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We review the main features and the canonical
etructure of the algebra of almost-bounded
distributions which was introduced in order
to treat distribution solutions of nonlinear
differential equations. It is shown that this
algebra is the canonical extension of a well
known construction in shock wave analysis.
All results are discussed in context of the
evolution equation of shallow water wave
theory {lowest order). The impact of distri-
bution solutions on the Hamiltonian structure
and the existence of symmetry groups and con-
servation laws is discussed.

Introduction

Describing the evolution of a dynamical
system from its infinitesimal viewpoint is
certainly in many respects superior to any
other description. For example, finding for a
completely integrable nonlinear flow on some
infinite dimensional manifold the symmetry
group explicitely seems to be an impossible
task, whereas finding the infinitesimal
generators of one-parameter symmetry groups
is a routine matter nowadays [ 81.

This would not be possible if we were not
able to describe the flow by its infinite-
simal behaviour. In fact, the strength and
the beauty of areas like theoretical
mechanics, with all the impact it had on the
development of pure mathematics, is based on
the infinitesimal aspects of the systems
under consideration. To inglude also non-
continuous solutions into this framework is
one of the reasons which led to the invention
of distribution theory. But alas, distri-
butions do not constitute an algebra and
many of the relevant flows are nonlinear, at
least when interaction is involved. So it
seems as if noncontinuous solutions (for
example shock waves) of nonlinear systems
cannot be treated from the infinitesimal
viewpoint thus forbidding the application

of the heavy machinery of classical mechanics
to these systems. To show that this is not
necessarily so, is t+he content of this paper.
Moreover, we demonstrate that the usual
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computaticnal concept for shock waves imposes
a canonical algebraic structure on a suitable
subspace of distributions.

Let us first review the algebra of almost-
bounded distributions (see [ 7] and [101),
We are interested in distribution algebras
having the following properties:

(1) the product rule for the
differentiation is valid

(11) the product is associative

(iii) the algebra is an extension of the
usual algebra for functions

{iv) the algebra is translation invariant.

Tt is well known {23} that there is no
algebraic structure in D(R) (schwartz's
distributions) fulfilling (i) to (iv). So we
restrict our considerations to a subspace,
the space B(R) of almost-bounded distri-—
putions. A distribution ¢ € B(R) is said to
be almost-bounded if, for every n € N, its
n-th derivative is of the form

o™ (x) = bix) + Ax) (1)

where b is a locally bounded function and
where A has discrete support without
accumulation point. Of course, the decompo-
sition in (1) is unique. The map

oo™ (usual

differentiation operator) whereas the map
@ » b is denoted by 3" . observe that 4
ig a derivation on the algebra of those
almost-bounded distributions which are
functions.

we denote by p"

theorem [7 1: There are exactly two

algebralc structures in B(R) fulfilling (i)
to (iv). These algebras are, for ¢,¥ € B{R),

given by



e(x)¥{x) = 1lim o(x +&) ¥{x) (2.1)
def €40
and
px)¥(x) = lim @(x +e)¥(x) (2.2)
def ¢40

Observe, that the products (2.1) and (2.2) do
always exist since, by definition, the singu-
larities of ¢ and ¥ are not too close
together. In any case the product of two
distributions with discrete support is equal

to zero. If n(x) denotes the jump function
(n(x) =-1 for x<0 and +1 for x = 0)

and if &é(x) denotes the Dirac §- distri-

bution then (2.1) implies n =38 and

6 n=-5 . Hence, the algebra is non~commu-
tative. Noncommutativity implies that there
are at least two structures fulfilling (i)
to (iv),1f there is any,since interchanging
the order of factors gives an algebra iso-
morphism. Therefore, because we do not have
more than the minimal number of algebras, we
are entitled to say that the almost-bounded
distributions have a canonical algebraic
structure.

Let me add a short remark in order to avoid
misunderstandings. The existence of a "unique”
algebra depends heavily on the restrictions
we have imposed by (i) to (iv). If one is
willing to drop a few of these requirements
then, for example, also commutative approaches
to distribution multiplication make sense.

In fact a number of excellent approaches to
distribution multiplication which differ from
my approach can be found in the literature
(for example [1 I-[ 3],[15],061,0121-[16],
and especially [20],[{21]).

