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A generalization of Noether’s theorem is obtained via an extensjon of the well-known
Poisson bracket formalism. 1t s shown that degenerate closed forms yield Lie algcbra
homomorphisms between vector fields and covector fields. A similar result holds for operators
working in the opposite way.  Application of these Lie algebra homomorphisms to a dynamical
svstem having two {degencrate) Hamiltonian formulations vields a selfmap in the space of
infinitesimal generators of one-parameter symmetry groups of thig system. These Hamiltonian
formulations are not assumed to constitute a Hamiltonian pajr (in the sensc of Gelfand-
Dorfman). Thus infinite-dimensional symmetry groups for g wider class of equations can be
constructed.  Several new equations are shown to admit infinite dimensional symrmetry groups.

§1. Introduction
Let us review the classical situation.

Consider a ¢~ manifold (eventually infinite dimensional) and its tangent
space S and cotangent space S*, respectively (j.e., the typical fibres of the tangent
and cotangent bundles). Throughout this Paper “continuous” means continuous

with respect to the weak topology given by the duality (S,5*). The application
of s"€85° 1o s&§ we denote by <s*, s>, By T(s, q) we denote the space of
C¥0p. ¢ )-tensor fields (i i

8ree g and contravariant of degree p).
Asusual [X, V]

1 in 7(1,0) (ie. the = vector fields) given
by [X. Y]=py.x— DX ¥ (Dis the derivative). We recq]]" that a symplectic

form w is 3 closed two-form (ie., dw=(, 4 exterior derivative) which is
nondegenerate, where nondegenerate meang that the operator Q,%: S—S* given
by <Q,%s.. S22 =wls,, 5.), S1. 8268 is bijective,

Now. consider 4 dynamica] system consisting of vector field Xe 7(1,0)

with flow FX)=F (e, (d/dt)F,:X~F, for all ¢), This system is called
Hawmiltonian Systemn if th

: €re is a symplectic form @ and g function He 7(0,0)
such that jxg=gpy where iy denotes the interior produyct with X. Obviously this
is equivalent to

X=04'dH o _-%Ft: SUdH -,
It is well known?

that for 4 Hamiltonjan S
algebra homomg

! ystem the operator 057! is then a Lie-
rphism from the Lie-al

gebra given by the gradients of the
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Poisson brackets in 7°(0, 0) into the Lie-algebra 7°(1,0). A consequence of this
result is the classical Noether theorem about the correspondence between in-
finitesimal generators of one-parameter symmetry groups and gradients of con-
served quantities.

In this paper we drop the nondegeneracy condition and we extend the Lie-
algebra from 47°(0, 0) to all covector fields such that we still have a canonical Lie
algebra homomorphism. Then we obtain similar results for (degenerate) in-
verse-symplectic maps. We introduce bi-Hamiltonian systems and we show that,
in general, they admit infinite-dimensional (eventually noncommutative) sym-
metry groups. This will be true even in the case that the two Hamiltonian
formulations of the system do not constitute a Hamiltonian pair® or a symplectic
Kihler manifold.®

In § 3 wecomparethe results of this paper with the work of Gelfand-Dorfman z
and the work of Magri.®

In the second part we give various examples to illustrate our techniques. We
give several new nonlinear evolution equations with infinite-dimensional sym-
metry groups. Among them there is a system describing the interaction of long
waves for which Hirota and Satsuma® conjectured complete integrability.

)

1.1, Lie algebras in the covector fields

We define a symplectic operator to be a closed two-form w< 7(0,2). Andby
implectic operator (short form for inverse-symplectic) we mean an operator which
has the same Lie-algebraic properties as the inverse of a symplectic operator.
To be precise: ¢= T(2,0) is called implectic if it is skew-symmetric (ie. @(s:",
$25)=—p(s,", 5,*) for all s.%, s.*€S) and if the tensor field D¢ fulfills the

following Jacobi identity:

(D¢)(51, Sz‘, 53*)+(D¢)(Sz, 53‘, Sx*)+(1)¢7 )(53, 51‘. 82*):0
V51’. Sz*, Ss‘ES“ (1)

where s,= Q,5,*, i=1, 2,3 and where Q,: S™=S is the operator given by
(5%, Qos*>=g(s*, §*)Vs*, §°€8*. If Q, is invertible, then (1) is equivalent® to
the fact that the two-form w given by

wls, §)=<L%'s, &

isclosed. Let us denote by Lx the Lie-derivative with respect to the vector field
X. Now, define for two covector fields the following bracket:

[X*, Y*lo=Lox Y —iardX". (2)
Because of

[x*, ¥*l,=d(e(X*, ¥ D +igxdY —iodX
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=Lgx- Y*—LQ,Y'X‘*G'(?’(X‘; Y*) ®)
this bracket is for closed forms X*, V* the gradient of the usual Poisson bracket.

