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study of those states of a convex cone F(X)

The aim of this paper is the
hich behave similar to the points of

of bounded functions on some Set X w
a Bauer simplex. These states ar¢ called Dirichlet states. The main results
of the paper can be found in §3, where those Dirichlet states which admit an

ized by order properties.

integral representation on X are completely characterl
These results contain among others Choquet’s theorem and the auth

representation theorem [4].
The suitable Hahn-Banach met

ors integral

hods and decomposition methods for linear
functional which are necessary for treating Dirichlet states are gathered in
§1. In §2 the Dirichlet states are completely characterized in terms of support
properties and extension properties. §3 and §4 give individual integral repre-
sentations for Dirichlet states and relat And in §5 problems—-which

seem to the author of some importance—a

ed states.
re mentioned.

§1. Preliminaries.

vex cone of bounded real-valued func-
hat F contatis all constant
d with the pointwise order
id to be Yanonatone if

If Y.X then supr

Let X be a set and F=F(X) a con
tions on X. Throughout this paper We assume T
Ffunctions, or in other terms that FOR. RF is equippe
on F, this order relation is denoted by =. 2€ RF is sa
p(f)=plg) whenever f, geF such that fzgly Vel
denotes the sublinear functional on F given by f -’gggﬂ.}')

A linear (additive and positive-hormgeneous) y: F—R is called stale of F
. this is equivalent to ¥ being X-monotone with

if v is X-monotone and y<supy;
w(1)=1.

LEMMA 1. Assume that 0:
where the pi

=+{} becaus

F—R is linear and X-monotone and that X=

are linear and X;-monotore.

Xl\_/" s UX"' Then p__——_— i pi,
i=1
e 0 is the only O-monctone

ProoF. We may assume that all X;
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linear functional. p can be extended to a linear .X-monotone g on the vector
T

space E=F-F. By [5, finite decomposition theorem] ¢ is equal to ¥ 4, where
i=1

the 3; are linear and <4;supy, on E for some Z,::0. This means that the 4,
are X;-monotone because F is a vector space. q.e. d.
The letters g, v will always stand for states and r, p for linear monotone
maps. Face(y) is the face generated by p in the state space, the means Facely)
is the set of all those ¢ such that there are v and 1ZA>0 with p=42--(1—Aw.
By Cone(p)={
Face(y).
We shall say that p is a simplicial state if for p,, v,=Cone(p) (i=1, 2) with

1220, veTFace(y)} we denote the convex cone generated by

ol+pu:rl;r2 there are always p;,=Cone(n) (i, k=1, 2) such that ki—};‘o”’:ﬁ
and Y‘p,“ p: =1, 2). A simple inductive argument [1, p. 85] shows that

this property goes over to converging sums :
LeMMa 2. Let p be simplicial and let Pu, To be in Cone(y) such that
Z 0n= ,Z,‘w and nE t.(1)<=. Then there are 0, ,=Conelu) with:

nEN

apnm On and 2 on =7, Ym=N.
neN neN

REMARK 1. [1, p. 84] If Cone(z)—Cone(p)=V is a vector lattice with
respect to the order relation given by V.=Cone(y) then ; u is simplicial.

¢t is said to have the support property if whenever v<Face(y) is Y-monotone
(YL.X/ then all elements of Face(v) (face generated by v instead of u!) are
Y-monotone, Of course, all elements of Facel«) have the support property when
u has it.

One may guess that the support property implies that a state is simplicial,
but this is not so. In [2, example 1.9] is given an example of a compact con-
vex set i such that for everv L =K the measyres representing £ and living on
X=ex(/y; (closure of the extreme points) do have equal support without I
being a simplex. Hence every state of F(X=_1/A'} . faffine continuous func-
tions restricted to . has the support property. But there must be nen-simpli-
cial states, otherwise & would be a simplex ‘cf. next chapter).

We call 1 semidispersable, if whenever

{1 #ZAsupy,—(1—2 supy,, 05421, X, \,OX,

then there are states A% <Su"\ T, (121 2) such that ”7/’”]% ‘/1**/ 1. I in addi-
tion the »~, can be assumed to be X-monotone (=1, 2) then ¢ is said to be

monotone semidispersable. Finally, x is said to be (mo; witone) dispersable if all

=Facels; are (monotone) sem*dvspersabl
REMARK 2. Every maximal » (i, p=vy>v=p) is monotone dispersable.
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This i 5
o Zl is a consequence of [3, sum theorem] and the facts that for a maximal g
" eme}xllts of Face(y) are maximal, and that when pg=supy (YCX) is maximal
a . .
¢ has to be }-monotone (sandwich theorem). Hence, is dispersable

whenever F(X) is a vector space.

