der Ausfithrung einer MECHATRONIC UML
Komponentenarchitektur

Um dies zu ermdglichen, fithren wir eine Diagnoseschicht ein, welche fiir die Anwendung trans-
parent ist (sieche Abbildung 6.7). Uber diese Diagnoseschicht konnen alle relevanten Ereignisse
beobachtet werden, ohne den Quellcode der Anwendung anzupassen. Die Schicht ermdglicht
eine Kontrolle und Beobachtung aller Interaktionen der Komponente mit der Umgebung. Ei-
ne Interaktion besteht aus allen externen Nachrichten, Scheduling-Ereignisse (Aktivierung, Ver-
driangung, ...) und allen Zeitereignissen der Komponente.

Generated Code for
Mechatronic UML models

Component, | Port ||
Diagnosis Layer

Abstract operating system

Tiness

Abbildung 6.7: Laufzeitumgebung mit Simulationsschicht

Im Folgenden betrachten wir zuerst, welche Ereignisse fiir eine deterministische Wiederholung
relevant sind. AnschlieBend betrachten wir den Wiederholungsansatz unter Beriicksichtigung
von Einfliissen durch eine zusitzliche Instrumentierung des Systems.

Relevante Ereignisse Eine elementare Erkenntnis fiir die deterministische Wiederholung
von MECHATRONIC UML Komponenten ist, dass es ausreicht, die Komponenten mit exakt den
gleichen eingehenden Nachrichten periodenspezifisch zu wiederholen, um das gleiche funktio-
nale Verhalten wiederzugeben.
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Im allgemeinen muss auch das Scheduling identisch wiederholt werden. Damit die implemen-
tierten Komponenten allerdings eine korrekte Verfeinerung der Modelle sind, miissen diese fiir
ein eingehendes Echtzeitverhalten auch das gleiche ausgehende Verhalten wiedergeben (siehe
Abschnitt 3.1).

Grundlage fiir die korrekte Abbildung der Modelle ist, dass aus den moglicherweise nichtdeter-
ministischen plattformunabhiingigen Modellen deterministische Modelle generiert werden kon-
nen, wie in [AMPS98] fiir Timed Automata gezeigt wurde. Ein einfaches Beispiel ist, dass ,,non-
urgent* Transitionen, die irgendwann schalten konnen, durch die Codegenerierung als ,,urgent*
Transitionen umgesetzt werden, die sofort schalten, wenn alle notwendigen Bedingungen erfiillt
sind. In [Bur06] wurde eine entsprechende Abbildung aller relevanter Verhaltenselemente ge-
zeigt.

Aufgrund dieser Eigenschaften miissen fiir eine deterministische Wiederholung der Komponen-
ten nur die eingehenden Nachrichten sowie der Zeitpunkt der Nachrichten korrekt in der gleichen
Periode wiedergeben werden' (siehe Abbildung 6.8).

el-e5: events

=i t
pl.el pl.e2 p3.e5 fme
p2.e3 p2.ed

Abbildung 6.8: Externe Ereignisse einer Komponente

Da das Verhalten einer Komponente nicht nur von den externen Ereignissen, sondern auch von
internen Zeitabfragen abhéngig ist, miissen wir zudem generell alle Zeitanfragen wihrend der
Wiederholung identisch wiedergeben. Durch die Diagnoseschicht ist dies einfach moglich.

Durch Beobachtung der eingehenden Nachrichten, Zeitereignisse sowie der Periode kénnen wir
damit eine Komponente unabhéngig von dem unterliegenden Scheduling deterministisch wie-
derholen. Dies sind auch die relevanten Informationen, die wir fiir die Integration von Altkom-
ponenten bendtigten (siehe Abschnitt 4).

Wiederholung Abbildung 6.9 zeigt neben der Beobachtung einer Komponente, auch die kon-
trollierte Ausfiihrung der Komponente wihrend der deterministischen Wiederholung. Die Simu-
lation, bzw. deterministische Wiederholung, ist insofern einfach, da wir lediglich die aufgezeich-
neten relevanten Ereignisse wiederholen miissen, unabhingig von der Plattform. Die korrekte
Ordnung der Ereignisse wird durch die Diagnoseschicht erreicht. In der simulierten Interaktion
wird dies durch das Connection-Objekt implementiert (siehe Abbildung 6.9)

'In [GHO6a] haben wir zudem beschrieben, wie wir mit parallel ausgefiihrten Verhalten umgehen konnen, wenn die
ausgehenden Ereignisse nicht eindeutig voneinander unterschieden werden konnen sowie nichtdeterministischen
Verhalten. Fiir die hier betrachteten Systeme sind diese Fille allerdings nicht notwendig.
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Abbildung 6.9: Nachrichtensequenz einer deterministischen Wiederholung

Minimierung der Ereignisaufnahme Da die Aufnahme gerade der Nachrichten einen ho-
hen Zeitaufwand und Speicherverbrauch bedeuten kann, ist es wichtig die Aufnahme zu mini-
mieren.

Die oben beschriebenen relevanten Ereignisse konnen allerdings nicht minimiert werden, da die-
se das Verhalten der Komponente beeinflussen.

Eine Moglichkeit den Aufwand zu reduzieren, ist das Eliminieren des Nachrichteninhalts. Wih-
rend der Wiederholung kann dieser dann wieder reproduziert werden, indem die vollstiandige
Interaktion mit Nachrichteninhalt aufgezeichnet wird.

Aufnahme Eine einfache Moglichkeit die Daten aufzunehmen ist die Verwendung eines extra
Threads, mit niedrigerer Prioritit als die der implementierten Komponente (z.B. [TFCB90]).
Hiertiiber ist es dann auch moglich, die notwendigen Daten auf eine zusétzliche externe Festplatte
zu speichern, ohne das System zu beeinflussen.

Dies fiihrt allerdings zu dem Problem, dass eventuell Daten verloren gehen, da das Schreiben
der Daten im Vergleich zur realen Ausfiihrung lange dauern kann [Zam99]. Dieses Problem
kann grundsitzlich nicht umgangen werden, jedoch konnen die auftretenden Aufnahmefehler
ebenfalls notiert werden. Eine deterministische Wiederholung ist dann nicht mehr vollstindig
moglich.

Vermeidung des Probe Effects Durch eine software-basierte Beobachtung wird zusitzli-
cher Quellcode fiir die notwendige Instrumentierung des Systems bendtigt. Typischerweise dn-
dert sich die Instrumentierung wihrend der Entwicklung und dem finalen System. Durch diese
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unterschiedliche Instrumentierung kann das System unterschiedlich beeinflusst werden, wodurch
auch unterschiedliches Verhalten auftreten kann.

In unserem Fall ist dies insofern problematisch, da die Aufnahmen fiir die deterministische Wie-
derholung typischerweise nicht wihrend des normalen Betriebs stindig durchgefiihrt werden.
Kann eine gleichbleibende Aufnahme nicht gewihrleistet werden, so kann folglich auch ein Pro-
be Effect auftreten [Fid96].

Dieses Problem konnen wir nur umgehen, indem wir eine minimale notwendige Instrumentie-
rung auch wihrend des normalen Betriebs durchfiihren. Dies muss nicht zwangsldufig dazu fiih-
ren, dass diese Daten auch auf einen externen Speicher geschrieben werden. Die Speicherung
der Daten, durch einen zusitzlichen Thread, muss nicht zu einer Beeinflussung fiihren, da diese
unabhingig von der eigentlichen Instrumentierung durchgefiihrt werden kann. Damit kann fiir
den Fall, dass die Komponente deterministisch wiederholt werden soll, ein zusitzlicher Thread
aktiviert werden, der die Daten auf eine externe Festplatte schreibt. Unter der Annahme, dass ein
Echtzeitscheduling durch Hinzunahme des weiteren Threads mit niedriger Prioritit, die hoher
prioritisierten Threads weiterhin vorhersagbar ausfiihrt, tritt kein zusétzlicher Probe Effect auf.

Handelt es sich um eine Altkomponente kann dies nur erreicht werden, indem die Ausfiihrung
im beschriebenen Anwendungsszenario stets mit dem hier beschriebenen Framework umgesetzt
wird.

Eine Evaluierung der deterministischen Wiederholung in einer Eclipse Debugging Umgebung
haben wir in [GHO06a] vorgestellt.

6.1.2 Codegenerierung und Laufzeitanalyse

Aufgrund der engen Verzahnung zwischen der Codegenerierung und der Laufzeitanalyse be-
trachten wir die Verfahren in diesem Abschnitt zusammen. Ohne vorherige Codegenerierung
kann keine Laufzeitanalyse durchgefiihrt werden. Wegen den in diesem Kapitel einleitend disku-
tierten Anforderungen, dass eine Laufzeitanalyse auch zur Laufzeit durchgefiihrt werden muss,
da die Strukturanpassungen a priori nicht alle vorausgedacht werden konnen, muss die Codege-
nerierung ebenfalls den Anforderungen der Laufzeitanalyse geniigen.

Die Codegenerierung basiert grundlegend auf der von Burmester [Bur06], deren Umsetzung wir
in [BGH"07] gezeigt haben. Grundlegende Arbeiten zu den Erweiterungen der Codegenerierung
und zur Laufzeitanalyse wurden in [GHHO6b, Ric08, GHHO8b, HBB*09, GHH11, HOGS10,
HOGS12] vorgestellt.

Abbildung 6.10 veranschaulicht die unterliegende OCM-Mikroarchitektur fiir die hier be-
trachteten mechatronischen Systeme. Mit den hier vorgestellten Techniken konnen Software-
Komponenten fiir den reflektorischen Operator entwickelt werden. Aus der Abbildung wird zu-
dem die grundlegende Idee der Umsetzung einer Codegenerierung und Laufzeitanalyse ersicht-
lich.
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Um die plattformspezifischen Informationen geeignet zu beriicksichtigen, wird eine Schnittstelle
zwischen dem reflektorischen Operator und der Laufzeitumgebung zur Verfiigung gestellt. Durch
Profil-Informationen, mit denen Ressourcenattribute wie eine WCET oder der Speicherbedarf
beschrieben werden konnen, wird der Austausch zwischen dem Betriebssystem, welches die
Ressourcen verwaltet, und der Anwendung ermoglicht.

Durch eine Profilbeschreibung kann eine Anwendung zur Laufzeit dem Betriebssystem neue
Anforderungen mitteilen. Um dies zu ermdglichen wurde in [BGGOO04a] ein Ansatz beschrie-
ben, der Profilbeschreibungen in HYBRID RECONFIGURATION CHARTS beriicksichtigt. In
[HBB*09, BBB*09] haben wir diesen Ansatz erweitert, um parametrisierte Profile zu beschrei-
ben, die zur Laufzeit erweitert werden konnen. Dies ist die Basis, um Strukturanpassungen zur
Laufzeit flexibel den Umweltbedingungen optimal anzupassen.

i . . .
£ Cognitve Operator (Learning, Planning) 5
@ '®) 8
. Reactive, state—based| T
- Reflective Operator(behavior) =
o S
= O :
T Controller (Control algorithms) 5
[
. - - - - __-_--—-—-—-—-—-—-—-—-< 5
Operating System 2

Abbildung 6.10: Integration plattformspezifischer Informationen

Im Folgenden werden wir relevante Ausschnitte des Konvoibeispiels einfiihren. Hieran werden
wir die notwendigen Erweiterungen an der Codegenerierung sowie Laufzeitanalyse verdeutli-
chen. In Abschnitt 6.1.2.1 werden wir dann die flexible Profilverwaltung einfithren und forma-
lisieren. Hierauf aufbauend werden wir in Abschnitt 6.1.2.2 unsere WCET-Analyse fiir dyna-
mische Strukturen einfiihren. In Abschnitt 6.1.2.3 werden die Erweiterungen an der Codegene-
rierung vorgestellt und in Abschnitt 6.1.2.4 werden die fiir die Codegenerierung notwendigen
Evaluierungsreihenfolgen hybrider Systeme mit Strukturanpassungen diskutiert. Abschlie3end
diskutieren wir den Ansatz in Abschnitt 6.1.2.5.

Beispiel Wir betrachten hier wieder das Beispiel der Konvoirestrukturierung aus Abbildung
2.17. Im Folgenden gehen wir davon aus, dass fiir eine Menge von RailCabs innerhalb eines
Streckenabschnitts iiberpriift werden soll, ob diese bereits an einem Konvoi teilnehmen. Ist dies
nicht der Fall, soll ein ConvoyCoordinationPattern zwischen den RailCabs angelegt werden.

Abbildung 6.11 zeigt ein einfaches Adaptionsverhalten, welches die Koordination zwischen den
RailCabs initiiert, immer dann wenn ein neues RailCab den Streckenabschnitt betritt. Wird eine
newParticipant-Nachricht empfangen, dann wird als Seiteneffekt initiateCoordination ausgefiihrt.
Eine solche Nachricht kann z.B. durch eine Streckenabschnittskontrolle verschickt werden (siche
Abschnitt 5). Fiir das betrachtete Szenario ist das allerdings irrelevant.
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newParticipant
.\ /initiateCoordination()
0 < ¢l < 8000

Abbildung 6.11: Einfaches Adaptionsverhalten zur Erzeugung einer Musterbeziehung

Abbildung 6.12 zeigt das Story Diagramm, welches durch den Seiteneffekt aufgerufen wird. Das
Story Diagramm besteht aus drei Story Pattern. Der coordinator (siehe Abbildung 1.2) erzeugt
zwischen allen RailCabs in dem Abschnitt ein ConvoyCoordinationPattern. Der Vollstindigkeit
halber miissten anschlieBend auch entsprechende Portinstanzen erzeugt (wie in Abschnitt 3 ge-
zeigt) und geloscht werden. Hierauf wird im Folgenden verzichtet.

RailCab::initiateCoordination(): Void ?

this in> trackSection;

— TrackSection
J

@ [end]
N : N
rcl: in>
RailCab trackSection
[each time]\L T

( ++ A

convoyCoord:ConvoyCoordinationPattern

A A

initiate  participate

‘ this {initiate participateJ el ‘
\ v

existingCoord:ConveySoord

& J

ationPattern

Abbildung 6.12: Story Diagram zur Beschreibung des initiateCoordination Seiteneffekts

Das unterliegende Klassendiagramm ist in Abbildung 6.13 gezeigt. Das Klassendiagramm be-
steht aus den Klassen TrackSection, RailCab, ConvoyCoordinationPatern und Track. Die Klasse
Track wird in dem Story Diagramm nicht direkt verwendet. Da eine TrackSection allerdings aus
einer Menge von Tracks besteht, werden entsprechend diese Objekte ebenfalls beriicksichtigt.

Das Klassendiagramm verdeutlicht die beschriebene Problematik fiir eingebettete Echtzeitsys-
teme. Prinzipiell konnen auf Modellierungsebene einer TrackSection beliebig viele Tracks und
RailCabs assoziert werden. Ein RailCab kann wiederum mit beliebig vielen RailCabs einen Kon-
voi eingehen. Auf der Modellierungsebene ist diese Beschreibung legitim und sinnvoll, da platt-
formspezifische Einschrinkungen bzgl. der Oberschranke der Kardinalitdt der Assoziation dazu
fiihren, dass das Modell und die Analysen auch nur fiir diese Plattformen giiltig sind. Eine Fest-
legung der Kardinalitét fiihrt zudem dazu, dass es zur Laufzeit auch nicht moglich ist, eine bzgl.
der Umgebung optimale Auslastung zu finden, da die Ressourcen a priori eingeschriankt wurden.

185



Kapitel 6 Werkzeugunterstiitzung

Wir werden daher im Folgenden einen Ansatz vorstellen, der zum einen die Vorhersagbarkeit des
umgesetzten Modells fiir eine bestimmte Plattform garantiert und zum anderen aber flexibel die
Ressourcen verteilen kann, so dass zur Laufzeit unterschiedliche Ressourcenbelegungen ermog-
licht werden, ohne vorherige Einschrinkung auf eine fixe obere Kardinalitét. Voraussetzung fiir
den Ansatz ist, dass die Anwendung mit der MECHATRONIC UML umgesetzt wird.

TrackSection

0..1 0..1
has w has A has

v 0..2/ 0..n 0..n
4 has -
01 Track 031 04 RailCab

initiateCoordination(): Void

0..1 0..1
initiate w participate w
0..n 0..n

ConvoyCoordinationPattern ‘

Abbildung 6.13: Unterliegendes Klassendiagramm des initiateCoordination Seiteneffekts

6.1.2.1 Flexible Ressourcenverwaltung

Der Standard-Ansatz, um ein vorhersagbares Verhalten fiir Multi-Prozessoren eines Echtzeitsys-
tems zu garantieren, ist die Allokation der maximal bendtigten Ressourcen im Voraus [But05].
Dieser Ansatz ermoglicht die zeitliche Ausfithrung der Prozesse, fiihrt allerdings zu einer
schlechten Ressourcennutzung und ist kaum anwendbar fiir dynamische Strukturen.

Die flexible Ressourcenverwaltung (FRM) [LO08] wurde entwickelt, um die Ressourcennutzung
zu verbessern. Jede Anwendung (z.B. Konvoi oder Feder/Neige-Modul) wird zusétzlich mit einer
Menge von Profilen und Transitionen zwischen diesen beschrieben. Jedes Profil beinhaltet Infor-
mationen iiber die maximale und minimale Ressourcenanforderung, Umschaltbedingungen und
der Profilqualitdt. Die Profilqualitit beschreibt, welche Anwendung bevorzugt behandelt wer-
den soll. Dies kann z.B. iibergeordnet durch einen Lernalgorithmus im kognitiven Operator zur
Laufzeit berechnet werden und/oder a priori von dem Entwickler vorgegeben werden. Fiir ein
fixe Anzahl an Profilen wurde in [BGGOO04a] ein semi-automatischer Algorithmus beschrieben.

Der grofite Nutzen entsteht durch das FRM, wenn mehrere Profile je Anwendung spezifi-
ziert werden. Fiir mechatronische Systeme bietet es sich hédufig an, die einzelnen Regler-
Konfigurationen als ein Profil zu beschreiben oder Verhalten, deren Struktur angepasst wird in
mehrere Profile zu unterteilen. Fiir unser Konvoi-Beispiel kann z.B. ein Profil festgelegt wer-
den mit einer kleinen Anzahl an Konvoiteilnehmern und einer groleren Anzahl. Das FRM kann
zur Laufzeit die Ressourcennutzung unter Beriicksichtigung der Qualitidten der Anwendungen
optimieren.
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Dynamische WCET Eine Verinderung der WCET fiihrt zu einer Veridnderung der Prozesso-
rauslastung U = w des betroffenen Profils (7' gibt die Periode der Hauptfunktion des Profils
an). Im Fall der CPU verwaltet das FRM die Prozessorauslastung. Daher wird eine Anpassung
der Profilgrenzen der WCET als eine Ressourcenanfrage behandelt (wie z.B. eine Speicheran-
frage).

Der FRM-Ansatz erlaubt eine Ressourcenallokation nur in den spezifizierten Grenzen des aktiven
Profils der Anwendung. Eine WCET-Anfrage liber die maximale Ressourcenverwendung hinaus,
ist entsprechend nicht erlaubt. Durch die in Abschnitt 6.1.2.2 vorgestellte WCET-Analyse und
Codegenerierung wird dies verhindert.

Das FRM berechnet fiir die aktuellen Profile einen einfachen Plan, der angibt, wie die Profile in
eine giiltige Konfiguration rekonfiguriert werden konnen, so dass alle Ressourcenanfragen unter
Beriicksichtigung der Qualitidt aufgelost werden konnen.

Der Schedulability-Test des FRM stellt sicher, dass so ein Plan ohne Verletzung einer Deadline
ausgefiihrt werden kann [LOO08].

Eine Veridnderung der WCET kann allerdings zu einer Verletzung der vorliegenden Pléne fiihren.
Fiir jede Veridnderung der WCET muss der vorliegende Plan iiberpriift werden. Falls aufgrund der
WCET-Verianderung kein giiltiger Plan erstellt werden kann, wird die Verdnderung abgelehnt.
Die Anwendung darf also nicht mit mehr Ressourcen als den aktuellen im Profil ausgefiihrt
werden.

Die Berechnung, ob ein Schedule fiir einen neuen Plan gefunden werden kann, wird im Hin-
tergrund ausgefiihrt, ohne zeitliche Begrenzungen. Dies fiihrt zu keinen Einschrinkungen der
Sicherheit, da eine Profilanpassung lediglich zu einer Optimierung fiihrt.

Eine Konsequenz aus der strikten Ressourcenvergabe innerhalb der Profilgrenzen ist, dass die
Anderung einer WCET dem FRM mitgeteilt werden muss, bevor die Anwendung tatsichlich
diese Ressourcen verwendet. In den folgenden Abschnitten werden wir beschreiben, wie eine
Anwendung zur Laufzeit dynamisch Profile anpassen kann. Hierfiir werden wir parametrisierte
Profile einfiihren.

Formalisierungen In diesem Abschnitt stellen wir eine Formalisierung des Profilkonzepts
vor. Hierunter fillt auch die dynamische Erzeugung und Zerstorung von Profilen, die benotigt
wird, um eine Anpassung des Ressourcenbedarfs zur Laufzeit zu ermoglichen. Eine Anpassung
des Ressourcenbedarfs ist Voraussetzung, um strukturelle Anpassungen realistisch umzusetzen.
Die hier gezeigte Formalisierung ist notwendig, um prézise das Zusammenspiel zwischen dem
FRM und einer Anwendung zu beschreiben.

Tasks und Konfigurationen Bevor wir das Profilkonzept vorstellen, definieren wir einige
relevante Begriffe. Ein System besteht aus einer Menge von periodischen Tasks I', wie in Defi-
nition 67 gezeigt. Diese Tasks werden angemessen durch den Scheduler des FRM ausgefiihrt, so
dass keine Deadline- Verletzungen auftreten.
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Definition 67 (Periodischer Task)

Ein periodischer Task 1; € T ist ein 3-Tupel 7, = (B;, S;, P;) mit: einer Menge von miglichen
Verhalten (Seiteneffekten) B; = {b}, ..., bl'}, einer Menge von Zustinden S; = {s}, ..., s} und
eine Menge von miglichen Profilen P; = {p},...,p"}, in denen der Task ausgefiihrt werden
kann. S(;) : T — S ist der aktuelle Zustand des Tasks T, zur Laufzeit. B(r;,s)) : (I x S) — B
ist eine Menge von moglichen Verhalten durch einen gegeben Task t; und einen Zustand sz €S,
C(m;) : I' — C ist die aktuelle Konfiguration eines Tasks ;. P(7;) : I' — P ist das aktuelle Profil

eines Tasks.

Jeder Task 7; hat eine Identitit zur Laufzeit, die sich mit der Ausfithrung eines Seiteneffekts
b/ € B, indert. Die Identitit eines Tasks kann daher durch die Funktion S(7;), B(;, 1), C(;)
und P(7;) beschrieben werden. Die aktuelle Konfiguration C(7;) bestimmt die aktuelle Situation
der Ressourcen eines Tasks.

Eine Konfiguration beschreibt die aktuelle Instanzsituation eines Tasks (siehe Definition 68).
Grundsitzlich kann ein anderer Task direkt die Instanzsituation beeinflussen. Dies fiihrt aller-
dings zu nicht ganz unerheblichen Nebeneftekten.

Die gegenseitige Beeinflussung kann zu einer inkonsistenten Instanzsituation fiihren, in dem die
Konfiguration iiber eine mogliche maximale Ressourcenbelegung eines Tasks steigt. Um dieses
Problem aufzulosen muss jeder Task zusitzlich die méglichen Konfigurationen der abhédngigen
Tasks betrachten.

Die bisher untersuchten Anwendungen haben allerdings keinen Bedarf an dieser engen Verzah-
nung zwischen Tasks gezeigt. Aus der Sicht eines sicherheitskritischen Systems ist dies zudem
fraglich, da hierdurch ein modularer Entwurf und damit auch eine (effiziente) Analyse verhindert
wird. Im schlimmsten Fall miissten daher alle Seiteneffekte zusammen hinsichtlich der geforder-
ten Eigenschaften analysiert werden. Daher treffen wir im Folgenden die Annahme, dass jeder
Task eine eigene Instanzreprisentation der Umgebung besitzt, die nicht durch andere Tasks direkt
verdndert werden kann.

Definition 68 (Konfiguration) } _

Eine Konfiguration C; € C ist definiert durch C; = (c}, ..., ) mit ¢ : T(c!) — Ny ist die
Anzahl der aktullen Instanzen des Typs T(CZ ). C beschreibt alle méglichen Konfigurationen des
Systems.

Profile Zur Laufzeit wird ein Task immer in einem Profil ausgefiihrt. Die Hauptcharakteris-
tiken eines Profils sind die maximale Konfiguration, welche die maximalen Ressourcengrenzen
definiert und die Qualitit, welche das FRM nutzt, um das System angemessen zu schedulen. Ein
Profil ist damit wie folgt definiert.

Definition 69 (Profil) )
Ein Profil p; € P ist ein 4-Tupel p; = (w;, m;, C;, q;) mit w; € Ny ist die WCET, die ein Task in
dem Profil nicht iiberschreiten soll, m; € Ny ist der maximal bendtigte Speicherbedarf, die ein

Task in dem Profil nutzen darf, C; € C ist die maximale Konfiguration des Profils und q; ist die
Qualitdt des Profils.
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Fiir einen gegebenen Task 7; = (B;, S;, P;) definieren wir weiterhin fiir die Profile p;, € P; und
p € P;, dass das Profil p;, sicher durch das Profil p; entfernt werden kann, wenn C}, < ) gilt.

Definition 70 (Konfigurationsordnung)
Eine Konfiguration C; € C dominiert eine Konfiguration C; € C, ausgedriickt durch C; < C;,
wenn Vck @ cF < c;?.

Das FRM verwaltet die verschiedenen Tasks durch die Betrachtung der verschiedenen Profile.
Die Beziehung zwischen den Profilen wird durch einen Profilgraph ausgedriickt.

Definition 71 (Profilgraph)

Ein Profilgraph ist ein 3-Tupel G, = (V, E, 1) mit: einer Menge von Knoten V- = {vy,...,v,},
einer Kante (v;,v;) € E und einer Markierungsfunktion l(v;) : V- — (Py X - - - X P,,), die einen
Knoten v; € V' mit einem m-Tupel von Profilen verbindet. 'P; ist die Menge der Profile des Tasks
T

Um das System sicher zu initialisieren, wird ein Worst-Case-Profil p;*** fiir jeden Task 7; ange-
legt. Diese Profile werden entsprechend Offline definiert und garantieren, dass das System Initial
in einem sicheren Zustand startet. Da wir a priori die oberen Grenzen fiir eine Konfiguration
kennen, konnen wir das Worst-Case-Profil bestimmen.

Die Strategie fiir die Erzeugung von neuen Profilen kann sehr mannigfaltig sein. Da diese Stra-
tegie allerdings fiir die WCET-Analyse, der hier betrachteten Anwendungen, die sich im reflek-
torischen Operator wieder finden, nicht relevant ist, verweisen wir auf [OZKVO08] fiir geeignete
Strategien. Die Strategien zur Profilverbesserung werden typischerweise im kognitiven Operator
umgesetzt (siche Abbildung 6.10).

