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As examples, for the Lie algebras of mastersymmetries, all time-dependent symmetries and constants
of motion of the Benjamin-Ono equation, the Kadomtsev-Petviashvili equation, and all their generaliza-
tions are explicitly constructed. It is shown that these quantities exist in any polynomial order of time,
that they are not in involution and that they do not coincide for different members of the hierarchies. Tt
turns out that the corresponding Lie algebras are finitely generated and that the crucial role in this
generating-process is played by vector fields which are constant on the manifold under consideration. The
general method for the construction of the relevant quantities is described in detail. so that it can be applied
to other nonlinear evolution cquations as well,

§ 1. Introduction

Symmetries and conservation laws of nonlinear evolution equations provide a major
contribution to a better understanding of these equations. Apart from that, these quan-
tities play an important role in different areas of application. Let alone the interest
constants of motion can claim in their own right, these quantities (symmetries and
constants of motion alike) allow reductions of infinite dimensional flows to finite dimen-
sional invariant submanifolds; thus selecting special solutions which usually are of
particular physical interest (soliton solutions, etc.) .

With the new discovery of so many completely integrable evolution equations, there
is a growing demand for simple, transparent and direct methods to obtain these quantities
in an explicit form. In order to contribute to a partial satisfaction of this demand, we
introduce in this paper the notion of mastersymmetry. For a specified equation 2
mastersymmetry (of degree n) is a derivation in the Lie algebra of vectorfields having the
property that an z-fold application leaves the commutant of the flow under consideration
invariant. Mastersymmetries are in a correspondence with symmetries depending ex-
plicitly on time. Mastersymmetries of degree one were first discovered for the Benjamin-
Ono equation and the Kadomtsev-Petviashvili equation™ in fact they exist for all the
popular completely integrable equations.

The method was extended by Chen, Lee and Lin ¥~ i order to describe time
dependent symmetries of first order in ¢{. By methods similar in nature (but different in
conception) Broer and Eikfelder” even could construct higher order time dependent
symmetries for the Benjamin-Ono equation. But still, a lot of guesswork was involved in
guessing the relevant vector fields in order to start the recursion procedure.

In this paper we study the Lie algebra background of all these methods on a system-
atic base and we show how to obtain the higher order mastersymmetries from simple
constant fields. At first glance, it seems to be a tremendous set back that, in passing overl
to time dependent symmetries, one loses the commutativity of the symmetry group as well
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as the property that the symmetry groups for different members of the hierarchy coincide
(in fact both properties only hold for the time independent quantities). But, actually, this
apparent disadvantage turns out tobe a major advantage. This, insofar, that now the Lie
finitely generated. For the BO and the KP (as well as
that the Lie algebra of the trivial symmetries together
and that insertion of one additional nontrivial
all time dependent symmetries. So we come
olution equation has

algebra of the symmetry group is
many other equations) it turns out
with a constant vector field is finite,
symmetry generates the infinite algebra of
very close to proving the conjecture that a relevant nonlinear ev
infinitely many symmetries as soon as it has one nontrivial.

In the first part of this paper we point out the systematic background of mastersym-
metries and time dependent symmetries. Then the Benjamin-Ono equation is treated in

great detail ; from the viewpoint of symmetries as well as from that of conserved densities.

Furthermore, we show for this equation how the first nontrivial symmetry can be con-

structed out of the information given by the constant mastersymmetry x.
Then the same kind of analysis is carried out for the KP equation. It should be

remarked that this analysis can be performed for other equations as well (see for

example Ref. 8)).

