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ABSTRACT. As an application of the method of hereditary symmetries we show that the two-
soliton solutions of several nonlinear partial differential equations are intimately related.

INTRODUCTION

We consider the following equations for u =u(x, £):

&) Uyr = % sin (2u) sine-Gordon equation,
) Up = Ugyy T OUL Korteweg-de Vries equation (KdV),
3) Up = Upyy t6UU’ modified KdV.

Then we have the following explicit formulas between the two-soliton solutions:

THEOREM 1. Let v be a function in x and t, then the following are equivalent:

D ulx,t)={" _ v 1)dE isa two-soliton solution of the sine-Gordon equation with asymptotic
Speeds 1/c, anc} l/e,.

(i) w(x, £) = v(x — () +ca)t, — €1¢21) is a two-soliton solution of the modified KdV with
asymptotic speeds ¢y and ;.

(i) ulx, ) = v(x — (c; +¢2)t, — €100 +ivglx — (e * ¢2)t, = crcat) s a complex i

soliton solution of the KdV with asymptotic speeds ¢y, C3.

At first sight this appears as a remarkable coincidence. But, of course, there is 2 deeper
reason behind it, and it is one of the purposes of this paper to point out that reason.

SOLITONS AND COMPLEX SOLITONS

We deal in this paper with solutions in §_, the space of C;°-functions in x, vanishing rapidly

at —oo,

It is well known that eqns. (1) — (3) admit traveling wave solutions of the form u(x, #) =
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Se(x — ct). These solutions are easily found by replacing u, by —ClUy, thus obtaining an ordinary
differential equation. This equation then yields:

sc(x)=c* {cosh(cH(x — xo)}!
for the modified KdV, and
se(x) =™ feosh(e ¥ (x - x o)}

for the sine-Gordon equation.

; i if
But we like to remark that, in general, these are not the only traveling wave solutions, e\;‘:ﬂ
Wwe require that the solutions vanish rapidly at lx| = oo, Let us demonstrate this for the KdV.

Insertion of i, = Sx, Uy =5y in (2) gives:

Sxxx 16885, =cs,. .

Integration (from —co 1o x), multiplication with 2 Sx and a second integration yield:

sT4283 =, g2
One solution is
$¢(x) = c{cosh(c*(x — Xo))}2.
But one easily verifies that a second (complex) solution is given by:

(4) S} = cleosh(c(x - xg)) 2 {1 _; sinh(c%(x — x,))} .

We recall that 4 (x, t) constitutes an N-
(ie, iti > °) into N traveling wave s
Such that the tota] energy is complet
We require that u(x, 1) is of the form

soliton solution if u(x, ) decomposes asymptotically &
olutions with speedscy, ... cp (called asymptotic spee' ev
ely carried by these traveling waves [1]. To be more precise,

N
u(x,r) = )y

Sc,,(x —Cpl ~ 0,,)+A(x,t) ,
n=1
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where the error term A(., 7) converges for [l = ee to zero in an appropriate sense (usually L2-
norm which then, due to the special structure of the evolution equation, implies convergence in
any other reasonable sense). A complete description of these N-soliton solutions is easily furnished
by the theory of hereditary symmetries [2] . Explicit formulas for these solutions are found in
[5], for the KdV, and in [3], for the sine-Gordon equation.

HEREDITARY SYMMETRIES

Let ®(w) be a differentiable function in w € S_ attaining values in the space of linear operators
on S_. We assume that & is invariant with respect to translation of the x-axis. Such an operator-
valued function is then called a hereditary symmetry if [®'(w), ®(w)] is for aAlwES_ asym-

metric bilinear operator on §_ X S_. Here, the commutator is an abbreviation for the following

bilinear operator:

[®'(w), 2(W)] (0,7) = ;E B(w + ed(w)o) — (w +€0) -0 v,

where o and v are arbitrary elements of §_.
Now, let § be hereditary and consider any of the following evolution equations

(S.n) u, = (dW)'uy,=K,w), ne€k.

Then I showed [2] that the operator function ®(u) completely describes the symmetries, the
conservation laws and the soliton solutions for the sequence (). The evolution equations (5)

are usually called the generalizations of

u, = du)u, .

rtant property of @ is, that for any solution

Let us concentrate on the soliton solutions. An impo
lar

u(t) of (5.n) the eigenvalues of ®(u(t)) are time-independent. Moreover, (5.n) has a particu
structural stability which says, that whenever we have for a fixed to that

N
ux(to) = 3. wilto),
k=1
then for all ¢ it holds that
N
(6) u(t) = 5 wilt),
k=1

where the Wy
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(7) P(t) wi (1) = Newie (1), Ay time-independent

i i i tion
are eigenvectors of $(u) and, in addition, solutions of the linear perturbation equa

0
G W Kl ew

Usually (for suitable ®) eqns. (6) and (7) constitute a system of ordinary.differentlal ZC:;?;I:HS‘
And an asymptotic study of the eigenvectors Wy shows that (6) is the soliton -decw;ieir asyr-np-
The wy are asymptotically equal to the derivatives of the traveling wave solutions.

totic speeds ¢y, . . . | Cn are easily determined. Because of (5.n) we have

N N
9) U= e@)f'uy = 5 W) wy, = 2. Mwg.
k=1 k=1

Hence, we get

(10) Ck=-)\;.