Wenn ein neues Profil erzeugt wird, miissen wir die maximale Konfiguration des Profils p; be-
stimmen, um die Ressourcengrenzen festzulegen. Um eine maximale Konfiguration fiir ein neues
Profil zu bestimmen, nehmen wir an, dass wir eine Menge von mdéglichen Verhalten innerhalb
einer einzelnen Periode betrachten miissen. Die maximale Konfiguration fiir ein neues Profil ldsst
sich damit wie folgt definieren.

Definition 72 (Maximal resultierende Konfiguration)

Fiir einen gegebenen Task 7, = (B,S,P) und B' = B(1;,S(7;)) ist die Menge des moglichen
Verhaltens in einen Zustand S(;), die maximal resultierende Konfiguration eines Verhaltens
b; € B', definiert durch ?Z;‘“ :C — C mit:

Ve={1,...,n}:C=I- "+, I - AF 4 ).

CAF = (cf’k7 ..., cSF) ist der Konfigurationsunterschied, der bestimmt, wie sich eine indivi-
duelle Konfiguration durch Anwendung von Seiteneffekten, die durch Story Diagramme umge-
setzt werden, verdndert. I, € N ist die WCNI (Worst Case Number of Iterations) des Story
Diagramms, welche abhdngig ist von der aktuellen Konfiguration C. I, muss fiir jedes Story
Diagramm berechnet werden (siehe Abschnitt 6.1.2.2). Die maximal resultierende Konfiguration

mar __ max max : maxr . .mar __ l [
BT =, ep T mit Yt s o't = max{cy,,. .., }
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Da ein Task immer in einem Profil 1duft, konnen wir die maximal resultierende Konfiguration
eines neuen Profils mittels der Story Diagramm Laufzeitanalyse bestimmen (siehe Abschnitt
6.1.2.2).

Das Hinzufiigen eines neuen Profils fiihrt zu einer Aktualisierung des Profilgraphen. Wie in
Abschnitt 6.1.2.1 beschrieben, gilt fiir zwei beliebige Profile, dass eine Transition von p; nach
pr. angelegt ist, wenn entweder gilt, dass C’j < Cy, (fiiir jedes Element) oder es existiert ein ¢, SO
dass mrcfy, (C’]) < ék, mit mrcf,, berechnet die maximal resultierende Konfiguration fiir b;.

Dieser Test muss fiir alle Transitionen durchgefiihrt werden, an denen das neue Profil beteiligt
ist. Wenn zudem Zusténde S fiir ein Profil p; und S, fiir ein Profil p;, relevant sind, muss zudem
fiir jeden Zustand s € S; die obige Bedingung gelten. Entweder muss im ersten Fall s € Sj
gelten oder es muss im zweiten Fall ein angemessenes b; existieren, welches es ermdglicht von s
nach ¢’ mit s’ € S, zu gehen.

Um ein Profil zu entfernen, konnen wir die gleichen Techniken anwenden, wie fiir das Hinzu-
fiigen. Eine Voraussetzung fiir das Entfernen ist, dass sich die Anwendung nicht in dem Profil
befindet. Der resultierende Profilgraph muss wieder, wie oben beschrieben, stark zusammenhén-
gend sein.

Der Aufwand, um einen Profilgraphen zu aktualisieren ist O(1), wenn die Verdnderung nicht
die untere oder obere WCET-Grenze beeintridchtigt. Andernfalls muss ein erneutes Scheduling
durchgefiihrt werden, wie in Abschnitt Dynamische WCET auf Seite 186 beschrieben.

6.1.2.2 WCET-Analyse fir dynamische Strukturen

Klassische WCET-Analyse-Werkzeuge unterstiitzen nur sehr eingeschriankt dynamische Objekt-
strukturen mit Schleifen. Fiir unsere Modelle wird durch solche Ansitze keine Analyse unter-
stiitzt. Um dieses Problem zu umgehen und trotzdem die bisherigen Werkzeuge fiir plattforms-
pezifische Analysen auszunutzen, stellen wir einen Ansatz vor, der auf der Modellebene bereits
Analysen durchfiihrt. Konkret berechnen wir auf Basis der wohldefinierten Modelle maximale
Schleifendurchlidufe. Diese Berechnungen geben wir dann WCET-Analyse-Werkzeugen mit, so
dass fiir die betrachteten Systeme eine WCET-Berechnung ermdglicht wird.

Durch geeignete Parametrisierung der Modelle ermdglichen wir zudem eine Anpassung der In-
stanzsituation zur Laufzeit unter Beriicksichtigung von Ressourcenschranken. Dabei unterstiit-
zen wir fiir deterministische Plattformen eine Laufzeit-WCET-Analyse, ohne extra ein WCET-
Analyse-Werkzeug anzustoen, wodurch eine effiziente WCET-Berechnung ermdglicht wird.
Verhiilt sich die Plattform unregelmifBig (nicht vorhersehbar), so muss eine vollstindige WCET-
Analyse durchgefiihrt werden.

WCET-Analyse Um cine (dynamische) WCET-Analyse von Story Diagrammen (sieche Ab-
schnitt 2.4.5.4) zu unterstiitzen, beschreiben wir im Folgenden deren moglichen WCET, bzw.
WCNI, Ausfithrungspfade. Wir definieren ein Story Diagram durch ein n-Tupel d = (d*, ..., d")
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mit d' = (((¢ed, ..., 2),p1), oo (K., 4™), p)), definiert einen Pfad von einer Startaktivitit
zu einer Stopaktivitit.

Zwischen diesen Aktividten sind Story Pattern p;, welche innerhalb eines Pfades ausgefiihrt wer-
den. Jeder mogliche Pfad eines Story Diagramms d* wird Offline, wiihrend der Systementwick-
lung berechnet.

Ein Pfad d' eines Story Diagramms beinhaltet Schleifeninformationen fiir jedes individuelle Sto-
ry Pattern, ausgedriickt durch ein n-Tupel von Story Pattern-Indizes (pii, ..., pt). Jeder Index
des Tupels ist eine Referenz auf ein Story Pattern. Die Ordnung der Indizes gibt die Ordnung der
Story Pattern an, wie sie in einem Pfad ausgefiihrt werden. Wenn also ein Story Pattern das erste
Pattern in einer Schleife ist, hat es den Index, welcher der Initiator der Schleife ist.

Die WCET eines Story Diagramms d kann dynamisch durch w(d) = maz(w(d'),...,w(d"))
berechnet werden. Wir nehmen also die WCET eines Story Diagramm-Pfades, welche die Maxi-
male ist. Die WCET eines Story Diagramm-Pfades d* wird durch die WCNI (Worst Case Number
of Iterations) und der WCET w wie folgt berechnet:

w(d) =TT -,

i=1 j=1

mit
i

Vpa) =,

k=1

fiir eine verschachtelte (For-Each) Schleife.

Ein Story Pattern p ist definiert als ein n-Tupel p = ((oy, (otl, ..., 0tL), ..., (0n, (00, ..., 0t™))),
mit 4-Tupel (o;, (018, ..., 0ul),n,¢). Hierbei sind o; Operationen, (ot ... o.!) ist ein n-Tupel
von Operationen-Indizes, die Schleifeninformationen fiir jede Assoziation beinhalten, 7 ist ei-
ne Menge von ausgelassenen Operationen, welche durch negative Anwendungsbedingungen
(NACs) benotigt werden und ¢ bestimmt, ob die Operation zur rechten Hand-Seite (RHS) (
ist gleich dem Index der Operation) oder zur linken Hand-Seite (LHS) (¢ ist 1) gehort.

Wie fiir einen Story Diagramm-Pfad d’ definieren wir einen Story Pattern-Pfad p’, welcher eben-
falls Offline berechnet wird. Jeder Index im Tupel der Operationen-Indizes ist eine Referenz
zu einer Operation. Die Ordnung der Indizes gibt die Reihenfolge wider, in der die Operation
ausgefiihrt werden.

Die WCNI einer Operation o; definieren wir durch:

¥(o;) == H .
=1
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¢"** ist die maximale Konfiguration einer Operation o; (siche Abschnitt 6.1.2.1). Die Gesamt-
WCET eines Story Pattern p ist definiert durch:

w(p) :== Z H WCNI(o0;) - w(o;).

=1 j=C;mi\j=mn

Die WCET der Operationen o; kann Offline durch ein Standard-WCET-Analysewerkzeug (z.B.
Bound-T) bestimmt werden. Die bestimmte Ausfiihrungszeit ist zu jeder Operation eindeutig
referenziert und wird zur Laufzeit benotigt, wenn die aktuelle WCET eines Story Diagramms
bestimmt wird.

Komplexitat Die Berechnung wy,, (C') und 1,,, (C) fiir alle Story Pattern kann zur Laufzeit
fiir eine bestimmte Konfiguration sehr teuer sein, da alle moglichen Pfade mit ihrer Konfiguration
betrachtet werden miissen. Allerdings miissen wir nur maximale Konfigurationen C‘j betrachten.
Damit ist die Komplexitit der WCET und WCNI Analyse O(|V'|) und O(|V'|+|E|). Zur Laufzeit
wird diese Analyse im Hintergrund ausgefiihrt, da eine verzdgerte Antwort keine Auswirkungen
auf die Sicherheit des Systems hat.

Beispiel Beispiel 6.12 zeigt ein Story Diagramm d = (d') mit drei Story Pattern RTSP p1, py
und p3 (durchnummeriert von oben nach unten). Das Story Diagramm besteht aus einem Story
Diagramm-Pfad d* = (((), p1), ((), p2), ((2), p3)), wobei der Index 2 auf das zweite Story Pattern
P9 verweist.

Fiir dieses Beispiel nehmen wir eine initiale Situation an mit 50 TrackSection-Instanzen, 20 Rail-
Cab-Instanzen und einer einzelnen ConvoyCoordinationPattern-Instanz (siehe Beispiel 6.14).

Story Pattern p; = ((3, 1,0, 1)) zeigt ein Match einer trackSection-Instanz durch den this-Zeiger.
Die Ausfiihrungszeit der Operation ist 3 und die WCNI ist 1. Die Ausfiihrungszeit haben wir mit
Bound-T ermittelt.

Story Pattern p, = ((17,20,0,1)) ist das Matching der gebundenen trackSection und einer
RailCab-Instanz. Da es moglicherweise 20 RailCab-Instanzen geben kann, ist die WCNI die-
ses Story Pattern 20.

Story Pattern p3 = ((40,1,0,1),(6,1,0,1),(21,1,{1,2},3), (30,1, {1,2}, 4), (30,1, {1, 2},5))
besteht aus einer Sequenz an Operationen. Die erste Operation ist das Matching einer existing-
Coord-Instanz mit einer initiate-Assoziation zum this-Zeiger. Die zweite Operation ist die Uber-
priifung, ob eine RailCab-Instanz an diesem existingCoord-Muster teilnimmt. Die WCNI dieser
Operation ist 1, da die existingCoord-Instanz hochstens eine RailCab-Instanz als Teilnehmer ha-
ben kann. Operation drei ist die Erzeugung einer convoyCoord-Instanz. In diesem Fall ist ¢ de-
finiert als der Index der Sequenz der Operationen, da diese Operation teil der rechten Regelseite
ist. 7 dieser Operation ist {1,2}, da diese Operationen teil einer negativen Anwendung ist. Die
vierte Operation besteht aus dem Hinzufiigen eines Links von dem this-Zeiger zu der erzeugten
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convoyCoord-Instanz und die fiinfte Operation fiigt ebenfalls einen Link zwischen der RailCab-
Instanz und der convoyCoord-Instanz hinzu. Die WCNI dieser beiden Operationen ist 1, da in
diesem Fall die existingCoord-Instanz die erste Instanz im System ist.

\\/ RaﬂCabs, Tracl§s, Quality
N \ 1

> !

newParticipant
*— norrr}gll} /initiateCoordination() Profiles: Pl((20 20) 6,4)
0 < ¢l < 8000 P2((50.20). 0.6)
L P3((70,20), 0,7) |

Abbildung 6.14: Parametrisiertes Profil

Auf Basis der WCNI konnen wir die WCET fiir jedes Story Pattern berechnen und anschlie3end
die des Story Diagramms durch die oben beschriebenen Berechnungen. w(p;) = 3, w(p2) = 340,
w(ps) = 127 und w(d') = 3 + 340 + (20 - 127) = 2883 Zeiteinheiten, welches die WCET des
Story Diagramms d ist.

Fiir unser Beispiel haben wir Initial zwei Profile umgesetzt. Eins mit 20 RailCabs und das
andere mit 50 RailCabs. Wihrend der Laufzeit haben wir unterschiedliche Konvoisituatio-
nen simuliert, mit unterschiedlichen Anzahlen an moglichen Konvoiteilnehmern (siehe Abbil-
dung 6.14). Diese Anpassungen fithren zu Anpassungen des Profilgraphen. Wie aber in die-
sem Abschnitt beschrieben, miissen wir nur fiir jeden Story Diagramm-Pfad einmal die WCET
neu berechnen. In unserem Fall miissen wir entsprechend fiir eine neues Profil mit z.B. 70
Konvoi-Teilnehmern einfach in der obigen Formel die Anzahl der RailCab Instanzen anpassen:
w(d") = 3+ 340 + (70 - 127) = 9233.

Wie in Abschnitt 6.1.2.1 kann ein Schalten in ein Profil mit mehr Ressourcen ermoglicht werden,
indem eine andere Anwendung in ein Profil mit weniger Ressourcen durch das FRM geschaltet
wird [OZKVO08]. Wie in [BGGO04a] beschrieben wire hier ein Zusammenspiel mit dem Feder-
/Neigemodul des RailCabs moglich, da dieses ebenfalls iiber drei unterschiedliche Ressourcen
verfligt. Fiir ausfiihrliche Evaluierungen diesbeziiglich sei an dieser Stelle auf die Arbeiten von
Oberthiir verwiesen (z.B. [OZL10]).

Anzumerken ist, dass diese Form von Laufzeitanpassung eine Voraussetzung fiir die betrachteten
selbstoptimierenden, mechatronischen Systeme ist. Klassische WCET und Scheduling-Ansétze
miissen im Vergleich die Berechnungen vor der Inbetriebnahme durchfiihren. Fiir Situationen,
wo das System nicht mit allen maximalen Ressourcen ausgelegt werden kann, miissen die klas-
sischen Ansitze einen Kompromiss finden, der allerdings eine zur Laufzeit optimale Losung
verhindert.
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6.1.2.3 Codegenerierung und Profilaktualisierung

Die Codegenerierung basiert auf der Codegenerierung fiir die sogenannten eingebetteten Story
Diagramme [Sei05] (fiir Details sei auf diese Arbeit verwiesen). Es werden dabei Story Diagram-
me analysiert, um eine optimierte Graphmatching-Sequenz (siehe Abschnitt 2.4.5.2) fiir eine be-
stimmte Instanzsituation fiir jedes Story Pattern zu berechnen. Die Graphmatching-Sequenzen
werden anschlieend durch Schleifen und Container im Quellcode abgebildet.

Um die verwendeten Ressourcen einer Komponente verwalten zu konnen, wurde die Codegene-
rierung um das Pool-Allokations-Muster (Factories) erweitert (siche Abschnitt 6.1.1). Die Fac-
tories unterstiitzen die Moglichkeit, die Anzahl der von Thnen erzeugten Objekte anzupassen.
Diese Funktion wird genutzt, um sicher zu stellen, dass eine Komponente nicht mehr Ressour-
cen beansprucht als ihr bereitgestellt wird.

Zusitzlich erhilt jede Factory eine Methode, die als gemeinsame Schnittstelle zum Setzen
von Instanzgrenzen verwendet werden kann. Das Setzen von Instanzgrenzen einer Facto-
ry bietet damit die Moglichkeit spezifizierte Profile und die damit verbundenen Ressourcen-
Einschrinkungen fiir eine Komponente auf Implementierungs-Ebene umzusetzen.

Ein Story Diagramm wird nur innerhalb der Instanzgrenzen des Profils ausgefiihrt. Wenn ei-
ne Anwendung nun durch eine bestimmte Strategie lernt (sieche Abschnitt 6.1.2.1), dass mehr
Ressourcen benotigt werden, da z.B. kein weiteres RailCab im Konvoi aufgenommen werden
kann, kann die Anwendung die Qualitédt der Ressourcen erhdhen oder ein Profil (siehe Abschnitt
6.1.2.1) mit den benotigten Ressourcen anlegen (siehe Abschnitt 6.1.2.1).

Eine Profilaktualisierung oder die Instanziierung eines neuen Profils ist nur erlaubt, wenn die ak-
tualisierte WCET keine Deadline der tibergeordneten Statecharts verletzt. Die relevante Deadline
eines Story Diagramms ist die der Transition, die das Story Diagramm als Seiteneffekt aufruft.
Hierdurch bleiben die formalen Analysen auf Modellebene weiterhin erhalten.

6.1.2.4 Evaluierungsreihenfolge hybrider Systeme mit Strukturanpassungen

Die parallele (verteilte) Ausfithrung eines hybriden Systems impliziert, dass einzelne hybride
Komponenten oder Teile von Komponenten getrennt voneinander ausgefiihrt werden und Nach-
richten sowie Signale austauschen, um ihre jeweiligen Funktionen bearbeiten zu konnen.

Problematisch ist dies gerade aus regelungstechnischer Sicht, unter Beriicksichtigung von Re-
konfigurationen. Hierdurch wird gefordert, dass einzelne Blocke oder Zusammenschliisse von
Blocken ausgetauscht werden konnen. Durch eine grobgranulare Aufteilung der einzelnen re-
gelungstechnischen Blocke, kann allerdings eine Verklemmung nicht vermieden werden (siehe
Abbildung 6.15).

Abbildung 6.15 a) zeigt ein Beispiel fiir eine abstrakte Konfiguration. Wird diese zu grob granu-
lar, wie Abbildung 6.15 b) zeigt, partitioniert, dann tritt eine Verklemmung auf, da die oberste
Eingabe des Blocks n4; eine Abhingigkeit zur Ausgabe des Blocks hat. Abbildung 6.15 ¢) zeigt
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eine giiltige Partitionierung. Eine Verklemmung tritt nicht auf, da die Schleife durch sequentielle
Ausfiihrung von ngg und n4; aufgelost werden kann.

Fiir die verteilten Ausfithrungen werden daher die regelungstechnischen Modelle partitioniert.
Aufgrund dieser Aufteilung kann eine verklemmungsfreie Ausfiihrungsreihenfolge bestimmt
werden.

b) Unpassende Partitionierung c¢) Passende Partitionierung

Abbildung 6.15: Abstraktes Partitionierungsbeispiel [Bur(O6]

Grundsitzlich gibt es zwei unterschiedliche Verfahren, um mogliche Ausfiihrungsreihenfolgen
(Evaluierungsreihenfolgen) zu bestimmen. Dies ist die sogenannte White-Box-Integration und
die Black-Box-Integration [Hon98].

Die White-Box-Integration erméoglicht die Beriicksichtigung der inneren Teilmodelle einer
Blockstruktur zur Bestimmung der Evaluierungsreihenfolge. Durch diese enge Verzahnung der
blockinternen Teilmodelle kénnen einfach Verklemmungsfreie Evaluierungsreihenfolgen be-
stimmt werden, da die Kommunikationen genau dann intern stattfinden, wenn dies benotigt wird.
Nachteil hierbei ist, dass ein Block oder Zusammensetzungen von Blocken nicht einfach ersetzt
oder rekonfiguriert werden konnen, da die internen Abhingigkeiten wieder neu aufgelost werden
miissen.

Die Black-Box-Integration beriicksichtigt nicht die internen Teilmodelle eines Blockes. Ab-
hingigkeiten werden entsprechend gebiindelt zu bestimmten Zeitpunkten im Programmablauf
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aufgelost (durch fest definierte Kommunikationszeitpunkte). Dieser Ansatz erlaubt es damit
Blockstrukturen zu rekonfigurieren, da lediglich die vorgegebene Taktung der Kommunikation
eingehalten werden muss. Problem ist allerdings, dass Verklemmungen nicht vermieden werden
konnen, wie in Abbildung 6.15 b) dargestellt.

Aufgrund der diskutierten Vor- und Nachteile beider Integrationsverfahren, werden in der
Praxis héufig beide Verfahren in einer Anwendung angewandt [Hon98]. Daher wurde in
[OGBG04, BGGOO04b, GHHI11] eine Gray-Box-Integration vorgestellt, die die Vorteile der
White-Box- und Black-Box-Integration ausnutzt, um eine moglichst optimale Evaluierungsrei-
henfolge fiir hybride rekonfigurierende Systeme zu ermitteln.

Der Gray-Box-Integrationsansatz ist aufgeteilt in zwei Schritte. Zuerst werden die internen Ab-
hingigkeiten der Blocke, bzw. Blockstrukturen unabhéngig von den externen Abhingigkeiten
aufgelost, so dass fiir diese unabhéngig von anderen Modulen eine verklemmungsfreie Evalu-
ierungsreihenfolge bestimmt werden kann. Im zweiten Schritt wird dann auf Basis der Evalu-
terungsreihenfolgen der Module eine Gesamtevaluierungsreihenfolge bestimmt. Wie auch aus-
fiihrlich in [Bur06] diskutiert, unterstiitzt dieser Ansatz die Anforderungen rekonfigurierender
Systeme, da die zu rekonfigurierenden Module getrennt voneinander betrachtet werden konnen.

Ein Problem ist allerdings, dass durch kompositionelle Strukturanpassungen a priori keine Eva-
luierungsreihenfolgen bestimmt werden konnen, da die konkrete Auspriagung nicht bekannt ist.
Das in Abschnitt 3 beschriebene Konvoibeispiel (siche Abbildungen 3.1, 3.2 und 3.3) verdeut-
licht die notwendige kompositionelle Strukturanpassung, um die Konvoiparameter durch den
PosCalc-Regler berechnen zu konnen.

Da die Struktur nicht, wie bisher durch die HYBRID RECONFIGURATION CHARTS vorgegeben,
a priori fiir alle abhéingigen moglichen Module festgelegt wird, kann auch keine Evaluierungs-
reihenfolge, wie fiir den zweiten Schritt gefordert, fiir das System festgelegt werden.

In [GHH11] haben wir verschiedene Ansatz vorgeschlagen, die den bisherigen Gray-Box-Ansatz
erweitern, um eine Evaluierungsreihenfolge aller abhingiger Module berechnen zu konnen
(Schritt 2), die einer kompositionellen Strukturanpassung ausgesetzt sind.

Eine erste Moglichkeit ist die datenflussgetriebene Integration. Die Datenfluss-Integration be-
rechnet keine Evaluierungsreihenfolge offline. Zur Laufzeit wird eine Evaluierungsreihenfolge
auf Basis des Datenflusses (der sich durch die lokalen Berechnungen sowie den Verbindungen
zwischen den Modulen ausdriickt) bestimmt. Da die Abhingigkeiten nur bedingt vorhergesehen
werden konnen, kann eine Verklemmung auftreten. Dies ist damit keine geeignete Losung, da
die Verklemmungen auch nur aufgelost werden konnen, wenn es Riickfallpunkte gibt, an denen
die Evaluierung erneut ausgefiihrt werden kann. Aufgrund der harten zeitlichen Restriktionen ist
dies allerdings nur sehr bedingt mdoglich.

Alternativ ist es moglich fiir die Module, die eine kompositionelle Strukturanpassung unterstiit-
zen, an den jeweiligen Schnittstellen der Module vorher fest die Evaluierungsreihenfolgen zu
definieren. Dieser Ansatz ist zwar weniger flexibel, ermoglicht allerdings eine einfache Integra-
tion in den im vorherigen Abschnitt vorgestellten WCET-Analyse und Codegenerierungsansatz.
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Da die moglichen Module a priori bekannt sind (z.B. der PosCalc-Controller), kann a priori die
lokale Evaluierungsreihenfolge durch die Gray-Box-Integration fiir jedes Modul bestimmt wer-
den. Dies bedeutet allerdings auch, dass das eingebettete Modul nur innerhalb der vorgegebenen
Grenzen kompositionelle Strukturanpassungen durchfiihren darf.

Zur Laufzeit kann dann, wie in den Abschnitten 6.1.2.1 und 6.1.2.2 beschrieben, die Grenze
angepasst werden, wenn denn eine neue giiltige Evaluierungsreihenfolge fiir das iibergeordne-
te Modul bestimmt wurde. Die Flexibilitdt des Ansatzes ist damit sehr stark abhingig von den
moglichen Ressourcen-Freirdaumen zur Laufzeit, um alternative, moglicherweise bessere, Eva-
luierungsreihenfolgen zu bestimmen. Dieses Vorgehen ist allerdings notwendig, um die Vorher-
sagbarkeit des Systems zu gewihrleisten. Durch die Integration mit dem in Abschnitt 6.1.2.2
vorgestellten Ansatz wird dies zugesichert.

6.1.2.5 Diskussion

In diesem Abschnitt haben wir eine neuartige WCET-Analyse in Kombination mit einem fle-
xiblen Ressourcenverwalter vorgestellt. Dieser Ansatz garantiert Vorhersagbarkeit trotz der ver-
wendeten komplexen Objektstrukturen mit prinzipiell unbekannter oberer Schleifengrenze. Er-
moglicht wird dies durch einen modellgetriebenen Entwicklungsansatz mit entsprechender Co-
degenerierung. Hiermit sind wir in der Lage komplexe Funktionalititen umzusetzen, wie sie in
selbstoptimierenden, mechatronischen Systemen bendtigt werden, um auf Umgebungsinderun-
gen zur Laufzeit optimal reagieren zu konnen.

6.2 Umsetzung

Das Werkzeug wurde als eine Erweiterung in Form von Plugins der Fujaba Real-Time Tool
Suite (Fujaba RT) umgesetzt. Fujaba RT ist eine Tool Suite basierend auf der Fujaba4Eclipse
Tool Suite, die 2002 durch einen Neuentwurf des Open Source UML Case Tools Fujaba initiiert
wurde [PTH09].

Abbildung 6.16 zeigt eine Ubersicht iiber die Architektur des Werkzeugs in Form von Plugins.
Intern enthalten diese weitere Plugins, die wir im Folgenden genauer erldutern werden.

Die Fujaba4Eclipse Plugins wurden im Wesentlichen unverédndert genutzt. Diese Plugins enthal-
ten den Kern von Fujaba, die Unterstiitzung fiir Story Driven Modeling (mit Klassendiagrammen
und Storydiagrammen) und (Java-) Codegenerierung.

Fujaba RT setzt die MECHATRONIC UML um. Dies beinhaltet die Strukturmodellierung mit
Komponentendiagrammen, die Verhaltensmodellierung mit REAL-TIME STATECHARTS und
HYBRID RECONFIGURATION CHARTS sowie eine (C++) Codegenerierung.

Um die Konzepte dieser Arbeit umzusetzen wurde zum einen, wie in Abschnitt 2.6.1 beschrie-
benen eine Veridnderung des Metamodells vorgenommen. Die Umstellung vollstandig durchzu-
fiihren ist allerdings sehr aufwendig, da z.B. auch die Codegenerierung umfangreich angepasst
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Abbildung 6.16: Ubersicht Werkzeugarchitektur

werden muss. Dies liegt daran, dass bisher nur fiir eine Komponente ein Statechartverhalten ge-
neriert wird. Um allerdings das Loschen und Erzeugen von z.B. Ports zu unterstiitzen, muss auch
ein Port eigenes Verhalten unabhéngig von der Komponente besitzen. Im Rahmen dieser Arbeit
waren diese Umstellungen nicht mehr moglich, so dass gerade die Codegenerierung zwar fiir
die neuen Konzepte gezeigt werden kann, jedoch nicht komplett integriert mit der derzeitigen
Codegenerierung fiir HYBRID RECONFIGURATION CHARTS. Die vollstindige Umstellung aller
Plugins auf das erweiterte Metamodell wird aktuell von dem Fujaba RT Team? vorangetrieben.