An elementary example

In this section we lock at the description of
bores (hydraulic jumps) by distribution so-
lutions of the nonlinear partial differential
equations derived from shallow water wave
theory (lowest oder) (see [ 4], 241, [27],
[10]). We consider the flow of an incom
pressible fluid along the horizontal x-axis

free surface

constant pressure

v

héigﬁﬁ vix,t)
h ({x,t

Here u(x,y,t) denotes the velocity

along the. x-axis. We assume that the
viscosity is zero, that there is neither
surface tension nor rotation, and that the
only exterior force is gravitation. The
assumption of shallow water wave theory (of
lowest order) is that u(x,y,t) = u(x,t)
has to be independent of y and that the
velocity v(x,y,t) in direction of the y-axis
is zero. This is the same as assuming that,
over the motion,vertical sections remain
vertical sections and that the pressure
plx,y,t) in the fluid is the same as the
hydrostatic pressure, i.e.

plfa{h(x,t) -y) ~p(x,y,t)} = const.

= exterior pressure,

where p,g are physical constants. In other
words, we assume conservation of mass between
the moving vertical sections a(t) and b(t)

(velocities wu(a(t),t) and u(b(t),t))
b(t)
[ hix,t)dx = constant (3.1)
a(t)

and that the change in momentum is given by
the difference of the pressure acting on these
sections

hix,tlutx,t)dx =
t) {3.2)

h(b(t))
pla(t),y,t)dy - [ p(b(t),y,t)dy
O

Making b(t) - a(t) infinitesimal and per-
forming some elementary manipulations we
obtain the usual nonlinear equations of gas
dynamics

(h u)x +h =0 (4.1)

t

vu o +gh +u =o0. (4.2)

t

Now, inserting the ansatz h{x,t) = h(x-ct),
u(x,t) = u(x~ct) one observes that, even
based on our distribution algebra, no shock
wave solutions occur, Certainly, this is
contrary to the physical facts. But we
completely forgot that the algebra was non-
commutative and that we used commutativity
freely by going from (3.1), (3.2) to (4.1) and
(4.2). Doing this derivation again without



commutativity we obtain

(h u)x+ ht =0 {5.1)

1
huu + 3 g(bh), + hu, =0 (5.2)

Now, a shock wave ansatz really makes sense,
we obtain the usual shock solutions with the
well known [24] jump conditions (for details
see [101). And, fortunately, none of the
results depends on the choice of either of
the two algebras (2.1) or (2.2).

An interesting discovery [10] is made if we
1ock at the conservation law given by the
energy-conservation of the system. Between
the moving sections a(t) and b(t) the
change in energy (kinetic and potential) and
the power given by pressure 1s

b{t)
3E d 1 ;.2 2
Z=p4. [ 5 {u"h+ghlax+
3t dt a(t) 2
h(b(t))
+ u(b(t):t) I p(b,Yrt)dY - (6.1)
o
hia(t))
- ufa(t),t) J pla,y,t)dy
o

Insertion of our formula for the pressure
yields

b(t)
11,3 2
St {2 u~h +g uh }a(t) +
(6.2)
b(t)
+%[ (u’n +g n?) ax .
alt)

From this we obtain the density

<

1 . 2 1,.2 2
. n+guh)x+§(uh+gh)t

(7}

and

1 1 2
> g ([ux,h]h + 5 [u, (h )x] (8)

N

where [ , ] denotes the usual commutator,
i.e. [a,B] AB - BA. Looking at (8) we see
that energy is conserved when the guantities
under consideration are commuting. In case
of shock waves, i.e. noncommuting quantities,
energy is not conserved, and, in fact, the
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amount of violation of energy consexvation
is exactly what it shall be (see [24]).
For extensive investigations see [18][26].

Several questions and doubts have been raised
in context with this elementary example.
Questions like:

(a) Can we really be sure that the results

of similar computations are independent

of the choice of the algebra (2.1) or
(2.2)?

Are (5.1) and (5.2) really the relevant
equations? Is it always necessary to go
back to the physical problem in order

to find the real equations? In particular:
Are there other ways of finding the
differential equations from the physical
problem which lead - even noncommutativity
is observed - to equations different from
(5.1) and (5.2) 2

(b)

wWhat kind of conservation laws continue
to hold for the case that noncommuting
physical quantities are considered?

why is it, that energy conservation is
violated whereas the corresponding
symmetry of time translation still holds
for discontinuous solutions?

