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When does the Riesz Representation theorem hold?

Herrn Prof. Dr. Dr. h. c. G. KGTHE zu seinem 70. Geburtstag gewidmet
By

BexN0 FUCHSSTEINER

We consider the problem of characterizing those cones ¥ (X) of real functions on
an arbitrary set X which have the property that every order-preserving linear map
F(X)>R has an integral representation. .

In view of Choquet’s theorem a reasonable guess for a necessary and sufficient
condition would be that X has to contain the extreme points of the state space of
F(X). In fact this is true if F(X) consists of upper-semicontinuous fun.ctions on a
o-compact space X (cf. [5]). However the following example due to Glicksberg L6]
shows that in general it is not necessary that X contains all extreme polntS of the
S?ate space. Let X be a pseudocompact space and F(X) = C(X) (contln}lous func-
tions on X). Then the extreme points of the state space of C(X) are the point e.va,lua—
tions on the Stone-Czech compactification of X, however every sup-norm continuous
linear functional on C(X) can be represented as an integral on X. (In a certain sense
the reason for this counter-example is the following characterization: A completely-
Tegular space X is pseudocompact if and only if every Fs-subset D X of its Stone-Czech
“ompactification ig compact.) .

Our Main theorem (chapter 1V) provides a simple characterization 11 terms’ of
order properties of F (X) (Dini-property) for the situation when all order-preserving
‘ear functionals on F (X) have integral representations. This theorem ggngrahzes
(ef. {5)) Choquet’s theorem and the Riesz representation theorem.. The basic 1‘dea of
the proof is not complicated, it consists of exploiting decomposition properties fmt:
‘ear functionals. The main tool is the (countable) decomposition theorem o
chapter Ty

L Remarks on Cones. Throughout this paper we consider cones F consis;i;xgi (;ﬁ
“PPEr-bo-unded [—oo, +°°[-Valixed functions on some set X. 'f ‘1s upper-bfm‘ e
*x(f) == sup f(2) < co. Cones are always convex. For emphasizing on which se

i‘lllncﬁ(ms are defined we write sometimes F =F (X). Th(? cone of the K:is;n;:::n;:i
it i{EF t" a subset ¥ c X is then denoted by F(¥). F is called';n ':;1 1 geF the
Poi “ontains R (constant functions). F is said to be mazx-stable i med h QF e
nomtwlse maximum f v g is again in F. The max-stable cone generated by

ted by \/F, it consists of the maxima of finite subsets of F-
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A linear (i.e. positive-homogeneous and additive) map p .'F ';n[ F“A ;atg P
state if it is dominated by supy, that means H <supx Pou'ltW;S; s n;)t dominated
called order-preserving if = g = () > A(g)- s called maafzmal}his is a consequence
by any other state. Every maximal state is order-preserving. lo [3, Thoorem 1],
of a suitable sandwich theorem for ordered cones (for example :s Lomma sinee
Every state is dominated by a maximal state. This follows frqm ZOI‘IIXima] state. In
the pointwise supremum on F of a maximal che.min of states lsda mieserving state).
general a state u is not order-preserving (but dominated by an or GI‘-Paces aro always
However <0, fep implies 4 (f) <0, therefore states on vector sp
order-preserving. ofines &

The set S(F, X) of all states of F' is called the state-space. Eve?ry z j é((g’ X) by
state via the Qelfand map £—{f—f(x)]. Any fF defines a function ‘(s)e
#—>u(f). This function we denote also by f since no confusion can ari h.that el

We always consider in § (F, X) the coarsest topology (F-topology) ;?CX P <supy)
ments of F are upper-semicontinuous. Let YcX and S(F,Y)={ueS(F, tra ﬁlt;r con-
then S(F, ¥) is a compact subset of the state space because every ufor S (F.Y)
verges. In particular is the state space itself compact. The same is true s

is not
. gpace 15 10

the set of order-preserving states. We use compact in the sense that the sp:
becessarily separated.

From Dini’s lemma we get:

Lemma 1. L (fn) be a decreas;

. g»rder-
g sequence in F ((f,) | in short) then there is at
Preserving state u such, that:

Inf 41 (fn) = inf supe (£,) .
neN neN

Sometimes it shall be useful to extend states.

G. Ther
Lemma 2. L F=F(X) and G =G(X) be order-unit cones such that Fc
every order-preserving state

order-
of F can be extended (ie. u(f) = u(f) VfeF) toan
Preserving siate J; of 3,

. <fa 1y
Proof. We have to show [3, Cor, 1.3] that f1, f,eF and ge@ with h;ff;and
RS 411) S 1 (2) + sup (g) Wo abbronia 1 supx(g) then Fafr—x =/,
A(@) =a since F3R ang # 18 linear on R. From the assumption that 4
Preserving we ohtajp .