THEOREM 1: Lot ¢ 4o implectic. Then [ ], defines a Lie produtst z'n. the cove;tof
felds and Q, is 4 Lie-algebrg homomorphism wish respect to this Lie product

Proof

For the moment we abbreviate X = 0,x * etc. For arbitrary Z* we get from
(3) and the skew-symmetry of p:

Z*%, Qo[X* Y']¢>=~<[X*, ., 7>
=-(Do)z, x*, Y ) —o(DX*. 2, v*)
+dX'(Y,Z)+¢(DY‘-Z, X*)—dy*(X, 7).
Now, observe that
e(DX*- 7, Y')—dX’(Y, Z)=—(Dx*. Y z,
(DeX(x, v, Z)—<Dy*x, 2>={Z", DY -X> .
Hence we get with ( 1)
2% Q.0 Yl =—~(De)( 7. X YY+wxt.y, Z>—<DY* X, Z>
=(De)(X, y*, Z*)+H(De Xy, Z* X*)
DXy, Z)‘(DY"X, z>
=<2 DY-X>—<(z* py. =<z [x, 7).

Since Z* wag arbitrarily chosen, we have

Qw[X‘, Y‘]sv:[X, Y]. (4)

The skew-symmetry [x*, Vlo=— Y X

¢ follows immediately from (3). To
brove the Jacob; identit

¥ we have to observe that (1) ig equivalent to:

¥LxZ” +(cyclic) =g ) (5)

Now, recalling the usual calculation rules for the Lie-derivatjve we obtain with
the help of (3) and (4);

[z*, [x* Y'],].,:LZL,,Y'—LZLYX‘~LQ,[X-. 2t

tdle([x*, v+, Z')~dLap(X*, y*)
T AHXY, VoLt dp(x0, ey
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+tLzxY*—L2LyX*—LixnZ*
=dif(LyX*—LxY*)+LLsY*
—LLyX*—LxLyZ*+ LyLxZ" .
Hence, (5) yields
[Z*, [X*", Y*]olo+(cyclic)=0.

Now, let w be a symplectic operator, i.e, do=0. Then a somewhat similar
identity holds. To see this we define a bracket [, ] mapping 7°(1,0)x 7(1, 0)
into 7(0, 1):

(X, Y]e=Lxivw— ivdizw . (6)
Since @ is a form, we have in general
Lyiyvw=ivLxo+ixnw.
Inserting dw=0 and Lx=dix+ixd, we obtain
(X, Y]e=ixnw. (7)

Remark: Let Q,* be the operator given by Qu*s, §>=w(s, §). If the kernel of
L.* (ie., those vector fields X with Q.,*X=0) is an ideal in the Lie algebra of
vector fields, then we may define a Lie-algebra in 2, T(1,0)c7(0,1) by

(96X, 2. Y] =[X, Y]u. (8)

The condition that the kernel is an ideal is necessary to ensure that this
product is properly defined (i.e., that it vanishes for Q. X=0 or 2,°Y =0,
respectively). Then the meaning of (7) is that £," is a Lie algebra homomor-
phism from the vector fields into €.,*7T(1,0). It is pretty obvious that, if the
symplectic @ is nondegenerate (ie., €, is invertible), and if we define ¢ by 25
=857 then ¢ is implectic and the Lie-algebras (2) and (8) coincide. The same
holds if we start with a nondegenerate implectic ¢.

V2. Generalized bi-Hamiltonian systems

Now, let us define the basic notions. Consider dynamical systems consist-
ing of the vector fields Y, X< T(1, 0) and let us denote their flows by F(Y ), and
F(X), respectively. The vector field Y is said to be an infinitesimal generator
of @ symmetry of the flow F(X): if [X, Y1=0. This notion is selfexplanatory
since [X, ¥]=0 means that the flow F(Y ). of ¥ commutes with F(X)..

If LxZ*=0 then we call a C= covector field Z* a conserved covariant form
(for the dynamical system given by X).

Now, let us in addition consider an implectic operator ¢ and some symplectic

[ ]
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operator @. We call (X, p) a generalized Hamiltonian system if there is some H
€ T(0.0) such that X=0,4H. And we call (w, X) inverse-Hamiitonian if there
is some H< T(0,0) such that ixo=dH. The system (w, X, ¢) is said to be a
generalized bi-Hamiltonian system if (X, ¢) is generalized Hamiltonian and if (a,
X) is inverse-Hamiltonian, Of course, the bi-Hamiltonian formulation of the
flow generated by X is not necessarily unique,

THEOREM 2 -
(i) Let (X, ) be generalized Hamiltonian. Then Qe maps conserved covariant
forms onto infinitesimal generaiors of symwmetries.