Wi .
ith almost the same proof as in [3, theorem 3] one obtains a more general

result :
LEMMA 3. Inequality (1) implies the existence of states pt;=supy,

with p=ip,-(1—u, if and only if

2 ; . . . .
@ wIZpg)+A supy,(f1)+(1—Asupx, /)

whenever /, g 1 FiEF such that fx0Sgn+fix) Ve X (=1, 2. The states
pi (1=1, 2) can be assumed to be Xi-monotone if and only if (2) holds whenever

1, g, [, [-EF such that Al gl)+fix) vre X, =1, 2)

§2. Dirichlet states.

A simplicial state with support property is defined to be a

DEFINITION 1.
Dirichlet state.

. The reason for choosing this name bec
ing examples.

ExaMpLE 1. (i) Let K be a Choquet simplex then every state of VA
is simplicial ([1, Proposition 1I. 3373, /iy Let A be
(extreme points) then every state of 1Y
et state. (This is a consequence of the fol-

omes quite obvious from the follow-

(affine continuous functions)
a Bauer simplex and X=ex(K)
(K, ¢ (restrictions to X) is 2 Dirichl
lowing lemma and [1, Theorem 1. 4.3]).

LEMMA 4. [f F(X) is a vector lgttice with respect 10 pointiise arder Hhee
every state of F(X) is a Dirichlet state.

Proor. By the Stone-Kakutani the

onto a dense subspace 0
t of lattice-preserving state
) is order isomorphic 1o

e, remark 1 implies that
eorem every state

uniqueness Of
theorem »
where

orem [1, p. 76] there is a Jattice isomor-

phism from FX) ¢ (X, where T i< compact and ¢an
be identified with the se s of F\. So, the vector
hy the states of FX
Henc
he RieSZ»representation th
on .X. Furthermore the
the Riesz-representation
losure of FR

space generated | e cual of € X
and therefore a vector lattice. every siate of
F(X) is simplicial. According to
has a unique representing measure 7
implies that g—m, 18 affine. Again by

and only if . has its support in the ¢
ding. NOW, T T Cy B2 then m,=AmM..—

is contained in the support of L. Hence, +: IS
g.e. g

¢ i5 the smallest

m,
is Y-monotone if

3: X—Xis the canonical embed
(1—2)m,, and the support of m,,

Y-monotone if v is.
By VF we denote +he max-stable cone generated py F. tha
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convex cone OF such that /v g= VF whenever f, g€ VF. VF—VF is then the
vector lattice generated by F.

THEOREM 1. u is a Dirichlet state of F if and only if g has a unique
extension to a state of VF.

Proor. Let u« have a unique extension. Then z has a unique extension to
a state p of E=VF—-VF; and every p<Cone(y) has to have a unique extension
to an element 5=Cone(s) and the map p— § must be a bijective linear map
from Cone(p) to Cone(). Using lemma 4 we may conclude that s is simplicial.
Now, consider y,=Face(r) and let v=Face(y) be Y-monotone. Then by [4,
lemma 2] § must be }-monotone on E and again from lemma 4 we obtain that
2,=Face(f) is Y-monotone. Hence v, (restriction of o, to F) is Y-monotone and
¢ has the support property.

If ¢ is a Dirichlet state then we consider arbitrary extensions 7, f. to
states of VF. For o= VF we show a,(¢)=¢). This clearly proves the theo-
rem. ¢ can be written as iV [V oV fa, where f), -, fn=F. Let Xi=
{xlféx)zolx} {i=1, -+, m), then according to lemma 1 we may decompose

77'!.1 m
- iz‘l Pli and f’ig: 2 6,

=

where §,; and ¢, are X;-monotone. Then p1i<Cone(y) (restriction of ds: tO
F) is X;-monotone and we can find ;;=Cone(y) such that

m b3
J‘Z_] T.ji:pli al'ld Z Tij: o

because ¢ is simplicial. Furthermore the support property of u implies that <
is X;-monotone. This clearly implies =;,(f,)=7,,(f;) and from this we obtain:

™m

R o ; m m
Ale)= [\;'1 ol )= 121 oulf= X tu(f)= 24 e
= 3=

Jii=1

= X 0u(r= qu;(f;)—/u . q.e.d-

J

COROLLARY 1. I F is max-stable then every state i1s Dirichlet.