§ 2. Time dependent symmetries

Let M be some C*-manifold and let % denote the variable running through M. The
of infinite dimension. Let * be a Lie algebra of C=-vector
Recall that, if A(u), B(u) are C™
he commutator [A, B] is given

manifold may eventually be
fields and let £ stand for some suitable subalgebra.
vector fields then, in case that M itself is a vector space, t
by

(G, Bl =2 Alu+ eB(w) = Blut €Al - W

Consider some evolution equation

=K (), u=ult)EM (2)

abbreviation for symmetry group
aying that the flow given by .
), or, that the infinitesimal

with K& . Then GEL*is said to be a symmetry {
generator) of (2) if [K,G]=0. This is the same as Sayin
=G(u) provides a one-parameter symmetry group for (2

transformation
¢ infinitesimal

wlt)— u(t)+£(}(u(1‘)),

leaves (2) form-invariant.

Now, take a family G

parameter {. Then we call this a
transformation

or fields depending in a C=-way on the

= f C=-vect y on
(u, ), LS 0 for (2) if the infinitesimal

time-dependent symmetry
u(t)~ u(t)+eG(u(t),t), ¢ infinitesimal

We easily see that this is equivalent to

G¢:[K.G],

leaves (2) form-invariant.

o
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where the right-hand side is the usual Lie bracket (1) and the left-hand side is the partial
derivative with respect to the parameter /. Observe that the time dependent symmetries
are a Lie algebra with respect to the Lie bracket given by (1). If one is willing to work
within the framework of formal power series then time dependent symmetries are easily
found.

Denote the adjoint map given for BEL* by B, i. e,

BA=(B,Alfor all Ac .*,

Furthermore denote by exp(tX ) the operator defined on £* by the Taylor series of the
exponential function

L @ gk
exp(tK)= 3L Rr. 4)
=
Then for any T&.L* the quantity

Gr(t)=exptK)T (5)

satisfies (3) formally. Of course, in the absence of a topological structure for -£* (5) does
not make sense except for those T for which the series (5) reduces to a finite sum. In
order to single out these T we call T€L* a K-generator of degree » if

K" T=0. 6)

If (6) holds then the series (5) is reduced to the sum

Gelt)=3L grr, (7)
o k!
which is an element of ¥, hence a time dependent symmetry for (2). Thus K-generators
and time dependent symmetries which are polynomial in ¢, are in a one-to-one correspon-
dence (one casily sees that any such time dependent symmetry must have the form
of (7)). Some obvious remarks about K-generators seem to be appropriate.

Observation 1:

(i) If T isa K-generator of degree n+1 then [K,7]is a K-generator of degree #.

(1) If Tn,T. are K-generators of degree n; and n,, respectively, then from Leibniz’
formula we obtain that [T\, 73] is a K-generator of degree #,+#,—1. Hence, the linear
hull of the K-generators (all degrees) is a sub-Lie algebra of .[*.

(iii) The K-generators of degree 0 are exactly the symmetries of (2).

Let us denote the K-generators of degree 0 by K° This is then the commutant of K with
respect to L7 . The use of (ii ) and (iii) is based on the fact that we are able to construct
out of one nontrivial K-generator T(of degree »>2) as many different K-generators of
degree n—1 as we are given elements of K° Commutation with 7 results in K-gener-
ators of degree 2#—2, and commuting these again with T we find K-generators of degree
3n—323. And so forth until we have eventually found infinitely many K -generators of
any degree. Commuting these an appropriate number of times with elements of K, W€
then obtain infinitely many elements of K°. Thus, via this construction, meaningful K-
generalors yield the construction of an infinite dimensional symmetry group for (2)-
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§ 3. Master symmetries

.Ir‘l this section we show that if the commutant of K is abelian then under mild
additional assumptions, K-generators have a very strong additional propert’y‘ Lie alge-
bra elements with this property will be called mastersymmetries and, in the case of abelian
commutants, one of the main consequences of this property will be that K -generators are
automatically G-generators whenever [K,G]=0. This will lead to an elementary proce:
dure to calculate out of one suitable A -generator all time dependent and time independent
Symr{‘netries not only for (2) but for a whole hierarchy belonging to (2). Again we study
the situation of a Lie algebra - embedded in some larger Lie algebra £*. For K cf we

denote by K* its commutant in L e,
Kr={AeLI[A, K1=0}.

