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Hereditary operators in Lie algebras are investigated. These are operators which are
characterized by a special algebraic equation and their main property is that they generate abelian
subalgebras of the given Lie algebra. These abelian subalgebras are infinite dimensionai if the
hereditary operator is not cyclic. As a consequence hereditary operators generate on a
systematic level nonlinear dynamical systems which possess infinite dimensional abelian groups
of symmetry transformations. We show that hereditary operators can be understood as special
Lie algebra deformations with a linear interpolation property. In order to construct new
hereditary operators out of given ones we study the permanence properties of these operators;
this study of permanence properties leads in a natural way to a notion of compatibility. For
local hereditary operators it is shown that eigenvector decompositions are time invariant (such
an eigenvector decomposition is known" to characterize pure multisoliton solutions). Apart
from the well-known equations (KdV, sine-Gordon, ete.), we give—as examples—many new
nonlinear equations with infinite dimensional groups of symmetry transformations.

§1. Introduction

A detailed analysis of the celebrated Korteweg-de Vries equation reveals
that this nonlinear evolution equation possesses an infinite dimensional abeltan
group of symmetry transformations. This group of symmetry transformations 18
given by the resolvents of the so-called generalized KdV equations. And this
striking property is shared by many other nonlinear evolution equations; Only to
name a few: Burgers equation, sine-Gordon equation, 7 akharov-Shabat equations,
Gardner equation etc. Furthermore one discovers that for these equations
(except Burgers equation) the structure of this abelian symmetry group is
intimately connected with the existence (and description) of multiseliton
solutions, and In addition connected to the existence of infinitely many
conservation laws (via Noether's theorem or rather a suitable generalization

thereof). '
The phenomena related to this observation have 1n recent years been one of

the most active areas of research in applied mathematics and theoretical

physics. Looking into the problems encountered in this research with a

somewhat more systematic interest, one realizes that very often it 1s highly
ihilator K*

desirable to construct for a given element K of a Lie algebra its annit
(or at least a large abelian subalgebra containing K). If one cando this, then, of
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course, integration of the equations for the infinitesimal generators of a Lie group
yields a family of commuting flows.

In this paper we investigate mapping$ @ having the property that (under
additional assumptions) the annihilator K* of a given element K of a Lie algebra
1s mapped on itself. In a canonical way mappings of this kind are given by
hereditary operators @ on a Lie algebra L. These operators have been
considered before.” They are characterized by a certain algebraic equation
which implies that @ is a selfmap in K*.

Other authors® have also considered special hereditary operators in
connection with Hamiltonian systems. The operators considered in these papers
are special insofar as they always possess a symplectic-implectic factorization®®
(nevertheless these special cases cover the most important evolution equations).

We investigate the permanence properties of hereditary operators.
Unfortunately it turns out that the set of these operators does not have a nice
mathematical structure. Nevertheless we can give certain methods to construct
new ones out of given ones (theorem 3.2). In special cases this method has been
applied before”® without discovering its Lie algebra aspects.

In the last part of the paper we apply the methods developed so far to
construct out of simple hereditary operators complicated new ones, thus
generating on a systematic level many new classes of nonlinear evolution
equations (of integro-differential type) having the property that they possess
infinite dimensional abelian symmetry groups. These classes contain the well-
known equations but also many new ones not yet considered in the literature.

In order to make the paper more coherent we have moved some information
about hereditary operators to the Appendix. In the first part of the Appendix we
clarify the interrelation between hereditary operators and special deformations of
Lie products on a given vector space L. We call these deformations linear
deformations of compatible Lie products. They are the tangential structure of
what we call compatible deformations. To be more precise: Two Lie products
[, Joand [, ]in a vector space L are said to be compatible if their sum [, ]ldff[ o

+[, ]is again a Lie product: and an 1somorphism @:(L, [, o)~ (L, [,]) is said to
be a linear deformation if (/+@):(L,[,])~(L,[,]) is again a Lie-algebra
homomorphism. This property then yields a linear interpolation property for a
continuous family of Lie products.

To the second part of the Appendix we have moved some of the tedious
calculations which arise in the study of the permanence properties.