COROLLARY 2. Let YCTX be compact such that F separates the poiils of ¥
and every feF is continuous on Y,

(1) Every state <supy is Dirichlet.

(i) FX)—F(X) restricted to Y is a dense subspace of C(Y') (continuous real-
valued functions on Y),

Proor. Theorem 1 together with Hahn-Banach and Stone-Weierstrass.
g.e. d

Then the following are equivalent:



o
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Dirichlet states

§3. Representation by integrals.
We fix Z=.X and we say that pis partially decomposable on Z if for ARV

with \J Z,—=Z there are always Ay, 2,20 with 0<1,<1 and =40 i A, such
nol

n-1

that
[”Lé)“l) supz+ 2 4n SUPzy
n=1

¢ on Zif we can always have 4,=0. Here, of course,

u is said to be decomposabl
r decompositions (with respect t0

we define 0-supg=0. It I8 useful to conside
(Zn)ne.-\'\) of the form:

H= élln[vtn“f‘;{o#()

where ¢, =Supy and u,=supz, ar¢ states and the A, Aqc20 are such that
,fz-"olk:l- If, in addition, the fi, ar€ 7,-monotone (n=1, 2, ) then this decom-
position is called monoione (with respect to (Zn)nens of course.. Such a decom-

N o
| if we have for all N that, whenever ﬁy::(lf }_JI/)

position is said to be maxind
>0, then Ay., is By times the maximum of those 0<iz1 such that Yo

Asupzy,,(1—24)supx, where vy4 15 the state

1 ¥ 1 7e . s

V) ae T —_ ? ): (s“ A A e l{ﬂ"!n) .
pa ‘3_\-' (ﬂ 1;:‘1/171‘!11l ﬁ_\r A\?—f‘! v

A trivial inductive argument shows that for a (monotone dispersable !t there

is always such a (monotone) maximal decomposition.

LEMMA 5. Let p be dispersable. Then the following

(i) Erery v=Face() 13 decomposable on X-
(ii) Everv v=Face(p) is partially decomposable o X

are equuralent:

whenever O/ b sl thal

(i) For all y=Facely) we have };lv(fn)::“—

S = Voo X

n=1

I case that F is such
equivalent fo
(iv) For every sequence Ia
have inf ‘a(fn):()_

neN

ProOF. ()=>(ii) 18 trivial, (i
decomposition theorem] and (i) (iv) follows wit

theorem 1.

_p and r2 R then all this s

that IVIE Fwhenever 77

s e erg e d
=0 in F which is pownfcise decreasing {0 Z€r0 € do

. e .
=i is a direct consequence of {5, partial
h the same€ argument as i i3,
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(i=(1): Let Z,ZX be arbitrary such that UIZR:X, and let
n=

o
— . r bl
v= E )\nbn Ak,
-1

be a maximal decomposition of v=Face(p). If 4,=0 then we are done. For
2,>0 we consider a maximal decomposition

~

e -
Y= 25 Al AT,
=1

of v,eFacely). Since v, is partially decomposable on X, we know that 21211

>0. This is in contradiction to the maximality of the decomposition for v
because this gives the following decomposition :

y—= 21<A"ﬂyﬂ.+20)‘ ilg71)+)~l)/‘~l)sl) . Q‘ €. d'
n-=

LEMMA 6. Let p1 be monotone dispersable, and let all v=Facelp) be partially
decomposable. Then the unique extension of uto the vector space F—F is mono-
tone decomposable.

Proor. Let Z,CX be arbitrary such that U Z,=X, and let
n=1

p= 2 Agva Ay,
n=1

be a suitable monotone and maximal decomposition. As in lemma 5 we draw
the conclusion that 1,=0 because otherwise v, is partially decomposable. Now,

the unique extensions £, of v, to F—F are Z,-monotone [4, lemma 2]; hence
we have for 7 (unique extension of 2 to F—F) that

A= L5, q.e. d
n=1

A positive measure m on X with respect to 2y, the s-algebra generated by F.
is called a strict representing measure for = if

T(f):gxfdm VieF.

The next theorem can be considered as a local version of [4, theorem 1].
THEOREM 2. Let F be a vector space and let y be a Dirichlet state. Then
the following are equivalent :

(1) Every v=Face(y) has a unigue strict representing measure m,.
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(i) Erery veFace(p) is decomposable on X
(iii) ITW every veFace(y) we have EKV(JE):*OC whenever 02 f,< F such that
I;;I_/",l(x):foo Ve X

Proor. The state space 2= {
topology which makes the functions w—floy=olf
shall denote the canonical map B f)=fx) V€ F.