Weitere Erweiterungen sind unter dem Motto Konsistenzerhaltung zwischen Fujaba RT Dia-
grammen erfolgt. Z.B. wurde eine Messagelnterface-Plugin in der Projektgruppe Mauritius
[ACE*08] eingefiihrt, um Konsistenz zwischen Nachrichten sicherzustellen, die in der vorhe-
rigen Version nur iiber Strings umgesetzt wurden oder auch eine automatische Konsistenzhal-
tung zwischen Rollen- und Portverhalten (umgesetzt in der PG ReCab [BBB109]). Speziell der
Aspekt der Konsistenzhaltung zwischen mehreren Diagrammen von Fujaba RT wurde auf den
Fujaba Days vorgestellt [ACET08]. Eine Erweiterung des Umschaltkonzepts fiir Regler, die eine
vorhersagbare Umschaltung ermoglichen, wurde in [Poh08] realisiert.

Das Plugin TimedStoryCharts and RefinementAnalysis beinhaltet die Implementierung der TI-
MED STORY CHARTS (siehe Kapitel 2.6) und der Verfeinerungsiiberpriifung fiir die Wiederver-
wendung von modellierten Komponenten (siehe Kapitel 3). Um Berechnungen auf dem Zone
Graphen (siche Abschnitt 3.2.1) vorzunehmen, nutzen wir die UPPAAL UDBM Bibliothek® aus.
Die Erreichbarkeitsanalyse innerhalb der Verfeinerungsiiberpriifung nutzt eine Erreichbarkeits-
analyse auf Storydiagrammen aus [Ziin09] und erweitert diese um eine zeitbehaftete Erreich-
barkeitsanalyse. Implementiert wurden diese Plugins im Rahmen der Masterarbeit von Christian

’Das Fujaba RT Team besteht im Wesentlichen aus den Mitarbeitern des Teilprojekts B1 des Sonderforschungsbe-
reichs 614 (http://www.stb614.de/sfb614/projektbereiche/projektbereich-b/teilprojekt-b1/)
http://www.cs.aau.dk/ adavid/UDBM/
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6.2 Umsetzung

Heinzemann [Hei09]. Die Ergebnisse wurden im Rahmen einer Fujaba Days Demo in Koope-
ration mit Albert Ziindorf vorgestellt [HHZ09]. Aktuell werden die bisherigen Plugins in der
Form erweitert, dass auch eine Verifikation von Eigenschaften moglich ist. Um dabei nicht den
Charakter einer reinen Erreichbarkeitsanalyse zu verlieren wurde hier das Konzepte von Testau-
tomaten verfolgt, die eine bestimmte Klasse von Eigenschaften in eine reine Erreichbarkeitsana-
lyse transformieren [Bre10]. Christian Heinzemann, der sich bereits in sein Masterarbeit [Hei09]
mit Timed Story Charts und deren Verfeinerung auseinander gesetzt hat, forciert dieses Thema
im Rahmen seiner Dissertation, so dass auch schon die Verifikationsumgebung auf einem Tool
Contest vorgestellt wurde [HSJZ10].

Das LegacyComponentintegration-Plugin beinhaltet die Umsetzung der Konzepte zur Integra-
tion von Altkomponenten (siehe Kapitel 4). Intern wird die Umsetzung auf vier Plugins ver-
teilt: 1) LegacyComponent-Editor, 2) BlackBoxChecking, 3) WhiteBoxChecking und 4) Gray-
BoxChecking. Die Plugins 1) - 3) wurden im Rahmen der Projektgruppe ReCab [BBB09] um-
gesetzt und das Plugin 4) in der Bachelorarbeit von Christian Brenner [Bre08]. Die Plugins 1)
- 3) sowie auch 4) wurden jeweils auf den Fujaba Days vorgestellt [HBB*09, BGH"08]. Der
Gesamtansatz der Integration von Altkomponenten, die FRiTS®? Tool Suite, wurde auf dem
Research Demonstration Track der International Conference on Software Engineering in Koope-
ration mit der Hella KGaA Hueck & Co. # vorgestellt [HMS™10].

Die Konzepte der Komponentenverhaltensynthese werden in dem ComponentBehaviorSynthe-
sis-Plugin implementiert. Um Berechnungen auf dem Zone Graphen vorzunehmen (siehe Ab-
schnitt 5.3.1) nutzen wir, wie bereits oben fiir die Verfeinerungsiiberpriifung beschrieben, eine
Anbindung der UDBM Bibliothek aus. Umgesetzt wurde die Synthese in der Diplomarbeit von
Tobias Eckardt [Eck(09], die auch als Demo auf den Fujaba Days vorgetragen wurde [EH09].
Eine Integration mit der Synthese von Rollenverhalten (siehe Abschnitt 2.4.1) wurde auf dem

Research Demonstration Track der International Conference on Software Engineering vorge-
stellt [HGH'09].

Das Plugin Codegen and WCETAnNaylsis lisst sich in die drei Bereiche Codegenerierung, WCET-
Analyse und Ausfiihrungsumgebung aufteilen, die die Konzepte zur Codegenerierung und Aus-
fiihrung (siehe Kapitel 6.1) umsetzen. Die Umsetzung der Codegenerierung erweitert die (C++)
Codgenerierung fiir Story Diagramme um ein Factory-Konzept zum Erzeugen und Loschen von
den Elementen einer Komponentenarchitektur. Die Erzeugung wird dabei in Abhédngigkeit von
den moglichen Ressourcen, die durch ein Ressourcenprofil festgelegt werden (siehe Abschnitt
6.1.2.1), kontrolliert. Wie bereits oben erldutert konnte hier keine vollstindige Integration mit der
Codegenerierung fiir HYBRID RECONFIGURATION CHARTS [BGH 07, HHO8b] realisiert wer-
den. Die WCET-Analyse nutzt intern eine Anbindung an das WCET Analyse-Werkzeug Bound-
T aus, um fiir einzelne Codefragmente eine WCET zu berechnen (sieche Abschnitt 6.1.2.2). Eine
Assoziation zur Codegenerierung erméoglicht dabei die vorherige Codegenerierung und Uberset-
zung, die als Eingabe fiir das WCET Analyse-Werkzeug benétigt wird.

“http://www.hella.com/hella-de-de/index.html
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Kapitel 6 Werkzeugunterstiitzung

Die Laufzeitumgebung baut auf der Laufzeitumgebung fir HYBRID RECONFIGURATION
CHARTS [GHO6a] auf, und erweitert diese um die Moglichkeit der Simulation von Zeit und
einer deterministischen Wiederholung, wie dies fiir die Integration von Altkomponenten bendo-
tigt wird (siehe Kapitel 4). Umgesetzt wurden diese Plugins im Wesentlichen im Rahmen der
Projektgruppe ReCab [BBB109]. Die Plugins wurden ebenfalls auf den Fujaba Days vorgestellt
[HBB'09].

6.3 Validierung

Das Ziel des in dieser Arbeit vorgestellten Ansatzes (siehe Kapitel 2.6 bis 5) ist es, einen mo-
dellgetriebenen Entwicklungsansatz fiir selbstoptimierende, mechatronische Systeme, in dessen
Mittelpunkt die Komposition und Wiederverwendung von Softwarekomponenten und deren Pro-
tokollverhalten zu komplexen hierarchischen Komponentensystemen stehen, bereitzustellen (sie-
he auch Abbildung 2.1).

Diese Ergebnisse wurden mit Hilfe des im vorherigen Abschnitt 6.2 vorgestellten Werkzeugs
validiert. Nach [EFRO08, BecO8] konnen die Ergebnisse, die entstandenen Methoden, auf drei
unterschiedliche Arten validiert werden: 1) mit Typ I Validierung kann gezeigt werden, dass die
Absicht (Vorhersage) der Methoden der beobachteten Realitét entspricht, wenn die Methode und
das Werkzeug richtig angewendet werden. 2) Die Typ II Validierung zeigt, dass die Methoden
erfolgreich von geschulten Benutzern angewandt werden konnen. Einen Vorteil des entwickelten
Gesamtansatzes gegeniiber verwandten Ansitzen zeigt die Typ III Validierung.

Der Schwerpunkt dieser Arbeit liegt stirker im Bereich der Entwicklung von notwendigen Me-
thoden fiir die Entwicklung von selbstoptimierenden, mechatronischen Systemen (die durch bis-
herige Ansétze noch nicht unterstiitzt werden) und weniger im Bereich der experimentellen Va-
lidierung des Gesamtansatzes der MECHATRONIC UML und den hier vorgestellten Erweite-
rungen. Daher werden Typ II und Typ III Validierung nicht ndher betrachtet. Ein Vergleich mit
anderen Ansitzen, in Form einer Validierung, ist zudem nicht ohne weiteres moglich, da die
MECHATRONIC UML und die hier vorgestellten Erweiterungen notwendige Konzepte fiir die
betrachteten Systeme anbieten, die durch verwandte Ansétze nicht unterstiitzt werden [GHO6D]
(siehe auch Kapitel 7).

Um eine Typ I Validierung fiir den Ansatz dieser Arbeit durchzufiihren, miissen wir zum einen
zeigen, dass wir die Klasse der betrachteten selbstoptimierenden, mechatronischen Systeme mo-
dellieren konnen. Zum anderen miissen wir die entwickelten Analysen und Synthesen dahinge-
hend validieren, dass diese den gestellten Anforderungen standhalten.

Das in Abschnitt 1.2 eingefiihrte RailCab-Projekt adressiert alle gestellten Anforderungen an den
Ansatz und ist daher eine geeignete Anwendung, um die Validierung zu zeigen. Im Speziellen
betrachten wir das Konvoi-Szenario. Die wesentlichen Argumente fiir eine erfolgreiche Validie-
rung wurden bereits in den einzelnen Abschnitten anhand des durchgéingig betrachteten Konvoi-
Szenarios gezeigt. Im folgenden Abschnitt 6.3.1 werden wir die Spezifikation und Analyse der
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RailCab-Anwendung mit Hilfe der Werkzeugumgebung darstellen und Evaluierungsergebnisse
in Form von Laufzeit und Speicherverbrauch diskutieren. Weitere Anwendungsszenarien be-
trachten wir in Abschnitt 6.3.2. Die Validierung ist im Wesentlichen im Rahmen der in Abschnitt
6.2 beschriebenen Master- und Bachelorarbeiten sowie durch Projektgruppen und Tool-Demos
erfolgt.

6.3.1 Konvoi-Anwenungsszenatrio

In den Einleitungen zu den Hauptkapiteln dieser Arbeit (Kapitel 3 bis 5) wurde jeweils zuge-
schnitten fiir die Kapitel ein Ausschnitt des Konvoi-Szenarios gezeigt, an dem die Notwendigkeit
der dort erlduterten Methode diskutiert wurde. Wir werden in diesem Abschnitt das entwickelte
Werkzeug in den Vordergrund stellen und die Spezifikation und Analyse des Konvoi-Szenarios
hieran demonstrieren. Der Ablauf orientiert sich dabei an Abbildung 2.1. Den ersten Schritt, Sze-
narien modellieren und Rollenverhalten synthetisieren, werden wir allerdings tiberspringen. Fiir
Details hierzu sei auf [BGK05, HGH™09] verwiesen.

Wir beginnen mit einem Ausschnitt der Modellierung des RailCab Beispiels mit der Fujaba Real-
Time Tool Suite in Abschnitt 6.3.1.1. In den Abschnitten 6.3.1.2 bis 6.3.1.4 werden wir zeigen,
wie die umgesetzte Werkzeugunterstiitzung die Wiederverwendung von Komponenten, Altkom-
ponenten und Protokollverhalten adressiert. Abschlieend in Abschnitt 6.3.1.5 werden wir die
Werkzeugunterstiitzung fiir die Codegenerierung sowie die WCET-Analyse vorstellen, die wir
fiir die Integration von Altkomponenten benétigen und die zudem den modellgetriebenen Ent-
wicklungsansatz vervollstindigt.

6.3.1.1 Modellierung

Die Modellierungsumgebung erweitert die bisherige Werkzeugunterstiitzung der MECHATRO-
NIC UML. Basisarbeiten der Werkzeugunterstiitzung der MECHATRONIC UML wurden in
[BGH'05b] und [BGH"07] vorgestellt. Besonderer Schwerpunkt der Erweiterungen der Mo-
dellierungsumgebung liegen dabei zum einen auf der Unterstiitzung von Altkomponenten sowie
den bereits in Abschnitt 6.2 angesprochenen Erweiterungen des unterliegenden Metamodells,
um eine durchgiingige Entwicklung zu unterstiitzen. Die Durchgingigkeit bezieht sich dabei
auf die in Abbildung 2.1 dargestellten Hauptaktivititen der MECHATRONIC UML. So wur-
de in der Projektgruppe Mauritius [ACE*08] besonders die Durchgingigkeit zwischen einer
Anforderungsspezifikation mit sogenannten Goals (z.B. [Lam(9]), iiber eine Szenario Spezifi-
kation und der Synthese von Zustandsverhalten hieraus, bis hin zur Komponentenspezifikation
erarbeitet. Der Ubergang zur hierarchischen Komponentenspezifikation mit Strukturanpassung,
Constraint-Definition und Analyse bis hin zur Codegenerierung wurde in der Projektgruppe Re-
Cab [BBB"09] erarbeitet. Im Folgenden werden wir einen Ausschnitt des RailCab Szenarios
anhand dieser erweiterten Werkzeugumgebung vorstellen.
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Kapitel 6 Werkzeugunterstiitzung

Die im Folgenden mit der Werkzeugumgebung illustrierten Modellelemente wurden ausgewahlt,
um zu zeigen, dass mit der Werkzeugumgebung ein Entwickler auch die notwendigen Modelle
fiir die betrachtete Anwendungsdoméine beschreiben kann. Der Vollstidndigkeit halber wird an
den entsprechenden Stellen auf die umfangreichere Beschreibung der Beispielanwendung in den
Konzeptkapiteln verwiesen.

Wir beginnen mit der Modellierung der Kommunikation. Abbildung 6.17 zeigt die Struktur des
DistanceCoordination-Musters. Hierfiir haben wir ein REAL-TIME COORDINATION PATTERN
mit den Rollen front und rear angelegt. Zusitzlich haben wir die einzuhaltenden Eigenschaften
definiert. Dies ist zum einen A[] not rear.Convoy imply front.Convoy sowie die Deadlock-Freiheit.
Diese Eigenschaften beziehen sich auf das Verhalten der Rollen, welche wir mit REAL-TIME
STATECHARTS spezifizieren.

false

A[] rear.Convoy imply front.Convoy

false

R

D front rear D

A[] not deadlock

Abbildung 6.17: REAL-TIME COORDINATION PATTERN DistanceCoordination

Abbildung 6.18 zeigt das REAL-TIME STATECHART der front-Rolle. Um festzulegen welche
Nachrichten die Rollen austauschen konnen, werden im Message Interface Editor die Nachrich-
ten definiert. Explizit zeigen wird die Schnittstelle nicht. Die Nachrichtenbezeichnung ist jedoch
im Statechart ersichtlich. msglFace_context und msg_IFace_legacy sind die beiden Schnitt-
stellen. msglFace_context definiert die Nachrichten LEAVE_CONVOQOY, welche die Transition
leave nach noConvoy schaltet, CONVOY_REQUEST, die die Transition noConvoy nach wait-
Convoy schaltet und die Nachricht LEAVE_CONVOQOY_REQUEST, die die Transition von con-
voy nach waitNoConvoy schaltet. Die restlichen Nachrichten der front-Rolle werden durch die
msg_|Face_legacy-Schnittstelle definiert.

Wie bereits in den vorherigen Verhaltensbeschreibungen zur front-Rolle erlautert (sieche Ab-
schnitt 2.4.2) besteht die Koordination zum einen aus dem Teil der Anfrage, ob ein Konvoi
realisiert werden soll (Schleife zwischen den Zustinden noConvoy und waitConvoy) und zum
anderen aus der periodischen Anfrage (im Intervall 0 < ¢1 < 100) ob der Konvoi aufgelost
werden soll. Im Intervall 150 < ¢1 < 200 kann der Konvoi aufgeldst werden. Fehler, wie z.B.
Netzwerkfehler, werden durch das Verhalten nicht beriicksichtigt, um die Anschaulichkeit des
Beispiels nicht zu verlieren. Netzwerkfehler werden z.B. in [HHGO8] betrachtet. Das Verhal-
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ten der rear-Rolle werden wir im Folgenden nicht explizit modellieren, sondern durch unsere
Altkomponenten-Integration erlernen (sieche Abschnitt 6.3.1.3).

InitialState
msglFace_context.LEAVE_CONVOY( ) / 150 <= cl <= 200 / msglFace_legacy.APPROVE_LEAVE_CONVOY_REQUEST

cl}

B noConvoy

/ msglFace_leg

waitNoConvoy
.DECLINE_CONVOY_REQUEST( )

NVOY_REQUEST( ) /

msglFace_context.LEAVE_

msglFace_context.CONVOY_REQUEST(

0 <= cl <= 100 AmsglFace_legacy.DECLINE_LEAVE_CONVOY_REQUEST( )

waitConvoy convoy ;}
/ msglFace_legacy.APPROVE_CONVOY_REQUEST( ) {c1}

Abbildung 6.18: REAL-TIME STATECHART front-Rolle

Neben dem DistanceCoordination-REAL-TIME COORDINATION PATTERN haben wir in dieser
Arbeit noch das Registration-REAL-TIME COORDINATION PATTERN betrachtet sowie das Con-
voyCoordination-PARAMETERIZED REAL-TIME COORDINATION PATTERN. Die Moglichkeit
der Spezifikation eines Musters ohne Multi-Rolle haben wir oben gezeigt. Wir werden daher
in 6.3.1.4 nur noch auf notwendige Anpassungen des Registration-Musters eingehen, um die
Synthese von Komponentenverhalten illustrieren zu konnen. Der Wesentliche Unterschied eines
PARAMETERIZED REAL-TIME COORDINATION PATTERN zu einem REAL-TIME COORDINA-
TION PATTERN ist die Spezifikation des Verhaltens mit Parametern. Wir werden daher diesen
Aspekt der Werkzeugunterstiitzung beleuchten.

Abbildung 6.19 zeigt die Rolle coordinator. Das Statechart der Coordinator-Komponente ist in
Abbildung 6.19 dargestellt. Dieses enthilt einen Zustand mit zwei AND-States, die parallel aus-
gefiihrt werden. Der untere AND-State beschreibt das Adaptionsverhalten fiir den Multi-Port, der
obere AND-State das parametrisierte Rollenstatechart fiir die Coordinator Rolle. Wie in Kaptel 3
auf Seite 65 beschrieben, wird mit dem Synchronisationkanal next iber den Parameter £ des Rol-
lenstatecharts jede Rolleninstanz geordnet nacheinander angesto3en, um die einzelnen Konvoi-
teilnehmer (n speichert die aktuelle Anzahl der Konvoiteilnehmer) nacheinander zu aktualisie-
ren (update-Nachricht). AngestoBen werden die Rolleninstanzen durch das Adaptionsstatechart
(unterer AND-State), indem die Transition mit dem Synchronisationskanal next[!] von Zustand
Convoy nach SendUpdates geschaltet wird. In dem vorderen Teil des Adaptionsstatecharts wird
der initiale Port (Ubergang von noConvoy nach CreatePort) angelegt. Die Seiteneffekte und Syn-
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chronisationskanile an den Transitionen von Zustand CreatePort nach Convoy erzeugen weitere
Portinstanzen.

Nachdem alle Rollen spezifiziert sind, definieren wir den Komponententyp RailCab, der alle Rol-
len der Muster anwendet (sieche Abbildung 6.20). Weiterhin wird der Komponententyp PosCalc
wiederverwendet, indem er als Part in dem Komponententyp RailCab eingebettet wird, die da-
mit hierarchisch aufgebaut ist. Zudem konnen auf der Typebene Kompositionsregeln definiert
werden, um Abhédngigkeiten zwischen Rollenverhalten zu bestimmen (siche Kapitel 5). In dem
Beispiel wird gefordert, dass ein Konvoi nur durchgefiihrt werden darf, wenn das RailCab auch
bei einer Streckenabschnittskontrolle registriert ist (!(registree.unregistered AND rear.convoy)).

Wie schon zu Abbildung 3.1 beschrieben, ist das spezifizierte Verhalten des Multi-Parts Pos-
Calc (siehe Abbildung 6.21) verschieden zu dem Verhalten des coordinator-Multi-Ports. Zum
einen zeigt das Statechart eine andere Struktur (unterschiedliche Anzahl an Zustdnden und Tran-
sitionen) auf sowie ein anderes zeitliches Verhalten (im Zustand AwaitAck kann lidnger verweilt
werden). Die verarbeiteten Nachrichten sind allerdings identisch, so dass keine Schnittstellen-
beschrinkung vorgenommen werden muss (sieche Definition 20). Das Adaptionsverhalten des
PosCalc-Multi-Parts unterscheidet sich zum einen von dem Adaptionsverhalten der Coordina-
tor-Multi-Rolle durch die aufgerufenen Seiteneffekte. Zum anderen unterscheiden sich die Syn-
chronisationen. Das Adaptionsverhalten der Coordinator-Multi-Rolle startet durch die create-
Port-Synchronisation das Erzeugen der Delegations- und Part-Instanzen.

Die Synchronisation zur Erzeugung der internen Elemente wird nicht direkt von der Multi-Rolle
zum Multi-Part angesteuert, sondern iiber das Adaptionsverhalten der Delegation (siehe Abbil-
dung 6.22). Der Multi-Port fiihrt bei der Erstellung einer neuen Portinstanz eine Synchronisation
tiber den Kanal createAbsPort durch. Danach kann iiber den Synchronisationkanal createRefPart
eine Instanz des Multi-Parts angelegt werden. Nachdem die Rekonfiguration ausgefiihrt wurde,
werden der neu erstellte Port und der neu erstellte Part iiber die Funktion createDelegation mit
einer Delegation verbunden. Die Funktion ist in Abbildung 6.23 als Story Diagramm angegeben.
Es werden der Port und der Part verbunden, die keine Assoziation zu einer Delegation besit-
zen. Fiir eine umfangreiche Beschreibung der Strukturanpassung sei auf Abschnitt 2.6 Seite 47
verwiesen.

Um Altkomponenten zu integrieren, unterstiitzt die Werkzeugumgebung zusitzlich die Spezifika-
tion von Legacy-Komponenten, die im Editor schwarz dargestellt werden. Zuerst wird dabei ein
Typ der Altkomponente angelegt und alle bekannten Informationen beschrieben. Abbildung 6.24
beschreibt die Eigenschaften einer RailCab Altkomponente. Je nachdem, welche Informationen
der Altkomponte vorliegen, konnen, wie in Kapitel 4 beschrieben, verschiedene Integrationsver-
fahren durchgefiihrt werden. In dem dargestellten Beispiel liegen alle relevanten Informationen
fiir alle drei Integrationsverfahren vor. Fiir das Black Box Checking ist das der Pfad zu der bi-
niren Datei der Altkomponente sowie die Obergrenze der Zustinde der Altkomponente. Fiir
das White Box Checking wird der Pfad zur Quelldatei benétigt, die Sende-/Empfangsmethode,
Zeitmethode (nicht notwendig, ohne kann allerdings keine Zeit beriicksichtigt werden), die pe-
riodisch ausgefiihrte Methode sowie die Initialisierungsdatei. In den Priferenzen gibt es zudem
noch die Méglichkeit fiir das Black Box Checking zwischen den Aquivalenzalgorithmus nach
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Statechart_for_Coordinator | clocks: c1c2 J InitialState

Coordinator_MainState

InitialState

[this.parameter = n]

/ done !
Idle 1i1]

Complete
cl <= 9999 1i1] cl <=29
K [this.parameter < n]
[1;1]
next[k+1]!
Trigger:
Port2.ack( )
next[k] ?
1 1;1
{clyyl1;1] Raised

AwaitAck
cl <= 25

sendUpdate ]

cl <= 10

InitialState
done ?
[1;1]
0 <=2 <= 60
noConvoy Convoy {c2}( SendUpdates
c2 <= 9999 c2 <= 60 next[1] ! [1; 1/] c2 <= 59
0 <=2 <= 39
Side Effects:
createPort(1)
coordinate?
Side Effects:
1
createAbsPort ! createPort(n+1)
createAbsPort !
[10;10]
{c2}( CreatePort

[10;10T| c2 <= 59 portCreated ?

Abbildung 6.19: PARAMETERIZED REAL-TIME STATECHART coordinator-Rolle
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State Restriction

I(registree.unregistered AND rear.convoy)

registree member

RailCab

@[éj
L T
e

Abbildung 6.20: RailCab Komponententyp

coordmator

rear

Vasileskii und Chow sowie einen einfachen Algorithmus zu wihlen, der ohne Optimierung alle
Moglichkeiten iiberpriift. Fiir das Gray Box Checking kann in den Priferenzen der Pfad fiir die
Constraint-Datei oder auch eine andere Binérdatei, als die fiir das Black Box Checking, angege-
ben werden.

Eine Instanzsicht der Beispielanwendung zeigt Abbildung 6.25. Die Verbindung der Kompo-
nenten ist dabei nur moglich, wenn die Schnittstellen zueinander passen (die ein-/ausgehenden
Nachrichten miissen den gleichen Typ haben). Hieraus wird zudem die fiir die Integration einer
Altkomponente relevante Schnittstelle mit dem Modell spezifiziert, indem die entsprechenden
Schnittstellen miteinander verbunden werden.

6.3.1.2 Verfeinerungsuberprifung

Als erstes wollen wir im Folgenden die Unterstiitzung zur Wiederverwendung von Komponenten
betrachten, die durch eine Hierarchisierung ausgedriickt wird, indem eine Komponente in eine
andere eingebettet wird (siehe hierzu Konzeptkapitel 3). Fiir unser Beispiel soll eine Verfeine-
rung zwischen der Multi-Rolle coordinator (hier also das abstrakte Verhalten) und dem Multi-Part
PosCalc iiberpriift werden (konkretes Verhalten). Die Benutzerfiihrung ist bisher nicht vollstéan-
dig umgesetzt, so dass die Uberpriifung noch nicht automatisch durch Selektion der Port-/Part-
Elemente erfolgen kann, da eine automatische Uberfiihrung des parametrisierten Verhaltens in
TIMED STORY CHARTS zum Teil fehlt. Um daher eine Verfeinerung zu iiberpriifen, muss dieser
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Statechart_for_PosCalc | clocks: c1c2 J

InitialState

PosCalc_MainState

InitialState

L [this.parameter = n]
cl <= 9999 [1;1]
[1i1] Trigger:
Portl.ack( ) Trigger:
Portl.ack( )
next[k+1] ! )
[this.parameter < n] done!

next[k] ?

{c}yl1i1] Raised:

SendUpdate | Portl.update( ) r AwaitAck
cl<=10 [10;10]( cl <=29

InitialState
done ?
[1:1] 0 <=2 <= 60
noConvoy Convoy 7 {c2¥( SendUpdates
c2 <= 9999 c2 <= 60 next[1] ! [1;1] €2 <= 59
[1;1]
0 <=c2 <= 39
Side Effects:
createPart() )
coordinate? Side Effects:
createRefPart ? createPart()
createRefPart ?
[10;10]
{c2}( CreatePort
[10;10], 2 <= 59 partCreated ?
- %

Abbildung 6.21: PARAMETERIZED REAL-TIME STATECHART PosCalc-Port
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DelegationsAdaption | clocks: ¢3 J

Side Effects:
createDelegation()
partCreated!

