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It is shown that problems in Mathematical
Economics which are connected with submeasures

can be treated by means of suitable disintegration
methods. A flow theorem for nonfinite networks

and a production-distribution theorem are given

to illustrate these disintegration techniques.

INTRODUCTION

Looking at some problems in mathematical economics from a general point of view
one easily discovers that they are intimately connected with the notion of sub-
measure. There i5 some reason to expect that in the future submeasures will play
an important role in a unified theory for several areas of mathematical economics.
As a modest contribution in the direction of such a development we show in this
paper that disintegration with respect to submeasuresis an essential tool for
handling infinite networks as well as infinite supply-demand problems.

A submeasure p : L R, 1is a map froma o- algebra T (on some set X) into
the nonnegative real numbers Which has the following properties:

(1) p(AUB) <p(h) +p(B) forall ABEE
(2) if An € I is a decreasing sequence, i.e. A c An

for all n, then inf p(An) =p{ N An).
neEN neN

In other words, a submeasure is a positive measure where additivity is replaced by
subadditivity. An example for such a submeasure is easily given: Take a positive
finite measure m on XxX (endowed with the product o- algebra £ 8T ) and
define p(A) = m(A«x CA) for all A€ xr , where A denotes the complement

X~A . As we will see later on , submeasures of this kind play an essential role
in network theory and related areas (for example the theory of zero-one matrices
[16]).

A similar kind of submeasure turns up in the study of supply-demand models. Let X
now be a commodity set (i.e. the set of indices of the commodity space) and con-
sider aggregate production and consumption, Assume that the producers do have
alternatives in their production program. For example certain producers may be
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able to produce , within certain.limits, a commodity b instead of a
commodity b. Denote for A <X, by o*(A) the aggregate maximal production

of A, That is the maximal production (per time unit) of commodities of the
species A , provided that the producers concentrate all their efforts on A, i.e.
whenever a producer has the alternative to produce something out of A instead

of something out of CA he does so. The quantity o is a submeasure and in
most cases a submeasure of a very special kind.

Let & similar situation be given on the consumer side. Assume that some consumers
allow, according to their specific tastes and needs, that certain commodities may
be replaced by others. Then we define v*(A) to be the aggregate minimal demand
for commodities out of A, i.e. the demand which is given by the provision that
elements out of A are replaced by those out of [ A whenever a consumer allows
this. For reasonable o-aigebras z is the quantity v* a supermeasure. That
isamap v¥: Lo R, with the properties:

(3) v*(AuB)2v*A)+ v*B) forall ABEX with AnB=gy
(4) If A, €L is an increasing sequence then

sup \)*(An) = (U An).
neN neN

In other words, a supermeasure is a measure where additivity is replaced by
superadditivity.

In the study of supply-demand models the basic problem is whether or not the
production can satisfy the demand. This is more or less equivalent to the question
if there is a measure m with v* <m < g* . 0f course, a necessary condition
for an affirmative answer is v* < g*. But in contrast to the case where sub -
and superlinear functionals are considered we do not have [2] a sandwich theorem
[4) for sub- and supermeasures. So, from the beginning it is far from obvious
that the condition v* < o is sufficient. Nevertheless, a detailed analysis of
the quantities ¢ and v* reveals that in this special case we have in fact a
sandwich theorem, i.e. the production satisfies the demand if and only if maxi-
mal production dominates minimal demand. We get even stronger results, namely for
the measure between v* and o* disintegrations with respect to the actual
demand and the production capacity. These two disintegrations correspond to pro-
duction and distribution plans.

DISINTEGRATION TOOLS
Let E be a vector space and let PysPp be subiinear functionals on E. Con-

sider further a linear functional y : E - R with yu < PLtp, - The following

result can be found in Choquet's 1968 Princeton lectures [ 1 , p.273) (see also
H. Konig [13]):

Sum Theorem: There are linear functionals ) with n SRy and Hp Py
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Although, from the point of view of duality theory of vector spaces, this result
may not be surprising it seems to me of fundamental importance. Not only that
this lemma is far more basic than all of duality theory,but in addition it puts
the emphasis where it belongs, namely on the elementary facts of decomposition
of linear functionals. Heinz Konig combined this result with other fundamental
observations [13] and opened the road towards a complete theory of sublinear
functionals.

The theorem mentioned above has been generalized in several ways. We are going
to describe the different stages of these generalizations . Then we are going
to give a theorem which comprises all the different aspects. Let us start by
rephrasing the above situation in a rather fancy way.