() Let (w, X) be inverse-Hamiltonian then Lo" maps infinstesimal generators of
symmelries onto conserved covariant forms.

Gil) Let (w, X, @) be generalized bi-Hamiltonian then L+ 00" and Q% O, are
selfmaps in the space of infinitesimal generators of symmetries and in the space of
conserved covarignt Jorms, respectively.
Proof
(iii) is an immediate consequence of (i) and (ij),
(1) Consider Z*e 7'(1,0) such that LxZ*=0 and 1et He T(0,0) such that X
=8¢dH. Then by theorem ] we obtain:
[2.2% x] =0.2*, aH],
=0, {d(¢(Z', dH)) + iy'z'ddH_l-XdZ‘}

:“.Qw{d(Z‘, X)*ide'}:*QngZ*:O.
(it Choose Ye T(1,0) such that [X, Y]=0 and take HS 7(0,0) with ixw

=dH. From (7) we obtain
0=0.'[x, Y]= Ly v 1@ = L yf oy~ tvdixw
SO Y- idali = 10,0y
Hence. 9," ¥ must be a conserved covariant form,
1.3, Comparison with other work

In this section the results of the preceding chapters are compared with the
work done by Gelfand-Dorfman,z’ Magri® ang by Fokas-Fuchssteiner.s Magri
lgebraic contribution to the field by a paper in 1978 Later
i TV important fact that the evolution equations
ospectral flow for the corresponding Nijenhuis
ther context, was already observed earlier”).



The Lie Algebra Structure of Degenerate Hamiltonian 1087

Dorfman.

These authors consider two Lie products fulfilling a compatibility condition,
and out of the combination of these products they obtain recursion formulas for
conserved quantities (or symmetries via Noether’s theorem). Their first Lie
product, defined in a certain subalgebra 4 of zero-forms is given by some
(eventually degenerate) closed two form w. We extend this construction by our
formulas (6)~(8). In fact, speaking in our terminology, the subalgebra J of
Gelfand and Dorfman corresponds uniquely to the potentials of those exact one-
forms which are of the form £.*X, X some vector field. It is easy to see that
formula (8) defines an honest Lie-algebra in the gradients of these potentials.
This is then the gradient of the Poisson brackets considered by Gelfand-Dorfman,
So, our arguments extend the Gelfand-Dorfman situation to the less restrictive
situation, where the covector fields are not assumed to be closed. This will turn
out to be important in applications.

Gelfand-Dorfman have to ensure that their successive construction of con-
servation laws does not lead outside of X, and therefore they have to require a
compatibility condition for the second Lie product. This second Lie product
results out of an operator which they call Hamiltonian (implectic in our ter-
minology) and which is defined for all covector fields given by exact forms.
Again we extend this to a situation where the forms are not required to be exact.
Our theorem 1 is a proper extension of their theorem 1.3. This generalization is
necessary in order to get rid of the restriction that the Hamiltonians are required
to be a Hamiltonian pair (which means the same as Magri’s symplectic Kzhler
structure® or our notion of compatible symplectic operators.”

Let us explain in what way our theorem 2 extends Gelfand-Dorfman’s theo-
Tem 3.4, and what the drawbacks of this generalization are. In the case of
generalized bi-Hamiltonian systems an immediate consequence of theorem 2 is
that Gn=(2,*0,)"dH , nE N,, constitutes a sequence of conserved covariant
forms for the flow given by X =Q,dH. Contrary to Gelfand-Dorfman’s theorem
34 we do not assume that the Hamiltonians are a Hamiltonian pair (or equiva-
lently, that @' =9,* 9, has to be regular). Later on we give nontrivial ex-
amples, where this generalization turns out to be essential. But apart from that
8eneralization, and apart from the corresponding symmetry assertion, our theo-
"€ 2 contains even more information. For example, it is shown that if we start
With a conserved covariant form G which is 7ot among the G then by G,
=(®*)"G another sequence of conserved covariant forms is given. Even for
Tegular @* this result is not covered by Gelfand-Dorfman’s theorem 3.4. In this
¢ase, regularity does not yield additional properties for the Gn (see example 2.

But, for the G, regularity of @* yields important additional information.
Nal_ndy' all the G, are closed and they are in involution.®®® This, of course, is
4 important drawback of the generalization presented in theorem 2. But quite
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often, there are other, although less transparent, properties which ensure com-
mutativity and exactness of the Gn.