Blh—a)=u(f) — o< &lfz) .
Which is the desired ineqnality. | function
In chapter V we ghay) investigate weighted cones. Let . =0 be a weight together
on X then g cone & of functions (this time not necessarily upper-bounded)
with the sublineay funetional

if P, Py, defined b ighted
("} Y | —>supy(ewf) is called a weig
i U)(NV]G.Q'_ f—>s Px (o f)

B:F [ oo, + oof with B = Py is called «-state of F.
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Lemma 3. Let (¥,Py) b )
s . ,Py) be a weighted cone and p be a co-stal ) i
T | 1eFY outh that a) = Hlo ) V/ég: rw-state. Then there is a state [i of

P .

Thelrlogli ]Zaeﬁg;ia ;Ult)ﬁl‘lmem‘ 8 < supy on «F by f>sup{u(g)|«f=rwg.g eZ}

C. o . X - » .
5 %\T ﬁésupx, I eorem [3, Theorem 1] gives us a linear 7 on =% with

ow, let F— .
boundaryeof § Tl;(X? be again a cone of upper-bounded funetions and Y a sup-
considorn, th. hat isa .su.bset Y c X such that supy(f) = supx(f) V/e F. Then by
g the characteristic function of Y as weight function we get:

Corollary. 1.
ﬂ@éﬁ(riyly; Torcvry sy of ¥ ~F (0 dhee i 0 sl o of P ouh e
maj : .
prope I'ti]e(:_‘ Ei:ﬁl:xl-:ff:ow.ng our main theorem arises from the study of decomposition
Fe F(X)bea Conez ‘(’;i{{deﬁne the:se properties in a rather general context. Let
the countable docom T L., be a family of slesets of X. Then a state p is said to have
tountable coverin {p 10; ition property (CD in short) with respect to A if for every
and 1, >0 (n % W |neN} c.# of X there are order-preserving states fin = SupPy.
»2,...) such that Z]m =1 and p= Zln,lhh

The stat L neN neN
(&bbreviatefi Sll;aceDlS sa,lr% to have the dominated countable decomposition property
U{YnlneN}zXCD) if for every family {Y,|neN} of subsets of X with

= X and every state y there are A, =0 such that zl,.——:l and

IR
nezn nS\leu. N

The co ;
Lah, h:g 11:" has the semi-interpolation property (in sh
b3§min(hl hWIth f<g-+h and f=<g+ ha there is a
o k) and f < g + hy. In particular has a min-stable

ort SIP, cf. [3. p- 7)) if for
Iways an hzeF such that
cone the STP.

Lemma 4
. Let the state space S(F, X) have the DCD. Then for every state [ and

) onering (Y| ne N
nlneN}c P (X) of X there are A0 with z}.,.=1 and states
neN

B §( F Yy
. n) Such that yp < > Anpn. If F has the SIP and p is order-preserving then
e can chooge the ) "
e dn, pn such that we have equality: p = > Anpin-
neN

Coroly
ary 2. Let S(F, X) have the DOD then every maximal state has the OD with
der-preserving state has the

'CsPed to &
D 2 Z(X). If in additi

Witk respect to #(X), ition I has the SIP then every or
the lemma for order-preserving states

Proof
. We ay confine ourself to proving
have the DCD and fix a covering

Use th .
{Y"lne Nt;yc ";ﬁ dominating all states. Let 8 (¥, X)
# We ha (X) of X. It is sufficient to prove that for every order-preserving
S1P) AVG;].,, 20, paeS(F,Y,) and 1 20, u*eS(F, X) such that u = (=if
our gy, B*+ D dapn with A< 12 S 2 in=1— 1. Because then applying
¥
o wms gives the desired

tem ﬂEN
d%ommgx t‘I’ #* and so forth and adding up all those &
. Tn [3, Theorem 3] it was shown that for order-preserving linear
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. . n find linear
¥ = p1+ p2 (where py, Pz are order-preserving and subhne‘?r)d Wf;i (?1&: this decor-
Y1 =1, 92 = pp such that v < (=if F has SIP) »1 + v;. By o ucth DCD of the
position property also holds for H=p1+ps+-+pmer. Using thet Siaz1f
state space we obtain B < 3 dasupy,. Now, we fixanme N such tha n =

nm
neN . . Then by
and define pp = 1 supy, for k <m and Pm1 = Zsupy where -’fz"‘l ' < (=if
our previous statement we find Hnc8(F, ¥y) and p* €S(F, X)such that p <
FhasSIP)Ap* + Saps. |
nel

. s riy if
IL Dini Cones. A cone of functions F— F(X) is said to have the Dini property
for every pointwise decreasing sequence (fa) | in F we have:
supx(inff,,) = inf(suprn) .
neN neyN

For max-stable order-unit cones this
sequence pointwise converging to () ¢

An order-unit cone with Dini prop

a Dini cone are the upper-semico
Lemma).