Consider the trivial measure space @ = {1,2} , I = P(Q) endowed with the counting
measure m . The the pair PysPy defines a sublinear operator P : E - Li(m)
by putting

P(x}{w) = pm(x), x€E, 0wea={1,2).
The condition u < Py Py reads

w(x) s [ P(x)dm for all x€E
Q

. . 1 .
and the lemma states that there is a linear operator ¥ : E oL (m) with T<p
such that

u(x) = [ T(x)dm for all x€E.
o

It is not hard to imagine that this result does not depend on the specific nature
of our measure space 2 . In fact, the result has been carried over to rather
arbitrary measure spaces, see H. Konig (131, M. Wolff [19], M. Valadier (18],

M. Neumann [15]. The resulting theorem is very much related to the celebrated
Strassen disintegration theorem [171, an observation which can alse be found in
[11.

The second Tine of generalization deals with convex cones or even with abelian
semigroups, if one likes. This work [ 4] follows the usual routine of replacing
R by RU{-=} and replacing the equality , = upt o, be the inequality
W<t s

But generalizing the Sum Theorem to convex cones a new problem arises. Let <
and S2 be preorder relations (order relations without antisymmetry) which

are compatible (with the algebraic structure of the cone or the vector space, i.e.
inequalities can be handled in the usual way). Assume that p. are monotone with
respect to the sj,i=l,2. where monotone means that x <5 ¥y @lways implies

pi(x) < p;(y). Then in case of a vector space the linear u;< p; do inherit

automatically the monotonicity from the p. . This, because the order relationss;
are characterized by their positive cones E; ={x€E 0 = x} . Not so in the

case of convex cones. Here, some additional routine work [4 ] is needed to ensure
that the uy and P; do have the same monotonicity properties.

Now, one can combine all these generalizations to obtain an abstract disintegration
theorem for the following:
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Situation: Let (a,I,m) be a measure space, where the measure m is positive

and o~ finite. Denote by Li(m) the cone of measurable real-valued functions
f on o such that the positive part f_= (f v o) is in L' (m), i.e.

Li(m) = {f-g|0 < f,g are measurable and f € Ll(m)}

Let F be a convex cone and consider a family S0 €0 of compatible preorder

relations in F . Defineamap v : F - Li(m) to be Q- monotone if for all
0,0 € F we have that ¥(y) < ¥(@) m- almost everywhere on the set
{m€52|(psw(.0}.

Disintegration theorem: ILet w: F >R be linear and let P : F » Li(m)
be a sublinear Q- monotone operator with

(5) wu(w) < [ Plo)dm forall 9€F.
Q

Then there ig an Q- monotone linear operator T : F - Li(m) with

(6) T<P
such that

(7) w{o) & [ T(o) dn for all @€ F.
Q
The proof of this theorem can be found in [7 ].

THE FLOW THEQREM

As an application of the disintegration theorem we prove an abstract flow theorem.

He start with a measure space (X,I,u) where i is a signed measure. Then we
consider the cone F consisting of all nonnegative simple measurable functions
on X . These are functions of the following kind:

m
@ = Z}\l [

n=l " An
where m € N, Ay 2 0, An € £ and where lA denotes the characteristic function
of A. By @ =Xx X we denote the cartesian product and we endow this Set with
the product o= algebra T @ & . Now, take ¢ € F and define $: 2~ R, by

_ ®(x1,x2) = max(w(xl) - @(xz),O) VX)X, € X.
Clearly, the operator @ - P(p) = & 1is sublinear.
def

If, in addition, a finite positive measure t on & 1is given, then we can make
the:
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Observation: The following are equivalent:

i) Jodis|§de for all @€F
X Q

i) A <ohx [A) forall AEs .

Proof':
(i) = (i1): Take o= 1A and observe that ¢ = lA . [A . Now, apply (i) in
order to obtain (ii).