$2. Hereditary operators

Consider a vector space L (over R or C) and let a Lie product [, ] be given
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in L. A linear map @:L~L is called a hereditary operator if
0*[a, b)+[0(a), B(5)]- O{[a, O(5))+[P(a), b]}=0 (2-1)

for all ¢, b€L. A simple calculation shows that Lie algebra isomorphisms

transfer hereditary operators into hereditary operators.
.Ir'l order to see what hereditary operators can do for the construction of
annihilators or abelian subalgebras, we define that a linear map O:L- L is said

to commute with a€L if
0[a, b]=[a, ®(8)]  for all b€ L . (2:2)

Now, if @ is hereditary and commutes with &, then for this special a, two terms

of (2-1) cancel and we get:
[@(a), o(b)]— o[0(a), b]=0 (2-3)

for all L. Hence, if a hereditary @ commutes with an element aE L, then it
commutes with @(a) (immediate consequence of (2:3)). If @ is in addition
injective, then @ commutes with @(a) if and only if it commutes with a. To see
this, we observe that if @ commutes with @(a) then we get from (2-1)

0*[a, b]- 0la, o(b)]=0{0le, 0], o(5)]}=0.

Since @ is injective, this gives
0[a, 6]-[a, ®(D]=0,

and ® must commute with a.

Let us list some of the consequences of these observations:

2.1 Consequences: Lef O commute with a.
(i) @ maps a* (the annihilator of a) into a*, hence {@"(a)lnE;’\’o}Ca‘,
(i) If @ is in addition hereditary, then the linear hull of (@"(a)ln€ Nol s

an abelian subalgebra of (L,L,D.

ary, then the linear hull of (@ (aNnEZ)

(iii) If @ is invertible and heredit

is an abelian subalgebra of (L1
is completely trivial.
ominutes with all the o

— @rﬁ-m[a’ d]:[) ,

In case (i) we know from the

The assertion (1)
(). Hence

preceding argument that Q@ c
[0™(a), o™(a)]=0"[0"(a), dl

and (iii) follows by almost the same argument.

§3. Permanence properties

In order to construct as many hereditary operators as possible it i desirable
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to study the structural properties of the set of these operators. But
unfortunately these operators are neither a vector space nor a semigroup. But
some structural properties are coming out of the notion of compatibility. Two
hereditary operators @, ¥ are called compatible if @+ ¥ is again hereditary.
One easily sees that two operators @ and ¥ are compatible if and only if, for all
a, b= L, we have

Bow(a, b)= V{[0(a), b]+]a, @(6)]}+ O{[ ¥(a), b]+][a (b)]}

b

—Q¥|a, b]- ¥O[a, bl—[¥(a), Q(b)]—[0(a), U(h)]
To show this one abbreviates

Aola, b)=0%a, 8]+ [0(a), O(b)]— 0{[a, Q)]+ [0(a), b1} (3:2)
and one obtains in a straightforward way:
Aww((l, b)—A¢( a, b)‘“Am(a, b): —qu(a, b).
Since Bo,# is linear in the variables @ and ¥, this shows that whenever ¥ 1 and
¥, are compatible hereditary operators such that ¥ and ¥; are compatible with
@ then, A ¥i+ 4. ¥, is again compatible with @ (for arbitrary scalars Av, Az).

We need a technical lemma. The proof consists of a straightforward (but
cumbersome) calculation and can be found in the Appendix.

3.1 Lemma  Let @ be invertible.
(i) We have

O Ae( 07! (a), @7'(5))= QAo-(a, b). (3-3)
(i) If @ and U are hereditary, then we obtain

Awe-ila, b)= VO 'Bow( 0 ' (a) O'(h)). (3-4)

)

(iit) If @ and ¥ are commuting hereditary operators, then we have
Aw(a, b): - wq)Bw.w(a, b). (3'5)

These identities in fact yield the permanence properties for hereditary operators
which are listed in the following:

3.2 THEOREM Let @ and ¥ pe hereditary operators.

(1) If @ is invertible, then O 1s again hereditary.

() If @ and ¥ are compatible and if @ is invertible, then WO is
hereditary.

(1) Let @ be invertible and ¥ pe injective. Then WO s hereditary if
and only if T+ @ is hereditary, i.e., they are compatible.
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(iv) If ¥ and @ are commuting and compatible, then QU is hereditary.

Proof (i) is a direct consequence of (3-3). Assertions (ii) and (iii) follow
immediately from (3+4) and (iv) is a consequence of (3-5).

As a corollary we get that all polynomials ¢(@) in a hereditary operator @ are
again hereditary. This fact even goes over to meromorphic functions in @, if they

make sense.