; ce
Another example is R+ ¢ (X) (cf. Lemma 6) where X is a tOPOIOgIC'a]lﬂipg aat
and UCg (X) are the nonnegative upper-semicontinuons functions on X vanis 2)2¢)
inﬁnity. Here, we say that f >01g Vanishing at inﬁnity if for every >0 {W eX| If @)=
is compact. More éXamples of Dini-cones can be found in [5].

in
is equivalent to saying that every decreasing
onverges uniformly to 0. ) o for
erty is called a Ding cone. A simple exam([i_) ?m’s
ntinuous functions on a compact space

. ., . : y ini cone.
Lemma 5. 44 order-unit cone ¥ ig g Dini cone if and only if VI is a Dinv

Proof, Obviously the Dinj pro

ther
perty for \/F implies the same for F. For the 0
implication we consider a seq

- nf "
uence (g,) | in /¥ and define f = supx ( nlENg”)

) ) Jithout
& =inf(supy (g,)). Since % =g it remains to prove a < when o> — 0. W

HEN
loss of gencrality we may assume sy

to 8
Px(9n) S+ 1/n (otherwise we go over
subsequence). Every s is of the fo

tnc F.
g0 =L it fs e BT
Now, take an ultrafilter ¢ of X containing the following decreasing sequence Oﬁty of
empty sets: X, — ZeX|ga(a) 2o — 1/n}. As a consequence of the maxima

D we may find for eVery n a number 02 <k, such that

Y,,:{zeleﬁ"(:c)go:~l/n}e¢. in
Let hm = S 1fn(fer — 4 1/n) then hne F and (b | because fir <gn Satl
n<m ives
Choose y,, MY, |4 < m} (which 18 nonempty) then the Dini property for F' &
Us an Zoe X sych that;

2 1/n (i (o) — o 1/m) = infsupy b, — 1 >
aeN meN

i 2
;mf(km<ym))—1g~{ p et S P PT
mey ney 72 - 6



Vol XXV
ol. XXVIIT, 1977 When does the Riesz Representation theorem hold? 177

Combining this inequality with inf /2" (z¢) < infg, (zo) < B we obtain

neN ney
ZI/n(ﬁ—i—s—cx)> — o0 Ve 0.
nel§y
Since > 1/n div. :
[n diverges we get finally § = o. |1

nely

Le _ .. L
o thlentma ?0 Let ¥ = F(X) be a Dini cone consisiing of upper-semicontinuous functions
opological space X. Then F 4 U CZ,(X) is a Ding cone.

P .
b Z“;OiBy virtue of lemma 5 we can assume that F is max-stable. Let (Az) J with
ot @n, fa€F, gneUCSH(X) and (%) inf supy(ha) = > o> supy inf (k).
As . B neN e
sume that we have found integers 1 =k <kz<< «ve< km such that the fsngtions

gn(;b(f'k” v )+ 1/n are decreasing with n for n < m.
viously there must be a ky 41 > km such that

Biwn) Sa Vye ¥ {we X | g (x) = 1m—1f(m + 1)}

Otherwi s s
the res tﬁztp‘m s Lemma would provide us with a contradiction to (*) by considering
<h_im ll_ons of hy to the compact set Y. This inequality together with fi,,, = ... =
decT(:asi p tes fime + 1j(m + 1) < (fg,, v ) + 1/m. Hence, by induction we obtain a
Becaul;ge b:}guence gn =(fu, v «) + 1/nin F. Tt remains to show supx (§a) = fVneN.
IS means th t PO e P
sequence in F with at (gs)) is in contradiction to the Dini property of F a

inf supy (g,) = B > = supx (inf (gn)) -

hs TlEN ”EN

<\3%ume t

that al;’htherefol-e Supx (gn,) = 6 < f for some no. Then the left side of (*) implies

*) co "'(.m =1, ) attain their sup on the compact set (reX|pn @) 2p— 8} and
Lanl:tradmts Dini’s Lemma. §

Cone, 1;1.;: Shs-ugge“s. to conjecture that the sum of two Dini cones
An i rtls is easily disproved by a simple counterexample.