(i1) = (i): Every @€ F can be written in the form

m
(*) e= I 1 ’
n=l " Bn
with B1 > B2 o B3 5., Bm and Mook, 2 0. One easily observes that
P(v, + tDZ) = P(<p1) + P(wz) for those 01,9, € Fwith

qH(x) = sup ¢, (£)  whenever wz(x) > 0.
EEX

Combining this partial linearity with () one obtains the inequality (i). o

We introduce the following family (< w{u € 0 =X x X} of preorders in F:

@ ®1(X) < wz(x) and w1(y) > mz(y) , where w = (X,y).
def

Then the operator P : F - Li(r) is clearly &- monotone and we are arrived at
exactly the same situation leading to the disintegration theorem, Recall that a
bimeasure ([11] or [12]}) v on X x X disamap v : I xZ-R such that v is
a signed measure in each variable separately, i.e. A - v(A,B) and A - v(B,A)
are both, for fixed B € ¥ , signed measures on X . Now, rephrasing the disinte-
gration theorem one obtains:

Flow theorem [10: The following are equivalent:

i) u(A) < (A x [A) forell A€X
1) There is a bimeasure v on X x X with the following properties
(8

) u(A) £v(AX) forall AEX
) w(AB) st(Ax(Bn (A) forall ABEZ

AB) < f
(10) v(AB) 20 forall ABEY with ANB=39 .

Frocf:
Let us briefly indicate how to obtain this result form the Disintegration theorem.
One considers the operator P : F - Li(T) given by @ - @ and the linear
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functional given by ¢ = [ ¢ du, Then i) of the Flow theorem
X
is equivalent to the fact that the linear functional under consideration is do-
minated by | P(g)dr. Hence, we apply the Disintegration theorem to obtain a
Q

suitable linear operator T : F - Li(T) and we define

v(AB) = | T(lA)dr .
XxB

Then (8) is a consequence of (7), (9) follows from (6) and (10) is an immediate
consequence of the - monotony. Since T s linear v must by definition be
finitely additive in both variables. The o- additivity in the second variable
follows from the o- additivity of the integral. The critical point is the proof
of the g¢- additivity in the first variable. For that purpose we consider An €%

with A1 > A2 > A3 cee D An = ... . Then using the fart that v is finitely
additive in both variables we write:
w(A B} = v(A B 1 EAn) +#o(A 0 (BB AAY+ oA 0B
—o(a 08, [Ena)).
In the first, second and fourth term of the right side the intersection of both
variables is empty, hence these terms converge to zero because of (9). Using (8)

and (9) one gets for the third term the following inequality
u(A, 0 B) < v(A N B,X) < <{{A nB)xX).

Since the upper bound as well as the lower bound converge to zero v(An n B8,X)
also converges to zero. o

INFINITE NETWORKS,

Let us give one interpretation of the flow theorem in the context of networks,
First we explain the situation considered hGale's Flow theorem (see [3 ] or [10 ,
p. 38]).There is given a finite set X of - let us say - oil consumers, the
consumption of 1 € X s measured by By Negative consumption u; <0 means
production in the amount of l“i’ . Furthermore, there are pipelines between the
consumers. T, ~Mmeasures the capacity of the pipeline running from k to i.
Note, that in general Tk ¥ Tk (e.q. the pipeline is going up or down a hill).
So it is best, to imagine that the pipelines are one-way streets. Of course, if
there is no pipeline from k to i then we assume Tk to be zero.

Now, the problem is to give conditions for a positive and possible flow which
satisfies the consumption. To be more precise, we assume that a flow is represen-
ted by numbers Vi (flow from k to ). The flow is called positive if

Vik 20 for i 4k, and it is said to be possible if Vik < Tk for all i,k € X.
The flow satisfies the consumption if, for every i € X, the total amount flowing
to i minus the total amount flowing from i dominates the consumption at 1i:

{vey = vps) 2 .
keX ik ki i
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We abbreviate for A,B < X:

u(A) = £ b
€A
and
(AxB)y= % 7, 5 vAB)= T ~; .
iea ¥ iea K
keB keB

Then the last condition is trivially equivalent to:
p(A) < w(A,X) - v(X,A) for all AcX.

For AcX we define the {mport capacity to be t(Ax [ A), that is the capacity
of all pipelines coming from the outside into A.

Obviously, a necessary condition for the existence of such a flow is that the
import capacity is suffictent in the following sense:

u(A) < o{A x EA) for all AcX.

Note, that this condition also requires that overall production dominates overall
consumption, this because of

u(X) < 1(Xx ¢} =0,

We are now 90ing to generalize this problem to infinite consumer sets. On the first
view this does not seem to be a relevant problem. But this generalization is
absolutely necessary if one is - for example - interested in the dynamical behaviour
of such a system. Let us for example consider the above problem for infinitely many
different points T on the time scale, and with the provision that every con-
sumer i has the possibility to store oil from t; to t, up to the amount
; ;
a5 s
bt
represents the pipeline capacity from (i,ti) to (1,t2). Certainly an infinite
network system!