[1;1] portCreated !

Idle {c3} Active [10;10]
€3 <= 9999 createAbsport 2L 107 10]k Al ) createRefPart !

InitialState

Finished
c3 <=10

Abbildung 6.22: REAL-TIME STATECHART Delegation

ad Delegation::createDelegation() J

Delegation::createDelegation(): Void

bind port and part with no delegation

c1: CoordPort c2: CoordPortPart

[failure]
{ cl.getDelegation() == null & c2.getDelegation() == null }

[success]

«create» create delegation object «Create» w »
port «create» portPart o

cl -
< d3: Delegation > c2 J

Abbildung 6.23: Erzeugen einer Delegation
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= Properties 52 = =8
= Blackbox Information
Element
Details Binary File: E:\workiLehre\PGRecabitrunkipluginside.uni_paderborn. Fujaba. recab. re. whitebox, core\blackbosx . exe
Stereotypes
W Maximal i... length: 5
Other ] A
- VWhitebox Information
Source File: E:yworkiLehrePGRecabitrunkipluginside.uni_paderbarn. Fujaba.recab.re. whitebox, corel\gener atedilegacy Component.c
Send Procedure: sendisg
Receive Procedure: receiveMsg
Tirme Procedure: getTime
Run Procedure: legacy _run
Init Procedure: legacy _init

Abbildung 6.24: Eigenschaften Altkomponente
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Abbildung 6.25: RailCab-Konvoi mit Altkomponente
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Schritt bisher zum Teil manuell durchgefiihrt werden (in [Hei09] wurde dieser Schritt darge-
stellt).

Die Verifikation der Beispielanwendung ergibt, dass der Multi-Part PosCalc eine korrekte Verfei-
nerung nach der relaxierten Timed Bisimulation aus Abschnitt 3.1.2 der Multi-Rolle coordinator
ist, obwohl die zeitlichen Intervalle verschieden sind. Die Verschiebung des Echtzeitverhaltens
fiihrt allerdings dazu, dass dies nur eine giiltige Verfeinerung nach der relaxierten Form ist. Die
bisherige Verfeinerungsdefinition der MECHATRONIC UML, die eine strikte Bisimulation for-
dert, oder auch die aus dem UPPAAL-Umfeld verbreitete Timed Ready Simulation (siche Ab-
schnitt 2.4.7.3) wiirden einen Konflikt aufgrund der Zeitverschiebung erkennen. Aufler Betracht
steht bei diesem Vergleich, dass die verwandten Verfeinerungen keine Strukturanpassungen be-
trachten, also auch keine Verfeinerungsiiberpriifung fiir das Beispiel durchfithren kdnnen. Nicht
erfiillende Verfeinerungen wurden ebenfalls betrachtet, indem z.B. die Invariante des Zustands
SendUpdate auf 22 gesetzt wurde. Die Nachricht update kann dann in der Verfeinerung zu spit
verschickt werden. Diese Fehler wurden korrekterweise erkannt.

Im Rahmen der Masterarbeit von Christian Heinzemann [Hei09] wurden zudem noch einige
Messungen durchgefiihrt. Diese sind auf einem PC mit Intel Core2Duo Prozessor mit 3 Ghz und
3GB Arbeitsspeicher durchgefiihrt worden. Als Betriebssystem wurden Microsoft Windows XP
eingesetzt. Eclipse wurde in der Version 3.4 mit 1,5 GB initialisert. Wihrend des Testdurchlaufs
wurden die Invarianten und Time Guards des Adaptionsstatecharts in der Anzahl der instanziier-
baren Ports parametrisiert. Die Invarianten der Zustidnde Convoy, CreatePort und SendUpdates
werden auf Werte 30z bzw. 30z — 1 gesetzt, wobei x die Anzahl der Ports bezeichnet. Der Wert
30 ergibt sich aus der Linge eines Durchlaufs durch das Statechart. Die Erreichbarkeitsanalyse
wurde mit und ohne Zeit durchgefiihrt. Die Ergebnisse werden in Abbildung 6.26 dargestellt.

10000
c S
% 1000 — —
c
£ _
>
(7] 100 —
£ O Ohne Zeit
= B Mit Zeit
N 10 —
=]
(1]
-
1 1 B T T T 1

1 2 3 4 5 10 15 20 25
Anzahl Ports

Abbildung 6.26: Laufzeit der Erreichbarkeitsanalyse

Erwartungskonform zeigen die Ergebnisse der Messung einen starken Anstieg durch Betrachtung
von Zeit. Fiir drei Zustdnde werden unter Beriicksichtigung von Zeit iiber eine Stunde benétigt.
Ohne Zeit lassen sich problemlos 25 Ports expandieren. Bei der Verwendung von Zeit erwies
sich das UDBM-Binding als ausschlaggebend fiir die lange Laufzeit. Mit zunehmender Laufzeit
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dauerten die einzelnen Berechnungsschritte zunehmend ldanger und ca. 95% der Rechenzeit ent-
fiel auf das UDBM-Binding. Aktuelle weiterfithrende Arbeiten der Erreichbarkeitsanalyse zur
Nutzung fiir ein Model Checking zeigen einen erheblichen Performancegewinn (von 20 Min. fiir
vier Ports auf unter eine Sekunde) durch Auslagerung des UDBM-Bindings in Java-Quellcode
statt der Skriptsprache Ruby aus [HSJZ10].

Weiterhin ergaben die Messungen, dass bei der Erreichbarkeitsanalyse ohne Zeit ca. 95% der
Laufzeit allein auf das Kopieren der Graphen entfiel. Auf das Finden der Matchings, die An-
wendung der Regeln und die Uberpriifung von isomorphen Zustinden entfielen die restlichen
5%. In der Erreichbarkeitsanalyse mit Zeit sank der Anteil fiir das Kopieren der Graphen auf ca.
15% bei 2 Ports und auf 5% bei 4 Ports. Dies ist zu begriinden mit einen stirkeren Einfluss des
UDBM-Bindings auf die Laufzeit.

Abbildung 6.28 zeigt die Entwicklung der Anzahl der Zustinde im erreichten Transitionssystem.
Der Anstieg bei Beriicksichtigung von Zeit féllt dabei wesentlich stirker aus als ohne Zeit. Dies
liegt daran, dass mit Zeit auch die Delay-Kanten expandiert werden miissen, die ohne Beriick-
sichtigung von Zeit nicht weiter betrachtet werden. Die Anzahl der Objekte in jedem Zustand
stieg jedoch nur langsam an. Dies ist auf die gewidhlte Abbildung der Statecharts auf Graphen
zuriickzufiihren, die fiir eine neue Instanz eines Statecharts nur ein neues ActiveState-Objekt
anlegt.
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(ohne Zeit) pro Graph (ohne Zeit) pro Graph (mit Zeit)
Zeit)

Abbildung 6.27: Anzahl expandierter Graphen und maximale Anzahl der Knoten

Abbildung 6.28 zeigt schlieflich die Laufzeit des Verfeinerungsalgorithmus mit Zeit. Das Er-
gebnis zeigt, dass die Laufzeit trotz relativ kleiner Anzahl und GréBe der Graphen relativ hoch
ist. Da die Uberpriifung sehr viele Zugriffe auf die UDBM-Bibliothek ausfiihrt, um die oberen
Schranken der Clocks zu erhalten, ist diese hohe Laufzeit, wie bei der Erreichbarkeitsanalyse,
auf die hohe Laufzeit der UDBM-Bibliothek zuriickzufiihren.

Insgesamt ldsst sich folgern, dass die Implementierung zum Zeitpunkt der Erstellung dieser Ar-
beit lediglich die prinzipielle Machbarkeit der Verfeinerung gezeigt hat. Eine Optimierung der
Implementierung ist notwendig, um grolere Anzahlen an Portinstanzen betrachten zu konnen.
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Abbildung 6.28: Laufzeit Verfeinerung

Die moglichen stellen die Optimierungspotential aufweisen, wurden aufgezeigt. In aktuellen,
weiterfithrenden Arbeiten wurde bereits eine erhebliche Verbesserung der Laufzeit (Reduzierung
um ca. 80%) erreicht [HSE10].

6.3.1.3 Integration Altkomponenten

Die Integration von Altkomponenten wurde in der F' RiT'S“® Tool Suite vollstindig umgesetzt.
Die Validierung wurde, soweit moglich, auf Basis von Altkomponenten aus dem RailCab Pro-
jekt durchgefiihrt, die zum Teil angepasst wurden, um die verschieden Szenarien der Integration
durchspielen zu konnen. Dies sollte allerdings die Qualitiit der Aussage, dass die Integrationsver-
fahren anwendbar sind, nicht einschrinken (siehe hierzu auch Abschnitt 6.3.2). Wir werden im
Folgenden zuerst die Schnittstelle der drei verschiedenen Verfahren erldutern und anschliefend
auf Evaluierungsergebnisse eingehen.

Abbildung 6.29 zeigt den Aufruf der Analyseverfahren. Die Auswahl der Analyseverfahren ste-
hen dem Benutzer nach Selektion der Port(s) der Altkomponente und Kontext zur Verfiigung.

Wird das White Box Checking ausgewdhlt, so kann der Benutzer anschlielend eine Reihe von
Parametern fiir die Verifikation einstellen (sieche Abbildung 6.30). Zum einen ist es moglich
unterschiedliche Model Checker zu verwenden, wobei, wie in Abschnitt 4.3 beschrieben, der
CBMC Model Checker die meisten benotigen Konstrukte unterstiitzt und damit auch die erste
Wahl fiir eine Verifikation ist. Zudem konnen die Parameter des Kommunikationskanals und der
Austithrungsumgebung der Komponenten eingestellt werden. Z.B. ist die Pufferkapazitit oder
die Lange der Ausfiihrungsperiode einstellbar.

Wird das White Box Checking auf dem gezeigten Anwendungsbeispiel durchgefiihrt, so wird ein
Fehler erkannt (sieche Gegenbeispiel aus Abbildung 6.31). Gegenbeispiele konnen im Kontext-
verhalten durchgespielt werden, um den Benutzer direkt zu der moglichen Fehlerursache zu fiih-
ren. In unserem Fall wird ein Deadlock erkannt, da die Altkomponente eine LEAVE_CONVOY-
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Abbildung 6.29: Legacy Checking
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Abbildung 6.30: Parameter White Box Checking
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Nachricht verschickt wéahrend der aktive Zustand des Kontexts waitNoConvoy ist, der diese Nach-
richt verarbeiten kann.

Das Black Box Checking und Gray Box Checking haben ebenfalls diesen Fehler erkannt. Im Fall
des Black Box Checking kann zudem noch das gesamte Verhalten der Altkomponente erlernt
werden (siehe Abbildung 6.32). Hieraus wird ersichtlich, dass die Altkomponente unabhéngig
von der Entscheidung des Kontextverhaltens den Konvoi auflost. Dies ist durchaus eine mogli-
che Interpretation fiir die rear-Rolle, die allerdings in unserem Fall durch die front-Rolle nicht
beriicksichtigt wurde. Eine Mdoglichkeit, um die Integration erfolgreich zu gestalten, ist eine An-
passung des Kontextverhaltens in der Form, dass ein Auflésen des Konvois zu jeder Zeit durch
die rear-Rolle ohne zusitzliche Bestitigung ermdéglicht wird. Dies wurde ebenfalls durch alle
drei Integrationsverfahren bestitigt.

Ein weiterer Aspekt der Integration von Altkomponenten ist die Betrachtung von Reglerverhalten
durch die Anbindung von Systemidentifikationsverfahren (sieche Abschnitt 4.4). Die Werkzeug-
unterstiitzung ermoglicht dabei das Hinzufiigen von Experimenten zur Erkennung von Regler-
verhalten zu einer Altkomponente (siche Abbildung 6.33). Das heif}t, diese Experimente werden
nicht aus dem Werkzeug selbst heraus gestartet, sondern aus Spezialwerkzeugen zur Identifi-
kation von kontinuierlichen Verhalten, wie z.B. Matlab mit entsprechenden Erweiterungen. Es
wird dabei davon ausgegangen, dass die Experimentdaten in einer Datei gespeichert werden, so
dass zu jeder Datei ein kontinuierlicher Port angelegt wird. Auf diesem kann eine Identifikation
des Reglerverhaltens durchgefiihrt werden (siehe Abbildung 6.34). Das erkannte Verhalten wird
dann dem kontinuierlichen Port hinterlegt und kann dann im Weiteren durch einen Experten ei-
nem speziellen Regler zugewiesen werden. In unserem Fall ist dies ein Drehzahlregler und ein
Drehmomentregler (siehe Abbildung 6.35).

Das erlernte Zustandsverhalten sowie das fiir einen Zustand spezifische Reglerverhalten kann an-
schlieBend manuell zu einem Gesamtverhalten zusammengefiihrt werden. Abbildung 6.36 zeigt
den erlernten Automaten der Altkomponente angereichert mit den Reglerkonfigurationen.

Evaluierungsergebnisse Im Folgenden betrachten wir zuerst die Evaluierungsergebnisse
der Systemidentifikation, dann die des Black Box , White Box und Gray Box Checking.

Die Systemidentifikation benétigt fiir das Erkennen des Drehmoment-Reglers ca. 20 Sekunden
und ca. 150 MB Speicher und fiir den Drehzahlregler ca. 8 Sekunden und ebenfalls ca. 150
MB Speicher. Fiir ausfiihrlichere Evaluierungsergebnisse zur Systemidentifikation sei auf die
referenzierte Literatur aus Abschnitt 4.4 verwiesen.

Ohne Beriicksichtigung der Periode benétigt das Black Box Checking fiir das betrachtete Evalu-
ierungsbeispiel weniger als eine halbe Minute, dabei werden iiber 1000 Zugehorigkeitsanfragen
gestellt. Unsere Optimierung der Anzahl der Anfragen fiihrt dabei zu tiber 900 Cache Hits und
iber 30.000 Prifix Cache Hits (sieche Abschnitt 4.2.2). Die Laufzeit erhoht sich unter Beriicksich-
tigung der Periode um den Faktor Anzahl der Zugehorigkeitsanfragen mal Grofe der Periode.
Bei einer Periode von 1 Sekunde wiirde sich entsprechend die Laufzeit um 1000 Sekunden er-
hohen. Dies gilt gleichermallen fiir die anderen Analyseverfahren. Zusitzlich ist die Laufzeit

214



6.3 Validierung
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Abbildung 6.31: Gegenbeispiel White Box Checking
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Abbildung 6.32: Erlernter Automat der Altkomponente
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Abbildung 6.33: Altkomponente: laden der (kontinuierlichen) Daten
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Abbildung 6.36: Erlernter Automat der Altkomponente mit Reglerkonfigurationen

im Fall des Black Box Checking maBigeblich von der Anzahl der zu erkennenden Zustinde der
Altkomponente abhingig. In unserem Beispiel wird bei genauer Angabe der zu erlernenden Zu-
stande die oben genannte Laufzeit benotigt. Sollen stattdessen zehn Zustidnde erkannt werden
betrigt die Laufzeit ca. 90 Sekunden. Interessanterweise wurden bei kiinstlichen Beispielen pro-
blemlos 15 Zustinde innerhalb von 25 Minuten erkannt, wenn die obere Grenze der Zustinde
nur geringfiigig von der tatsidchlichen Anzahl abweicht. Zum Teil liegt dies an der quadratischen
Abhingigkeit der Anzahl der zu erlernenden Zustinde auf die Gesamtlaufzeit des Vasileskii und
Chow Algorithmus, der fiir die Aquivalenzanfrage implementiert wurde (sieche Abschnitt 4.2.2).
Wie die gezeigten Zahlen aber schon andeuten ist die Anzahl der benétigten Aquivalenzanfragen
sehr grof3, gleich wohl die Optimierungen schon viele unnétige ausschlieBen. Dies lédsst folgern,
dass eine optimistische Abschitzung der Obergrenze der Zustdnde verfolgt werden sollte, gleich
wohl dann das Verfahren mehrfach angestoen werden muss, bis der erlernte Automat sich nicht
mehr verindert, gegeniiber dem vorherigen Durchlauf. Eine wesentliche Laufzeitverbesserung
kann durch den Einsatz eines Model Checkers erreicht werden, da hierdurch auf die Aquiva—
lenzanfrage verzichtet werden kann.

Die folgende Abbildung 6.37 zeigt zusammenfassend die Evaluierungsergebnisse. Es wurden
5, 7 und 10 Zustinde mit und ohne Model Checking betrachtet. Durch das Einbeziehen von
Model Checking kann die Laufzeit um ca. 50 % reduziert werden. Der Speicherverbrauch konnte
ebenfalls reduziert werden. Da durch das Model Checking die Anzahl der Anfragen reduziert
wird, singt gleichermallen die Anzahl an (Prefix) Cache Hits. Der extreme Anstieg der Prefix
Cache Hits ldsst sich mit der hoher angesetzten Anzahl an zu erlernenden Zustdnden erkléren.

Im Fall des White Box Checking ist die Laufzeit neben der Periodenldnge stark von der Anzahl
und GroBe der verwendeten Puffer und Zeitvariablen abhiingig. Wie in Abschnitt 4.3 diskutiert,
haben wir das CBMC-Werkzeug verwendet, da dieses im Vergleich zu den anderen tatsdchlich
Puffer in der Umsetzung unterstiitzt. Wihrend der Speicherverbrauch fiir einen Ein- und Aus-
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Abbildung 6.38: Laufzeiten Black Box Checking mit einer Periode von 400 ms
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gangspuffer der Grofe 2, 3 und 6 in etwa bei 300 MB betrégt, unterscheiden sich die Laufzeiten
stark. Fiir 2 sind es 75 Sekunden, fiir 3 90 Sekunden und fiir 6 180 Sekunden. Noch stirker sind
die Auswirkungen, wenn eine variable Periodenlinge und eine variable Linge des Sende- und
Empfangsintervalls beriicksichtigt wird. Die Laufzeit erhoht sich fiir den Fall mit Pufferlinge
3 auf ca. 25 Minuten. Insgesamt lassen sich allerdings schwer Evaluierungsergebnisse erheben
oder reproduzieren, da das (die) Werkzeug(e) sehr unzuverlissig die betrachteten Anwendungen
analysieren. Ein Grund hierfiir konnte die eher untypische Anwendungsklasse sein, die Paralle-
litdt und Zeit bendtigt, und daher Konstrukte verwendet die eher selten in den gezeigten Evalu-
ierungen der Werkzeuge zum Einsatz kommen.

Eine vielversprechende Stellschraube zur Verbesserung der Laufzeit der Integrationsverfahren
ist die Optimierung der erkannten Zustdnde pro Iteration und damit eine Minimierung der An-
zahl der Iterationen. Grund fiir diese Annahme ist, dass der grote Ressourcenaufwand in der
Uberpriifung der Aquivalenz liegt. Eine weitere Beobachtung ist, dass die potentiell erkannten
Zustinde mafgeblich von der Linge des Gegenbeispiels abhiingig sind. Je linger ein Gegen-
beispiel, desto mehr Zustinde konnen erkannt werden. Die meisten Model Checker, wie auch
UPPAAL, verfiigen iiber eine Einstellungsmoglichkeit, um lange Gegenbeispiele zu bevorzugen.
Fiir das Gray Box Checking konnen wir dariiber hinaus noch weitere Optimierungen an dem zu
iberpriifenden Modell vornehmen, die wir im Folgenden diskutieren. Anschlieend stellen wir
die Evaluierungsergebnisse des Gray Box Checking unter Betrachtung der diskutierten Optimie-
rungen Vor.

1.) Festlegung eines minimalen Anteils an unbekanntem Verhalten fiur Gegenbei-
spiele Eine Moglichkeit der Minimierung des unbekanntem Verhalten fiir Gegenbeispiele be-
steht in der Verwendung von Transitionen der chaotischen Hiille (also bei bisher unbekanntem
Verhalten), indem das Modell und die UPPAAL-Query so modifiziert werden, dass moglichst
viele dieser Transitionen verwendet werden. Im Prinzip geniigt es auch, die Zihlvariable bei
Transitionen zu sy (einschlieBlich Selbsttransitionen) zu erhéhen’.

Lediglich eine minimale Anzahl zu fordern, reicht jedoch alleine nicht aus, da so moglicher-
weise Deadlocks unerkannt bleiben konnten, die nur unter Verwendung von weniger Tran-
sitionen zu erreichen sind. Durch Benutzen der UPPAAL Kommandozeilenoption —t2 ldsst
sich allerdings erreichen, dass moglichst das Gegenbeispiel mit der geringsten verwendeten
Zeit ermittelt wird. Ersetzt man nun die bisherige Query-Formel durch eine Variante, die dem
Model Checker eine ,,Zeitstrafe* gibt, wenn zu wenige Transitionen zu sy genutzt werden,
dann kann ein Minimum fiir neues Verhalten festgelegt werden, das in Gegenbeispielen ent-
halten sein soll. UPPAAL versucht dann, die Anzahl dieser Transitionen der chaotischen Hiille
bis zur angegebenen Schranke zu maximieren. Kann der festgelegte Wert nicht erreicht wer-
den, dann kann UPPAAL dennoch ein Gegenbeispiel ermitteln, sofern eines existiert. Fiir eine
Clock t, eine Integer-Variable = und ein gewiinschtes Minimum M muss dazu unsere Query

Dies reduziert die notwendigen Anderungen am Modell deutlich, hat allerdings kaum Auswirkungen auf die
Linge des Gegenbeispiels.
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der Form A[] not p mitp = (ilegacyComponent3.sDelta or deadlock) durch
A[] not(t > M - x and p) ersetzt werden.

Problematisch bei diesem Ansatz sind allerdings Kreise im Verhaltensmodell der Altkomponen-
te, sofern diese im Zusammenspiel mit dem Kontext beliebig oft durchlaufen werden konnen.
UPPAAL tendiert dazu, diese dazu zu verwenden, die Zdhlvariable zu erhohen, ohne das Modell
weiter durchsuchen zu miissen (was wiinschenswert wire). Samtliche Schleifeniterationen nach
der ersten sind fiir die Verhaltenssynthese uninteressant, kosten jedoch beim Testen Zeit. Daher
sollte die Minimalanzahl fiir neue Interaktionen nicht zu grof3 gewihlt werden, zumal Schleifen
in reaktiven Systemen zwangsldufig vorkommen.

2.) Maximierung der Anzahl der unterschiedlichen Transitionen zu s, im Ge-
genbeispiel Um nutzlose Schleifendurchldufe zu vermeiden, kann auch die Anzahl der
unterschiedlichen Transitionen zu sy im Gegenbeispiel maximiert werden, statt fiir die
Gesamtdurchldufe durch diese Transitionen einen Mindestwert festzulegen. Dies kann er-
reicht werden, indem an Stelle einer einzelnen Booleschen-Variablen je eine fiir je-
de dieser Transitionen definiert wird. Diese werden mit O initialisiert und bei Verwen-
dung der jeweiligen Transition auf 1 gesetzt. Analog zum letzten Ansatz kann als Query
A[] not (¢t > M - x1 - x2 .. — xn and p) verwendet werden. Die Variablen x;
bis z,, sind die erwihnten Markierungsvariablen fiir die n Transitionen zu sy. Als M sollte hier
mindestens n gewihlt werden.

Ein Nachteil dieses Ansatzes ist allerdings, dass eine einzelne der sy-Transitionen mehreren tat-
sdchlichen Transitionen der Altkomponente entsprechen kann. Damit wiirden die Gegenbeispie-
le bei kleinem IO-Alphabet, abhédngig von Altkomponente und Kontext, moglicherweise kleiner
ausfallen als bei dem anderen Ansatz. Bei dem hier vorgestellten Beispiel ist das allerdings nicht
der Fall, da jede Nachricht nur einmal im Statechart der Altkomponente vorkommt.

3.) Maximierung der Uberdeckung von Transitionen des Kontextes Eine weitere
Alternative ist die Maximierung der Anzahl der im Gegenbeispiel verwendeten Transitionen des
Kontextes. Im Prinzip kann dafiir analog zum vorhergehenden Ansatz vorgegangen werden, mit
dem Unterschied, dass die Markierungsvariablen fiir andere Transitionen verwendet werden. Vor-
teil hierbei ist, dass nicht lediglich jede Nachricht einmal verwendet wird. Allerdings wird hier
Verhalten der Altkomponente, das erst durch mehrere Schleifendurchldufe innerhalb des Kon-
textes erreicht wird, nicht sofort erreicht. Zudem wird das bereits synthetisierte Verhalten nicht
beachtet.

Anmerkungen All diese Optimierungen konnen das Erkennen von Gegenbeispielen im be-
reits synthetisierten Teil des Modells verzogern, da der Model Checker zunichst in der chaoti-
schen Hiille die ,,Zeitstrafe* abbauen wird. Ein Losungsansatz ist, statt die Query zu verdndern,
die entsprechende Zeitbedingung fiir alle Transitionen, die zum Deadlock-Zustand fiihren, zu
verwenden. Allerdings kann dadurch das Modell deutlich groBer werden.
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Alternativ kann auch die Bedingung, dass kein echter Deadlock erreicht wird, aus p herausgezo-
gen werden und auf Ebene der Konjunktion gestellt werden, sodass die Zeitbedingung fiir echte
Deadlocks nicht gilt. Allerdings miisste dazu zusétzlich der explizite Deadlock-Zustand so an-
gepasst werden, dass er alle Eingaben akzeptiert, damit kein ,,falscher* Deadlock des Kontextes
entsteht.

Die einzelnen Losungsvorschlédge sind jeweils nicht fiir jede Situation optimal und sollten, mog-
licherweise in Kombination, auf das jeweilige Einsatzszenario (also die Altkomponente und den
Kontext) abgestimmt verwendet werden.

Generell ist das Optimierungspotential eingeschrinkt, wenn e-Transitionen (die ein Zeitvergehen
simulieren) zugelassen werden: Problematisch ist, dass diese zunichst fiir jeden Zustand ange-
nommen werden miissen und nicht durch den Kontext eingeschriankt werden. Selbst nach einer
ansonsten vollstindigen Synthese miissen alle Zustiinde, fiir die weder bereits eine Transition mit
e-“Eingabe* vorliegt noch eine ausgeschlossen wurde (durch Beenden des Testlaufs in diesem
Zustand), erneut besucht werden, nur um abzuwarten, ob innerhalb des maximalen Zeitrahmens
in einen anderen Zustand geschaltet wird.

Evaluierung zu den Verbesserungsvorschlagen Die vorgeschlagenen Ansitze zur Ge-
winnung lingerer Gegenbeispiele wurden jeweils evaluiert, um ihren Einfluss auf das Verfahren
untersuchen und vergleichen zu konnen. Da die Laufzeit der Simulation hier wenig tiber den Tes-
taufwand im realen System aussagt, wurde als MaB3stab zum Vergleich der Varianten die Anzahl
an Einzelschritten und Iterationen bis zum Ende des Syntheseverfahrens erhoben. Der Speicher-
verbrauch wurde hier ebenfalls vernachlédssigt, da sich dieser im Wesentlichen aus der Grof3e
des Zustandsraums ergibt, der sich durch die Optimierung in den Beispielen kaum unterscheidet
(verbrauchter Speicher liegt bei ca. 60 MB).