Let us mention that regular operators are a special case of the hereditary
operators introduced earlier.”™ Tq be precise, regular operators are local

hereditary operators include regular operators of Gelfand-Dorfman. There are
important examples where hereditary operators occur, which are either not local
(Benjamin-Ono equation,® Kadomtsev-Petviashvili equation'®” or without sym-
plectic-implectic factorization (Burgers equation™®)),

We recall the abstract definition®

?%[a, b1+ [0(a), 2(0)]=0lla, 2(0)+[0(a), ]}, )

One might ask under what conditions on ?and wt
equivalently P =0.*0,) is hereditary. For in
answered in Refs. 2), 3) and 5). Following the spi
that Q.- Q.* is hereditary if ang only if ¢ and ¢ g
the mixed Schouten bracket

he operator @=0,-0.* (QT
vertible Q, this question is
rits of these proofs, one finds

(Y1, Yo, Vi}=¢0,* Yo, ((DQs) V1)@, ¢ Yg>+<((D.Qa,")-(.Q¢Q,.,‘ Y)Y, Yo
(10)
, the Jacobi identity. This property then

Xact and in involution. Byt one of the points of
ell-known cages it is almost impossible to check

ensures that the G,, HE N, are e
this paper is that even in the w,

he dual of this Vector space, and <s*, s> denotes the

S. The zero-forms are C” maps from S into the
scalars, The vector fields T(1,0) are C=(S, 8) (¢~ maps from S into S) or a
suitable subspace. The covector fields 70, 1) are either C=(S, $*) or, again, a

suitable subspace. For 4 C* function # from S into a vector space the derivative
DF is given by:

DF(u)[u]=%F(u+ev),:=o, u, vES
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The Lie algebra in 7°(1, 0) is given by
(X, Y u)=DX )Y ()]- DY ()X (u)]

=T (X (ure¥ (@)~ Y (uteX (@)oo,

where #< S is arbitrary. The Lie-algebra module under consideration is 7°(0, 0)
and the multiplication of an element m of the module with an element X of the
Lie algebra is defined to be

(Xm ) w)=Dm(uw)[X ()], us=S.
Obviously, that gives a representation, since
XYm—YXm=[X, Y]m.

Two-tensors we T(0, 2), o T(2, 0) are identified with operator valued functions
LQu* () and £,(u) by

()51, 52)=<Qu* (s, 527, elu)s*, s2*)=<s", Lelut)s2>.

The adjoint of an operator 2 is denoted by 27. Then the exterior derivative for
a one-form Z* is given by

dZ*(u)=DZ*(u)—(DZ*(u))" .

21, Examples which are, more or less, known

We start with some examples which are either trivial or generally known.
The amount of new information revealed by them may not be overwhelming.
Nevertheless, we believe that they may serve for the understanding of the
proposed methods.

2la The KdV and other popular equations

Fix §=S(R)to be the space of C* functions on the line which vanish rapidly
at infinity. By § and 3~' we denote the differential operator and its inverse

(6"5)(5):[:5(x)d1, sES.

The dual S* of S is defined to be
S*={9"'s+rls€S(R), rER},

Where the evaluation on S shall be given by
<s*, s>:[:ﬂs'(5)S(E)d$.

The topology, which is necessary in order to define what C* vector fields are, is
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assumed to be the weak topology. . .
For 4€S consider the operators 8(u): S*> S and J(u): S— S* which are
given by:

0(2)=ad+ 85+ y( w0+ 01) + 80ud 3 ,

Ju)=5-1,
where 2, £, ¥, § are scalar coefficients and where % stands for the muitiplication
operator given by .

Let p& T(2, 0) (contravariant of degree 2) and 4e 70, 2) (covariant of
degree two) be the tensor fields given by

UEM > p(s,*, s2*)=(s?, Ou)s,*y A (11-1)
UEM > (s, s,) =T ws, 52>, 51, 5268, (11-2)
Le., using the notation we adopted so far, we have
.Qw(u)zﬂ(u),

Qw'(u)zf(u),

and these operators are implectic and s

ymplectic, respectively.  Now, we study
the flow determined by the vector field

X(u):.Qw(u)u:au5+8ue“+37uue+f§—é‘uzu,. (12)

Then we easily see that X =
where  is the zero-form

Furthermore,

with

Blu)= :{guﬁs)-§u5(5)2+7’u(5)3+§u(5 »hae .

Hence, (v, X, p) isa bi-HarniItonian system and

2=0,0,* (13)
must be a selfmap in the space of Symmetry-generators of the evolution equation
ue= X (u(s)) (14)
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Since the operator @ is hereditary,”® all the vector fields:
()= @ (W)X ()= 0" wux, n=-10,12 - (15-1)

do commute and define symmetry-generators for (14). In fact, in view of Tu’s'"
result the commutativity is not surprising. Another consequence of the heredi-
tariness of @ is that all the covector fields

ralu)=Qu* (u)on(u)= 0" 0a(u) (15-2)

are closed one-forms, i.e. gradients of conservation laws. And these conserva-
tion laws must be in involution (ie., they commute with respect to the Poisson
brackets),

Among the equations given by (14) there are (by an appropriate choice of the
coefficients) the KAV, the modified KdV, the Gardner equation, etc. If the vector
field X (u) is replaced by @ *{ #)ux then all the arguments go through and among
the equations one finds the sine-Gordon equation®” and the “inverse KdV”.'®
Other equations can be treated in the same way.>”The tensor fields ¢ and w are
not the only bi-Hamiltonian formulations of the evolution equation under con-
sideration, but they determine all other formulations insofar that one can only
replace J(u) and (%) by J(u)®(%)" and @(2)"8{w), respectively.