Wmaineé)?n "‘[‘:_)1]'5 characterization is the following theorern, Implicitly it is already

is always a Dini

De, -
and ::lml_los.m(m Theorem. Let F = F(X) be an order-unit cone. F is @ Dini cone if
Y if its state space S(F, X) has the dominated countable decomgposition property.

mazimal state has the countable
7 has the SIP then every
with respect to P (X).

Corg]
pﬂ?{?‘r 3. Let F = F(X) be a Dini cone then every
‘]Jrgse‘m? Property with respect to P (X). If in addition
rving state has the countable decomposition property
Pl‘oof . .
- First, let (g,) be in F with supx(infg,.) =f<a =m§ supx (ga) and

E ne

{Y n "N { at ﬂ }
. Then

n€ N} be the covering of X defined by ¥Yn= zeX|galz) =5

Archiy
der Mathemarik XxVIIT 12



ARCH. MATH.
178 B. FUCHSSTEINER

«+f 7 u s not
i -— . Clearly, p is n
Lemma 1 Provides a state # such that 1:1f Hi(gn) =a > 9 Y

F, X) does
dominated by a countable convex-combination of {supy,|neN} and S§(
not have the DCD. N ow, let ¥ be a Dini cone and

can be considered ag 5 state of F(Z).

t Z contains
Now, we proceed exactly as in the proof of [5, Satz 1]. VVe. s‘hOngﬁiws from £
all extreme points of §(p, X), then the required decompo:j»ltlon of S(F, X) no
theorem 3], Assume therefore that there is an extreme point ,u; P bl
contained in Z. By the extreme point criterion of [5, p. 187] there areS I(CF ’Zk)} Then
such  that fr <0, yo(f) > - Uk and —3 > max {n(fy) |v € S(F,
by = frisa decreasing Sequence in F with
ksm
2 . )

InfSUDE (hom) 2 inf g (hyy) Z-e> 32 supx il (i)

m m
Henee 2, is in con

L sequence
tradiction to the Din; Property of £. The corollary is & conseq
of Cor. 2. |

. nn [7].
A different approach to thig theorem wag Tecently given by M. Neuma

_valued fonc-
L Remarks on measures. Let F = F(X) be a cone of [— oo, +t°°FaT§ebm X
tions. Throughout, the following chapters 2% denotes the smallest &

Il pointwise
such that all f ¢ f oy Zp-measurable, Tp particular all g\ F andw?th E( x) =1
limits of Sequences in \/ F ape ¥ F-measurable. A positive Z'p-moasure 7

is called g ZF-probability measure.

. . _stable veclor
Theorem 1. 1¢; g = (X) be qn order-unit veclor Inttice (i.e. a m‘”’S ?E’ X) be s
space of bounded functions o, x containing the constants) and let € S(E,
state of E. Then they isq EE-probability measure v with

if and only if u has the countable decomposition DProperty with respect to Lg.
Proof. The o

nly if part js trivial, it is
to the elements of Zx. The other direct,
theorem 2, p. 160]. 1t is suffy

quence f, in g With inf( fn)

 otions of 1
proved by considering the restﬂcfz}%‘stom
ion is an application of the Da;lasing se-
cient o show 0 = inf u(f,) for every dec

)
» 7) 59
=0. For this we consider the covering X, = {weX|fx(
Where §> ¢, By the dec

and
OmPposition property there are states un € S(E, g»)) and
An20 with Z]-n:l such that m = ZZ”””' This implies § = infu(/»
. reN nely »
Infu(f) —¢ because § wagq arbitrary, |

then
v, Representing Measures. Lot p.. F(X) be a cone and 1 be a state of F, th
& Probability meagyrg 5 with

CO!
Tespect to the smallest c-algebra Xp such that ¥
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of measurable functions is called a representing measure (on X) for p if

1) ,u(f)éljr‘fdr VieF.

If we have equality in (1) for all bounded f € F then 7 is called a strict representing
measure,

. Main Tl.‘hcorem. Let F=F(X) be an order-unit cone. Then every state of ¥ has a
anf(}i""fgmtmg measure on X if and only if F is a Dini cone. If in addition F has the 8ip
is mazx-stable then every order-preserving state does have a strict representing meusure.