Die Evaluierung wurde sowohl mit dem intakten als auch dem fehlerhaften Modell durchgefiihrt.
Da, wie oben beschrieben, die Periodenzeit (¢) einen hohen Einfluss auf den Testaufwand hat,
wurde das Verfahren jeweils einmal mit und ohne € durchgefiihrt.

Tabelle 6.1 zeigt die Ergebnisse der Simulationsdurchliufe fiir eine erfolgreiche Integration der
Altkomponente fiir die verschiedenen Verfahren der Gray-Box-Integration, Tabelle 6.2 zeigt die
entsprechenden Ergebnisse fiir eine fehlerhafte Integration. Die Resultate konnen wie folgt in-
terpretiert werden.

Die Maximierung von Transitionen zu sy im Gegenbeispiel bis zu 5 (,,1. Vorschlag®) liefert bei
Verwendung mit e-Transitionen in der chaotischen Hiille eine Verschlechterung. Dies kann in
einer ungiinstigen Wahl der Grenze, bis zu der maximiert werden soll, begriindet sein. Die ent-
sprechenden Gegenbeispiele zeigten jedoch, dass Kreise im Automaten unnétig oft durchlaufen
wurden. Dennoch ergibt sich ohne Zulassen von e-Transitionen eine Verbesserung gegeniiber der
normalen Anfrage an den UPPAAL Model Checker.

%Der Deadlock-Zustand wiirde dadurch zweckentfremdet und zu einer Art zweitem sy-Zustand, bis die Zeitbedin-
gung in der Query erfiillt ist.
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Die Ergebnisse bei Maximierung der Anzahl verschiedener Transitionen zu sy im Gegenbei-
spiel (,,2. Vorschlag®) und die bei Maximierung der Transitionsiiberdeckung im Kontext (,,3.
Vorschlag®) dhneln einander. Diese Ansitze liefern fiir die erfolgreiche Integration auch mit e-
Transitionen bessere Resultate, ohne konnen sie das komplette Verhalten sogar in einem einzigen
Durchlauf synthetisieren. Bei Anwendung auf die fehlerhafte Integration sind die Ergebnisse oh-
ne Verwendung von e-Transitionen deutlich besser als bei den anderen beiden Varianten. Werden
diese zugelassen, dann sind die Laufzeiten schlechter als bei normaler Anfrage an den Model
Checker. Hier sind eventuell Verbesserungen moglich, wenn die Vorschldge aus den vorherigen
Anmerkungen umgesetzt werden, mit denen zunéchst echte Deadlocks erkannt werden konnten.

Tabelle 6.1: Ergebnisse der Evaluierung der Verbesserungsvorschlige fiir die korrekte Integrati-
on (Iterationen / Einzelschritte).

normale Anfrage

1. Vorschlag

2. Vorschlag

3. Vorschlag

mit e-Transitionen 10/62

9/81

6/46

6/54

ohne e-Transitionen 10/ 60

4740

1/17

1/16

Tabelle 6.2: Ergebnisse der Evaluierung der Verbesserungsvorschlige fiir die fehlerhafte Integra-

tion (Iterationen / Einzelschritte).

normale Anfrage

1. Vorschlag

2. Vorschlag

3. Vorschlag

mit e-Transitionen 7/31

7141

71739

7149

ohne e-Transitionen 7/29

4/24

3/18

3/22

6.3.1.4 Synthese Komponentenverhalten

Das Ziel der Syntheseumsetzung ist es die in Kapitel 5 vorgestellten Konzepte zu implementie-
ren, so dass eine Synthese des Komponentenverhaltens direkt aus Fujaba RT angestofen werden
kann. Dieses Ziel wurde nur zum Teil erreicht. Grund hierfiir ist, dass die initiale Implementie-
rung auf einem diskreten Zeitmodell nach [Bey02] aufbaut. Diese Implementierung ist zwar aus
Fujaba RT aufrufbar, skaliert allerdings nicht und wurde auch nicht vollstiandig auf das in Kapi-
tel 5 vorgestellte kontinuierliche Zeitmodell umgestellt. Wir kénnen daher die Rollenverhalten
rear und registree des Registration- und DistanceCoordination-Musters, iiber die eine Komposi-
tionsregel gilt (siehe Abbildung 6.20), nicht in dem vorgestellten Umfang betrachten, da diese
nach der diskreten Zeitsemantik zu keinem Ergebnis kommt. Dies liegt an der zu hohen Spei-
cherlast und Laufzeit des Ansatzes mit diskreter Zeitsemantik. Wir werden daher im Folgenden
zuerst zwei angepasste Verhalten, den synthetisierten Automaten sowie ein Laufzeitvergleich der
diskreten und kontinuierlichen Zeitsemantik betrachten.

Die vereinfachte rear- und registree-Rolle spezifizieren im Vergleich zu den in Kapitel 5 auf Sei-
te 141 betrachteten Verhalten Uhren mit minimalen Werten (siehe Abbildung 6.39 und 6.40), um
den Zustandsraum durch die diskrete Zeitsemantik moglichst klein zu halten. Die Reduzierung
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des Zustandsraums ist hierdurch extrem, da nach der diskreten Zeitsemantik jeder Integerwert
ein zusitzlicher Zustand ist. Dies macht sich besonders wihrend der notwendigen Produktauto-
matenbildung fiir die Synthese bemerkbar. Um den Unterschied zu den bisherigen Automaten
der gezeigten Validierung zu verdeutlichen, werden wir die Nachrichten in den Automaten der
Synthese klein schreiben.

InitialState l<=c¢cr<=14+——"—"—

%

noConvoy / convoyProposal() 3 Lwaiting
( ] cr )

0O<=cr<=0
startConyoy()

convoy

Abbildung 6.39: Vereinfachte rear-Rolle

breakConvoy() /

InitialState

.\\ 0 <= cel <=1 /[ unregister()
unregistered / register() registered |

0 <= cel <= 0 |/ requestUpdate()

0 <=ce2 <=0
performUpdate()

1 <= ce2 <=1 / unregister() / waiting

Abbildung 6.40: Vereinfachte registree-Rolle

Das Ergebnis der Synthese ist das rollenkonforme REAL-TIME STATECHART aus Abbildung
6.41. Alle Zustinde der registree (Zustiande (registree.unregistered,. . . ), (registree.registered,.
.. ) und (registree.waiting,. . . )) werden zu einem Zustand der rear-Rolle zusammengefasst.
Der Zustand (registree.unregistered,rear.convoy) wurde durch anwenden der Kompositionsregel
entfernt. Die Verfeinerungsbeziehung der Rollenverhalten wurde hierdurch jedoch nicht verletzt.
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S, Trigger:
rqrstartConwoyd)
N0 =2 == 0
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Trigger:
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Abbildung 6.41: Synthetisiertes Komponentenverhalten fiir die vereinfachten Rollen

Wie einleitend in diesen Abschnitt diskutiert, ist eine diskrete Zeitsemantik nicht oder nur be-
dingt anwendbar fiir mechatronische Systeme. Ein Problem ist die Zustandsraumexplosion. Eine
weitere wesentliche Begriindung hierfiir ist, dass die Modellierung physikalischer Effekte mit
diskreter Zeitsemantik schlecht oder teilweise gar nicht moglich ist (siehe Abschnitt Anforderun-
gen und Voraussetzungen auf Seite 67). Wir werden im Folgenden einen Vergleich der diskreten
Zeitsemantik mit unserer Umsetzung der Zone Graphen vergleichen, wie wir sie bereits fiir die
Verfeinerung von Multielementen in Abschnitt 6.3.1.2 eingesetzt haben.

Wie schon am obigen Beispiel erldutert, ist das Eingabemodell der Konformitétsiiberpriifung ein
abstraktes zeitbehaftetes Modell der parallelen Komposition von zwei oder mehreren Timed Au-
tomata. Die Grofle dieses Eingabemodells hat einen entscheidenden Faktor auf die Laufzeit. Wir
werden daher im Folgenden genau die Zeitabstraktion beider Ansétze vergleichen. Um die Effek-
te zu betrachten haben wir die beiden einfachen Rollenautomaten um die Parameter earliestCon-
voy, maxConvoy und maxRegister erweitert (sieche Abbildung 6.42 und 6.43). Dies ermoglicht
es uns die hochsten Grenzwert sowie die Differenz zwischen Grenzwerten in einem oder in ver-
schieden Automaten der parallelen Komposition zu vergleichen. Fiir den Vergleich haben wir
als Basis die Automaten in UPPAAL spezifiziert, da beide Ansitze diese Eingabe verarbeiten
konnen.

Tabelle 6.44 fasst die Ergebnisse der Evaluierung zusammen. Angefangen haben wir die Eva-
luierung mit kleinen Werten, die schrittweise erhoht wurden. Zudem wurde auch die Differenz
zwischen den drei Parametern variiert. Erwartungskonform ist die Zeitabstraktion durch Zone
Graphen erheblich effizienter.
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register!

ce:=0
registered
ce <= maxRegister

startConvoy! .- g

noConvoy convoy
cr <= maxConvoy

unregistered

i I ce: =0T
cr >= earliestConvoy unregister: lifetick!
breakConvoy?
Abbildung 6.43: Parametrisierte registration-
Abbildung 6.42: Parametrisierte rear-Rolle Rolle
g

(earliestConvoy,maxConvoy,maxRegistered) Ansatz States Transitions Time (ms)
FIS 16 100 5

0.1.1) G 16 38 21

FIS 33 226 15

(12.2) ZG 44 102 68

FIS 200 1600 172

(4.5,10) G 67 153 104

FIS 245 2102 287

(15,10) ZG 122 283 344

FIS 645 5397 1917

(9,10.20) G 195 440 708

FIS 848 7683 4208

(2,10,20) ZG 122 283 344

FIS 1233 11301 11662

(3,15.20) G 254 591 1396

FIS XXX XXX XXX

(2,10,40) G 192 443 729

FIS XXX XXX XXX

(3,15,30) ZG 122 283 338

FIS XXX XXX XXX

(5,20,20) G 72 168 141

Abbildung 6.44: Komponentenverhaltensynthese: Evaluierung diskrete und kontinuierliche
Zeitsemantik
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Ein Vergleich der Anzahl der Zustinde, Transitionen und Berechnungsdauer ist in den Abbil-
dungen 6.45, 6.46 und 6.47 dargestellt. Aus dem Vergleich der Zustinde und Transitionen kann
beobachtet werden, dass mit Zunahme der Zustinde in dem diskreten Zeitmodell auch die An-
zahl der Transitionen stark zunimmt. In dem Zone Graphen ist diesbeziiglich kein beobachtbarer
Zusammenhang erkennbar.

1400

1200 -

1000 -

800

States

600 -
400 +
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/
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|
_

(011 (1,22) (4510) (1,510) (9,10,20) (2,10,20) (3,15,20) (2,10,40) (3,15,30) (5,20,20)

(earliestConvoy,maxConvoy,maxRegistered)

Abbildung 6.45: Vergleich Anzahl der Zustéinde

Der Vergleich der Berechnungszeit beider Verfahren lédsst folgern, dass die der Zone Graphen
nicht proportional zu den absoluten Werten der Parameter ansteigt, wihrend dies der Fall fiir die
diskrete Zeitsemantik ist. Die einfache Begriindung liegt darin, dass der Zone Graph nicht die
absoluten Werte betrachtet, sondern nur die Intervalle. Aus diesen Vergleichen ldsst sich folgern,
dass der Syntheseansatz mit Zone Graphen praktikabel fiir die betrachtete Anwendungsdomine
ist.

6.3.1.5 Codegenerierung und WCET-Analyse

Die einzelnen Elemente der Komponenten werden entsprechend dem Komponenten-Metamodell
auf Klassen abgebildet. Das Klassenmodell wird dabei wihrend der Modellierung automatisch
aus dem Komponentenmodell abgeleitet und beinhaltet die Methoden fiir die Strukturanpassung.
Aus diesem internen Modell wird objektorientierter C++ Code generiert. Fiir die Strukturan-
passungen werden zusitzlich Factory Klassen angelegt, wie in Abbildung 6.48 abgebildet. Die
Factory-Klassen ermoglichen das kontrollierte erzeugen (und 16schen) der Instanzen.
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Abbildung 6.46: Vergleich Anzahl der Transitionen
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Abbildung 6.47: Vergleich der Berechnungszeit
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Wie bereits in Abschnitt 6.2 diskutiert kann die Codegenerierung fiir die Strukturanpassungen
noch nicht vollstandig automatisch mit der bisherigen Codegenerierung fiir HYBRID RECONFI-
GURATION CHARTS ausgefiihrt werden, da die hierfiir bendtigten umfangreichen Metamodel-
lanpassungen noch nicht vollsténdig in die bisherige Codegenerierung eingeflossen sind. Der ge-
nerierte Code muss daher manuell angepasst werden, um die Anwendung ausfiihren zu kdnnen.
Die manuelle Anpassung beinhaltet im Wesentlichen die direkte Zuordnung von strukturellen
Elementen zu Verhalten (z.B. Port zu Portverhalten, Komponente zu Komponentenverhalten).
Dies ist momentan nicht gegeben, da die HYBRID RECONFIGURATION CHART Codegenerie-
rung ein Gesamtverhalten fiir eine Komponente generiert. Wird allerdings unabhéngig fiir die
einzelnen Elemente sowie deren Uberlappung die Codegenerierung angestoBen, so wird keine
manuelle Anpassung benétigt.

Als Validierung haben wir das Hinzufiigen und Loschen von Konvoiteilnehmern mit den be-
schriebenen Verhalten betrachtet und durch ein Testsystem simuliert. Hierbei wurde gleichzeitig
die Funktion evaluiert, die Parameter der Profile zur Laufzeit einer neuen Situation anzupas-
sen. Tabelle 6.3 gibt einen Uberblick iiber die GroBe und den Speicherverbrauch des generierten
Codes fiir die RailCab Komponente und das ConvoyCoordination-Muster mit der benétigten Fac-
tory. Im Vergleich zu der in der Arbeit von Burmester [Bur06] evaluierten HYBRID RECONFIGU-
RATION CHART Codegenerierung ist fiir die Initialisierung des Systems durch den zusitzlichen
Aufwand der Factory Klassen, ein grofler Ressourcenbedarf notwendig. Fiir dynamische Sys-
teme ergibt sich allerdings durch diesen Ansatz ein Vorteil, da nicht alle Ressourcen a priori
festgelegt und komplett unverinderbar vorinstanziiert werden miissen.

Als Ergebnis der Validierung kann festgehalten werden, dass eine Anwendung unter den gege-
benen Bedingungen generiert und erfolgreich ausgefiihrt werden kann. Anzumerken ist hierbei,
dass wir als Zielsystem nur eine PC-Plattform gewihlt haben. Durch die Kapselung der betriebs-
systemspezifischen Prozeduren durch die entwickelten Frameworks (siehe Abschnitt 6.1) gehen
wir davon aus, dass die Codegenerierung auch fiir weitere Plattformen anwendbar ist.

Die Codegenerierung ist zudem Grundlage fiir die WCET-Analyse, die, bis auf die Schleifen-
analyse, plattformspezifisch auf Codeebene durchgefiihrt werden muss. Zuerst wird fiir die (Ti-
med) Story Diagramme eine WCNI berechnet. Dieses Ergebnis dient dann zusétzlich zu dem
ibersetzten Code als Eingabe in ein entsprechendes WCET-Analysewerkzeug. Das verwendete
Werkzeug Bound-T (siehe Abschnitt 6.1.2.2) ermoglicht die Angabe der WCNI fiir Schleifen
durch sogenannte Assertions, mit denen die Schleifen beschrieben werden, die eingeschrinkt
werden sollen sowie die maximale Anzahl der Durchlédufe fiir diese Schleife. Die Abbildung
der Assertions wurde dabei im Rahmen der Projektgruppe ReCab [BBB109] fiir das Werkzeug
Bound-T automatisiert.

Das Ergebnis der WCET Berechnung wird in einem (Ressourcen) Profil hinterlegt (sieche Ab-
schnitt 6.1.2.1). Fiir die hier vorgestellten Beispiele benotigte das verwendete WCET-Werkzeug
nur wenige Sekunden. Fiir die Komplexitit sowie die Herleitung der WCET Ergebnisse sei auf
Abschnitt 6.1.2.2 (Seite 192) verwiesen.
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‘PosCaIcDeIegationFactory ‘

has 1 has

1
has

DelegationCoordinator PosCalcDelegation

@ createDelegation ():Delegation 1’*

1
has 1 L
= A | has has | ¥
4 1
RailCab has PortCoordinator ’hasgmerport
@ createDelegation ():Delegation a [ 1@ updatePort (p:MemberPort) |4 > n
1 has has
1 1
MemberPortFactory
@ getNewMemberPort ():MemberPort
@ getCountOfFreeMemberPort ():Integer
@ getinstanceLimitForMemberPort ():Integer
@ setFreeMemberPort (p:MemberPort )
@ setlnstanceLimitForMemberPort (val:Integer )
@ setProfileLimits (limits:Integer[])

Abbildung 6.48: Generierte Klassen

Speicher pro
Typ Dateien LoC | Instanz [kBytes]
RailCab.h 23
RailCab.cpp 74 2,12
Component | RailCabStatechart.h 117
RailCabStatechart.cpp | 1267 47,8
> 1481
Coordinator.h 41
Coordinator.cpp 323 7,74
Pattern Member.h 41
Member.cpp 90 2,28
> 495
CoordinatorFactory.h 26
Factory | CoordinatorFactory.cpp 91 2,67
> 117
\ [ 32093 |

Tabelle 6.3: Generierte Fujaba Klassen
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6.3.2 Weitere Anwendungsszenarien und Fazit

Neben dem Konvoi-Szenario wurden in [May09, May08] die Anwendung des kompositionellen
Modellierungsansatzes der MECHATRONIC UML betrachtet, um weitere Szenarien der RailCab-
Anwendung zu implementieren. Dabei konnten REAL-TIME COORDINATION PATTERNS fiir
Szenarien wie Bahnilbergang oder Weichenfahrt entwickelt werden sowie eine Einteilung dieser
Muster bezogen auf die Ebene der Koordination zwischen verschiedenen Komponenten (z.B.
Koordination innerhalb eines RailCabs oder zwischen RailCabs).

Der Gesamtansatz der MECHATRONIC UML wurde und wird zudem im Rahmen des Sonder-
forschungsbereichs 614 in einem ganzheitlichen Ansatz zur Entwicklung von mechatronischen
Systemen (von der doméneniibergreifenden Entwicklung bis hin zur dominenspezifischen Ent-
wicklung) an zahlreichen Demonstratoren erprobt [ADG"09]. Aus diesen Ergebnissen kann ge-
schlossen werden, dass die MECHATRONIC UML fiir die betrachteten Systeme geeignet ist.

AuBerhalb der RailCab-Anwendung wurde die Integration von Altkomponenten an einer
Scheibenwischer-Anwendung in Kooperation mit der Hella KGaA Hueck & Co (siehe Abschnitt
6.2) evaluiert [HMSN10a, HMSN10b]. Da wir nicht direkt auf die Alktomponenten zugreifen
konnten, wurden diese entsprechend nach Vorgaben (z.B. Patente) nachimplementiert und ana-
lysiert. Grundsitzlich scheint daher eine Anwendung der Altkomponentenintegration auch im
industriellen Umfeld moglich zu sein. Wiinschenswert wire aber gerade in diesem Bereich eine
Validierung mit umfangreicheren industriellen Fallstudien.

Insgesamt lisst sich folgern, dass mit der Werkzeugumgebung Anwendungen aus der betrachte-
ten Doméne mechatronischer Systeme umgesetzt werden konnen. Die gestellten Anforderungen
aus der Einleitung sowie Abschnitt 2.2 wurden dabei erfiillt. Fiir die Details zu den Evaluierun-
gen der entwickelten Methoden sei auf Abschnitt 6.3.1 verwiesen.

231



Kapitel 6 Werkzeugunterstiitzung

232



Kapitel 7

Verwandte Arbeiten

Die Beherrschung komplexer Softwaresysteme, wie dies fiir mechatronische Systeme benotigt
wird, verlangt eine modellgetriebene Softwareentwicklung. Durch die Modellbildung wird eine
Abstraktion ermdoglicht, die zur Reduzierung der Komplexitit fiihrt. Die durch die MECHATRO-
NIC UML propagierte Separierung in Echtzeitkoordinationsmusterverhalten und Echtzeitverhal-
ten der Komponenten ermoglicht eine kompositionelle Verifikation groBer verteilter Systeme.
Diese wohldefinierte Separierung haben wir in dieser Arbeit ausgenutzt, um einen neuen Ansatz
zur Unterstiitzung der Komposition und Wiederverwendung in einem komponentenbasierten,
modellgetriebenen Softwareentwicklungsansatz fiir mechatronische Systeme mit eingebettetem
Charakter, kompositionellen Strukturanpassungen und Echtzeitverhalten zu prisentieren.

Es gibt eine ganze Reihe an Ansitzen, die die Anforderungen mechatronischer Systeme adres-
sieren. In diesen Ansitzen ist allerdings die Verhaltensanpassung hédufig nur auf einfache Rekon-
figurationen beschrinkt oder es fehlt génzlich an einer Unterstiitzung fiir die Wiederverwendung
von Komponenten mit Strukturanpassungen oder Altkomponenten. Im Unterschied zu diesen
Ansitzen ist unser Ansatz in einen nahtlosen Entwicklungsansatz integriert, welcher Echtzeitan-
forderungen fiir komplexe, verteilte Systeme garantiert und sogar eine vorhersagbare Codegene-
rierung fiir die verifizierten kompositionellen Strukturanpassungen ermoglicht.

Im folgenden Abschnitt 7.1 werden wir zuerst einen Vergleich mit Ansitzen vornehmen, die
einen ganzheitlichen Entwurf mechatronischer Systeme adressieren. AnschlieBend werden wir
spezifischer fiir die vorgestellten Konzepte zur Unterstiitzung der Komposition und Wiederver-
wendung Vergleiche in Abschnitt 7.2, 7.3 und 7.4 vornehmen.

7.1 Modellgetriebene Entwicklungsansatze

Die grundlegende Arbeit zu diesem Vergleich wurde in [GHO6b] vorgestellt. Als Anwendungs-
beispiel haben wir das RailCab betrachtet. Als relevante Vergleichskriterien haben wir die Un-
terstiitzung fiir Modellierung, modellgetriebene Entwicklung sowie die Analyse dieser Modelle
identifiziert.

Die Unterstiitzung fiir eine Modellierung ist eine wichtige Voraussetzung fiir die Entwick-
lung von komplexen Systemen. Der Entwickler benétigt eine Unterstiitzung fiir angemessene
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Abstraktions- und Beschreibungstechniken fiir die spezifischen Probleme. Neben iiblichen Be-
schreibungstechniken fiir das Verhalten, wie Zustandsmaschinen, werden Techniken zur Mo-
dellierung von Verhaltensanpassungen benotigt sowie eine Moglichkeit Altkomponenten zu be-
trachten. Die Unterstiitzung von Modularitit ist daher ein wichtiger Bestandteil, um eine Tren-
nung zwischen verschiedenen Komponenten oder allgemein Verhalten zu ermdglichen und da-
durch Wartbarkeit und Wiederverwendung zu erleichtern.

Die Unterstiitzung eines modellgetriebenen Entwicklungsansatzes (MDD) ist fiir komplexe Sys-
teme wichtig, da durch eine Trennung zwischen plattformspezifischen (PSM) und plattformun-
abhingigen Modellen (PIM) erst eine Wiederverwendung von Modellen (Komponenten) ermog-
licht wird. Diese Anforderung geht mit einer Unterstiitzung von Codegenerierung einher.

Die Modellanalyse kann signifikant die Qualitit und Entwicklungskosten verbessern (z.B.
[Wir04]). Eine wichtige Grundlage fiir die Modellanalyse ist eine wohldefinierte Semantik, da
dies die Voraussetzung fiir eine Simulation oder eine formale Verifikation ist. Aufgrund der Gro-
Be des Zustandsraums komplexer Systeme werden skalierbare Analyseverfahren bendotigt.

Betrachtete Ansatze Auf Basis der beschriebenen Kriterien und der Relevanz der Integrati-
on zwischen Softwaretechnik und Regelungstechnik fiir mechatronische Systeme, haben wir (do-
minenspezifische) Stand der Technik Ansétze, kommende Standards und akademische Ansitze
betrachtet. Eine mangelnde Uberdeckung der gestellten Anforderungen ist dabei Ausschlusskri-
terium fiir die Aufnahme der Ansitze in den Vergleich.

Als de facto Standard in der Industrie betrachten wir MATLAB/Simulink mit Stateflow
(im Folgenden mit MATLAB bezeichnet). Doménenspezifische Ansidtze mit Softwaretechnik-
Hintergrund sind CHARON, Masaccio und Giotto (im Folgenden mit Masaccio bezeichnet), Hy-
bridUML in Kombination mit HL3 (im Folgenden mit HybridUML bezeichnet) und das Tripple
HyROOM/HyCharts/Hybrid Sequence Charts (im Folgenden mit HyROOM bezeichnet). Zusétz-
lich betrachten wir auch den Stand der MECHATRONIC UML vor dieser Arbeit als einen Ansatz
mit Hintergrund aus der Softwaretechnik. HyVisual/Ptolemy II (im Folgenden mit HyVisual be-
zeichnet) ist ein Ansatz aus dem klassischen Engineering Bereich. SysML als (kommender) En-
gineering Standard wird ebenfalls untersucht.

Tabelle 7.1 zeigt einen Uberblick der betrachteten Ansitze unter Angabe des Namens, die be-
trachteten Referenzen und der URL.

Ansatz Referenzen URL

CHARON [ADET01, AIKT03, AGLSO01] www.cis.upenn.edu/mobies/charon/

HybridUML [BBHPO04] www.informatik.uni-bremen.de/agbs/research/hybriduml/
HyROOM [SPP01, BBPT02, GSB98, GKS00] www4.in.tum.de/~stauner/

HyVisual [HLLT 03, BCLT05] ptolemy.eecs.berkeley.edu/

Masaccio [HKSP02, HHKO01, Hen00] www.eecs.berkeley.edu/~fresco

MATLAB [ASK04] www.mathworks.com

MECHATRONIC UML | [GBSO04, BGT05, BGO06, BGK05, BGST05] | www.fujaba.de/projects/realtime/

SysML [Obj05a] http:/www.omgsysml.org/

UML" [FNW98, FJW97] swt.cs.tu-berlin.de/~nordwig/HYFOS/

Tabelle 7.1: Untersuchte modellgetriebene Ansitze
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Ubersicht Vergleich Tabelle 7.2 zeigt zusammengefasst das Ergebnis unserer Untersuchung.
Ausfiihrlich wurde dies in [GHO6b] diskutiert. Aus der Tabelle lassen sich folgende Beobach-
tungen ableiten: 1) Die meisten Ansitze unterstiitzen nur sehr restriktiv Konzepte fiir die Model-
lierung, wie Standardsichten fiir die Struktur und das Verhalten. Szenario- und Aktivititssichten,
welche fiir die frithe Entwicklungsphase oder auch zur Beschreibung von Verhaltensanpassungen
niitzlich sein konnen, werden hiufig nicht unterstiitzt. Einen musterbasierten Ansatz zur Erho-
hung der Wiederverwendung wird nur von der MECHATRONIC UML unterstiitzt. 2) Weiterhin
konnen wir folgern, dass alle Ansétze in der Unterstiitzung der PSM Ebene schwichen aufwei-
sen, die allerdings notwendig fiir eine Integration von Altkomponenten oder der Wiederverwen-
dung von Elementen ist und notwendig fiir (beinahe) jedes komplexes System. 3) Eine weitere
iberraschende Beobachtung ist, dass fast alle Ansitze, inklusive MATLAB, eine Codegenerie-
rung anbieten, die keine Garantien fiir die Einhaltung der spezifizierten Zeitbedingungen und
Anforderungen im Modell zusagen. 4) Eine skalierbare formale Verifikation von Sicherheitsei-
genschaften wird kaum unterstiitzt, geschweige denn die Beriicksichtigung von kompositionellen
Strukturanpassungen und Altkomponenten. Wir konnen daraus folgern, dass keiner dieser An-
sitze die identifizierten Anforderungen fiir die Softwareentwicklung mechatronischer Systeme
gerade hinsichtlich der Unterstiitzung fiir Wiederverwendung und kompositionellen Strukturan-
passungen erfiillen.