§4. Application to (nonlinear) evolution equations

General remarks

Let S be a topological vector space and C*(S. S) the space of infinitely
¢ functions S~ S. Differentiable always means Hadamard-
atives are linear

many
times differentiabl
differentiable.® This is assumed n order to ensure that deriv

maps and that the chain-rule holds.
We are interested in evolution equations of the form

u(1)e=K(u(t)), u(HYES, KEC™S, S). (4-1)
For simplicity we assume that the initial value problem for (4-1) is very well

posed. This means that for every wE S thereis a unique solution z(t), IER,
with #(#=0)= uo such that u( 1) is differentiable with respect to uo. It is useful

to consider the resolvent map Rx«(t) given by

Ru(t)
U U t).

e with respect to { we have

Ri(0)=1. (4-2)

Because of translation invarianc

Ri(1)oRe(7)=Re(t+ ),

Thus Rx(t) defines a differentiable one-parameter abelian group of

transformations in S. From (4-1) we obtain

%Rk(r):KoRK(t). (4:3)

enerator of that group. Furthermore Rx(f) 1s

Hence, K is the infinitesimal g ou
t to the initial value). So, for every u

differentiable (differentiability with respec :
€ S there 1s a linear map Le(t, u):S—S gien by

9 , .
L«(t, u)v:~5€— E:ORK(t)(u‘*'EL) (4-4)

being the resolvent of the linearization (perturbation egquation, tangential

equation) of (4+1):



866 B. F; uchssteiner

o= Klu(t)+eolt)), ult) =Rl 1)(a), (4:5)

The family L (¢, «) has a group structure (coming out of (4+2)) which is given by
the formula:

Li(t, Re(t)w))e Lie( 7, u)=Le(t+ T, u). (4:6)

Furthermore
Lk(t, u)K(u):K(RK(t)(u)) (4-7)

since u; is a solution of (4-5).

Roughly speaking, Lie algebras are important for evolution equations because

the tangential equation (4+5) can be written in commutator form. In order to see

this we denote the constant function S for vES by 1L,eC*(S, S). If we
define a Lie product in C*(S, S) by

(G, H(s)=-2

d:f 86 £=0

{G(s+£H(S))~H(s+eG(s))}, (4-8)

where s€S and G, HEC™(S, S), then the tangential equation (4-5) can be
written as

v D)e=[K, Too(al(£),  u(t)=Re(t) (). (4-9)

An immediate consequence of that formula is that, if Re(t) is a second
resolvent group (with infinitesimal generaior G) then the transformations
Re(t) and Rx(t) commute if and only if [K, G]}=0.

That means if [K, G]=0, then G can be understood as the infinitesimal
generator of a flow commuting with (4-1), Therefore G is then called the
infinitesimal generator of a symmetry of (4-1). This notion is also adopted if
G 1s not the generator of a resolvent group (or in other words if the initial value
problem for .= G(u} is not very well posed). Because even in this case G yields
important information about invariant manifolds, namely:

Let [K, G]=0, then
Ker(G)={s€ S|G(s)=0) (4-10)

is a submanifold of S which is invariant under the flow given by (4-71).
To prove that we show that, for u& Ker( G), we have

e LOG(u+£u1)=O.

But this quantity is equal to [G, K](u)+a‘i_l _GK(zH-eG(u)):[G, K](u).

Now, let us assume that @ is a hereditary operator in C*(S , S) commuting
with K. Denote K»=@™"(K), then we know that
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{KnlﬂENo}

(or even { Kx|nEZ} if @ invertible) is an abelian subalgebra of C*(S,S). Ifthe
initial value problem is very well posed for the following equations

ue= Kn(u), (4-11)

then the products of the resolvents Rx,(t), mENsor Z, are an abelian symmetry
group (often of infinite dimension) for all these equations. But the importance of
@ for the investigation of (4-1) does not stop at this point. There is another way
in terms of @, submanifolds of S which are invariant under the flow
). For suitable examples these submanifolds correspond to the so-
the operator @ local if there are operators

of describing,
given by (4-1
called soliton-solutions.””” Let us call
®(4):S— S, depending on %€ S, such that

(0K )= 0w K(u)

for all = S and all KEC(S, S). Anelement w€S is said to be an eigenvector

of (@, u) with eigenvalue 4 if

If @ is local, this is equivalent to O(u)w=Aw.