21b The Caudrey-Dodd-Gibbon-Sawada-Kotera equation
Replace in the last example the operators &{«) and J(«) by

0(u)=3*+(ud+ou)=L2.(u), (16-1)
J(u)=263+(azua-l+a-1u32)+%(uza“+a‘1 u?)=0,"(u) (16-2)
and let @ and ¢ be the corresponding tensor fields given by (11). Then w and ¢

are again symplectic and implectic, respectively. If X (z) is the following vector
field

5
X(u)= u55555+’g' uueeﬁ"g—ueuee +'4*u2ue s

then (14) is the well-known Caudrey-Dodd-Gibbon-Sawada-Kotera'® equation.
his equation is Hamiltonian since we can write:

X(u)=0(w)dp(n),

Where p is the following zero-form

pa= [t r—Jucer]de.
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Furthermore, one can show ¥ that in fact ixw is a closed one-form. Hence
(w, X, ¢) is a bi-Hamiltonian system and

@(u)= 0Cu)/ ()= Qo(u)Qu* ()

must be a selfmap in the space of symmetry generators of the CDGSK-equation.
Again, this operator seems to be hereditary (horrible calculation). Hence, the
Lie-algebra given by (15-1) is commutative and the covector fields (15+2) are
closed and the corresponding conservation laws are in involution. The details of
the calculation, together with an analysis of similar equations, are published
separately.'* ‘

Let us emphasize what the point of the last example is. In fact, it is highly
probable that the operator @ occurring for the CDGSK is hereditary and that
results are covered by the theory of Gelfand-Dorfman, But a proof of the
hereditariness of @ which is digestible is not known (several hundred terms of a
differential operator have to he checked). Hence, the CDGSK is not accessible
through results given by the beautiful theory of Hamiltonian pairs, whereas the
calculations we have sketched here are easily manageable.

In this connection it js desirable to mention that recently there has been
considerable progress in the study of the CDGSK (and other nonlinear evolution
equations) through deep contributions of Date, Jimbo, Kashiwara and Miwa.'®
Their method seems to differ considerably from oyrs, Of course, there are
relations, only these relations are not yet completely clear to the author in this
paper.

21.c  Translation invariance—gq honcommutative example

We keep the notation of the fast two sections,
nevertheless instructive —example of the translation g

X(uy=y,

Consider the trivial—but
Toup. Let X

be the infinitesima] generator of

that group. Then (14) has an infinite amount of
essentially different bi-Hamilton

ian formulations, For example, we can write

X(u):Qw(u)dpl(u),
where

2uw)= [ u(e)ae

and where

Lolu)=0u+ ua

is implectic, For the symplectic operator given by
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-Qw’( u):azrz—l
we have that ixw is closed:

xw=Qu,* X=4dp,
pr=4 [ ule) GO}t

Hence, (w, X, ) must be bi-Hamiltonian. But the operator @=82,L," is not
hereditary, so we cannot expect that the symmetry group given by the infinitesi-
mal generators (15-1) is commutative and that all the 7. given by (15-2) are
closed. Clearly, this is not the case. Of course, it is not at all difficult to
determine in this case the Lie algebra of the symmetry group: It is given by all
translation invariant vector fields X.

21d  The three-dimensional harmonic oscillator

We consider the movement of a particle in a three-dimensional rotation-
invariant potential V. This example will show us:

1) Degenerate bi-Hamiltonian formulations are important and give rise to the
construction of symmetry groups.

ii) The non-uniqueness of bi-Hamiltonian formulations can be used—even in the
case that the operators @ are hereditary—to construct noncommutative
symmetry groups which are not accessible through the usual theory of
Hamiltonian pairs.