Observe that this may be different from the commutant in -£* which was denoted by K°.

We call TEL* a K-mastersymmelry of degree 1 if
[T, Alek*  for all AGK",

ie,if 7 maps K' into itself. Observe that this definition requires

[r, Al, Kl=0  for all AEK*

and, in addition, that
[T,AleL  forall AEK",
£ (not with respect to L*). By
f degree n+1 if, for all A€K ",
Observe that T is a K-
A KT, we have

commutant with respect to
be a K-mastersymmetry 0
astersymmetry of degree #.
d only if, for arbitrary Ay
.4‘1'[21\2"'AnTEKL.

Again, by Leibniz’ formula, the commutator [T\, T:] of two K -mastersymmetrics of degree
m and n., respectively, is a K -mastersymmetry of degree m+ s.—1. Hence the linear
hull of all K-mastersymmetries constitutes a sub-Lie algebra of L. Of course. all K-
mastersymmetries are K -generators {of the same degree), but in general. being a A-
generator imposes a4 Very weak condition compared to being a K -mastersymmetry.

?inCG K* is supposed to be the
induction we define 7€L7 to
the commutator [7, Al is a K-m
mastersymmetry of degree 7 if an

THEOREM |- Let K*be abelian and T a K-generalo? of degree n such that, for arbitrary
Ay ArEK', we have

()/L/InTEI .

Then T is a K-mastersymmetry of degree h. - .
Proof - We start with z=1. Then the assumption () means that KT'& K-. Consider
ASK‘ Then from the Jacobi identity we find
0:[[K,A],T]:[[K,T],A]+[K,[A,Y‘J]:[K’T,A]—‘r [K.AT]
=(. Hence, since ATeL, AT

Since K* is abelian we have [KT,A]=0, thus K.AT]
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must be an element of K*. So 7 is a mastersymmetry (of degree 1).

Now, assume the theorem holds true for all z<m. Assume further that (K)™!7T
EK*and A, Ape: TE L for arbitrary A, Ann€EK*. All what remains to be proved
is that 7 must be a K-mastersymmetry (of degree m+1). But this is quite obvious. Put
T\=KT. Then (K)"T\EK' and A, AnTvE L for As— Anc K*. Since the theorem
is true for #=m, T: must be a mastersymmetry (of degree m). Now, take again
arbitrary elements A, An 1€ K* and put To=Ay A T. Since K* is abelian we
have KTy= Ay Apnei Th. Hence KT K* (because 7T\ was already proved to be a
mastersymmetry). Now, applying the theorem for n=1 we obtain that 7:is a K-master
symmetry (of degree 1), i. e, A1 T:€K* for every A,€ K*. So, we have shown

A Apn TEK for all Ay, Apac K- u

The use of this theorem lies in the fact that, for abelian K- and for GE K-, suitable K-
generators of degree # yield G-mastersymmetries of degrce . Hence performing the
same construction as described at the end of the last section we will be able to construct
out of one meaningful K-generator and one nontrivial element of K* the algebra of all K-
mastersymmetries which is then identical with the algebra of all G-mastersymmetries, for
GeK-.

Of course a crucial property is that XK' is required to be abelian. This is checked
either by direct inspection after the construction is carried out (for example, in Refs.1),2)
and 8)) or seen from structural properties of the Lie algebra under consideration. For
example when the Lie algebra £ is beautiful. Here we call a subset A of £ beautiful if
for any AC A either A is trivial (i. e, commutes with every element in .£) or if A* is
abelian. In fact, as we shall see later on, some Lie algebras of vector fields, which turn
up i: real life, are indeed beautiful. A systematic study of this property has been carried
out.