4.1. THEOREM Let (D:C‘”(S,S)*C“(S,S)
which commutes with K. Then for arbiirary scalars av,

set

be a local hereditary operator
"an,/ll,"',/in, the

{sES|K(s)= iakwk, w, eigenvectors of (@, s) with eigenvalues Axl
k=1

is invariant under the flow given by Eq. (4°1).
(t) is Lx(t, w)w. Then using (4-9)

(#)=Rx(£)a0):

Proof Define that w and the fact
that @ commutes with K we get for u

i{( D 1w ul t))—/izu(i)}:—ddlr{w(u(f))w( t)—Aw(t)}

dt
=2 Klult)+e(@Laca(al D)~ el £))
€ le=0

(@, ult)) with eigenvalue A if and only if w18

He i eigenvector of
ncev Z/U( t) 15 an g A Comblnlng thls “rlth (4'7) we haVe the

eigenvector of (@, #) with eigenvalue
proof.

4.2. Examples

. : NI
We are looking for (nonlinear) uations admitting a

integro-differentia] eq
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abelian group of symmetries of infinite dimension. We start with a rather simple
hereditary operator of the form

@a,,e =ad, ‘!‘B@z

having the property that Das 1s hereditary for all scalars and 4. Then we
choose the solution space S for the evolution equations in such a way that, say
@+ B @ is invertible. This operator 1s certainly compatible with Dap since
Daopot Pas= Puprapyrs 15 again hereditary by assumption. Therefore, by
application of theorem 3.2, we are led to the conclusion that

@:(a’@ﬁ-ﬂ@z)(a’o@ﬁ”ﬂo@z)ﬂ

Is again hereditary. At this point we should remark that in general for a given
concrete integro-differential operator the proof of hereditariness IS a very
cumbersome calculation. Guessing those integro-differential operators which are
hereditary (most of them are not) is even more hopeless.

All the operators, which we are dealing with, will be of such a form that they
commute (with respect to the Lie algebra C*(S, S)) with Ko, where Kolu)=ux
(derivative of «). Hence,

Kn=0"Ko, n€ Nolor n€EZ if @ 1s invertible)

1s an abelian Lie algebra (in general of infinite dimension). Or, in other words,
the evolution equations

ue=Knlu)

describe commuting flows and each of these flows has an infinite dimensional
abelian group of symmetry transformations. The operator @ 1S recursion
operator for these equations in the sense of Olver.®

Another remark seems to he appropriate at this point: For g given
complicated evolution equation it seems absolutely hopeless to guess whether or
not this equation has infinitely many symmetries (hidden symmetries).
Therefore our procedure for generating these equations on a systematic basis
seems to be some progress in the right direction.

First we make some remarks about the notation we are adopting. Let &
denote the predual of the tempered distributions on R, ie., #is the space of
infinitely many times differentiable functions R- C such that all, including 0-th,
derivatives vanish rapidly (faster than any polynomial) at +c0. By ¢~ we denote
the space of infinitely many times differentiable functions where the derivatives
are only required to vanish rapidly at —co and to be of at most polynomial growth
at +. Let 6 >0, then we mean the following spaces by L5, Py

S 1={pCLlo(x)exp(~ 1)),
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Sy ={9e¥ |o(x)exp(—0x)EL ).

fl“he differential operator ¢ — ¢» is denoted by D and D™' 1.7~ is its inverse
lLe., ’

(D7o)x)= [olé)dE, oS

Ngw, let S be any of these function spaces under consideration. We only deal
with local operators @:C”(S, S)»C*(S, S), i.e., we start with linear operators
®(u):S—S (depending C= on «ES) and define an operator @:C*(S,S)

- C*(S, S) by
(OK)(u)=O(w) K(u). (4-12)

Such an operator @ is hereditary if and only if

a% {0+ e0(w)r)w— D)@+ evhie)

wE S, symmetric in the variables ¢ and . This formula was

We know! that the operator O.C*(S,S)
given by the operator-valued

1s, for all u, v,
discovered in an earlier paper.”
- C*(S., S) (where S=%, %", Fs or Ls7)
function

(Dl(u):}'I+BD+aDuD’l (4-13)
scalars @, 8, 7- The proof for that fact was only given
depends on the algebraic properties

ation. Hence,

is hereditary for arbitrary
for the case S=¢. But since the proof only
of D, 1t goes over unchanged to the present situ