7.2 Modellierung und Verfeinerung kompositioneller
Strukturanpassungen

In dieser Arbeit haben wir TIMED STORY CHARTS vorgestellt, um einen gemeinsamen Forma-
lismus fiir Echtzeitverhalten mit kompositionellen Strukturanpassungen anzubieten. Weiterhin
haben wir eine Komposition und Wiederverwendung von Losungen in diesem Formalismus um-
gesetzt durch eine wohldefinierte Verfeinerung und Verifikation der Verfeinerung. Wir kénnen
daher zum einen verwandte Arbeiten im Bereich der Modellierung von Systemen mit Struktur-
anpassungen betrachten. Zum anderen werden wir verwandte Verfeinerungen untersuchen.

7.2.1 Modellierung

Eine abstrakte Vorgehensweise fiir die Entwicklung dynamischer Architekturen wird in [ZC06]
vorgestellt. Hierbei wird nicht explizit auf Sprachen und konkrete Verifikationsansétze eingegan-
gen. Muster werden in diesem Ansatz ebenfalls nicht berticksichtigt. Die grundsitzliche Idee ein
zusitzliches Adaptionsverhalten einzufiihren ist allerdings dhnlich. Die Notwendigkeit der Mo-
dellierung und Analyse von Systemen mit Strukturanpassungen wurde ebenfalls in der Roadmap
[CLG'09] erkannt, es werden jedoch ebenfalls keine konkreten Ansétze vorgestellt.

Bradbury und weitere geben in [BCDWO04] eine Ubersicht iiber Modellierungssprachen fiir die
Modellierung von dynamischen Softwarearchitekturen. Die Ubersicht betrachtet Sprachen, die
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Legende:
X: unterstutzt
--2 nicht unterstitzt

Ansatz

MATLAB

CHARON

HybridUML

HyROOM

Masaccio

MechatronicUML

HyVisual

SysML

Struktur:

Instanzen und/oder Typen

Deployment

Muster

XXX

Prozess/Task Sicht

Verhalten:

Kontinuierlich

Zustandsmaschine

Szenarien

Aktivitaten

Anpassung

XX XXX

Kompositional

Modularitat

x

MDD Level

PIM

PSM

Code

XXX

Codegenerierung

Nicht-Echtzeitfahig (nur simulativ)

Echtzeitfahig

Echtzeitfahig + korrekte zeitliche Aktivierung

Echtzeitféhig + korrektes Scheduling (inkl. WCET)

Semantik

Simulation

Scheduling Analyse

Formale Verifikation / Model Checking

Skalierbar

XXX XXX X

Kompositionale Strukturanpassung

Altkomponenten

Tabelle 7.2: Ubersicht Vergleich MDD Ansiitze
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auf 1) Graphtransformationen basieren, die auf 2) Prozessalgebren basieren und Sprachen, die
auf 3) formaler Logik basieren.

Zu den Ansitzen, die auf Graphtransformationen basieren gehoren die von Le Métayer [LM98],
Hirsch et. al. [HIM98], Taentzer et. al. [TGMO00], Gyapay et. al. [GVHO03], Rivera et al. [RDV(09]
und Boronat et. al. [BO10].

Die Ansitze von Le Métayer [LM98] und Hirsch et. al. [HIM98] basieren auf einer kontextfreien
Grammatik, deren Produktionsregeln als Graphtransformationen spezifiziert sind. Der Ansatz
von Taentzer et. al. [TGMOO] modelliert Strukturanpassungen iiber Graphtransformationen. All
diese Ansitze betrachten keine Verfeinerung sowie Zeit.

Ansitze zu 1), die Zeit beriicksichtigen sind die von Gyapay et. al. [GVHO03], Rivera et al.
[RDV09] und Boronat et. al. [BO10]. Der Ansatz von Gyapay et. al. setzt das Vergehen von
Zeit durch diskrete Zeitticks um. Weiterhin konnen zeitliche Eigenschaften im Vergleich zu un-
serem Ansatz nicht einzelnen Teilgraphen hinzugefiigt werden. In dem Ansatz von Rivera et al.
wird Zeit durch eine globale Clock umgesetzt, welche nicht zuriickgesetzt werden kann. Wei-
terhin konnen Graphtransformationsregeln nicht durch einen Time Guard eingeschrinkt werden.
Boronat et. al. stellt einen Ansatz vor, der ebenfalls Zeit durch eine globale Clock umsetzt, die
nicht zuriickgesetzt werden kann. Zudem unterstiitzt dieser Ansatz keine Invarianten.

Darwin [MK96], LEDA [CPT99] und Dynamic Wright [ADG98] sind Ansitze, die auf Prozes-
salgebren basieren. Dynamic Wright unterstiitzt eine Verhaltensbeschreibung und Verfeinerung
ebenfalls iiber Folgen von externen Nachrichten und ist somit dhnlich zu der in dieser Arbeit ver-
wendeten Verfeinerung. Zeit wird jedoch nicht beriicksichtigt. Darwin und Leda sind Ansitze,
die auf dem 7-Kalkiil [MPW92] basieren. Zeit sowie eine Uberpriifung einer Verfeinerung wird
von diesen Ansédtzen nicht unterstiitzt.

Die Ansitze von Gerel [EW92] und Aguirre et. al. [AMO02] sind Beispiele fiir eine auf formaler
Logik basierenden Sprache. Der Ansatz von Gerel beschreibt Vorbedingungen fiir die Ausfiih-
rung von Regeln mit Pridikatenlogik (erster Stufe). Der Ansatz von Aguirre et. al. beschreibt das
Verhalten von Komponenten mit einer temporalen Logik. Eine Verfeinerung wird durch beide
Ansitze nicht beriicksichtigt.

Die existierenden Sprachen zur Modellierung von Strukturanpassungen nutzen verschiedenste
Formalismen fiir die Beschreibung des Verhaltens. Bis auf die Ansidtze im Bereich der Prozes-
salgebren wird keine Verfeinerung betrachtet. All die betrachteten Ansétze unterstiitzen nur sehr
eingeschrinkt die Modellierung von Zeit.

7.2.2 Verfeinerung

Wir betrachten im Folgenden Ansitze, die eine Verfeinerung fiir Graphtransformationssysteme
oder Timed Automata unterstiitzen. Im Bereich der Graphtransformationssysteme haben wir die
Ansitze von Giese [GieO7], Heckel und Thone [HT04] sowie Grof3e-Rhode et. al. [GRPS02]
untersucht. Giese beschreibt eine Verfeinerung fiir hybride Graphtransformationssysteme (die
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entsprechend kontinuierliche Anteile enthalten). Uber die erste Ableitung einer kontinuierlichen
Variable lésst sich Zeit darstellen. Dieser Ansatz fordert eine strikte Einhaltung der (Zeit-) In-
tervalle. Der Erhalt von Protokollverhalten wird nicht betrachtet. Die Ansitze von Heckel und
Thone sowie Grofle-Rhode et. al. unterstiitzen keine Zeit. Der Ansatz von Heckel und Thone
fokussiert sich zudem auf eine reine Diensterhaltung und kann keine Verifikationsergebnisse er-
halten.

Im Bereich der Timed Automata haben wir die Ansidtze von Beyer [Bey02] und Giese et. al.
[GTB*03, BGHO5a, Bur06] untersucht. In [Bey02] und [GTB*03] wird jeweils eine Verfei-
nerung iiber ganzzahlige Clocks (ein diskretes Zeitmodell) definiert. Die Verfeinerungen werden
ebenfalls zu dem in dieser Arbeit vorgestellten Ansatz iiber Traces definiert. Beide Ansitze unter-
stiitzen jedoch nicht eine Relaxierung der Zeitintervalle. In [BGHO5a, Bur06] wird eine Abstrak-
tion eines HYBRID RECONFIGURATION CHARTS berechnet und anschlieend die Korrektheit
der Abstraktion gezeigt. Dieser Ansatz beschreibt eine strikte Einhaltung von Zeitintervallen.
Weiterhin wird nicht die Erfiillung des Protokollverhaltens durch die Verfeinerung garantiert.

7.2.3 Verifikation

Im Folgenden schrinken wir die Betrachtung von verwandten Ansitzen fiir die Verifikation
auf diejenigen ein, die auch kompositionale Strukturanpassungen unterstiitzen. Olveczky hat in
[OMO02, OM05, OMO07] das Werkzeug Real-Time Maude vorgestellt. Real-Time Maude basiert
auf textuellen (objektorientierten) Ersetzungsregeln. Dieser Ansatz unterstiitzt allerdings keine
Erzeugungen von Uhren und basiert zudem auf einer diskreten Zeitsemantik.

Rensink hat unter anderem in [Ren08] das Werkzeug GROOVE vorgestellt. GROOVE erlaubt ein
Model Checking iiber eine Graphversion von LTL-Formeln, wobei Gadducci et. al. in [GHKOO]
die Anwendbarkeit temporallogischer Formeln auf das zu einem Graphtransformationssystem
generierte Transitionssystem untersucht hat. Baldan et. al. hat in [BCKO8] einen Verifikationsan-
satz fiir Graphtransformationssysteme beschrieben, der auf einer Uberapproximation des Verhal-
tens basiert. Die Approximation kann unter Ausnutzung von Gegenbeispielen verfeinert werden
[CGJT00]. GROOVE sowie der Ansatz von Baldan et. al. betrachten keine zeitlichen Elemente.

Schilling hat in [Sch06] einen Ansatz fiir den Nachweis von induktiven Invarianten fiir Graph-
transformationsregeln vorgestellt. Dieser kann ohne die Durchfiihrung einer Erreichbarkeitsana-
lyse beweisen, dass verbotene Graphsituationen im System nicht erreichbar sind. Becker und
Giese haben diesen Ansatz in [BGO8] um eine Unterstiitzung von Zeit bei dem Nachweis von
Invarianten erweitert. Diese Ansitze erlauben den Nachweis von strukturellen Eigenschaften.
Fiir Eigenschaften wie Deadlocks, die nicht iiber eine verbotene Struktur definiert werden kon-
nen oder fiir die der gesamte erreichbare Zustandsraum aufgebaut werden muss, werden durch
diesen Ansatz nicht unterstiitzt.
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7.3 Analyse von Altkomponenten

Verwandt zu unseren Ansitzen zur Integration von Altkomponenten sind reguléire Inferenzan-
sdtze und Modellabstraktionstechniken aus dem Bereich der formalen Verifikation. Wir werden
im Folgenden erst verwandte Ansitze im Bereich reguldrer Inferenz vorstellen. Anschlieend
werden wir verwandte Arbeiten im Bereich Modellabstraktion diskutieren.

7.3.1 Regulare Inferenz

Es existieren verschiedene Ansitze, die auf dem Lernalgorithmus von Angluin (siehe Abschnitt
4.2.1) basieren. Einige Ansitze, wie in [BJLS03, HNS03b, Ber06] beschrieben, erweitern Anglu-
ins Algorithmus, zur Verbesserung der Laufzeit fiir bestimmte Applikationen oder Dominen.
Diese Ansitze nutzen Angluin’s Algorithmus und fiigen z.B. zusétzliche Technologien, wie Tes-
ten und Verifikation hinzu. Hierdurch werden primér die Zugehorigkeitsanfragen reduziert.

Hungar et al. [HNSO03b, HNS03a, SHO3, MNRS04, MRSLO7] und Raffelt et al. [RMSMO09] op-
timieren den Algorithmus von Angluin durch doménenspezifische Informationen, wie beispiels-
weise Prifix-Abgeschlossenheit und die Ausnutzung eines deterministischen Systems. Hierdurch
reduzieren sie die Anzahl der Zugehorigkeitsanfragen.

Li and Shahbaz et al. prisentieren in ihrem Ansatz [LGS06b, LGS06a, SLGO07] wie Tests genutzt
werden konnen, um parametrisierte Zustandsautomaten zu erlernen. Dieser Ansatz basiert auch
auf Angluins Algorithmus. Zunéchst wird ein Test fiir jede Komponente ausgefiihrt. Anschlie-
Bend werden die einzelnen Komponenten integriert. Basierend auf den synthetisierten Modellen
werden Testfélle generiert und ausgefiihrt.

Berg et al. zeigen in [BJRO6] einen Ansatz, welcher ebenfalls versucht durch regulire Inferenz
Zustandsautomaten mit Parametern zu erstellen. Sie nutzen Angluins L* Algorithmus, um effi-
zienter auf eine bestimmte Klasse von Systemen arbeiten zu konnen. Sie optimieren den Ansatz
in dem sie fiir jeden Zustand die Eingangssignale ableiten und zu dquivalenten Klassen zusam-
menfassen. Dabei gilt die Hypothese, dass alle Eingangssignale die den gleichen Effekt auf einen
Zustandsautomaten besitzen in der gleichen dquivalenten Klassen eingeordnet werden.

Die prisentierten Ansitze in [BPG03, CGP03, GP05] basieren auf einem Automatenmodell des
Systems/der Komponente. Mit diesem Modell und einer Spezifikation lernen sie die bendtigten
Annahmen, um die Spezifikation zu garantieren.

Eine Technik, um eine Black Box mittels Model Checking zu iiberpriifen, wird von Peled und
anderen in [PVY99] vorgestellt. Die Idee die zwei Techniken zu kombinieren, ist weiter aus-
gearbeitet worden zu einer Methode namens Adaptive Model Checking [GPY02]. In [EGT06]
wird dieser Ansatz zu einem Grey Box Checking erweitert. Hierbei wird vorausgesetzt, dass ei-
nige Teile des Systems bereits bekannt sind. Diese Ansétze bieten die Moglichkeit einen Fehler
wihrend der Lernphase zu finden.
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Grinchtein et al. prisentieren in ihrem Ansatz [GJL04, GJP06] wie der Inferenz Algorithmus von
Angluin fiir zeitbehaftete Systeme genutzt werden kann. Préziser beriicksichtigen sie Systeme,
welche mittels deterministischer Event Recording Timed Automata modelliert werden kdnnen.
Event Recording Timed Automata [AFH99] sind eine eingeschrinkte Klasse von Timed Auto-
mata, die fiir jede Nachricht (Aktion) eine Uhr vorsehen, die die Zeit von dem letzten auftreten
der Nachricht erfasst.

Fazit Im Prinzip basieren die hier betrachteten Lernalgorithmen alle auf dem von Angluin. Bis
auf [PVY99], versuchen alle Ansitze das ganze Verhalten zu synthetisieren. Erst anschliefend
werden Konfliktsituationen gefunden. Unser Black-Box-Ansatz betrachtet im Vergleich dazu be-
sonders das enge Zusammenspiel zwischen dem Kontext und der Altkomponente. Somit ist es
nicht erforderlich das gesamte Verhalten der Altkomponente zu erlernen. Nur der relevante Teil
der Integration ist erforderlich. Ahnlich zu [PVY99] ist unser Ansatz in der Lage reale Feh-
ler nach jedem Lernschritt zu finden. Dariiber hinaus ermdglichen wir ein reaktives Verhalten
in Form von ein- und ausgehenden Nachrichten sowie Zeit(-bedingungen) zu beriicksichtigen.
Die Betrachtung von reaktiven Verhalten sowie das Ausnutzen der Prifixabgeschlossenheit ist
dhnlich zu den Ansitzen von Hungar et al. [HNSO3b]. Die Moglichkeit eingeschrédnkt Zeit zu
betrachten ist dhnlich zu dem Ansatz von Grinchtein et al. [GJLO04].

Insgesamt lédsst sich folgern, dass keiner der Ansitze all die relevanten Anforderungen der von
uns betrachteten Systeme adressieren. Die einzelnen Techniken unseres Black-Box-Ansatzes
sind allerdings @hnlich zu den hier betrachteten Verfahren, bzw. basieren hierauf. Unser Gray-
und White-Box-Ansatz lassen sich aufgrund der unterschiedlichen zur Verfiigung stehenden In-
formationen, die starke Auswirkung auf das Verfahren haben, nicht direkt mit diesen Ansétzen
vergleichen. Bezogen auf den Gray-Box-Ansatz lédsst sich am ehesten ein Vergleich mit dem An-
satz von [EG106] erstellen, die ebenfalls davon ausgehen, mehr Informationen als fiir die reine
Black-Box-Analyse zur Verfiigung zu haben. Dieser Ansatz basiert allerdings immer noch auf
dem von Angluin. Im Vergleich dazu ermdglicht unser Gray-Box-Ansatz direkt das Verhalten zu
lernen, ohne Aquivalenzanfragen, sowie reaktive Systeme und Zeit zu betrachten.

7.3.2 Abstraktionstechniken

Abstraktionstechniken sind eine wichtige Technik, um die Explosion des Zustandsraums beim
Model Checking zu behandeln. Gegenbeispiele werden dabei oft genutzt, um abstrakte Modelle
zu verfeinern. Eine Approximation wird verfeinert, wenn Verhalten der Approximation, welches
nicht im urspriinglichen konkreten Modell vorhanden ist, der Grund fiir ein Gegenbeispiel ist
(sieche Abschnitt 7.2.3 - CEGAR).

Ausgehend vom Quellcode ist es Ziel der Abstraktionsansitze ein moglichst abstraktes Modell zu
gewinnen, um (realistisch) eine Verifikation zu ermoglichen. In einem ersten Schritt wird dabei
eine Uberapproximation erstellt (Zustéinde werden zusammengefasst). Dann wird das Modell so
lange verfeinert, bis kein fehlerhaftes Gegenbeispiel auftritt. Zahlreiche Ansitze, wie [Kur94,
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LNA99, CGJ*03] (sieche auch die von uns angewandten Quellcode Model Checker in Abschnitt
4.3), basieren hierauf.

All diese Ansitze basieren auf einer reinen Quellcodeanalyse. Es werden im Vergleich zu un-
serem Gray-Box-Ansatz keine Tests durchgefiihrt, um die Eingabe das Systems zu beriicksich-
tigen. Weiterhin betrachten diese Ansitze im Vergleich zu all unseren keine Interaktion mit der
Umgebung (Kontext) sowie Verletzungen von Zeitbedingungen.

7.4 Synthese von Komponentenverhalten

In diesem Abschnitt betrachten wir die verwandten Arbeiten zu unserem Ansatz der Synthese von
Komponentenverhalten. In Abschnitt 7.4.1 werden wir Ansitze aus dem Bereich der Controller-
Synthese betrachten. In Abschnitt 7.4.2 diskutieren wir Ansétze zur Synthese von nicht zeit-
behfteten Komponentenverhalten und anschlieend in Abschnitt 7.4.3 zeitbehaftete Ansitze.

7.4.1 Controller-Synthese

Der Bereich der Controller-Synthese [AMP95, AMPS98, AT02, BK06, GGROS8] beschiftigt sich
mit dem Problem der Synthese von Verhalten fiir einen Controller, welcher mit einer (bestimm-
ten) Umgebung interagiert.

Die Interaktionen eines Controllers werden durch alternierende Aktionen zwischen dem Control-
ler und der Umgebung beschrieben. Die Synthese versucht auf Basis dieser Interaktionen und ge-
gebenenfalls weiteren Anforderungen (Einschrinkungen) einen Controller zu synthetisieren, der
alle Aktionen mit der Umgebung erfiillen kann. Die hiermit unterliegenden spieletheoretischen
Grundlagen fiihren zur Anwendung von speziellen Verhaltensmodellen wie den Timed Game
Automaton [AMP95, MPS95]. In einem solchen Automaten werden Transitionen in kontrollier-
bar durch den Controller oder der Umgebung eingeteilt.

Der Eingabe Timed Game Automaton ist typischerweise unterspezifiziert (offen), so dass
zusitzliche Eigenschaften durch die Synthese integriert werden miissen, um z.B. geforderte
Sicherheits- und Lebendigkeitseigenschaften zu erfiillen (wie z.B. [Pnu77, CMP9%4, ACD90,
ACDO3]). Diese dienen als weitere Eingabe in die Syntheseverfahren.

Der Hauptunterschied zu unserer Synthese ist, dass die gegebenen Verhaltensmodelle der
Controller-Synthese nicht kompositionell sind, sondern als ein Gesamtsystemverhalten aufge-
fasst werden. In unserem Ansatz ist die Kompositionalitit durch die unabhingigen Rollenau-
tomaten gegeben. Konsequenterweise konnen auch keine Eigenschaften in diesen Ansitzen be-
schrieben werden, die sich auf eine Komposition beziehen. Insgesamt folgt hieraus, dass andere
(Verfeinerungs-) Beziehungen zwischen dem Ursprungsmodell und dem synthetisierten Modell
gelten, die wiederum zu einer unterschiedlichen Synthese (Synthesealgorithmus) fithren.
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7.4.2 Synthese von nicht-zeitbehafteten Komponentenverhalten

Giese und Vilbig haben in [GV06] einen Syntheseansatz fiir das Verhalten von interagieren-
den Komponenten vorgestellt. Die Interaktionen werden durch sogenannte Kontrakte spezifiziert
[Gie00], die das Protokollverhalten einer Operationen mit Statecharts beschreiben.

Ahnlich zu Koordinationsmustern werden Kontrakte unabhiingig voneinander spezifiziert.
Nimmt eine Komponente an mehreren Kontrakten teil, ist es ebenfalls moglich, dass Zustands-
kombination auftreten, die durch gestellte Systemanforderungen verboten sind. Entsprechend
wurde in diesem Ansatz Zustandsrestriktionen ohne Zeit definiert, die bestimmte Zustandskom-
binationen verbieten.

Der Syntheseprozess von Giese und Vilbig beginnt mit einer parallelen Komposition der Kon-
traktverhalten. AnschlieBend werden die verbotenen Zustandskombinationen aus dieser paral-
lelen Komposition entfernt. Als letzter Schritt wird iiberpriift, ob das synthetisierte Verhalten
eine Verfeinerung der beteiligten Rollenverhalten ist. Ist dies der Fall, so ist das Ergebnis ein
kontraktkonformes Zustandsverhalten unter Beriicksichtigung der Restriktionen.

Da der in dieser Arbeit vorgestellte Ansatz historisch auf dem von Giese und Vilbig aufbaut,
ist die grundsitzliche Syntheseprozedur sehr dhnlich. Aufgrund der Betrachtung von Zeit durch
unseren Ansatz sind die Ansétze jedoch wiederum sehr unterschiedlich.

Die Verhaltensdiagramme der Kontrakte beschreiben eine Sequenz von Nachrichten, unter-
scheiden jedoch nicht zwischen senden und empfangen von Nachrichten. Fiir die MECHATRO-
NIC UML ist diese Unterscheidung allerdings inhdrent, genauso wie die Beschreibung von Zeit-
bedingungen.

Ein weiterer Unterschied sind die verschieden Verfeinerungsbeziehungen, die entsprechend
groBen Einfluss auf die Synthese haben. In dem Ansatz von Giese und Vilbig werden sogenannte
7 Transitionen eingefiihrt, um gegenstandslosen Nichtdeterminismus zu beschreiben (repriasen-
tiert irgendein mogliches Verhalten). Fiir frithe Entwicklungsphasen, wo die abhédngigen Verhal-
ten noch nicht konkret bekannt sind, ist dies auch geeignet. Fiir unseren Fall, mit wohlbekannten
Rollenverhalten, ist dieses Konzept ungeeignet. Jedoch ist die grundsitzliche Idee, dass zwischen
den Aktionen eines Rollenverhaltens willkiirlich internes Verhalten auftreten kann, dhnlich.

7.4.3 Synthese von zeitbehafteten Komponentenverhalten

Seibel erweitert den Ansatz von Giese und Vilbig in [Sei07] um Timed Automata mit einem
diskreten Zeitmodell und Zustandsrestriktionen.

Ahnlich zu unserem Ansatz erweitert Seibel die Zustandsrestriktionen von Giese und Vilbig um
Zeit. Zudem werden Restrkionsautomaten definiert, die Nachrichten der Kontraktverhalten (Port-
verhalten) beobachten konnen. Fiir die Synthese wird dann eine diskrete Zeitsemantik definiert,
die das Vergehen von Zeit durch Integer-Schritte bestimmt (vergleiche Abschnitt 6.3.1.4). Der
Syntheseablauf ist wiederum der gleiche wie bei Giese und Vilbig.
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Das von Seibel auf UML Ports [Obj09] erweiterte Konzept ist entsprechend @hnlich zu unserem
Ansatz aufgrund der Verwandtschaft zu Giese und Vilbig. Das Port-Konzept ist zudem @hnlich zu
unserem Rollen Konzept. Jedoch werden Portverhalten spezifisch fiir eine Komponente definiert.

Der Hauptunterschied zu der Arbeit von Seibel ist die diskrete Zeitsemantik, die nicht oder nur
sehr eingeschrinkt fiir mechatronische Systeme angewandt werden kann (siehe Abschnitt 2.1).
Zudem wendet Seibel die parallele Komposition und die Zustandsrestriktionen auf dem diskreten
Zeitmodell an, wihrend wir nur die Abstraktion ausnutzen, um die Rollenkonformitit zu iiber-
priifen. Das Konzept der 7 Transitionen hat Seibel von Giese und Vilbig iibernommen, statt das
Verhalten der Ports zu betrachten. Daher sind auch die Verfeinerungsbeziehungen und der Syn-
thesealgorithmus verschieden zu unserem und nicht anwendbar fiir die MECHATRONIC UML.
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Kapitel 8
Zusammenfassung und Ausblick

In dieser Arbeit haben wir einen systematischen modellgetriebenen Entwicklungsansatz fiir
selbstoptimierende, mechatronische Systeme vorgestellt, in dessen Mittelpunkt die Komposition
und Wiederverwendung von Softwarekomponenten und deren Protokollverhalten zu komplexen
hierarchischen Komponentensystemen steht. Die Komposition unterstiitzt eine kompositionelle
Anpassung der Komponentenstruktur unter Beriicksichtigung der sich daraus ergebenden Ver-
haltensanpassung sowie Altkomponenten. Durch eine nahtlose Integration in die MECHATRO-
NIC UML werden Echtzeitanforderungen fiir komplexe verteilte Systeme garantiert und sogar
eine vorhersagbare Codegenerierung fiir die verifizierten, kompositionellen Strukturanpassungen
ermoglicht.

Zusammenfassung In Abschnitt 2.1 haben wir eine systematische Vorgehensweise fiir die
Entwicklung von hierarchischen Komponentensystemen beschrieben. Hierbei haben wir die Me-
thoden der MECHATRONIC UML mit den neu entwickelten Methoden in dieser Arbeit ganzheit-
lich integriert dargestellt, um eine Empfehlung fiir die systematische Entwicklung hierarchischer
Komponenten im Kontext mechatronischer Systeme zu geben. Die Unterstiitzung der Wiederver-
wendung haben wir dabei in die Bereiche Verfeinerung in hierarchischen Komponentensystemen,
Integration von Altkomponenten und Synthese von Komponentenverhalten unterteilt.