At the end of this section we want to remark that the requirements in Theorem I may
be weakened in order to obtain a useful variant of Theorem L

THEOREM I Let K' be abelian and T « K-genervator (of degree n) and GEK* .
Assume (G)"T<L. Then T is a G-generator (of degree n).
Proof : The same as for Theorem 1 only replace all the A, by G. n

Combining this theorem with the fact that mastersymmetries are generators, which

correspond uniquely to time dependent symmetries being polynomial in #, we obtain:

THEOREM Ul: Assume that K* is abelian. Let H(u,t)= é(i"‘/m!)’[‘m(u) be a lLime
m=0

dependent symmetry of w,=K(u). Let GE K- and put Ao=To, An=(C)"Aq. If A€

L then R(u,z‘)zgo(l"”/m! JAn(u) must be a time dependent symmetry of u.=G(u).

§4. Examples and applications

4.1. The one-dimensional case

’I_‘he manifold under consideration shall be a vector space S of C-functions on the
real line.  We assume that S is closed under taking derivatives and performing additional
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operations which will be specified later on. The variable in S is denoted by #; ¢z, tzr. ",
#em,--- denote its derivatives. The Lie algebra [ is generated by the polynomials in ,
uz, etc. (including the constant polynomial 1) and is assumed to be closed under the
additional operations.

We would like to remark that, at least in the absence of additional operations, this Lie
algebra is in fact beautiful. The only trivial element is %z, i. e., it commutes with all
elements of the Lie algebra. All nontrivial elements have abelian commutants. This
result is suggested by a surprising and ingenious result of Tu W who proved the beauty of
all those vector fields where at least second derivatives occur. A thorough but lengthy
analysis shows that this result can be extended to the whole of L (Ref. 9)).

Therefore we do not have to worry about the assumption that K* K nontrivial in L,
has to be abelian. Nevertheless, I want to emphasize that we do not need this result in
order to verify the subsequent results, since we can check, once the construction of K has
been done, whether or not K is abelian, by straightforward computations (Ref. Dor2)).
By £* we denote the Lie algebra which is generated by £ and which is closed against
multiplication with the independent variable Z. In the absence of additional operations
this is the algebra of polynomials i T.%,%x, tex, e THIS algebra is far7from’peing
beautiful. Special attention will be given to the constant vector fields 1, x, x° . I(? me
it was very surprising that a thorough analysis of, for example, the vector _ﬁelds x yfelds
a tremendous amount of information about very many nonlinear evolution .equ:.m'ons_
We would like to remark that in all examples the condition ( ) of Theorem 1 is trivially
fulfilled, So, no special attention will be given to this condition.

In the following we are going to analyse the equations
we=K(u), u=ulDES, (8)

attention on the BO-equation ; but the same kind of

where K& .. We concentrate our .
ther equations.

analysis can be carried out for some @

41.1. The Benjamin-Ono equation
We consider the well-known'™** Benjamin-Ono equation

w, = Hutzz +2ux. (BO equation)

where I stands for the Hilbert transform

_1 (L) ge (principal value ).
([1/)(1‘)"77 . 571 &

Put K(u)=Huw+2us then a simple «lpading term” analysis (Ref. 1)) shows that K~

C.L is abelian.

Remark 1:

i) 1is a K-generator of degree L.

. > ) |

i) ¢ is a K-generator of degree <. . o ]

iii) Since K* Si!S abelian 1 and 1 are mastersymmetries for the Benjamin Ono equatio
respectively. N

o e wa d consists of writing down the

The proof of that remark is completely trivial an

following obvious commutators:
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0, Kl=—2u., (10-a)
lee2, K]=0, (10-b)
ro=[r, Kl=- 2xu.—2u, (10-¢)
[0, K1=4K. (10-d)

At first glance, one gets the impression that the only feature which distinguishes this result
is its overwhelming triviality and that this result, certainly, cannot be of any practical use
at all. :

But far from being true!