O.(u)= O, (u)D ' =yD B aDuD*

- &. But this operator leaves C*(S,S) invariant if Ss
s, &5 . Therefore (4-14) defines a

Looking at the formula

¢(x):(D*s]){exp(er)j}r(f)exp( ‘E'E)d’ﬁj{'

is, for 0<e <48, invertible in.%s as well as in Y.
(4+13), therefore

(4-14)

is hereditary for S
replaced by any of the subspaces 3’

hereditary operator for all these spaces.

one discovers that (D—¢l)
Obviously (D —el) is among

(Da(u)=@1(u)(l)—d)", 0<e<d
in%s .
hows that all these operators 0,
with the function K.=C*(5,5)

the operators given by
(4-15)

is hereditary in.%» as well as
A very simple calculation” s
(in the sense of formula (2:2))

@., @; commute
given by Kol u)
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=uz. This has as an immediate consequence that for @=0@, @, or @; the
functions

Kn=@"Ko, nE Ny (or n€Z if that makes sense)

are forming an infinite dimensional abelian Lie algebra. Or, in other words, the
evolution equations

ue= 0" 1) uy (4-16)

are describing commuting flows. Among these equations one finds Burger’s
equation (o= O (2)ur for 5:a=.1, 7=0) but also many others not yet dis-
covered in the literature, Among these

ue=0o(w)us=yu+Bus+o(ubD 'u),, ucs
ue= O uuz, usF,

Using the substitutions v=D"'y or v=(D—el)u, one can rewrite these
equations as:

Vet = Y0zt Brarta(vvs)z, 0€EF (4-17)
(zvxﬂev)f:7’0;+Bvu+a(vvx)I—Zafevvx, VEL s ' (4-18)

It certainly seems impossible to guess that all these equations possess infinite
dimensional abelian symmetry groups.

One obtains other classes of equations by considering other hereditary

operators. The operator @:C=(S, S)=C(S,S) given by the operator-valued
function

Ol u)=pl+yD*+ 320+ weD )+ @ + u D) (4+19)

is, for arbitrary scalars @, 8, 7, o, hereditary InY,.%" %5 as well as in.%, (see

Ref. 1) formula H4). Abpplication of theorem 3.2 yvields a new class of hereditary
operators

Os{u)=pD *+ vl +3(2u+ 4D VD +alu+ u D' y) D2 (4-20)

in%" (and in.¥ if p=0). One easily sees that for 0<e<§ the operator (D?
—¢&*[) is invertible in. %5 and %, Hence

(Z)a(u):@4(u)([)2~5[)‘l (4-21)

defines a new class of hereditary operators in &> and .%»". Again all these
hereditary operators commute with Ko(u)=u.. Therefore all the equations

=0 wuz, n<S Nolor nZ if that makes sense) (4:22)

describe commuting flows, for @ equal to either @, s or ;. Among these
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equations one finds the KdV, the modified KdV, the Gardner equation and the
sine-Gordon equation (see Ref. 1) for details). But apart from these well-known
equations many other evolution equations not vet discovered as soliton equations

belong to that class.
1f the linear structure in the function spaces under consideration is restricted

to the reals (i.e., scalars=R), then

(D7(u):71+iBD+iauD‘lRe(ﬁ-), a, B, 7ER (4-23)

is again a class of hereditary operators (see Ref. 1), formula H6). Here Re(z-)

stands for the real-linear operator given by

v-*%(ﬁer uv), i, v complex conjugate.

Then, running again through the (now almost boring) factorization procedure one
obtains new classes of hereditary operators. All these then commute with Kol u)
=u,. Hence the equations u:= ®"(u)ux do have infinite dimensional abelian

symmetry groups. Apart from the nonlinear Schrodinger equation one finds

among these equations many new ones.

§5. Concluding remarks

o emphasize that our approach vields much more

First of all, we like t [
infinite dimensional abelian symmetry groups

nonlinear evolution equations with
than the previous sections might mn
For example

dicate.

: 1) — 17 24 )
et = @ Uz T @2 SN v)+ asl vx cos(v)— vz sin(2))

+ 04(201 sin(v)+ U.r.r-/:m sin( 2 E))df)

abelian symmetry group for
Consider a special case of

(5-1)

admits an infinite dimensional (rather compllcated)
arbitrary scalars ai, ", @ This is easily seen:

(4-19), namely
W u):(D2+4urD"u+4u2).