(c)

Having described discontinuous solutions
by infinitesimal methods can we now
consider linearizations of the equations
describing small perturbations?

In particular: Can we now describe - even
for discontinuous solutions - infinite-
simal generators of one-parameter symmetry
groups as solutions of the linearized
equations? Or in general: What becomes
out of the methods of classical mechanics
in case of distribution algebras.

And so onl!
Indeed all these gquestions have

satisfactory answers. Some of them are given
in the sequel.

Shocks for systems of conservation laws

As in [17] we consider evolution equations
given by systems of conservation laws, i.e,
equations for u1(x,t), uz(x,t) of the form

u + £ =0, u + g =0 (%)
1t X 2t X
where f and ¢ are nonlinear functions
in uy, and u, . For simplicity we assume

in this paper that they are polynomlals. Here
the gquantities Uy and u, are called con-

servation laws. The reason for this is evi-
dent, because if one considers - for example -
the u,,u, as elements in some space S of

C”-functions in x which vanish sufficiently
rapidly at infinity, then the scalar



quantities | u, {x}dx, i=1,2, are inde-

R

pendent of time, i.e. they are conserved.
Quite often the systems under consideration
are Hamiltonian, for example if we have for
the partial variational derivatives with
respect to uy that

g = f (10.1)

u2 u1

i.e. if there is a scalar function H(u1,u2)
such that

(10.2).

In order to explain why this is so we intro-
duce some notation., S* denotes the space of

those functions u” with u} € S . The spaces

s =585 and 5*2 = 5% § 6% we call
tangent space and cotangent space, respec~
tively. They are the typical fibres of the
tangent and cotangent bundles of the manifold

s? on which a flow is given by (9). Instead

x
u u
, -+ -
of | 1 or 1 we urite U and u*.
b 42

Between tangent and cotangent space we intro-
duce a duality
<T,E> = (wFu, +u*u,)ax (11)
| 2 72
R
thus variational derivatives of scalar
quantities become covector fields.

Since our manifold under consideration is a
vector space the notions "closed" and "exact®
coincide, i.e. the result given by Darboux's
theorem not only holds locally but also glo~
bally. To be precise, an element

m1(u1,u2)

8 = e g*?
w?_(u1,u2)
is said to be closed if (w1)u2 = (coz)u1 '
2

i.e. if there is a scalar quantity ¢ : $° oR

$ =de = (12)

is said to be the gradient
2

In this case o
of ¢ . An evolution equation on §

4, = k() (13)

1s said to be Hamiltonian if there is a 5
closed two-form w((.,.) such that w{K(u),-)
is a gradient. Introduce the operators
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D: s*sg
-1

(derivative with respect to x),

D :S +5* (integration from - to x)

and D : 5*2 - Sz, 3-1 H S2 - S*2
. 0,D " 0 -1
D=1p,0 ! = y

Then the two-form o : 52 R given by
s@% =<2 v (14)

is closed. provided that (10) holds the
system (9) is then Hamiltonian because it
can be written as

=-BdH, i.e. (@) =- Ban

R
e

which yields w(K(d),') = - dH

One advantage of having Hamiltonian for-
mulatlons for flows - which are by definition
infinitesimal formulations - is that if the
closed two-form (symplectic form) under

consideration is like (14) then B = (3 1)~
is an operator with the property that it maps
gradients of conservation laws onto infinite-
simal generators of one-parameter symmetry
groups of the system (Noether's theorem).
This observation has striking consequences
for the construction of the symmetry group
of the system [9 ]. Of course, a conservation
law is a map going from the manifold into the
real (or complex) numbers such that it is
invariant under the flow. And infinitesimal
generators of symmetry groups are given by
vector fields G(®) which are solutions

of the linearization of the flow, i.e. in
case of (13) solutions of

= 3

G(u)t=3—e-K(E+eG(\?))lE=O (15).