P -
roof. First, let every state u of F have a representing measure 7y. And consider

(fa) } in F. Lemma 1 provides a state p such that

infsupy (fn) = inf u(fa) = in_f(j'f,, (l‘r,,) .
neN neN ne N\X
i}svu‘tue' of Lebesgue’s dominated convergence theorem is the rig
= “Px( inf fn) and F is a Dini cone.
nEN
(]el(;?; SI;tEF be a D.ini cone then @ = {fe VF|f bounded} is also a Dini cone
dton g - Every maximal state u* of @ has the CD with respect to Z(X) (decompo-
s max-sto}r:]}m 4+ Cor. 2). If F is max-stable (ie. F= VF) and has the SIP then @
eveny Ord& e and c'loes have the SIP since @ c F. So, under this assump'ﬁ‘i(’n does
A er-preserving state of @ have the CD (Cor. 2). Every order-preserving state
can be extended to the vector lattice E =~ @ + (— @) (lemma 2) and this

extenst, )
tnsion must be unigue since E is linearily generated by @. Now, let u* = > Anpin
neN

extend (lemma 2) every in
* and therefore the unique

ht hand side

with
toa ﬂnf supy, where {My|neN}c#(X) then we can
HnZsupy, on E. Then > A fin is an extension of p

extensi s . neN .
nsion. This implies that the extension of u* has the CD if and only if u* has the
sures Ty for every maximal

C

gtgée}i?n;e’fthe"mm 1 provides strict representing mea :

know (lem (lo? every oder-preserving state if ¥ has the SIP and is max-stable). We

preserviJn e 2) tlfa‘t every order-prescrving state 4 of F canbe e:v(tended to an order-

Obﬁouslg state u of VF and that % is dominated by a max.lmal state ¥ of VF.

inf 5 Vy Is its restriction u*=v|, maximal on ¢ otherwise wi)uld VFe f—

the ohser m.oceIR,} be a state = for any order-preserving state 7= ,u"f. Fma?ly

Tepre _Vatlon that 7, is a representing measure for p (and that 7z 1S & strict
senting measure for g if ¥ has the SIP and is max-stable) finishes the proof. I

CO y - . »
on th:[)tl;ary 4'. Let F = F (X) be a Dini cone consisting of upper-semiconlinuous functions
tan be pological space X. Then every state ps of F has @ representing measure Ty which

eztended to a g-algebra containing all closed compact subsets of X.

P
roof. We replace F by the Dini cone G = F + UC(X) (Lemma 8) and apply
U ¢ (X) contains

t e m -
the (:ht:lthe(?rep' Now, Z¢ contains all closed compact sets since
cteristic functions of those sets. |

12*
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Corollury 5. Let p be a max-stable Dini cone with SIP of bounded functions on
Then ¥ —F is g Ding cone, in particular is — F q Ding cone.

. - 1 e o
Proof. Consider any state 4 of F— F. The main theorem provides a Stl':;tbil;
resenting measure 7 for ulr. Obviously integration with Tespect to T mu

! . a Dini
and 7 is a representing measure for - Since y was arbitrary ¥ — F must be
cone by virtue of the main theorem. ||

Corollary 6, Let 7 pe o mazx-stable Dini cone consisting of bounded conti?ﬂ_ww f 1;”6’:;::
on the topological space X. If F has the SIP (in particular if F is min-stab e¢)i o
every order-preserving state has g strict representing measure which can be extende
@ g-algebrg containing all closed compact subsets of X,

. . nd
Proof. 71 (—F)and o= p T (=F)+ UC(X) are Dini cones (Cor. :;inv
lemma ). Every order-preserving state # of F can be extended to an order-preserving

ich must
state u* of @ (lemma 2). u* has a representing measure (defined on Xp) which

be strict on the subspace F 4 ( —F). }

. for
V. Weighted cones. In this chapter we shall reformulate the main theorem

- coue.
Wweighted cones. Let o >0 pe a weight function on X and (%, P w) a weighted
That means & — & {X) is a cone such that

Py (f) =su§w(x)f(x)< o YiesF .

. the
, [ s & w-state if # =Py and a positive measare ng:# f
o-algebra Lo (where @F = {wf|feF })iscalled a «-representing measure

/t(f)gfr/wdr VieF .

. R
Theorem 2, Every v -state of F has a representing measure if and only if @ F +
32 a Dini cone,
ery
Proof. &5 F>plef) is a wstate I 4 is a state of wF +R and for :; +
“«-State u there is a statq #of o F L R such that i(f) < p(wf) Vie F (lel.nm uiva-
sandwich theorem). Hence, every w-state having a ¢-representing measure 1s €q

. : t to
lent to every state of <% +R having representing measure which is equivalen
“# +R being a Din; cone,
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