. c 1)
This operator is injective and especially we obtain

é—sin(Z]u(E)dE): P(u) Uz - (5-2)

n. we should keep in mind that we are dealing with

I we like to check this relatio
functions vanishing at =, hence
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D“(Zu(x)sin(Zju(f)dE)): —cos( 7u(é‘)d€)+1 |

Now, consider the equation u:=(®(u)+¢& ¥(y)) ¥~ u)ur, where ®(u) is given
by (4+19). Insertion of (5-2) and substitution

v(x)=2 u(€)dE
then yields (5-1) (after renaming the scalar parameters). Another equation one

easily obtains out of a similar factorization of (4-19) is the following modified
BBM equation:

Ut Uzpe T+ Z{I—g( uu1+(uur)xx_ }'uzrr)+ Uszz =0 . (5'3)

Secondly, let us briefly emphasize the importance of theorem 4.1 in connection with
multisoliton solutions. Let @(u) be one of the hereditary operators of the last
sections and consider u.= ®(u)u,. We start by discussing the meaning of the
decomposition given in theorem 4.1 for m =1 We then have the conclusion that
ue 1s an eigenvector of @(ux) with eigenvalue A. Comparing that information with
the evolution equation we get (if the kernel of @ 1s empty) u:=Au,. Hence, u(t)
must be a travelling wave solution with speed 4. Now, in case that the solution
space under consideration is either % or.%;, multisoliton solutions are solutions
which decompose asymptotically (t=*o0) into travelling wave solutions with
rapidly vanishing overlap. Thus, if O(u) is a local operator (or even semilocal),
these solutions are solutions belonging to the manifold described in theorem 4.1.
And the eigenvalues are the asymptotic speeds of the travelling wave solutions.
By the way, the same manifold describes Novikov's generalized multisoliton
solutions.*%

Those equations we obtained from (4-13) have in general no multisoliton
solutions whereas those obtained otherwise do have (for suitable «, 8, y)
multisoliton solutions.

Another interesting observation is that the equations obtained out of (4-19)
and (4-23) do have infinitely many conservation laws. This is not true for those
equations obtained from (4:13). Because. in contrast to the second case, in the
first case @(u)D is a symplectic operator (or rather its inverse is symplectic).
Symplectic operators are Lie algebra homomorphisms relating the Lie algebra of
gradients of covector fields with the Lie algebra given by (4+8) (for details see
Refs. 2) and 3) and especially a forthcoming paper'” where the Lie algebra aspects
of bi-Hamiltonian systems in the sense of Magri'® are extensively treated).

A theory very similar to the theory presented in this paper can be built up for
dynamical systems with infinite dimensional non-abelian symmetry groups.'"
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' Finally, we like to remark that the transfer of hereditariness by Lie algebra
isomorphisms corresponds to the well-known Bicklund transformations.
Concrete examples for that—again without mention of the Lie algebra aspects

—are given in a forthcoming paper.'”

Appendix

Linear deformations
Consider in a vector space L(over R or C) two Lie-products [,]and [, ).

They are called compatible if [, ] defined by
[a, b:=[a, blot[a, &]

In this case an isomorphism-into oL, [ Jo)~(L.[,Dis

Dy it (7+0x(L [ (L. L ]) is a

is again a Lie product.
called a linear deformation of (L [,
homomorphism.

It is very easy to see that,if [, Jo and [ , ] are compatible, then la, bles= ¢la,

blo+3[a, b] defines a Lie-product for all scalars @, 8. Furthermore, if @ is such
a linear deformation, then (8 +a®):(L, [ Jas— (L[] is 2 homomorphism.
It is quite easy to characterize all linear deformations:

L be linear, then the following are equivalent:

6.1. THEOREM Let @:L~
(with respect to (L, [, ]).

(i) @ is a linear deformation
(ii) @ is injective and hereditary.
Proof

(i)=0(ii): That @ has to be injective 1S an immediate consequence of
the definition. For a, 6L we must have (1+@)[a. b+ la. plo) =1+ @)Na
(I+®)(b)). Since @AL.[,))~ £.[, ] is anisomorphism, we can replace [a.b]

by @'[@(a), B(b)]. This replacement vields:

[a. b]+ @la, b+ [0(a), o(n]+ o' [ela) ()]
1+ [0(a), O(h)].