TIME-HISTORY OF THE TWO-SOLITON SOLUTIONS

It is remarkable that for the whole class of equations given by (5) the N-soliton solutions are
described by the same System of ordinary differentia] equations, namely by (6) and (7). Of -
tions may be rather different (for N =1 these evolution
the boundary condition at infinity — the systefn '
parameters, and the time evolution of the solutlc')n 18
these integration parameters. In the case of two inter-

: - - - . etween
imple since one easily obtains explicit formulas b

given by assigning to €Very ¢ values for
acting solitons this story is extremely s
the totresponding solutions:

THEOREM 2. Ler y be a funct,
Du(xe) = v(x, 1) is a two
(D) d(x,r) £ p(x - o, Bt) is

onin x and t, then the following are equivalent:

. n D L
-soliton solytion of (5.n) with asymptotic speeds —~\{ and —\2

: A" and
a two-soliton solution of (5.m) with asymptotic speeds —Aj
=AY, where
(1) o= M- Ay g M-y
gL -
MM Y

Proof. Let us conside two-soliton solutions g, 7 of (S.2) and (5.m) with asymptotic speeds
AL 2] and

A7 respectively. We know then, that these solutions are of the form:
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(12) Uy =Wy t Wy, Uy=Wy W,
where

(13) D) w; = Nw;, (I )w; = Nwi; i=1,2.
This system has a two-parameter family as solutions (in the solution space under consideration!)
since the two-soliton solutions do form a two-parameter family. But, due to translation in-

variance, u (x — X, £) as well as & (x — xo, #) are constituting such two-parameter families of
solutions for (12)—(13) (the parameters are xo, ). Hence we expect:

(14) 7Gx, £) =ulx — a(f), b(®)) -

It remains to determine the functions a(f) and b(f). Put for the moment §=x a0, =000
and take the time derivative of (14):

i x, )= B(us (%, 1) ~a@ug & 1) .
Expressing the time-derivatives by (5.1) and (5.m) this yields:

O, 1) i (x, 1) = () P, F) ug K, F) —a(Quz (¥, 7).
Now, express il (with the help of (14)) in terms of u:

"R, ) - () " @E PN uy &, D) +d @) ur(x,F) = 0.
Introducing the eigenvector decomposition given by (13) we obtain:

NI Ny +a)yw + (=N b@)+a@)wy = 0.
Hence

m_NTB(n) +d(f) = NP - M B +a(n) = 0.

So,a and b must be the following time-dependent constants:

LN MMM
B=b(t) =W, (X—a( A;z —N;

So we have proved (i) - (ii) and the other implication follows by interchanging the role of

[
uand i .

The reader should observe that this proof used ideas first expressed in [4].
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Applications

X
] i dg.
We denote by Dthe operator of x-differentiation and by D! the operator w(x)—~> | - w(f) d¢
In [2] 1 proved that

(15) by (u) = D? +4y + u, D
and
(16) C2(u) = D’ +4u, Dy v 42

i i d in the
are hereditary. Let us first study the second operator. In particular, we are intereste
following evolution equations

Uy = S Wu, iy = &, (i) Uy .
Evaluation yields that the explicit form of these equations is:

(17) Up =+ 6u

(18) ﬁ,=§sm(2]

X

u(E) dt ) .

L~ the
Equation (17) is equal to the modified KdV and the substitution i = u, makes out of (18)m 1
sine-Gordon equation. S Theorem 2 applied to this special case gives (i) «<— (ii) of Theo-r
Now, the reader can easily check the following Operator identity for arbitrary v €5_:

(19) ¢ 07 +iv,) (2v+iD)=(2v+iD) ,(v).

This has as immediate

CONSEQUENCE 3. v(x, 1)

, . . . = t)z +
I8 a solution of y, = 2 (v) vy if and only ifulx,t)=v(x,
tir

(X, 1) is @ solution of uy = d, (u) u.

This, of course, provides the miss

. the
ing link between the complex two-solitons of the KdV and
two-solitons of the modified Kd

V( (i) « (iii) of Theorem 1).
Let us give another example. Consider

(20) “xxxt + 4uxuxr t2 uxxut T Uy, = 0.

Then (20) can be writtenas ¢, (Uy)uy, = Uyy OF

(21) gr = q)l({[)-f u~x 4 = Uy .

182



Hence, an immediate application of Theorem 2 yields:

OBSERVATION 4. The following are equivalent:
() u(x, £)isa two-soliton solution of the KdV with asymptotic speeds ¢y, C2.
(i) v(x, 1) | ou(E - at, Bt) df isa twosoliton solution o £ (20). (Inverse KdV) with asymptotic

speeds 1/cy, 1/c,, where:

¢y te, 1
and f=- —.
Ca(Cy CaCy

a:_

FINAL REMARKS

(1) One should observe that Theorem 2 relates the two-soliton solutions of every soliton
equation and its generalizations, like the KdV and its generalizations, and the Sakharov—
Shabat equation and its generalizations.

(2) One might ask if the method applied in Theorem 2 also works for N-soliton solutions.
In principle, yes, since we know for the eqns. (5.1) an infinite series of symmetries. But every-
thing becomes more complicated because these symmetries are not linear in u. In fact, the only
linear ones are u, and u,, and these were used in the proof.

(3) I am quite sure that the same method works for those solutions which are not required
to vanish at - o (Novikov’s theta function solutions). Although I did not carry out the details
for this case.

(4) In the first moment the identity (19) looks surprising,
[S] (Gardner transformation) that there is a Bicklund transformation between the soliton-free
KdV and the KdV. Making a complex variable substitution one obtains from there a Backlund

transformation between the KdV and its modified version. And this complex Bicklund trans-

formation immediately yields (19).

but in fact it is not. It is well known
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