First we fix a (conjugate-variable) notation which is consistent with the first
part of this paper. The manifold under consideration is M = R®, the manifold
variable is denoted by #. We split « up in the following way:

V1 Wy
v —
u}

Us W3

Operators in the tangent space S = M = R® are then given by two-by-two-matrices
Whose entries are operators in three-space, ie., three-by-three-matrices. The
mﬁnlte51mal generator of the movement of a particle in a rotation-invariant

Dotential V is then given by

X(u)=Q.dH(u) (17)
Wwith
0 —1
_ (17-1)
o=, 0),
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Hu)=L v+ V( é—f). (17-2)

This is clearly a Hamiltonian system since L, is implectic. Let us see if there is
an essentially different inverse Hamiltonian formulation of that system. We
have to find a symplectic operator £4* which maps X onto a gradient of a
conserved quantity p(u) of the flow given by (17). The available conserved

quantities are: energy H(y) {(which was already used for (17)) and the three
components of angular momentum:

71(8)= vaws~— vy, |
7o u)= Vsl —~ U105 R
]-3( u)= W2~ va10

Letustry plu)=;,(y) j= 1,20r3. The only skew-symmetric operator mapping
XCu) onto pla) is

9;,(u):(6‘ 0 ) Bf‘zV’(—l—zﬁ),

0 B, 2
where
0 00 00 —1 010
Bi=|0 0 1, 8={0 ¢ 0], &=[-1 0 o)
0 -1 0 10 0 000
But Q2 is sy

mplectic if and only if 4 is constant.
a meaningfy} bi-Hamiltonjap formulation, In fact, not only one
erent degenerate ones, namely for ; =1, 2, 3. Without loss of
assume B=+1, and we treat only the stable case f=+1. The
8=—1is, from the mathematical poing of view, in complete

Hence, only the harmonic
oscillator has

but three djff
generality we
unstable case
analogy.

Now, combining the two Hamiltonian formulations, we obtain that

SR N

maps swnmetry-generators onto symmetry-generators.

This operator is heredi-
tary since it does not depend on 4. Thus the

Os.n(u)=®".-X(u), nGNo
are generators of g commuting group. And the
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0, —1 )
in— Jin, neN

7 <1 .0 °
do define gradients of conserved quantities which are in involution. The con-
served quantities obtained this way are, I/(u), j:{ «) and

plu)=v"+w—vi—w’.
But the hereditariness of @: does not mean that we cannot use this operator to
construct non-commuting symmetry groups. In order to do that we only have to
replace X by a suitable symmetry-generator. For example, take

X(u):@” ’g)dmu),

then, since angular-momentum is conserved, all G.= ®,"X must be infinitesimal
generators of one-parameter symmetry groups. Explicit calculation yields

0 0
—un 0
- ~ 0 - [ - .
Golu)=X(u), &(u)= NE G u)= NE Gs(2)=61(u).
U1 0
0 wh

The one-parameter symmetry group given by 4. is

U1
vt Ton
Vs

w

u-u(z)=

w2t Tun

Ws
which clearly does not preserve angular-momentum. Hence, do and & do not
Commute. Among these generators only o corresponds to a conserved quantity
Whereas &, and &, do not.

2.2, Coupled- systems which describe long wave interactions

22.a Introduction and principal results

By S(R) we denote the space which was already considered in 2.1.a. The
Manifold under consideration will be S=S(R)DS(R). Its dual will be the
direct sum of the duals considered before. Vectors in S are denoted by ( ¥),
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where u, p€S(R), Operators in S are two-by-two matrices whose entries are
operators in S(R). The same holds for operator-valued functions, etc. An

evolution equation in § ig the same as a coupled system of two evolution
equations in S(R).

We consider dynamical systems of the following form:

(Z)fK(u, ?), (18)

where K(u, ) is a two-component vector
Klu, p)
K(u, ):( )
¢ e K ©“, )
Especially we are interested in the fo]lowing systems:

a)  Hirota-Satsumg equation®

u¢=%u1u+3uu;-3¢¢1, (19-1)
¢t:“¢7r.r.r‘3u¢1. (19.2)

b) The symmetrically-coupled Kdv
uz:uu¢+¢zu+6uux+4u¢z+2u1¢, (20'1)
Pt=Urez+ ¢xxx+6¢¢1+4¢u;+2¢1u4 (202)

c) The complexly-coupled Kdv

U= uux+6uu:+6¢tp1 y

(21-1)
¢!:¢.t.tz+6u¢.r+6u,t¢. (21-2)
d)  Another system
ut=¢1u+6¢zu+6¢u;, (22-1)
Pe= User +6uu.+6pg, | (22-2)

All these €quations g
was conjectured by Hirot
have bi-Hamiltonian fo
Hamiltonian pairs in th
countably many conse
give explicit formulas)

dmit soliton solutions. For 5 ) complete integrability
A and Satsuma ¥ W, claim that aj} thege equations do
rmulations, but that only ¢) and d) are described by

€ sense of Gelfand-Dorfman All the equations do have
rved Covariants and g

. But*roughly speaki



The Lie Algebra Structure of Degenerate Hamiltonian 1097

statement than a mathematical statement since complete integrability is not well
defined for infinite dimensional manifolds). In all cases the conserved covariants
do have potentials and the symmetry groups are commutative. For c)and d) this
is a consequence of the hereditariness of the equations. For b) this can be seen
by careful inspection, and for a) a careful and lenghty analysis has to be carried
out (since the analysis is based on completely different methods, it will be
published separately).