(=i ﬁlL(Ql):m«_(ﬁ*(.Ql)), Q,C0, defines a Baire probability measure on

~

| state of F} is compact under the coarsest
), f€F continuous. 3 X--0

.

N

Let 7i, denote the corresponding regular Borel measure. Then we have \Q_f' dm. -

v /) ¥i=F. Now, we consider for X, CX with \J X,=X the sets Y, ==closure
neN

J ¥,). Then we have

Y
LR =

(‘3{.:{1:\3) and we put /:Tl:f_ﬁy<X-n\ :/‘n'ﬂl and \_,"
=h

< -
o An SUPT . Hence, v must be decomposable.

(ii=(iii) remark 2 and lemma 5 (ii).
(i)=(: All the 5= Face(p) have unique
VF-—VF (theorem 1) and this vector lattice 15 vector-lattice-isomo
vector lattice on T=closure(3(X}) generated by the functions fo fe F. So, if
Y<supy then the Riesz representation theorem tells us that there is @ unique
on Y:closure(ﬁ()’)}}cf with ( Jdi, g

Ji

cX with Z.o5X we

extensions to the vector lattice
rphic to the

Borel probability measure iy
For compact Z.

VfeF. Let veFace(y) be arbitrary.
nce v 18 decomposable on X

consider X, =57 Z)CX. Then U X,=X, and si
neyN

we ohtain with {5, sum theorem] that v= 3 Jyvn. Where v, LSUPy -
r=N

ding statement there
on X such that \Z fdi,, =

are for the ¥ and » Borel

According to the prece

on Z, and 7.

11 and

probability measures My,

1 7.3=1 because of M, XA
- i

Sf dim, =y ) VfeF This implies T L‘
X A=h
Since the Z, have been arbitrarily chosen, 7. is supported 5

clude from regularity that 7, B =0 for

containing 5X. Therefore W€ may con

every Baire set B with B~ 3X=0. Now. pecause Of S,=15t D B Baire S€
Y . N ’ R
—X} we get the desired strict representing measure . for ¥ py m.' 3D

m,(B) V13 Baire set — . The uniqueness of m, follows from theorem 1.
g.e.d

by every F.-set

nvex set K with point separating A K.
And let # be a Dirichlel point in K, which ghall mean that Iz»h‘;%‘ 15 2
Dirichlet state of AK)excx>: f YCex(K) we may ask when the /unique:

boundary measure M representing ki PSeudo-carried py Y f.e m'.E;:O
V Baire sets B with BNY=0) Theorem 2 tells US that this is the €2s€ if and

ExaumpLE 2. Consider a compact c0
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only if i h,(x)=—cs Yx=TFace(k) whenever 0=h,< A(K) with Elhn(,l")zgm

byt
YyeY.
It is quite easy to reformulate theorem 2 such that it can be applied to
convex cones of functions. From lemma 6 we immediately obtain:
COROLLARY 3. Let g be a monotone dispersable Dirichlet stale o) the convex
cone F=F(X). Then the following are equivalent:
(1) Every veFace(u) has a unique strict representing measure m, on X
(it) FEvery veFace(p) is decomposable on X.
(iiiy For everv v=Face(y) we heove i W fu)=—co whenever 0=f, =1 such that

=1

D [l = Yxe X,
n=1

(iv) Every ve=Face(y) 1s Dini-continuous.
Here, Dini-continuous means that we do have for all pointwise decreasing
sequences [, in F:

monotone convergence theorem.
COROLLARY 4. Let p be a maximal state of the imax-stable convex cone
F=F(X). Then the following are equivalent:
(i) Every v=Face(u) has a unique strict representing measure on X.
(ii) in{ v =0 whenever 07, <F 1s pointwise decreasing to zero.

n=N

Proor. Corollary 3 and lemma 5 together with remark 2 and Corollary 1.
q.e.d.

ExampLe 3. Corollary 4 applied to VA(K).x, (K=compact convex) leads

with the help of Dini's lemma and Bauer’s maximum principle (for the upper-

semicontinuous convex functions) immediately to: Every maximal measure (in

the Choquet ordering) is pseudo-carried by ex(K) (Choquet’s theorem: ‘¢f. [1]).

§4. Localization of decomposable states.