. Then the mathematical consumer set is certainly X x T and cl t
. 172

For the infinite system it seems appropriate to replace the quantities wu,t and
v by suitable measures.

So, let (X,L} be a measurable space, where X s called the consumer set and
where I is a o- algebra on X . We consider a signed consumption measure
on (X,z) measuring the consumption and the production, respectively.
Furthermore, we consider a positive and finite measure t on o = X x X (with
respect to I § I) and we assume that t(A x B) measures the capacity of the
pipelines going from B to A . Therefore t 1is called the capacity measure.
A bimeasure v on 0 = X x X is called a positive flow if

(11) v(A,B) 20 for all disjoint A,B € L. It is said to satisfy the
eonsumption if

(12) w(A) < v(A, (&) - v((AR) forall Aer.
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The flow v s called possible (with respect to the capacity 1) if

(13} w(A,B) st(AxB) forall ABer .

0f course, one should imagine v(A,B) as the flow going from B to A.

Finally, we say that we have sufficient {mport capacity if
(18)  u(A) < <(Ax[A) forall Aes.

As an immediate application of our abstract flow theorem we get the following
generalization to infinite networks of Gale's theorem ([3] or [10]).

Theorem:  There is a positive and possible flow which satisfies the consumption
tf and only if we have sufficient import capactiy,

Proof: The necessity of the sufficient import condition is quite trivial, because
from (11) to (13} we get:

w(A) < (A, UM - o (AR s oih, [ By s <(ax [ 8).

For the other implication, we observe that the sufficient import condition is
nothing else than condition (1) in the Flow theorem. So, let us take the bimeasure
given by the Flow theorem. From (10) we know that this is a positive flow, and

(9) tells us that the flow is possible. A further consequence of (9) is that
v(X,B) ¢ for all B € x . Hence we get from (8):

p{A) < v(A,X) < v(AX) - v(X,A)

and because of the additivity of v the last term is equal to u(A, C A)-v{ CA,A)
since the v(A,A) cancel. o

Other theorems of a similar nature can be obtained and generalized as well. For
example the Ford-Fulkerson theorem and some of H. Ryser's results [16] about zero-
one matrices. For the latter case it is useful to combine the Flow theorem with

an extreme point argument cr with a reasonable algorithm for the construction

of the flow. We are not going into the details of these matters, the interested
reader will find in [ 9] some material in that direction.

A SUPPLY - DEMAND PROBLEM

Certain quantities play a basic role in our model. They are essentially of a
measure theoretic nature but can be understood best in the context of finite
commodity sets. (On a less sophisticated level the model was already treated in
[6]; it originates from the Lecture notes [14) of Heinz Kinig; details about the
present model can be found in [8].)

Let X = {1,2,...,n} be a finite cormodity set. The aggresate production capacity

and conswrption desire are measured by functions & and v . These are nonnegative
functions on PO(X) = {YeX|Y+¢) since the consumers allow,according to

their tastes and needs, that certain goods may be replaced by others, and the
producers have at their disposal certain production capacities which they use
according to the maket situation.
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To make things precise we assume that the producer consist of subunits uyy,
Ye PO(X), being the collection of all factories where the assembly lines can be

switched arbitrarily to production of any item in Y but where no item outside of

¥ can be produced. The production capacity function a : PO(X) ~ R, is given
by the numbers a(Y) measuring the maximal output (in pieces) of U(Y) if no
limitations (raw material shortage, government regulations etc.) are given.
Furthermore, we assume that for the production of i € Y a specific raw-material
is needed wnich is available_to U(Y) up to a certain amount,thus limiting the
production of i €Y toa_ o(Y,i) pieces. Of course, if i €Y then we define
o{Y,i) = 0. The function p 1is called the raw-material bound.

The aggregate demand is given by v : P,(X) =R, , where S(Y) measures that

fraction of the total demand which can be satisfied by allocation of any arbitrary
combination {of total amount 3(Y)) of commodities of the species Y . But it may
happen that the consumer becomes tired by obtaining to many pieces of the same
commodity instead of a well mixed variety. Therefore we give a saturation bound
o(Y,i), stating that to satisfy the_demand u(Y) only those allocations are per-
mitted which contain not more than o(Y,1) pieces of the commodity 1. Again, we

put §(Y,i) =0 for i€V,

Now, we look for reasonable production and distribution plans p, Vv : PO(X) xX-R_.