Die Verfeinerung in hierarchischen Komponentensystemen basiert auf den in Kapitel 2.6 einge-
fiihrten TIMED STORY CHART Formalismus. Mit diesem Formalismus begegnen wir der An-
forderung, Echtzeitverhalten sowie Strukturanpassungen integriert zu betrachten. Die in Kapitel
3 vorgestellte Verfeinerung und Uberpriifung der Verfeinerung nutzt dies aus und zeigt im Ver-
gleich zu bisherigen Ansitzen ein hoheres Potential an Wiederverwendung durch eine Relaxie-
rung des Echtzeitverhaltens.

Fiir die Integration von Altkomponenten haben wir drei unterschiedliche Ansétze identifiziert, um
fiir die Altkomponente eine moglichst passende Analyse der Integration zu erreichen. Wir un-
terscheiden dabei zwischen Gray Box Checking, Black Box Checking und White Box Checking
(siehe Kapitel 4). Die Betrachtung von Sicherheits- und Lebendigkeitseigenschaften sowie Ana-
lyseverfahren aus der Regelungstechnik, um Reglerverhalten zu identifizieren, fiihren dazu, dass
die gestellten Anforderungen mechatronischer Systeme abgedeckt werden.
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Die Synthese von Komponentenverhalten rundet die Unterstiitzung der Wiederverwendung von
Komponenten und deren Protokollverhalten ab (siehe Kapitel 5). Mit diesem Ansatz konnen
wir formal Abhéngigkeiten zwischen Protokollverhalten beschreiben und automatisch ein kon-
sistentes (protokollkonformes) Gesamtverhalten auf Basis der Protokollverhalten synthetisieren,
welches die spezifizierten Abhédngigkeiten beriicksichtigt.

Um Altkomponenten integrieren zu konnen und einen modellgetriebenen Ansatz vollstindig an-
zubieten, wird eine automatische Codegenerierung aus den Modellen der MECHATRONIC UML
benotigt. Im Rahmen dieser Arbeit haben wir eine Laufzeitumgebung fiir die Integration von
Altkomponenten entwickelt (sieche Kapitel 6.1), die in die bisherige Codegenerierung und Lauf-
zeitumgebung der MECHATRONIC UML [Bur06, BGH"07] integriert ist. Hiermit wird eine au-
tomatische Analyse fiir die Integration von Altkomponenten ermdglicht. Zudem haben wir den
bisherigen Ansatz erweitert, um eine Vorhersagbarkeit trotz der verwendeten komplexen Objekt-
strukturen zu ermoglichen, indem wir eine Laufzeitanalyse (WCET Analyse) fiir Story Diagram-
me zur Verfiigung stellen.

Die durch die Werkzeugunterstiitzung ermdglichte Validierung (siehe Kapitel 6) hat gezeigt, dass
unter richtiger Anwendung der Methoden, selbstoptimierende, mechatronische Systeme erfolg-
reich umgesetzt werden konnen.

Ausblick Ausblicke auf weiterfithrende Arbeiten konnen aufgrund der stetigen Weiterent-
wicklung der MECHATRONIC UML im Fachgebiet Softwaretechnik! viele gegeben werden.

Naheliegend sind Erweiterungen des eingefiihrten TIMED STORY CHART Ansatzes und ent-
sprechender Verfeinerung zu einer formalen Verifikation. Hierzu miissen die zu iiberpriifenden
Eigenschaften fiir die Doméne mechatronischer Systeme insofern angepasst werden, dass so-
wohl Struktur-, als auch Verhaltenseigenschaften geeignet spezifiziert werden konnen. Erste Ide-
en hierzu wurden in [HSJZ10] vorgestellt.

Fiir die Integration von Altkomponenten und der Synthese von Komponentenverhalten sind an
erster Stelle umfassende Evaluierungen notwendig. Fiir die Integration von Altkomponenten ist
besonders zu untersuchen, inwiefern strukturelle und rein statische Reverse Engineering Ver-
fahren die Uberpriifung der Integration unterstiitzen konnen. Eine Integration mit den an diesem
Lehrstuhl entstandenen bisherigen Arbeiten im Bereich Reverse Engineering (z.B. [Wen08]) wi-
re z.B. denkbar, um strukturelle Information in den Integrationsansatz einflieen zu lassen.

Im Fall der Synthese von Komponentenverhalten ist zu untersuchen, ob die vorgestellten Kom-
positionsregeln ausreichend sind. Eine Erweiterung um die Moglichkeit der Spezifikation von
strukturellen Abhéngigkeiten ist ein Ausblick fiir weiterfithrende Arbeiten. In diesem Zusam-
menhang ist zu untersuchen, ob die Unterstiitzung von Strukturanpassungen einfacher und um-
fangreicher ermdoglicht werden kann, wenn eine Synthese direkt iiber TIMED STORY CHARTS
definiert wird.

Thttp://www.upb.de/cs/ag-schaefer
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Wie schon bereits in Abschnitt 6 diskutiert, ist eine vollstindige Integration der Codegenerie-
rung fiir Story Diagramme mit der fiir HYBRID RECONFIGURATION CHARTS ein Ausblick.
Weiterhin ist eine werkzeugtechnische Integration mit der flexiblen Ressourcenverwaltung (sie-
he Abschnitt 6.1.2.1) notwendig, um umfangreiche Evaluierungen speziell der Nutzenpotentia-
le selbstoptimierender, mechatronischer Systeme mit kompositionellen Strukturanpassungen zu
untersuchen. Eine Erweiterung der bisherigen Simulation (sieche [BGH"07]), um die hiermit er-
moglichten komplexeren Szenarien, ist ein Ausblick fiir eine Validierungsumgebung.

Die MECHATRONIC UML gliedert sich in den Gesamtentwicklungsansatz des Sonderfor-
schungsbereichs 614% als ein domiinenspezifischer Entwicklungsansatz fiir die Softwaretech-
nik ein. Um eine durchgingige Entwicklung zu unterstiitzen, wird ein Ubergang zwischen
der doméneniibergreifenden Entwicklung in die Domédne der Softwaretechnik benétigt. In
[GGS™07, HHKS08] haben wir hierzu erste Ideen vorgestellt, die als Grundlage fiir weiter-
fiihrende Arbeiten niitzlich sein konnen (siche z.B. [GSG'09]). Da sich die szenariobasierte
Entwicklung in den frithen Phasen als sehr niitzlich erwiesen hat, ist der Ubergang, unterstiitzt
durch eine Synthese von Zustandsverhalten, wie in [GHHK06, HGH ™09, Gre10] betrachtet, viel-
versprechend. Die Einbeziehung von Strukturanpassungen ist ein moglicher Ausblick fiir eine
solche Synthese.

Die MECHATRONIC UML wurde und wird stetig im Rahmen des RailCab-Projektes evaluiert.
Eine Anwendung der Konzepte in der Industrie wurde teilweise gezeigt (siehe Abschnitt 6.3.2).
Umfangreichere Betrachtungen sind hier wiinschenswert. Im Sinne einer tiefgreifenderen Vali-
dierung sollte hierbei ebenfalls untersucht werden, ob die Methoden erfolgreich von geschulten
Benutzern angewandt werden konnen.

http://www.stb614.de/
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Anhang A
Timed Story Charts

In Abschnitt 2.6.4 haben wir TIMED STORY CHARTS eingefiihrt. Im Folgenden werden die ein-
zelnen Elemente (siehe Abschnitt A.1) sowie die zusammengesetzte Ausfithrung der Elemente
(sieche Abschnitt A.2) erldutert.

A.1 Elemente

A.1.1 Statechart

Ein Statechart AB wird definiert durch eine Klasse AB, welche von der Statechart Klasse (siche
Abbildung 2.27) erbt. Der Name der Statechart-Klasse entspricht dem Namen des Statecharts.
Ein Statechart wird durch Instanziierung der Statechart-Klasse angelegt. Fiir Strukturelemente
zu denen inhidrent ein Verhalten gehort, wird automatisch das dazugehorige Statechart erzeugt.
Zu diesen Strukturelementen gehdren nach dem Metamodell aus Abbildung 2.20 Component,
Part, Delegation und Coordinator. Hierdurch haben auch alle Part Elemente ein Verhalten. Ein
Statechart kann ebenfalls in einem ComplexState eingebettet sein. Fiir Multielemente, die ein
parametrisiertes Verhalten verlangen, wird durch die parameter Attribute der Objekte Clockin-
stance, ActiveState und Synchronization eine eindeutige Zugehdrigkeit einer Statechartinstanz
zu den Parametern gewdhrleistet.

Fiir die Umsetzung von parametrisierten Verhalten gibt es unterschiedliche Méglichkeiten. Es
kann z. B. fiir jede Instanz eines Multielementes eine Instanz des parametrisierten Verhalten
angelegt werden. Fiir Analysezwecke fiihrt dies allerdings zu einem unnotigen Mehraufwand,
da die einzelnen Zustandsobjekte die gleichen fiir jede Instanz sind. Um dies zu umgehen, wird
durch unseren Ansatz nur ein Objekt fiir das Statechart angelegt und fiir Element des Statecharts,
die sich pro Instanz unterscheiden (Clockinstance, ActiveState und Synchronization), wird das
parameter Attribut genutzt.

Abbildung A.1 zeigt die Abbildung eines parametrisierten Statecharts AB_Statechart auf ein TI-
MED STORY CHART. Trotz der Mehrfachinstanziierung des Statecharts, wird nur ein Statechart
Objekt AB_Statechart angelegt. Durch das parameter Attribute des ActiveState Objekts wird
trotzdem eine eindeutige Unterscheidung zwischen den unterschiedlichen Instanzen erméglicht.
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Die MECHATRONIC UML verlangt, dass zu den Strukturelementen wie Komponenten, Ports
und Delegation ein Statechart angelegt werden muss. Weiterhin wird fiir ein Multielement ver-
langt, dass fiir jede Instanz eines Multielements ein Statechart mit entsprechend dazugehorigen
Parametern angelegt wird. Ein Statechart muss auch in andere Statecharts eingebettet werden
konnen. Durch die in Abschnitt A.1.1 eingefiihrten Statechart-Klassen bleibt damit die Seman-
tik eines Statecharts erhalten, da ein Statechart genau durch eine Klasse und Assoziation zu
entsprechenden Strukturelementen und komplexen Zustidnden, die Statecharts einbetten konnen,
definiert ist. Weiterhin wird durch die parameter Attribute eine Mehrfach-Instanziierung mit den
geforderten Eigenschaften unterstiitzt.

rtsc : AB_Statechart, Instanz 1J

----- V| » »
E . - A B

rtsc : AB_Statechart, Instanz 2]

] — .
e

2

sc : AB_Statechart

s1: State s2 : State
name = A" name = ,B*
active A A active

as1 : ActiveState as2 : ActiveState

parameter = 1 parameter = 2

Abbildung A.1: Abbildung eines Statecharts auf einen Objektgraphen.

A.1.2 Zustande

Ein Statechart-Zustand wird iiber eine Instanz der State Klasse angelegt. Das name Attribute
wird mit dem Namen des States initialisiert. Ein AND-State wird durch die Klasse ComplexState
spezifiziert, in dem eine Menge von Statecharts dem gleichen ComplexState zugeordnet werden.
Ein Zustand ist aktiv, wenn ein Objekt vom Typ ActiveState eine gerichtete Assoziation active
zu diesem Zustand hat. Ein Zustandswechsel wird durch Anpassung dieser Assoziation erreicht,
indem active zu einen anderen Zustand assoziiert wird. Ein parametrisiertes Statechart besitzt
fiir jede Instanz eine ActiveObjekt Instanz, die mit dem aktiven Zustand der Instanz assoziiert
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ist. Das parameter Attribut einer ActiveObjekt Instanz wird mit dem Wert & der k-ten Instanz
des parametrisierten Statecharts instanziiert. Ein ActiveState Objekt eines nicht parametrisierten
Statecharts wird mit Parameter eins instanziiert. Initial assoziieren die ActiveObjekt Instanzen
die Startzusténde eines Statecharts.

Wie bereits in Abschnitt A.1.1 diskutiert, ist durch die Umsetzung von Mehrfach-Instanzen ei-
nes parametrisierten Statecharts mittels des parametrisierten ActiveState Objekts eine effiziente
Moglichkeit, um die Instanzen eines parametrisierten Statecharts zu verwalten, ohne fiir jede
Instanz eine Statechart Instanz anzulegen.

Abbildung A.1 zeigt ein Beispiel fiir die Abbildung eines parametrisierten Statecharts mit zwei
Instanzen auf einen Objektgraphen (siehe auch Abschnitt A.1.1). Fiir die beiden Instanzen des
AB_Statecharts wird ein AB_Statechart Objekt instanziiert. Die Zustinde A und B werden je-
weils durch ein State Objekt abgebildet. Das Namensattribut ist entsprechend mit A und B initia-
lisiert. Die aktiven Zustinde der beiden Instanzen des Statecharts werden iiber die ActiveState
Objekte as1 und as2 spezifiziert. Das parameter Attribut wird mit der eindeutigen Instanznum-
mer initialisiert.

Die endliche Menge an Zustidnden S eines PARAMETERIZED REAL-TIME STATECHART (siche
Abschnitt 2.4.4) ist durch eine endliche Menge von State Objekten definiert. Der Startzustand
89 ist durch die initiale Menge an ActiveState Objekten definiert. Dariiber hinaus ist der aktuelle
Zustand eines PARAMETERIZED REAL-TIME STATECHART durch die Menge der ActiveState
Objekten bestimmt (siehe auch Defintion A.1.3). Das Attribut parameter des ActiveState Ob-
jektes ldsst eine Unterscheidung der einzelnen Instanzen eines Statecharts zu und erlaubt so die
eindeutige Kodierung des Zustands jeder Statechartinstanz, woriiber eine konkrete Instanz ei-
nes Multielements definiert ist. Die Parametrisierung von Statecharts eines einfachen Elements
mit Parameter gleich eins verletzt die Semantik nicht, da das Statechart nur einmal instanziiert
werden kann und der aktive Zustand sich nur auf diese Instanz beziehen kann. Die Komposi-
tionsbeziehung zwischen Statechart und Zustinden sowie zwischen komplexen Zustinden und
eingebetteten Statecharts (Sub-Statecharts) stellt sicher, dass ein Zustand nicht ohne sein State-
chart existieren kann und ein eingebettetes Statechart nicht ohne den umgebenden komplexen
Zustand.

A.1.3 Transitionen

Eine Transition ist durch ein Story Diagram definiert. Die einzelnen Stories definieren die Ein-
und Ausgehenden-Ereignisse, Bedingungen, Time Guards, Synchronisationskanile, Seiteneffek-
te, Clock Resets und Deadlines. Werden Zeitbedingungen definiert, so werden Timed Story Pat-
tern verwendet andernfalls Story Pattern.

Abbildung A.2 zeigt die grundsitzliche Abbildung einer PARAMETERIZED REAL-TIME
STATECHART-Transition. Eine Transition wird durch ein Story Diagramm mit einer Story fiir
die Transition abgebildet. Die Story stellt lediglich eine Transition von Zustand A nach B dar,
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ohne jegliche Bedingungen, Ereignisse und Seiteneffekte. Fiir diesen einfachen Fall wird der
Link durch ein Story Pattern von Zustand A nach Zustand B umstrukturiert.

Die einzelnen Elemente einer Transition eines TIMED STORY CHARTS werden im Folgenden
definiert und in Abschnitt A.2 kombiniert.

? AB_Statechart::Trans_A_B()

/ this ActiveState \

<<-->> <<t++>>
active S W active

State State

name = ,A"“ name = ,B“

:

Abbildung A.2: Schalten einer Transition

Eine PARAMETERIZED REAL-TIME STATECHART-Transition 7" ist definiert durch 7" C S x
¥ x C(X) x 2% x Sig(l) x S, wobei eine einzelne Transition von s nach s’ durch ein 6-Tupel
beschrieben ist (s, a, p, A, sig, s’) (siehe Abschnitt 2.4.4). Durch die Definition von ActiveOb-
ject Objekten lassen sich beliebig Zustandsiibergéinge zwischen State Objekten beschreiben, die
wiederum auf die Zustidnde S eines Statecharts abbildbar sind (sieche Abschnitt A.1.2). Die Ab-
bildung der anderen Elemente wird im Folgenden erldutert.

A.1.4 Clocks

Eine Clock ist definiert durch ein Clockinstance Objekt (siehe Abschnitt 2.6.2). Das parameter
Attribut bezieht sich auf Instanz k£ des (parametrisierten) Statecharts (sieche Abschnitt A.1.2).
Den Namen der Uhr wird durch das id Attribut bestimmt. value gibt den aktuellen Wert der Uhr
an.

Da die Elemente des Statecharts nur einmal erzeugt werden, miissen nur einmal unabhingig von
der konkreten Instanz Regeln fiir eine Clock Instanz beschrieben werden.

Eine Abbildung einer Clock auf ein Clock Instanz Objekt ist Abbildung A.3 zu entnehmen. Da
es sich hier nur um eine Instanz handelt, wurde die Clock ¢1 mit dem parameter gleich eins
initialisiert (siche Abschnitt A.1.2).

Die Clocks eines PARAMETERIZED REAL-TIME STATECHART sind definiert iiber X :=
(21, .., x,) eine endliche Menge an Clockvariablen mit z; € R*. Eine Clockvariable entspricht
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rtsc : AB_Statechart | c1)

2

sc : AB_Statechart has} ClocklInstance

id = ,c1"
parameter = 1

Abbildung A.3: Abbildung einer Clock auf ein ClockInstance Objekt

einem ClockInstance Objekt, welches durch das value Attribut einen Wert aus den reellen Zah-
len aufnehmen kann. Eine Clock ist zudem iiber die Transition von ClockInstance Objekten eine
Zuweisung zu Zustdnden oder Transitionen ermdglicht, um Zeitbedingungen zu spezifizieren
(siche z. B. Abschnitt A.1.5). Die Definition einer Clock iiber Clock Instanzen erlaubt zudem,
wie bereits in Abschnitt 2.6.2 vorgestellt, mehrere Instanzen einer gleichen Clock anzulegen.
Dies ist zwingend notwendig fiir Multielemente. Eine Clock wird mit Erzeugen des Statecharts
initialisiert. Eine Clock Instanz bezieht sich somit immer auf eine konkrete Instanz eines pa-
rametrisierten Statecharts. Eine Angabe von Clock Instanzregeln ist fiir die Instanziierung von
Statecharts nicht erforderlich, da die Erstellung der bendtigten Clocks direkt in die Regel zum
Erstellen des Statecharts mit aufgenommen werden kann (siehe Abschnitt 2.6.2). Dies verletzt
nicht die Semantik der PARAMETERIZED REAL-TIME STATECHART, da eine Clock nur mit ei-
nem Statechart exisitiert. Das Clocklnstance Objekt erhilt den gleichen Parameter wie das zu
dem Statechart gehorige ActiveState Objekt.

A.1.5 Guards

Ein Guard einer Transition wird auf eine Boolsche Bedingung des Story Pattern oder TIMED
STORY PATTERN abgebildet, welches die Transition beschreibt (sieche Abschnitt A.1.3).

Abbildung A.4 zeigt ein Beispiel fiir die Abbildung des Guards railCab.speed < 10. Die Zu-
stande sowie die Transition wird wie zuvor definiert beschrieben. Der Guard wird iiber das Rail-
Cab Objekt rc1 als Story Pattern Bedingung spezifiziert.

Nach der Definition von PARAMETERIZED REAL-TIME STATECHARTS muss ein Guard durch
eine Boolesche Bedingung ausgedriickt und evaluiert werden konnen. Genau dies wird durch
eine Boolesche Bedingung eines Story Patterns umgesetzt.

A.1.6 Synchronisationen

Eine Synchronisation ist durch Synchronisationsobjekte der Klasse Synchronization definiert.
Das name Attribut gibt den Namen der Synchronisation an. Das parameter Attribut gibt den
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rﬁ[raiICab.speed > 10.];(?
) . J

2

$ AB_Statechart::Trans_A_B()

/ rc1 : RailCab this ActiveState \

*>—
<<= >> <<H4>>
active W active
State State
name = name = ,B“

\ {rc1.speed > 10} /

é

Abbildung A.4: Guard

Parameter der aktuellen Instanz an. Eine Synchronisation findet zwischen zwei Sub-Statecharts
eines And-States statt. Ein Story Diagramm schaltet die an der Synchronisation beteiligten Tran-
sitionen gleichzeitig. Das Statechart Objekt, in welchem der AND-State eingebettet ist, bietet
eine Methode an, die dem Story Diagramm zu Grunde liegt, um die Synchronisation zu schal-
ten. Eine Synchronisation wird ausgefiihrt, wenn die beteiligten Zustdnde und das Synchroni-
sationsobjekt gebunden wurden sowie ein Guard, der die Gleichheit der parameter iiberpriift,
um sicherzustellen, dass es sich um die gleichen Instanzen handelt, wahr ausgewertet wird. Ei-
ne Synchronisation ist Bidirektional. Um den Lesefluss zu fordern, wird ein sendSrc und ein
recvSrc eingefiihrt (vgl. Syntax von UPPAAL [LPY97])

In Abbildung A.5 wird eine parametrisierte Synchronisation zwischen zwei Transitionen gezeigt.
Um die Synchronisation auszufiihren, muss das Story Diagramm die Zustinde A und C sowie das
Synchronisationsobjekt binden. Da es sich hier um eine parametrisierte Synchronisation handelt,
muss zudem noch der Parameter der beteiligten Instanzen identisch sein. Das wird iiber den
Guard as2.parameter = sy.parameter N\ sy.parameter = as3.parameter sichergestellt.

Eine Synchronisation kann nur dann durchgefiihrt werden, wenn die Zustinde aktiviert sind, die
die Synchronisationsobjekte als ausgehende Transition schalten. Die Definition der Synchroni-
sationskanidle ermoglicht zudem nur lokale Synchronisation innerhalb eines AND-States, wie
durch die Definition von PARAMETERIZED REAL-TIME STATECHARTS gefordert.

Synchronisationsobjekte diirfen nur dann aktiviert sein, wenn die Synchronisation tatsdchlich
durch entsprechende aktive Zustdnde aktiviert wird. Ist dies nicht der Fall, so darf ein Synchro-
nisationsobjekt nicht aktiv sein. Dies wird durch die in Abbildung A.6 und A.7 dargestellten
Regeln ermoglicht.
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ComplexA
Port1SC
. > A > B
( ] sync?
Sync
. > C > D
N S R g G

2

? AB_Statechart::Sync_Trans_A_B_C_D()

-

as1:ActiveState

active >

c1:ComplexState

name = ,ComplexA*

=
=
@

t

sc1 : Port1SC_Statechart

hasv

!

(X

!

sy:Synchronisation

\

sc2 : Sync_Statechart

!

(X

s1: State « recvSrc sendSrc P s1: State
name = A" name = ,C*

SSonr> <<H4>> <<H>> st
active A\ | P> active | | active A active
as2 : ActiveState s2 : State s2 : State as3 : ActiveState

] name = ,B* name = ,D*

\J

{as2.parameter = sy.parameter A sy.parameter = as3.parameter}

—/

:

Abbildung A.5: Synchronisation von zwei Transitionen
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Das Story Pattern aus Abbildung A.6 stellt nur dann ein Synchronisationsobjekt zur Verfiigung,
wenn der zu dem Synchronisationsobjekt gehorige Zustand aktiv ist. Falls ein entsprechendes
Synchronisationsobjekt bereits angelegt wurde, so wird nur eine Assoziation zu diesem Objekt
erzeugt. Andernfalls wird auch das Synchronisationsobjekt erzeugt. In diesem Fall ist die zuge-
horige Transition sendend und es wird eine Assoziation vom Typ sendSrc angelegt.

Abbildung A.7 zeigt, wie ein Synchronisationsobjekt deaktiviert wird, indem die Referenz zu
diesem Objekt geloscht wird. Fiir jeden Synchronisationskanal einer ausgehenden Transition des
Zustands, der verlassen wird, wird diese Story ausgefiihrt. Falls ein Synchronisationsobjekt keine
Assoziation zu einem Zustand besitzt, wird dieses Objekt entfernt (siehe Abbildung A.8).

. J sync,! J
? AB_Statechart::createStateASyncChannels(k : int)
/ - - subStatechart \
as : ActiveState this 4 cs1:ComplexState)
parameter=k [ @ ——— @
failure
active
A
s1: State
name = A" /
[success] [success]
Y
/ csl s1 \ / cs1 s1 \
<<++>> <<++>>
sendSrc sendSrc
‘ <<++>> ‘
has VY| [failure] has V|
<<++>>

sy:Synchronization

name = ,sync*

sy:Synchronization

name := ,sync*
arameter := k

\parameter =k / \p /

Abbildung A.6: Erstellung von Synchronisationskanilen beim Betreten eines Zustands

Die bisher vorgestellten Synchronisationsobjekte lassen sich auf Synchronisationskanéle der PA-
RAMETERIZED REAL-TIME STATECHART einfach abbilden. Ein Synchronisationsobjekt ent-
spricht dabei genau einem Synchronisationskanal (vgl. auch [GB03]). Nach der Definition von
PARAMETERIZED REAL-TIME STATECHARTS, bzw. REAL-TIME STATECHARTS, kann eine
Transition allerdings auch eine Menge an Synchronisationskanélen schalten. Dies ist durch den
vorgestellten Ansatz ebenfalls gegeben, da lediglich mehrere Synchronisationsobjekte instanzi-
iert werde miissen.
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. > A > B
l sync,! l )

2

? AB_Statechart::removeStateASyncChannels(k : int)

/ as : ActiveState this cs1:ComplexState \
parameter=k [ @ ——
activev Y T1 : deleteSyncChannels()
[ | <« has
s1: State ceos sy:Synchronization
\[me A [ senasrs [pomeci™ /

:

Abbildung A.7: Entfernen von Synchronisationskanélen beim Verlassen eines Zustands

? ComplexState::deleteSyncChannels()

/ 1: Stat : 2 : Stat \

this [each time]
> <<L-->>
sy
sendSrc AX hasW XA recvSrc
-
sy:Synchronization

N Y

gend]

Abbildung A.8: Loschen von Synchronisationskanélen ohne Assoziation zu einem Zustand
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A.1.7 Invariante

Eine Invariante fiir einen Zustand wird durch eine TIMED STORY PATTERN-Invariante definiert
(sieche Abschnitt 2.6.2).

Abbildung A.9 zeigt die Abbildung einer parametrisierten Invariante c1 < ub. Die Abbildung
definiert zum einen, dass der entsprechende Zustand und die dazugehorige Clock gebunden
werden muss. Der Zustand muss aktiv sein. Weiterhin miissen die Parameter iibereinstimmen
(as.parameter = ci.parameter). Ist dies der Fall, kann die Invariante c1 < wb iiberpriift wer-
den.