Although the Lie algebra generated by 1,x,70, K is four-dimensional, it becomes right
away infinite-dimensional as soon as one includes one additional symmetry of (9). In
fact, by adding one nontrivial symmetry of (9) one generates the Lie algebra of all
mastersymmetries of the Benjamin-Ono equation, including all time-independent
symmetries and all mastersymmetries of any degree. Hence, the algebra then yields time
dependent symmetries of any polynomial order in {. We leave out the proof that any
additional symmetry (or K -generator) generates all of the Lie algebra of mastersym-
metries, since this result is, at the moment, not of great practical importance (the inter-
ested reader may carry out the proof for himsif by adapting the methods proposed in Retf.
9)). Instead of doing this, we will present some of the relevant quantities in greater
detail.

For simplicity we take one of the known symmetries of the BO. Later on, we show
how to obtain even that systematically from the information provided in (10). The
quantity (Refs. 13) and 1))

Kz(11)—(2u3+3H(uu:)+3u1{u1-2uu)1 (11)

is known to be a symmetry for BO. Thus

r=|x, Kz(u)J:—GrK(u)*6uz—9Hux (12)
must be a mastersymmetry of degree 1. To check this we compute explicitly
[0, K]=6K,.
Hence, we obtain (as in Ref. 1)) an infinite sequence of commuting symmetries for BO by :
K=K,
Kna= 0, K] (13)

Infinitely many mastersymmetries (of degree 1) are obtained by
Z'n:[.l', Kn+x]4 (14)

Observe that commutation of ¢, with 7, only yields again mastersymmetries of degree 1
(since [Kn, K»]=0). This is the reason for the fact that the procedure in Ref. 4) only
leads to time-dependent symmetries linear in 7. From ( 7) we obtain that these
symmetries are
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Gl,n:Tn+t[K1,Tn]:Tn+l‘[Kn+l,T()]- (15'3)

gbserve that these quantities do not constitute symmetries for other equations in the BO
ierarchy. But, of course, the corresponding symmetries for the equations

we= Knu) (9-m)

are given by :
G2 =1, + [ Km, Tl (15-b)

Now, symmetries of higher order in f are constructed by use of higher order mastersym-

metrics. Observe that the quantities Ten given by the recursion
Z'z,n;[I,fn], n:1,2,"' \

tain= 0, Tend E=LET =12,

tain from (7) time dependent symmetries

(16)

are mastersymmetries of degree k. Hence, we ob

for the BO
Gk,n:gﬁlli(ﬁ)‘zk,n:exp(lk)u,n, (17-a)
The corresponding quantities for higher order members of the hierarchy (9-m) are
St (17-b)

Cm=2 (Kn) Tan =exp(tKn)Trn .
=0 l!

of motion for the BO

nt constants of motion, we consider a
propriate Poisson brackets between
e relevant construc-

41.2. Time-dependent constants

_ Inorder to construct higher order time depende

suitable Lie algebra homomorphism from the ap

d_enSities into the algebra of vector fields. We only need to sketch th
tions since they are more O less standard.

For the case of the BO hierarchy we regar

G:1= G2 R
(i3, G, Gs such that

d two vector fields Gi, Gz as equivalent :

if there are vector fields (in the Lie algebra under consideration)

Gi— G2= Gar+ GSHG4+ G¢HGs .

d densities, and G denotes the class given by G. The
notion makes sense insofar as under suitable boundary conditions (for example, if «(x)
Vanishes rapidly at £ = +00), integration fr2-dr cannot distinguish between equivalent
fields. Now, define (G1,G2) to be the class given by Gi’ G, then this is a density-valued
scalar product in the vector fields. The great advantage now is that the operators D and
H, which generated our Lie algebra, have adjoints with respect to this scalar product ; in
fact, both operators are skew-symmetric. Using this fact we discover that for each vector
field G, (in the Lie algebra under consideration) there is a unique vector field V G (called

gradient of G.) such that

The equivalence classes are calle:

G [G1=(V G, Ga)




1516 B. Fuchssteiner

Observe that the gradient does not distinguish between different elements of density
classes. To see some examples take

2
1 u®
ﬂ{1~?uHur+T,
o= — uun*%uxHuz-%—%u‘,
T\~ —xu,
To=—xu?,
Tz,l:%xzu, (183)

then the respective gradients are
VH,=u,
VH = Hur+ 1,

VH,=2u’+3H (nwz)+3uH s —2Uzz,

vT 1= — X,
VTo= —2xu,
_1 .
VTZ,l*?I . (18']3)

Now, we introduce poisson brackets among densities
(GG =(VED(VGo)e. (19)
Recall that densities are equivalence classes (which are denoted by a bar). Then the map
Gi=1'G=(VG)z (20)
is a Lie algebra homomorphism into the vector fields, i. e.
G, G =IG.I"G,]. (21
Observe furthermore :

I—'j[o:Ko(u): Uz,

F&%lzKl(u),
Fﬂg:Kz(u),
Irr..=-1i,

PTQ:*Z(IM)I:TO,
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FTz,x—:I. (22)

We call a density G'(zT) a conserved density for the BO if

gt—é(uu))zo

for all solutions (1) of (9). Taking any element G out of the density class of G we see

that this means

OEG¢+ G’[K}]E Gt+(V G,]{l)—’E Gt+{6,ﬂ1}.

Hence, G is a conserved density if and only if
0=G.+{GH:} (23)

where G, denotes the partial derivative with respect to time. Since the I -transform of

that equation is (3), and because (22) tells us that the crucial operators in (10) and (12) are

just the I'-images of the operators considered in (18) we see that all the recursion formulas
logues in the density

for the time dependent symmetries have their corresponding ana
space. Writing down these quantities explicitly we get, starting with T and o or A,

tespectively, the densities:

ﬂ?nH:%{’fl,uqﬂ}, where T],l:{TZ,l,ﬂZ}. (24'3.)
This is the I"-preimage of (13). The I"-preimage of (14) we write in the way
TFon=ATor, Hnsih (24-b)
Further recursion yields
Fon={Toa, Trnhs n=12," (24-c)
and
Thil.n:{TZ,l,Tk,n}, n:1,2,... (24-d)
Now, all the H» are conserved densities for any member of the hierarchy
ut:Km(u):(Vﬂm(u))x (9-m)
and conserved densities (in any polynomial order of ) for (9-m) are given by
ﬂ(k’flr{:2%’(ﬂm)lfkm:exp(t‘ﬂm)Tk.n. (23)
1=04.
where 4 is the adjoint map coming from K i e, )
g T;i{ﬂ Th

The corresponding constants of motion are given by integration.
413. The modified BO N

We did not yet mention how one can find systematically the first nOl.'ltl'lVli?l symmetry
K, of the BO. Instead of solving this problem we shall do something slightly more
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general.

We replace the Hilbert transform operator H in (9) by an arbitrary operator /.. We
assume that L commutes with x and the differential operator. We would like to find out
under what conditions on L the equation

=Ltz +2uus=K(u) (26)

has a nontrivial symmetry.

Obviously, all the relations (10) remain true for this case. Therefore all the formulas
given for the BO remain true if L replaces H, provided, we can find at least one higher
order symmetry. So, we have shown that (26) has infinitely many symmetries {and
conservation laws) if and only if it has one nontrivial symmetry. So, all has been reduced
to the computation of one additional polynomial symmetry for (26). We briefly sketch
the analysis necessary for this computation (we implicitly use some ideas from Ref. 9)).