22b Systematic coupling

Let us make some remarks about how to couple symplectic structures in
order to obtain new composite symplectic structures. This is one aspect of the
important problem: How should completely integrable systems interact without
losing complete integrability? A systematic study of that problem will be
published separately, here we only concentrate on some elementary results which
are needed in the analysis of Egs. a)~d).

Let 6,(%), 0:(x) be implectic operators with respect to the manifold S(R)
(for example, the operators considered in § 2.1). Then obviously

01(”), 0
ot 0=(" " i) (23)

is an implectic operator with respect to the manifold S=S(R)DS(R). Another
implectic operator for that manifold is given, for arbitrary A, by
Ot g )+ Bulu—p), {8 lutig)— Ol u—ie)}
8u, o)= . . (24)
%{al(uuqo)—ez(u—/w)}, Sl (ut Ao+ Ol u—ig))

This fact can be proved by direct calculation. A more elegant method to prove
this is to consider a linear Backlund-transformation of the form

(ﬁ)»(u%ﬁl'ﬁ)zo

@ u—Ag

Theny the transformation formulas for implectic operatorss’ Yield immediately
that (24) is the Backlund transformation of (23), and therefore again implectic.

Now, let us have a look on symplectic composite operators. Let Ji(u), J-(u) be
Symplectic with respect to S(R) then obviously

]1(“), 0 =
1= 1) =

Must be symplectic. Furthermore, if S is some arbitrary constant skew-sym-
metric operator in S(R) then
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J(u, ¢)=<¢(;" ?) (26)

must be symplectic (direct calculation), Since symplectic operators are con-
stituting a vector space any linear combination of (25) and (26) is again sym-
plectic. This will be used in the following examples,

22.¢ The Hirota-Satsuma system
From §2.1.a we know that

Hl(u):<%63+au+ u&)

is implectic. Putting 6,( #)=6,(u) and A=(1/v2) (24) tells us that

1.,
P _ jal +
.9(u_¢):(2a +outug do+ 03 ) o)
do+ed, @+ 20u+249
is implectic. N ow, the exterior derivative of
+oo
Dl )= [ gy (28-1)
is equal to
i, @)= y,(4, o)=( “. (28-2)
e
A simple calculation shows that
u
<¢)t:0(a,¢)dpl(u,¢) (29)

Hence, the operator 9(u, ¢) provides a

nian formulation for (19) we first restrict
echr}ical reasons. Instead of putting the

ke S=13aS(R)®S(R), Le. the space of
those (i )e g with

/_':vdx =0,

Now, clearly the Operator valyeq functions §-1

Symmetric with Tespect to gS(R), Furth,
linear combinationg

and (37 y+ y91) are skew-
€rmore they are symplectic. Taking
are of the forms (25) and (26),
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we find that

+207 u2ud™, 207
0+207 ' u+2ud™, ¢> (30-1)

](u,¢=):< Copgt, 92

is again symplectic. Application of J{(#, ¢) to the right-hand-side of (19)

1 -
K, ¢>):( g Mens T3 3%‘) (30-2)
— Przz—3UPx
results in the closed one-form
Jlu, @) K{u, p)=dps(u, ), (30-3)
where
o -
p3(u, (D):_/:m {%uuxxx‘t+ Z'uzun-i-%u‘
7’3‘1272112" UPPrx "4u¢1¢1+%¢47¢¢1x11}d1 (30'4)

(apart from a misprint of one coefficient, this corresponds to the density 7, which
was found by Hirota and Satsuma®). Hence, (30-1) provides an inverse-Hamil-
tonian formulation for (19).

Now, taking the operators

O(u, 9)=:u, ¢)J(u, o), (31-1)
O (u, p)=J(u, 0)0(n, ¢), (31-2)

We obtain, by virtue of theorem 2, the following symmetry generators ox for the
Hirota-Satsuma equation:

Onial 2, @)= @OLu, @)onlu, @) (32-1)
with
Ux
1 = (32-2)
alu, o) (%>
and
oo u, p)=K(u, 9). (32-3)

The corresponding conserved covariants are given by

Yuralu, )= @' (u, @)valu, @),
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rolu ¢>)2<1) ' (33:2)
[] 3 0 ’

nlu, ¢>):< u) (33-3)
-

An explicit calculation shows that @ (or equivalently @') is not hereditary.
Hence, the bi-Hamiltonian Jormulation of the Hirota-Satsuma equation does not
result out of a Hamiltonign pair.