In certain cases theorem 2 can be used for obtaining representing measures
for non-Dirichlet states. This is done via a localization of decomposability.
Let ZZX. We say that a state p is disjoint from Z if there are Zx

(n=1, 2, ---) with ;{IZ,L:Z such that A==0 whenever 11>>0 and there is someé

n with pg=2asupz +(1—A)supy. Of course, if ¢ is not partially decomposable
on Z, then it is disjoint from Z

EXAMPLE 4. Let Z,CX and let ¢ be dispersable such that
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(= n};ll,l;jﬁ-iﬁpo

maximal decomposition of u with respect to (Za)nex (D the sense of §3-

Then maximality implies that when Z,>0 then [t is disjoint from 7 T
i1

REMARK 3. When 1t 1s disjoint from Z, then every yeFace(y) 1s disjoint

from Z.
LEMMA 7. Let p be disjomnt from ZcX and decomposable on Yol

(18 decomposable on 2.
PrROOF. Let the Z,CZ be as in the defini

Then
tion above and consider AV R4

with Hl X,=Y\Z Then we have

0

uE X An supz, T 1'1" supy,
n=

n=1 =

¢ to be equal to 7ero
q. 2. d

sable and decomposable v¥ )

, or there are 1oa

YV, and

because p is decomposable on y, Now, all the A, hav

since p1< A, supz,+(1—2a) SUPL

Levinia 8. Let every vEFace() be disper
Y, UY, Then yeFace(y) is gither decomposable on Y
states v; (i=0, 1) with ye=Avp (L= AW such that vo 1S disjoint [T

decomposable on Yo
Proor. If y=Face(y) 18 not

decomposable 00 Y,, then there are Z U

with U Z,==Y such that i,>0 for every maximal decomposition

n=1

VY= 2 lnvn~§-iuvo
=1
of v with respect to (Zulues: \ow, example 4 shows that v i disioint rem
Y,, and from lemma 7 we know that Yo is decomposable 07 Yo e g
THEOREM 3. Lef every ,=Face(y) be dispersable and decompasil b
YooY, Yy, Va0 Then there are stales fh (i=1, 2) and YU

bt 1S decomposable o1 Y, and it is disinint 1T Voo

A1 At such tha

decomposable on Vi

ProoF, If w18 decomposable 08 Y.
case that p is not decomposable 08 Y, we can writ
is disjoint from Y

;lepla-(er)‘ug (1=2>0) where th
may assume that Ag, is maximal ” in the following sense:

.
in

0, and we are Jope.

we put A=
lemma 8

e (according 0
By Zorn's lemma WE

whenever p2:§v1+(1~1)v, (1ziz0), where
v, 18 disjoint from Y,, then 1=0.

ied to ) W€ conclude that

is decomposable 07 Yo

Then, from lemma 8 (app!
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The assertion that u, is decomposable on ', follows immediately from lemma 7.

q.e.d.
Induction leads immediately to:

COROLLARY 5. Let every veEFace(y) be dispersable and decomposable on

X=UY.; ¥y, oo, Yy20. Then there are 4,20 and states o With p=

F(EN

> Jyrt, such that the tn are decomposable on Y.

N
5
A
n=1

This localization procedure leads—for example—to integral representations
in the following :

‘\V ~
SITCATION. Let X=U Y,, Y, -, Yy+0 and let F=F(X) be such that
n=1
the restrictions Fly == {/y,|fEF} are max-stable for n=1, -~-, N. And assume
/4 to be a maximal state of F,

THEOREM 4. Then the following are equivalent -
(1) Ererv v=Face(y) has a strict representing measure on X.

(i For every veFace(y) we have 3 u(f,)=—cc whenever 0=f.=F such thal
=1

N fixeeere Yre X

Bl

PRoor. (i)>(ii) is a consequence of the monotone convergence theorem.
(= (i) ;¢ is monotone dispersable (remark 2) and every vEFace(y) is decom-
posable 'lemma 5). Now, we localize according to corollary 5. Corollary 3
together with corollary 1 gives the desired representing measure. g.e.d

§5. Problems.

ProsLeEM 1. Under what kind of conditions does a countable analogon of
Corollary 3 hold ?

An answer to this problem would certainly lead to very powerful integral
representation theorem,.

ProrrLen 2. Do the results of §3 and 4 hold for the case that V-valued
states * 1 a Dedekind complete vector lattice) are considered ?

Some of the theorems may be true in this case (cf. [6]}, but there will be
very many problems when 17 is not weakly o-distributive [7].

ProBLEM 3. Which results of §3 remain true in case that the states under
consideration are not Dirichlet stateg ?

ACKNOWLEDGEMENT. [ am indebted to T homas Landes and the referee for
manyv helpful remarks.
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