~[a, b]+[0(a), 0]t a, O(b)
lication of @ to the first order

The terms of order 0 and 2in @ cancel and the app

terms yields Eq. (2- -1}
(ii)=(i); First, we remark that

Hence the definition

(2-1) implies that @(L)1sa subalgebra of L.

[a, ple=0'[0(a), o(b)]

is a Lie-product and o:(L. [ 1) (L., ]} is an

makes sense. Obviously [, o t anc
ward calculation g1Ves:

isomorphism-into. A straightfor
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(I+0)[a, bl =1+ 0){[a, b]+[a, bls}
=[a, 6]+{0(a), O(B)]+ O [D(a), O(5)]+ @[a, b).

Insertion of (2-1) into the last term makes that equal to:

[a, 6]+ [@(a), @(B)]+[a, O(5)]+[D(a), b]
[(I+@)a), (I+@)b)]

So, I+ @)L, [,1)~(L[,]Disa homomorphism if [, |, is a Lie-product. To see
this one easily calculates with the help of (2:1):

[a.[b, c)ili=la,[b, cll+]a,lb, clolo— Qla,[b, c]]
+la[b, 0(c)]+[a,[@(b), 1]+ [@(a), [b, c]])

which clearly implies the Jacobi identity.

The crucial property of linear deformations is that, for all A€ R, the operator
[+ 4@ has to be a homomorphism from the product [,]+A[,Joto[,]. Here the
linear dependence in 4 is rather special. And, of course, there is a more general
structure having linear deformations as tangential structure. We briefly describe
that structure (without proofs).

In order to do that we assume that L is a topological vector space (if no
topology is explicitly given we take the finest locally convex one). Let a family of
Lie-products [, Ji be given, say for 0<i<] and assume that the familiy is

differentiable isomorphic,i. e., there are continuous linear bijections 6(A):L— L
with

8(A)a, bLi=[6(1)a, 6116}, Va, b L (A-1)

such that the §(A) are differentiable in A. This family of Lie-products is said to
be a compatible deformation of [ | ], if

%[ e s, for all 0<A<1, again a Lie-product (A-2)

and

%H(/’t) is a homomorphism from (L’d‘(fi[ ]) to(L,[ Jo). (A-3)

6.2. THEOREM Let 6(A):(L, [, ]o)-(L, [, D) be a family of bijective iso-
morphisms. Then the following are equivalent:

(i) [, 0<A<1 is a compatible deformation of the product [, ).

(i)  For every 0<A<1 we have
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(a) [, and —(;17[ i are compatible Lie-products;

(b) (Cglﬂ( ))8( AV is hereditary with respect to [, .

The proof of lemma 3.1
Let us give here the details of the calculations leading to the identities

collected in lemma 3.1:

(1) is a simple verification.
(i) Put d=0@ ') b=0'(b). A straightforward calculation vields:

wo ([a. TO B+ [¥O(a), b)) = VO ([0(a
= YO Bowld, b)+ Uf([ i), bl+
+o([¥(a )5]+[a ¥

o WO Bey(d b+ W[ W(a)E

PO Besld, b)— Avla b)H ¥, v(h))
A

Hence: |
TO ' Bow( @ '(a), O h)=Awe{a, b)— A @ (a), @ (D))
(T AL D (a), @ '(h)),

and this gives (3+4) since ¥ and @ are assumed to be hereditary.

(11i) For commuting hereditary operators @, ¥ we calculate
[¥0(a), Yo(p)]=- ¥*[0a). P p]+ Vil ¥0(a). o(n)] @), Foih]
= Prp*fa, b 1172 {[a. ©(0)]~ @), B}
_ pr{[ Ua). bl+ [a. el
L yo{[o¥(a) pl+[ ¥la). O(b)]
L[0(a), ¥(DI+[a. FOD.

Insertion of this into

Awola, )= ¥0)[a, b)- 0 ¥{[a. (b))} +[ ¥P(a). bl}
+[¥0(a), FOb)]

yvields;
Avola, 5)=2( ¥OY[a, b]—( v0) ¥{la, 0(B)]+[0(a), b]}
—(v0)o{[¥(a), b+ [a. T(B)]}
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+ IO ¥(a), 0(0)]+[0(a), T(p)]}
= - yf@Bw,m(d, b)
For several reasons the author is indebted to the referee. First of all
because his constructive remarks improved thig paper considerably, secondly

because he brought the importent references 4) and 5) to his attention.
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