Assume that Kz(u) is a nontrivial symmetry of (26). We look in K.(#) at the term
of highest order in #, which must commute with ., the highest order term of (26). The
only vector fields commuting with that, are of the form «"#- (simple calculation, Ref. 9)).
If n=1, then K,(u) must be a scalar multiple of K,(#) (the right-hand side of (26)). So,
this is ruled out. If #>2 then we commute K\(u«) (#—2)-times with 1. Since 1 is a K-
generator (of degree 1) we obtain by that a symmetry with highest order term #°ux=.
Now, we are going to work in the equivalence classes modulo arbitrary interchanges of
L and polynomials in %, #z, #zz---, etc. That means we treat I as a number. Hence,
(26) is now equivalent to Burger's equation, and K.(#) must be equivalent to a symmetry
of Burger’s equation (Ref. 15) for the construction of these symmetries), i. e., Ka(#) is of
the form

KZ(u)N(L*)Zurrr+3L*(uur)x +3u U (27)

Here, the star at the . shall be a remainder that eventually we have to interchange L with

polynomials in u, #.,--. Now, everything is reduced to a straightforward computation.
Since x is a K-generator (of degree 2)

3r=[K,s, 2]=32K(u)+ B(w),

(where K(u)~L’uu+2uuz, B(u)~6L* 1. +3u*)must be a K-generator (of degree 1).
Commuting this with the symmetry #: we find K = K,. Also, the commutator [, r] must
be a symmetry. Since its highest order term is twice that of K, we obtain

[Kl,T]ZZKz. (28)

This condition determines the position of the L’s in Kz, as well as in r, uniquely. Let us
show this (via explicit calculations, for simplicity): The term~6/*u, in B() must be
of the form (6—3@)Luz+30u-L1. Since u, commutes with K the term 3au.L 1 does not
contribute in (28). So, we skip this term, and it remains to determine @. We find

(K r1=2 Lt (M52 (0dar+ 2 @)L e+ ().

So, K must be of the form :
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K- Lzuxxr+( 2 +/1)L( Muz)x+(7‘/1)( uLux)z-l—SuZ Ux - (29)

A : .

ml;i a) sufficient and necessary condition for (26) to have one (and therefore infinitely
y) symmetry is that this K» commutes with Ki Agai ici i i '

any . . Again explicit calculat rields

this is equivalent to A=0 and ’ fon yields that

ZuLzDzuzf2L2D2uu;+6LDu1Lur—3D(Lu1)2‘fO (30)
for all ». Now, L= H (Hilbert transform) certainly fulfills this equation, since
9H (uHu)=(Hu)—u’.
There are other operators fulfilling this relation. Right now, they do not seem of

practical interest. But certainly, the method we adopted, will be of some importance in
more complicated situations (several dimensions, systems of equations).

4.2. The KP-equation

We consider the two-dimensional KdV (or Kadomtsev-Petviashvili equation)

ten = (B uttz— Uzzz)e3Us

which we formally write as

ut:'ﬁuuz;u;rzz_sl)—luyy, (31)

where [-'=f%.-dx is the inverse of the differential operator. Applying to a constant ¢

we define the Lie algebraic meaning of D7' by
D 'C=xC.

T}:e Lie algebra L™ under consideration is now replaced by all polynomials in
D%*ulx, y), with ¢+8=0 and 3=0. Here dand D stand for
' ]

_.9 -9
agay, D=—7"

wlzx,y)and

Equation (31) has the following obvious symmetries:
Kou)= tt=,
Ki(u)=—2us,
Ko(u)=6utz— Uz —3D Nty

In Ref. 5) the

constructed in Ref. 2).
der in t)

mmuting symmetries was
£ time dependent (first or

An infinite sequence of co
quence ©

method was extended and an infinite se

symmetries was constructed.
We construct all time dependent symim

by the following observation:

etries (any order in ¢) and constants of motion

Remark 2. Gsa=y'is2 mastersymmetry of degree 3 for the KP.