? AB_Statechart::invariant1()

/ this as : ActiveState \

has\ WV active
. has
ci : Clocklnstance > State
id=,c1“ name = A"

K {as.parameter=ci.parameter Ac1<ub} /

Abbildung A.9: Abbildung einer Time Invariante eines Zustands

Eine Invariante [ ist eine Funktion / — C(.X ), welche eine Menge von Ungleichungen den Zu-
stdinden zuweist. Eine Invariante limitiert das Verweilen in einem Zustand iiber die obere Schran-
ke hinaus. Die gezeigte Abbildung stellt zum einen eine Verbindung zwischen Invarianten und
Zustinden sowie zwischen Invarianten und Clocks her. Die Invariante des TIMED STORY PAT-
TERN ist zudem dadurch definiert, dass der Zustand nur so lange aktiv sein darf, wie die Invari-
ante giiltig ist. Danach muss der Zustand durch eine Transition verlassen werden. Falls dies nicht
moglich ist, erhélt man einen Time-Stopping-Deadlock. Die Beriicksichtigung der Invarianten
wird in der Berechnung des Folgezustandes, wie sie in [HirO8] definiert und in Abschnitt TIMED
STORY PATTERN iibernommen wurde, erzwungen.
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A.1.8 Time Guards

Ein Time Guard einer Transition ist definiert durch einen Time Guard eines Story Pattern (siehe
Abschnitt 2.6.2).

Abbildung A.10 zeigt die Abbildung eines parametrisierten Time Guards. Voraussetzung, um
den Guard zu iiberpriifen ist, dass die beteiligten Zustinde der Transition und die Clock (c1),
tiber die der Guard Einschrinkungen trifft gebunden sind. Wie iiblich fiir eine Parametrisierung,
wird zudem iiberpriift, ob die Parameter zueinander passen. Dann kann iiberpriift werden, ob der
Guard erfiillt ist (Ib < c1 A ¢l < ub).

| A \ Ib<c1<ub | B )
( ) e J

2

? AB_Statechart::Trans_A_B()
thi

as: ActiveStatA

ci : Clockinstance this
id =,c1" ®
<<-->> <<++>>
L‘ k active W active
State State
name = ,A" name = ,B“
I

\ {as.parameter=ci.parameter Alb<c1Ac1<ub} /

Abbildung A.10: Abbildung eines Time Guards einer Transition

Ein Time Guard ist definiert durch ¢ :=x ~n |z —y~n| ¢ A ¢ | true | false, mit z,y €
C,~e {<,<,=,>,>},n € N. Eine Transition des TIMED STORY CHART kann nur schalten,
wenn der Time Guard erfiillt ist. Somit bleibt die Semantik eines Time Guards fiir PARAMETE-
RIZED REAL-TIME STATECHARTS erhalten.

A.1.9 Clock Resets
Ein Clock Reset ist definiert durch ein TIMED STORY PATTERN Clock Reset (siehe Abschnitt
2.6.2).

Abbildung A.11 zeigt die Abbildung eines Clock Resets. Voraussetzung fiir einen Clock Reset
ist, dass die Zustidnde, die den Clock Reset durch das Schalten einer Transition auslosen und die
Clock, die zuriickgesetzt werden soll, gebunden sind. Weiterhin muss miissen die Parameter der
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Clock und des aktiven Zustands uibereinstimmen. Ist dies der Fall, wird durch das Binden des
ClockReset Objekts die Clock zuriickgesetzt.

( A \ {c1} B \
. J e J

:

? AB_Statechart::Trans_A_B()

/rs : ClockReset <« has this as :ActiveState\

*>—
<<-->> <<+H+>>
reset i
v \—\ L\ active S W active
ci : Clockinstance| has > s1: State s2 : State
id=,c1¢ name = ,A" name = ,B*
| |

has P
K {as.parameter = ci.parameter} /

Abbildung A.11: Abbildung eines Clock Resets einer Transition

Ein Clock Reset ist definiert durch A C X ist eine Menge von Variablen, die auf null gesetzt wer-
den, wenn die Transition schaltet. Dies ist durch die gezeigte Abbildung ebenfalls der Fall. Die
Transition wird durch Binden des Ziel- und Quellzustands der Transition ermittelt. Die Menge
der Clocks kann so beliebig einer Transition zugewiesen werden. Dadurch, dass jedem ClockIn-
stance Objekt bei der Initialisierung ein Clock Reset Objekt zugewiesen wird, ist die Semantik
unveréndert.

A.1.10 Deadlines

Eine Deadline restriktiert das Verweilen in einer Transition durch eine zeitliche Unter- und Ober-
grenze. Eine Deadline ist definiert durch ein Clockinstance Objekt, welches mit dem Schalten
der Transition angelegt wird, einer Zwischenstory, in dem die Untergrenze durch einen Time
Guard definiert ist und einer weiteren Story, die eine Invariante mit der Obergrenze der Deadline
definiert.

Abbildung A.12 zeigt die Abbildung einer Deadline. Die Ausfithrung der Transition mit einer
Deadline wird in drei Story Diagramme aufgeteilt. Das erste Story Diagramm in Abbildung A.12
bindet die Vorbedingung fiir die Ausfithrung und schaltet in den Zwischenzustand executingTran-
SsAB um. Dabei wird ein Clockinstance Objekt fiir die Deadline erzeugt und mit O initialisiert.
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Uber diese Clock Instanz wird die Zeit seit Beginn des Schaltvorgangs modelliert. Das zweite
Story Diagramm in Abbildung A.13 spezifiziert als Vorbedingung, dass sich das Statechart in
dem Zwischenzustand befindet und dass die untere Schranke der Deadline abgelaufen ist. Das
dritte Story Diagramm ist eine Invariante, die ein Verweilen im Zwischenzustand nur bis zur obe-
ren Schranke der Deadline erlaubt. Auf eine Abbildung dieser Invariante wurde an dieser Stelle
verzichtet, da sie analog zu der in Abbildung A.9 aufgebaut ist.

(A ) lbub) (B )
. J )

? AB_Statechart::Trans_A_B_Pt1()

///'7 <<H+>> i\\\
c1 : Clockinstance this as : ActiveState

id=,AB_SC_d1“ o

parameter := as.parameter

<SS <<t++>>
<<++>> active
reset A Vactive
<<++>>

rs : ClockReset s1: State s2 : State
name = ,A“ name = ,executingTransAB*

<<H4+>> I
<<++>>

:

Abbildung A.12: Abbildung einer Deadline (Teil 1).

Nach der in Abschnitt 2.6.3 eingefiihrten Semantik von TIMED STORY DIAGRAMS kann nur
Zeit in Stories vergehen. Daher ist die Abbildung von Deadlines in TIMED STORY CHARTS dem
Aufbau der Abbildung von REAL-TIME STATECHARTS auf Extended Hierarchical Timed Auto-
mata (ExXHTA) dhnlich [GB0O3]. In ExHTA, wie auch in Timed Automata, vergeht ebenfalls nur
Zeit in einem Zustand. Durch die eingefiihrten Abbildungen auf Zustinde und Zeitbedingungen
(siche Abschnitt A.1.7 und A.1.8) ist die Semantik der PARAMETERIZED REAL-TIME STATE-
CHARTS erhalten. Die dargestellte Abbildung betrachtet relative Deadlines. Absolute Deadlines
sind {iber diesen Mechanismus ebenfalls einfach abbildbar. Der Unterschied ist lediglich, dass
nicht eine Clock mit Beginn des Schaltens der Transition extra erzeugt wird, sondern sich auf
eine bereits spezifizierte Clock bezogen wird, die z. B. mit Erzeugen des Statecharts initialisiert
wird.

A.1.11 Actions und Seiteneffekte

Eine Action oder Seiteneffekt ist als Methode des Statecharts definiert. Wie [ZiinO1] bereits
gezeigt hat, lassen sich diese einfach iiber Collaboration Messages abbilden.
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-

? AB_Statechart::Trans_A_B_Pt2()

/ <<L-=>> \
c1 : Clocklnstance this as : ActiveState

id = ,AB_SC_d1“ @ —
<<-->> ! <S-->> <<H+>>
reset A S< ’J active By WV active
<<L-=>>
rs : ClockReset s1: State s2 : State
name = ,executingTransAB* name = ,B"

\ {as.parameter=ci.parameter Alb<c1} /

Abbildung A.13: Abbildung einer Deadline (Teil 2).

Abbildung A.14 zeigt die Abbildung von Seiteneffekten, Entry und Exit Action. Abbildung A.15
zeigt die Abbildung einer Do Action. Ein Seiteneffekt, Entry und Exit Action wird abgebil-
det durch binden der Zustinde, die an der Transition beteiligt sind (Zustand A und Zustand
B). Ist dies der Fall, kann der Quellezustand (Zustand A) verlassen werden und die Exit Ac-
tion (exitAction1()) ausgefiihrt werden. AnschlieBend kann der Seiteneffekt ausgefiihrt werden
(sideEffect1()). Das schalten des Seiteneffekts wird durch einen Zwischenzustand executingTran-
sAB simuliert. Nachdem der Seiteneffekt ausgefiihrt wurde, wird der Zwischenzustand verlassen
und der Zielzustand (Zustand B) betreten und die entryAction1() ausgefiihrt.

Eine Do Action hat die Besonderheit, dass sie periodisch ausgefiihrt werden kann. Daher er-
folgt die Abbibldung durch zwei Stories (siche Abbildung A.15). Die Story do1_execute() stellt
eine Abbildung der doAction() und der unteren Ausfithrungsgrenze Ib da. Die zweite Story
do1_lInvariant() stellt sicher, dass die Obergrenze ub eingehalten wird. Ist die Ausfithrung be-
endet, wird die Clock wieder zuriickgesetzt. Die Invariantenregel stellt zudem sicher, dass die
Do Action periodisch ausgefiihrt wird.

Eine Exit Action wird nach Definition der PARAMETERIZED REAL-TIME STATECHARTS ausge-
fithrt, wenn der Zustand verlassen wird. TIMED STORY PATTERN miissen daher erst die Zustin-
de, die an der Transition beteiligt sind, binden. Ist dies der Fall, kann der Quellzustand verlassen
werden und die Collaboration Message, die die Exit Action implementiert, ausgefiihrt werden.
Ein Seiteneffekt wird beim Schalten der Transition ausgefiihrt. Um dies zu ermoglichen wird ein
Zwischenzustand eingefiihrt, der beim Verlassen der ersten Story erzeugt wird. Der Zwischenzu-
stand ist ein Stellvertreter Objekt fiir eine Transition. Das Ausfiihren des Seiteneffekts simuliert
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[ A |

-l

B

(_exit: exitAction1()

sideEffect1() '~ (entry: entryAction1()

2

KiB_Statechart: ‘Trans_A_B()
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as : ActiveState \

1: exitAction1()
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s3 . State
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-
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this as
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>—
1: sideEffect1()
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s2
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this as \
—> _ a9
*>—
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Abbildung A.14: Ausfithrung von Entry Action, Exit Action und Seiteneffekt
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A )
(do : doAction1() pe[lb;ub])

@ b %

? AB_Statechart::do1_invariant() ? AB_Statechart::do1_execute()

/ this as: ActiveState\ / this as: ActiveState\

> >—
has§ W active has§ T1 - doAction1() W active
- has reset — has
ci : Clockinstance > State rs : ClockReset > ci : ClockInstance > State
id =,c_do_inv1* name = A" id = ,c_do_inv1" name = A"

vas.parameter=ci.parameter Ac_do_inv1 suby K {as.parameter=ci.parameter Alb<c_do_inv1} /

Abbildung A.15: Ausfithrung einer Do Action eines Zustandes.

daher genau die Situation des Schaltens einer Transition. Eine Entry Action wird ausgefiihrt,
wenn der Zielzustand betreten wird. Voraussetzung dafiir ist also, dass der Zwischenzustand ver-
lassen wird und der Zielzustand aktiv ist. Ist dies der Fall kann die Entry Action ausgefiihrt wer-
den. Dies wird durch unsere Definition umgesetzt. Die Semantik der Collaboration Messages
und die Aufsplittung in drei Stories erfiillt damit die Semantik der PARAMETERIZED REAL-
TIME STATECHARTS.

Eine Do Action muss einmal in jeder Periode innerhalb der angegebenen Schranken ausgefiihrt
werden. Durch die Abbildung iiber TIMED STORY CHART-Invarianten bleibt damit die Semantik
erfiillt (siche Abschnitt A.1.7).

A.1.12 WCET und Prioritaten

Eine WCET nach [GBO03] wird fiir alle Action und Seiteneffekte definiert, um ein Scheduling
bestimmen zu konnen. Eine WCET kann einfach durch ein extra WCET Objekt der Story hin-
zugefiigt werden, indem eine Collaboration Message ausgefiihrt wird. Um eine eindeutige As-
soziation der WCET zu einer Collaboration Message zu ermoglichen, erhilt das WCET Objekt
den gleichen Namen, wie die Collaboration Message.

Eine Prioritiit an einer Transition gibt an, dass eine Transition mit hoherer Pioritit geschaltet
wird, falls mehrere Transitionen gleichzeitig schalten konnen. Eine Abbildung auf TIMED STO-
RY CHARTS erfolgt durch Hinzufiigen von Prioritéits Objekten, die durch eine extra Story iiber-
priift werden, falls mehrere Transitionen schalten konnen.
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Da die TIMED STORY CHARTS bisher im Wesentlichen fiir Analysen von plattformunabhingig-
en Modellen eingesetzt wurden, sind die hierfiir notwendigen Klassen noch nicht in das Meta-
modell aus Abbildung 2.23 eingeflossen.

A.2 Zusammengesetzte Ausfihrung

Im vorherigen Abschnitt wurden die einzelnen Elemente eines TIMED STORY CHARTS beschrie-
ben. Hierbei wurde gezeigt, dass die PARAMETERIZED REAL-TIME STATECHART-Elemente
auf TIMED STORY CHART-Elemente abbildbar sind. Hierdurch wird allerdings nicht vermie-
den, dass die einzelnen Elemente in einer beliebigen Reihenfolge ausgefiihrt werden, bzw. es
ist nicht beschrieben, wie die verschiedenen Elemente zusammen angewandt werden, ohne die
Ausfiithrungssemantik der PARAMETERIZED REAL-TIME STATECHARTS zu verletzen.

In diesem Abschnitt soll entsprechend das Zusammenspiel der einzelnen TIMED STORY CHART-
Elemente betrachtet werden. Die Kombination der Elemente muss wiederum der korrespondie-
renden Kombination der PARAMETERIZED REAL-TIME STATECHARTS-Elemente entsprechen.
Die grundsitzliche Umsetzung der Kombination der Elemente ist einfach iiber ein Story Dia-
gramm realisierbar. Die einzelnen definierten Elemente werden dabei als Stories in einer wohl-
definierten Reihenfolge verschaltet. Dieser modulare Aufbau erlaubt eine einfache Anpassung
der Ausfiihrungsreihenfolge.

Zum einen miissen wir zeigen, dass das Verschalten von Zustandselementen eines TIMED STO-
RY CHARTS dem Zustand eines PARAMETERIZED REAL-TIME STATECHARTS entspricht. Zum
anderen betrachten wir, dass das verschalten von Transitionselementen eines TIMED STORY
CHARTS einer Transition des PARAMETERIZED REAL-TIME STATECHARTS entspricht. Anders-
herum formuliert, wird ein Zustand und eine Transition eines PARAMETERIZED REAL-TIME
STATECHARTS in eine oder mehrere Schaltregeln des TIMED STORY CHARTS mit mehreren
Stories transformiert. Wie bereits einleitend in diesem Kapitel erldutert beschreiben wir hier le-
diglich informell die Semantik. Die fiir die Verfeinerung benotigte formale Semantik der TIMED
STORY CHARTS wird in Abschnitt 3.1.2 beschrieben.

Im Folgenden betrachten wir zunéchst das Verschalten der TIMED STORY CHART Elemente, um
einen Zustand zu bestimmen. AnschlieBend werden wir Transitionen betrachten.

A.2.1 Zustande

Abbildung A.16 zeigt einen Zustand eines REAL-TIME STATECHARTS, bzw. PARAMETERIZED
REAL-TIME STATECHARTS. Die Ausfithrungssemantik eines Zustands nach [GBO03] ist durch
vier Schritte definiert:

I. Beim betreten des Zustands wird die entry-Methode ausgefiihrt.
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II. AnschlieBend wird iiberpriift, ob die Invariante erfiillt ist. Ist dies der Fall, wird iiberpriift,
ob die Clock des Zustands kleiner oder gleich der Invariante minus der oberen Grenze
der Periode ist. Wenn diese Bedingung positiv ausgewertet wird, kann mit III fortgefahren
werden und andernfalls wird mit IV fortgefahren.

III. Sind die Voraussetzungen der Invariante erfiillt, wird die do Methode mit spezifizierter
Periode (die durch eine untere und obere Schranke angegeben wird) ausgefiihrt.

IV. Ist die Invariante abgelaufen, so wird die exit Methode ausgefiihrt.

( A cs10\

tntry:entryActiom ()

do:doAction1()
exit: exitAction1()

Abbildung A.16: Zustand eines Real-Time Statecharts

Das in Abbildung A.17 dargestellte Story Diagramm setzt diese Schritte um. Als 1. Story wird
die Entry Action, wie in Abschnitt A.1.11 vorgestellt, ausgefiihrt. Voraussetzung, um die Entry
Action auszufiihren ist, dass der dazugehorige Zustand gebunden ist. Die Entry Action wird als
Collaboration Message definiert, so dass diese wiederum durch ein Story Diagramm spezifiziert
wird.

Fiir eine spezifische Plattform muss zudem gezeigt werden, dass die WCET der Entry Action
kleiner der Invariante ist. Allgemein miissen alle Action und Seiteneffekte eine kleinere WCET
als die korrespondierenden Zeitbedingungen haben. In Kapitel 6.1 betrachten wir plattformspe-
zifische Informationen, um z. B. die Laufzeit von Story Diagrammen zu bestimmen. Fiir die in
diesem Kapitel betrachteten plattformunabhédngigen Modelle ist das nicht relevant.

Nachdem die Entry Action ausgefiihrt wurde, wird durch die 2. Story nach Abschnitt A.1.7 die
Invariante tiberpriift. Hierfiir wird wiederum der Zustand sowie die zu der Invarianten gehorende
Clock Instanz gebunden.

Ist die Invariante abgelaufen, so wird die Exit Action ausgefiihrt und der Zustand verlassen.

Ist dies nicht der Fall, wird iiberpriift, ob die Do Action ausgefiihrt werden kann. Hierfiir wird
iberpriift, ob die angegebene obere Schranke (p.up) noch innerhalb des offenen Zeitintervalls
der Invariante ausgefiihrt werden kann. Ist dies nicht der Fall, wird ebenfalls der Zustand iiber
die Exit Action verlassen.

Die 3. Story fiihrt die Do Action nach Abschnitt A.1.11 aus. Die Do Action wird periodisch
ausgefiihrt. Dabei wird sichergestellt, dass die Do Action innerhalb des angegeben Periodenin-
tervalls ausgefiihrt wird.

Die 4. Story fiihrt die Exit Action des Zustands nach Abschnitt A.1.11 aus. Die Exit Action ist
der Startpunkt fiir das Schalten einer Transition, wie in Abbildung A.14 gezeigt.

Die definierte Verschaltung der Stories setzt damit die Ausfiihrungssemantik eines Zustands um.
Im Folgenden werden wir die Ausfiihrungssemantik einer Transition betrachten.
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1. Entry-Action Zustand
ausflihren betreten

[c<inv- Zustands-
3. Do-Action p.up -1] 2. Invariante verhalten
ausflihren Uberpriifen ausfiihren

[else]

4.Exit-Action
ausfuhren

Zustand
verlassen

Legen
c:
inv:

p.up:

de

Clockinstanz
Zustands-
invariante
Obere
Zeitschranke
Periode der Do-
Action

Abbildung A.17: Zustand eines Timed Story Chart

A.2.2 Transitionen

Im vorherigen Abschnitt haben wir die Ausfithrungssemantik eines Zustands erldutert. Die Ent-
ry und Exit Action sind der Ubergang von einem Zustand in eine Transition, bzw. von einer
Transition in einen Zustand. In diesem Abschnitt werden wir die Semantik der Ausfiihrung einer
Transition durch Abbildung der PARAMETERIZED REAL-TIME STATECHART-Transitionen auf

TIMED STORY CHART-Transitionen definieren.

Abbildung A.18 zeigt eine Transition eines PARAMETERIZED REAL-TIME STATECHARTS, mit
allen relevanten Elementen fiir die Abbildung auf TIMED STORY CHARTS. Die Entry und Exit
Action der Zustinde A und B stellen den angesprochenen Ubergang von einem Zustand zu einer

Transition und umgekehrt dar.

sync,?
( A ) [rc.speed < 10] alb [2;5] [ B )
(exit: exitAction1() ] 10<c1<20 sideEffect1() {c1)lentry: entryAction1() J

Abbildung A.18: Transition eines Realtime Statecharts

Die Ausfiihrung einer solchen Transition ist nach [GB03] definiert durch die folgenden Schritte:

I. Als erstes werden die Vorbedingungen zum Schalten einer Transition iiberpriift. Die Vor-
bedingungen sind, dass das Trigger-Event vorliegt, der Synchronisationskanal schaltbereit

ist und der Guard sowie Time Guard erfiillt sind.

II. Das Trigger-Event wird aus dem Event-Puffer genommen. Falls der Quellzustand weitere
ausgehende Transitionen besitzt, werden diese nicht weiter beriicksichtigt.

III. Als nichstes wird der Quellzustand der Transition verlassen und die Exit Action ausge-

fiihrt.
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IV.

VIL
VIIIL.
IX.

X.

Ist eine relative Deadline spezifiziert worden, so wird eine Clock angelegt.

Wihrend des Schaltens der Transition wird der Seiteneffekt der Transition ausgefiihrt, der
auf die Parameter des Trigger-Events zugreifen kann. Nach der Ausfiithrung des Seitenef-
fekts steht das Event nicht mehr zur Verfiigung.

. AnschlieBend werden die Deadlines der Transition iiberpriift.

Nach der Ausfiithrung des Seiteneffektes wird das RaisedEvent der Transition erzeugt.
AnschlieBend werden die Clock Resets ausgefiihrt.

Mit Betreten des Zielzustandes werden die Synchronisationskanile von ausgehenden Tran-
sitionen des Zielzustandes verfiigbar gemacht.

Die letzte Aktion des Zustandswechsels ist die Ausfithrung der Entry Action des Zielzu-
standes.

Abbildung A.19 zeigt das Story Diagramm, welches die Ausfiihrungsreihenfolge fiir TIMED
STORY CHARTS auf Basis der PARAMETERIZED REAL-TIME STATECHARTS festlegt. Die ein-
zelnen Stories repridsentieren die zuvor definierten einzelnen Elemente eines TIMED STORY
CHART.

. 2. Event aus
. ) 1. Vorbedin- )
" der Queue
gung prifen holen

4. Quellzustand
verlassen und
ExitAction ausfiihren

Quellzustand
verlassen

3. Sync-Kanale
des Quellzu-
tand entferne

-
-

[Deadline == true]
5. Deadiine- 6a. Seiteneffekt 7a. Event 8 Deadline Transition mit Deadline
clock er- ausfiihren I6schen Invariante ausfilhren
zeugen Uberprifen
[else] _lob. Seiteneffekd 7b. Event Transition ohne Deadline
'| ausfiihren I6schen —‘ ausfiihren

9. Raised Events 11. Zielzustand

erstellen und

betreten und > @ Zielzustand
EntryAction

Clock Resets betreten
ausfiihren

ausfiihren

0. Sync-Kanalg
des Zielzustand|
erstellen

Abbildung A.19: Timed Story Chart Transition

Die 1. Story iiberpriift die Vorbedingung zum Schalten der Transition. Dazu zéhlt das Binden
des Quellzustandes als aktiven Zustand, das Binden des Trigger-Events sowie der Synchronisati-
onskanile. Bei einer Synchronisation werden die an der Synchronisation beteiligten Transitionen
gemdl Abschnitt A.1.6 in einem Story Diagramm geschaltet, um die Gleichzeitigkeit der Transi-
tionsiibergiinge zu gewdhrleisten. Falls eines dieser Objekte nicht gebunden werden kann, kann
das Story Diagramm nicht ausgefiihrt werden und die Transition wird nicht geschaltet. AuB3er-

dem
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A.2 Zusammengesetzte Ausfiihrung

aufgenommen. Der Guard sowie der Time Guard miissen ebenfalls erfiillt sein, damit das Story
Diagramm ausgefiihrt werden kann. Zusammen ergibt sich damit genau Punkt I der Ausfiih-
rungssemantik einer Transition eines PARAMETERIZED REAL-TIME STATECHART.

Die 2. Story ruft die dequeue Methode des Statecharts auf und nimmt das Trigger-Event aus der
Queue. Das Trigger-Event bleibt bis zum Ende der Ausfiihrung des Seiteneffektes im System
erhalten, um die Parameter des Events verarbeiten zu konnen.

Die 3. Story entfernt die Synchronisationskanile des verlassenen Zustands gemif3 Abschnitt
A.1.6. Dies entspricht zusammen mit der 2. Story genau Punkt I der Ausfiithrungssemantik eines
PARAMETERIZED REAL-TIME STATECHARTS. Die Multi-Story spezifiziert zudem, dass mehr
als ein Synchronisationskanal entfernt werden kann.

In Story 4. wird die Exit Action des Quellzustands ausgefiihrt und ein Zwischenzustand ange-
legt. Dies entspricht Punkt III der Ausfithrungssemantik eines PARAMETERIZED REAL-TIME
STATECHART.

Story 5. legt fiir relative Deadlines, wie in Abschnitt A.1.10 beschrieben, Clock Instanzen an.
Dies entspricht Regel IV eines PARAMETERIZED REAL-TIME STATECHARTS.

Story 6a. und 6b. sind identisch. Die Unterscheidung wird getroffen, um zwischen einer Tran-
sition mit und ohne Deadline zu unterscheiden, da dies zu einer unterschiedlichen Folgeaktion
fiihrt. Beide Stories fithren den Seiteneffekt aus. Der Seiteneffekt kann dabei auf die Parameter
des Trigger-Event zuriickgreifen und in Story 7a. und 7b, die ebenfalls identisch sind, wird das
Trigger-Event geloscht. Die Stories entsprechen damit Punkt V der Ausfithrungssemantik eines
PARAMETERIZED REAL-TIME STATECHARTS.

Die 8. Story iiberpriift, ob das Deadlineintervall nicht verletzt wurde (siehe Abschnitt A.1.10).
Dies entspricht Regel VI eines PARAMETERIZED REAL-TIME STATECHART.

In der 9. Story werden die Raised-Events und die Clock Resets der Transition ausgefiihrt. Da-
bei miissen nach der Semantik der PARAMETERIZED REAL-TIME STATECHARTS die Raised-
Events vor dem Zuriicksetzen der Clock Instanzen generiert werden. Da die Definition der TI-
MED STORY PATTERN sicherstellt, dass Clock Resets im Anschluss an die Ausfiihrung der
Graphtransformation ausgefiihrt werden, bleiben die Punkte VII und VIII der Ausfithrungsse-
mantik eines PARAMETERIZED REAL-TIME STATECHARTS erhalten.

Die 10. Story aktiviert die Synchronisationskanéle der von dem Zielzustand ausgehenden Tran-
sitionen. Dies geschieht vor dem eigentlichen Betreten des Zielzustandes in der 11. Story.

In der 11. Story wird der Zielzustand betreten und der Zwischenzustand entfernt. Abschliefend
wird die Entry Action des Zielzustandes ausgefiihrt. Zusammen mit der Generierung der Syn-
chronisationskanile in der 10. Story werden die Regeln IX und X erfiillt.
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