As mentioned before, neither the commutativity of the ¢, nor the fact that the
7= do have potentials does come out of theorem 2. Ty prove these facts we have
to apply ideas which are similar to those presented in Refs. 9) and 14). For

completeness we give here the explicit form of the potentials. One has to write
down the two components of g,

Ony 1(”( U, ‘P))

One(u, ¢)=<
' O ®(u, p)

Then the following integration over the first component

pn(u, ¢):[:wI0n+x(l)(u, @)dx

vields the conserved Quantities of (19), (

To obtain the densities found by Hirota
and Satsuma one has to eliminate

x by partial integration).
2.2d The Symmetrically coupled Kdv

Let us keep the notation of the last section, Replace (27) and (30-1) by

A,
H(u.go):( (()u 0?4:7))' where Hx(u)=a3+2(6u+u3), (34)

rlu ¢)=(uiz) dpi(u, o), (36-1)
where
2la )= [t gy (36-2)

Then
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OCu, e)rilu, 0)=K(u, p) (37)

is the right-hand-side of (20). Hence, (34) yields a Hamiltonian formulation of
this equation. The one-form

yilu, )= JK(u, ¢)

is closed since it is the gradient of

Pl qa):'/:;m{(u+¢)3—%(uz+¢1)z}dx .

Hence we have found an inverse-Hamiltonian formulation. The operators ¢
and J are not compatible (i.e., they do not correspond to a Hamiltonian pair).
This is the same as saying that neither

O(u, p)=0(u, ¢)J (38-1)

nor
O u, 0)=J0u, ¢) (38-2)

are hereditary. Nevertheless (theorem 2) the sequences

Ynrz=@ vn (39-1)

with
7’”:(1)’ rilu, qa):'(ZiZ) (39-2)

and
Ons2= O0n (40-1)
m(u,m:(g‘). olu, 9)=K(u, ¢) (40-2)

vield conserved covariants and symmetry generators, respectively. It is easy to
See that all the y, do have potentials p». These potentials are

palu, 9)=Qulut¢),

Where Q,, is the x-th conservation law of the KdV. This is obvious, because if

*)is a solution of (20) then @=(u+¢) must be a solution of the KdV. Of
course, the explicit form of the symmetry-generators does not follow out of this
observatjon,

226 The complexly-coupled KdV
Usually, one derives from the occurrence of infinitely many conservation
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laws the justification to call a dynamical system completely integrable. In this
sense (19) and (20) are completely integrable. In order to show that one has to
be careful with this notion we have included the systems (21) and (22). Both
Systems are of the same order as (19) or (20) and they have conservation laws of
exactly the same order as these equations But, in addition, they have another
sequence of conservation laws. To see this, replace (27) and (30-1) by

s, ) )
where
81(u):83+28u+2ua, (41-2)
and by
=% ) (12)
respectively.

more, they constitute g Hamiltonian pair in the sense of (10).
to the fact that

O(u, 0)=6(u, p)J {43-1)
and
@(u,sﬂ)':]@(u,so) (43-2)
are hereditary. The operator @(u, ¢) commytes® with the vector field
ox(u.;zv):{ux). (44-1)
Px
Hence, the vector fields
omx(u.szi):@(u,ga)"m(u,gp) (44-2)

all must commute, In addition @ (4, ?) commutes with

51(u,¢)=(¢1). (45-1)
Usr
Hence, all the vector fields

Gnoilae, ?)=D(y, 2)"3(u, ) (45-2)

again do commute, Since ¢, and g, commute, the family of vector fields given by
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the 0» and the G, is commutative (elementary consequence of (9), the same proof
as in Ref. 8)).
Therefore, any of the evolution equations given by either

(:)t:am(u, 0) (46-1)
or
(;‘)t:am(u, 2) (46-2)

has all the other ¢, and &. as symmetry-generators. Special cases of these
equations are (21) (equal to (46.1) for m=2) and (22) (equal to (46-2) for m=2).
Since y1=Jo, as well as 7,=74, are closed one-forms, the compatibility of § and
J vields that the conserved covariants

Yn=2J0n (47-1)
and
Fa=JGn (47-2)

are closed. The potentials p» and §, of these conserved covariants are easily
calculated, they are closely related to the KdV. If @~ denotes the #-th conserved
Quantity of the KAV then the conserved quantities of (21} and (22) are given by

Palt, 9)= A Qulut-¢)+ Qulu—9)) (18-1)

and

B, @)= Qulut 9= Qulu— ) (48-2)

Taking the sum of these conserved quantities one sees that all the conserva-
tion laws of (20) are conservation laws of (21), and (22) as well. But in addition
to these, (21) and (22), although they are of the same order as (20), do have a
Second series of conservation laws. This demonstrates that (20) (and similarly
(19)) shoulq not be called completely integrable. Of course, the structure of Egs.
(21) and (22) is the same as the structure of the KAV since these equations go over
to systems of uncoupled KdV equations by a simple variable transformation (p
Sute, g=y—o).
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