Proof : Explicit computation yields
Gaz2= [Gs,l,Kz] =6 uzy"—ﬁx,
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GLi=[G22, K:]=6V*DKo(u)— (6 Du— D*—3D7 ' 3* N6 u-y*—6x)
=6y — tawaz +6{ 2tttz )z — 3 2tsy)
+63% Urree— 36y (Uttz)e+ 360+ 2-36y 2y + 18y thyy +36{x 24 )z
=36{xus+2u+2vuy).
And finally, we obtain
[G11,Kz]= — 72K,

which indeed proves that y* is a mastersymmetry of degree 3. ]

Now, the procedure is straightforward. We only need one nontrivial symmetry for
the KP in order to generate all time dependent symmetries (and constants of motion) for
the KP and all members of its hierarchy. We could proceed as in § 1. 3, but in order not
to bore the reader we skip this part.

From Ref. 2) we take the following symmetry of the KP

Ka(u):lz( Urry—duus—2uD™’ uy+D_2u_y_yy). (32)

Then, via the mastersymmetry (of degree 2)

b= —T]‘ZGz,z= —%( uy:—x)

we obtain a suitable mastersymmetry
T = [Ks, ¢ | = VKo — 200 — 4D Vs (33)

of degree 1. This mastersymmetry was already given in Ref. 2). Now, starting with
Ko(or Ki,K, K;) we obtain from

Kn{]t[Kn,T+] (34)

a sequence of commuting time independent symmetries of the KP. And sequences of
mastersymmetries are obtained from:

Tin= [Kn,¢+],

Toan— [f1,n,¢+]

Teiin— [Th,n,¢'].

Remark, that z.» is a mastersymmetry (of degree k) for every member of the KP-
hierarchy. Hence, the general time dependent symmetry for

ue=Kn(u) (31-m)

is of the form

G =é}%—( Kn) ton=exp(iKn)Tan . (35)

Again, the same analysis can be performed on the density side of the KP. Let us briefly
sketch the relevant constructions. We regard vector fields G1,G: as equivalent
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Gi=Ge
if there are vector fields G- such that
Gi— Gzngara‘rGr
with 8,>1 and a-+8-=1. Densities are the equivalence classes and again (G, G.) is the

class given by G1G=. Now, the operators D and 0 are skew'§y'mmgtric with respect to this
density-valued scalar product. As before, the gradient VG of G is defined by

(V (;1,G_z)EG1’[G2] for all G.

and as Poisson brackets we take
{GlyG_Z}:(VGI)'(VGZ)x .

The map I":G.~(V G1)s is then a Lie algebra homomorphism. Observe that the Poisson
brackets and the Lie algebra homomorphism are depending very much on the specm.ll
equation under consideration. They are given by the requirement that the equation is
Hamiltonian with respect to these quantities (see Ref. 16) for details). The fa.ct that
Poisson brackets and Lie algebra homomorphism are the same for KP and BO is pure
coincidence. It is easily seen that the Ko, Ks have Hamiltonians :

Y= —uD s,

=)+ WS uD

ﬂ[3:6{(uzy)z—ZuzD"uer’;‘uD'“aau}, (36)

L e, we have
IrH.=K, i=0,1,23.
Now, take the mastersymmetry
@, = -%(yzuzwrzul

Check I'®, = ¢, and proceed with the usual routine.

T, = (4,0},
ﬂn+l: {ﬁﬂ,T;},
T},nz {ﬂ"rj*'}

’fk-l,n = { Tle,n, @+}

in order to obtain the general time dependent conserved density for
(31-m)

ugsz(u)
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in the form:

Some lower order members of this hierarchy have been calculated in Ref. 17).
connection with the KP, we would like to draw the readers attention to the significant
results obtained by E. Date, M. Jimbo, M. Kashiwara and T. Miwa.'®
their methods and the methods proposed in this paper will be carried out in a subsequent

paper.

I am greatly indebted to the referee whose constructive comments helped to improve

A= 5L ) Tan=exp(tH ) T

this paper considerably.

15)

18)
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