The quantity p(Y,i) measures the number of pieces of i being actually produced
by U(Y) and ¥(Y,i) measures how many pieces of i are allocated to satisfy
9(Y). The plan p 1s said to be possible if it observes the limitations given by
o and p , i.e. if

(15) £ (Y.k) <&(Y)
keX

(16)  p(Y,i) <p(Y,1)

for all Y € P {X) and i€ X. The plan v is said to be satisfactory if it
satisfies the demand and observes the limits given by &, i.e.

(17)  WY) s 1 v(Y,k)
keX

(18)  v(Y,i) < o{Y,i)

forall YeP(X) and i€X. The plans p and v are called compatidle if,
of each commodity, we do not distribute more than we produce, i.e.

(1) 5 WY,i)< £ p(Y,i) forall i€X
ver (X) YeP (X)

Note, that in (15) and (17) the sum only goes over the k € Y since all other
terms are equal to zero, in {20) the sum goes only over the Y containing i
(for the same reason).
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Amap t:A-R ona finite set A can always be considered as a measure 1 on
A. Just define +(B) = £ <(a) forall BcA. Now, all the properties of the
acB

functions a,v,2,0,p,v can easily be expressed as properties of the corresponding
measures.But then it makes sense to extend all the notions and properties to
arbitrary measure spaces, this enables us to treat infinite commodity sets as
well. Hence we have to deal with the following:

Situation:
We are given a commodity set X . We endow X and PO(X) = {Y |4 4YcX) with
o- algebras zy and Ip s respectively. Furthermore, we are given positive

0

finite measures o (production capacity) and v (demand measure) on P, (X) and
positive finite measures o (rav-material bound) and o on P,(X) x X with
(20) o(@xD)y=0(axD)=0

for all g ¢ I and D€ Iy such that AnD=9¢ forall Aeq.
0

The problem is: are there positive measures P (production plan) and v
(distribution plan) on PO(X) x X with:

(21) p<p and p(-xX)<a (p is possible)

(22) v<o and v<v(-xX) (vis satisfactory)

(23)  v(P x +) < P(P, x -} (pand v are compatible).

Here, of course, p(- x X) and v(P0 x*) denote the measures

RE€E, - p(axX)and A€ Iy - v(PO x A) , and so on.
0

By m A m, we denote the greatest lower bound of two measures m and m,.
By m{ we denote the positive part of mo. Now, let us introduce the following
quantities

() (1) = (o a el x¥)) (P(K)

(25) pin¥) = (v - o« O)'r ().

%ax is a submeasure on X and Vnin is a supermeasure. If one goes back to

finite commodity sets one easily finds the interpretation for these quantities:

- amax(Y) denotes the maximal production of items out of VY,
i.e. the number of pieces of elements of Y which is
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produced if in all subunits the assembly lines are switched to the
production of commodities € Y , whenever that is possible and
compatible with the raw-material constraint o .

- “min(Y) is the minimal demand for commodities €Y ,i.e, whenever
a good outside of Y can replace a good in Y without vig]ating.the
limitation given by the saturation bound then the element in Y 15
replaced.

Supply - Demand theorem [8]: There are possible, satisfactory and compatible

production and distribution plans if and only Tf g S Gpay-

Let us briefly sketch the lines of the proof. The necessity of voi <o, is
clear. Now, take two disjoint copies of PO(X) , say Py and P;. Then in

T = PO uxu P; one considers the largest o- algebra such that the embeddings

of PO,P; and X are measurable, Endow PO with the measure - a and Pg with

v . Denote by - & and © the image measures in T with respect to the embeddings

of P, and P; and let y=-a+v. Likewise, we endow X x P and P: x X

with the measures o and o , denote by  and G the image measures in T xf
with respect to the embeddings. Define = =5 + 3. Then it turns out that the

condition .. € op.. is equivalent to condition (i) (for u and 1) in the

. <
Flow theorem. Hence, for Viin < %nax

ties stated in the Flow theorem. This bimeasure we use to define positive bi-
measures p and v oOn PO(X) x X by:

, there is a bimeasure § with the proper-

(26) p(2 x A) = 8(A,) ,AEX, Q€L
0

(27) v(e x A) = s(e,A) , AE Tys Q€ Ipx .
.0

Since p and v are dominated by o and o they are in fact honest measures on
the product space. A straight forward calculation yields that they have the
required properties- a
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