It should be remarked that (10) is not
necessary for the system to be Hamiltonian
since the symplectic form responsible for
the Hamiltonian structure of the system may
differ from that given in (14) . In these
cases one sometimes also has to change the
duality structure under consideration
(according to the boundary conditions at
infinity). The flow given by {(4) is Hamil-

tonian, because for 14 = { ﬁ ) it can be
written
ﬁ’t = - 3 an(u) (16.1)
where
B(d) =1 [ o+ gnd)ax (16.2)
R



is the energy of the system (which is con-
served for continuous solutions). Other
conservation laws are

{ hu ax (conservation of momentum)
R

(17.1)
{ h dx (conservation of mass) (17.2)

(conservation of mean signal

[ uadx
velocity) . (17.3)

The gradient of (17.1) is mapped by B onto
the infinitesimal generator of the trans-
lation group, whereas the gradi%¥tsof (17.2)
and {(17.3) are annihilated by .

Now, after this detour into Hamiltonian
mechanins let us come back to the shock
solutions for (9). These are fairly simple to
find: Just take the derivatlves occuring in
(9) in the distributional sense. For piece-
wise continuous solutions this leads to the
usual jump conditions [17]

{f] (gl
g—}é = X = .__3{_ (18)
fuy] (v,]
x X
where x = x(t) is the curve of discontinuity

and where the symbol [ ]

X

1im (£{x+e) - f(x-e)) (19)

[£]
% gef €40

denotes the difference between right and
left-hand limits. This is a very consistent
approach, but unfortunately it prevents us
from speaking about the infinitesimal struc=~
ture of the system. Thus impeding us from
deciding whether or not the system is Hamil-
tonian at jumps, or from finding out if the
connection between symmetry-generators and
gradients of conservation laws given by
Noethers theorem is still valid, or from
looking at small pertubations of the system
described by its linearization. To emphasize
this point even further: The reason why our
shock wave solutions are not consistent with
the infinitesimal structure of the system
lies in the fact that, for shock wave
solutions, we are not allowed to go from (9),
by application of the chain rule, to the
evolution equations

+ fu + fu 0

9.1)

because in thig case products like fu u,

may not be properly defined. 1 'x
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Further we should remark that there is an
additional point of arbitraryness in (18)
which comes out of the fact that there may
be another pair of conservation laws for (19)
yielding differential equations which are
equivalent to (9} or (9.1)(in the sense that
they have the same continuous solutions)but
are leading to different Jjump conditions.
Usually this arbitraryness is avoided by
additional regquirements (for example asking
that the conservation laws have to be hyper-
bolic [171).

The shock algebra

It is not uninteresting to lock at the
algebraic structure of the symbcl given by
(19). Consider, for example, the algebra

of almost-bounded functions, i.e. those
elements of B(R) which are everywhere defineg,
piecewise continuous and honest functions.
Then for £ € A we have

(] =" £ -E" £ (20.1)
where E° are the idempotent algebra-
homomorphisms on A given by

(E¥£) (x) = lim £(x % &) . (20.2)

e+0

Looking at the behaviour of [ ] for products

we find

(fg] = [£IEV (g) + E (£){qg] . (21)
Ohserving that the operators X are right-
absorbing, i.e.

£'e” =", 878" = £ (22)

and introducing As , the set of singular

elements in A , given by those elements of
A which have singular support, we see that
d. = [ 1 is a derivation (product rule) from

1
A into As with respect to the associative
algebra [ 10] (shock algebra) defined in the

following way:

def

£ g ® f) g + £ (g - (EYE) - (E7q) (23).

This algebra coincides modulo singular ele-
ments with the usual algebra (A4,-) of point-
wise multiplication. Of course, the notion
"modulo singular elements" makes perfect sense

since As is a two-sided ideal in (A,*)
(as well as in (A,-). The quotients
_ (A, *) (A,°)
A= /4y = /
As Ay



are equal. These quotients are important
since from the distributional point of view
functions which coincide but on a discrete
set are equal. Hence the distributions given
by A are really the space A . Because

d, = [ ] annihilates the elements of Ag v

as a derivation
; which

we can also interprete d1

(A, %)

from A = /A going into As
s

can be considered as an A-bimodule since
* = .
A5 AS 0
Now there is a canonical way of making out of
(A x AS) an algebra. One has to take the

trivial extension [11] of a by AS
via AS -As = 0 . In order to make out of
d1 : A~ As
containing the trivial extension

given

a derivation on some algebra
(A % Al

one again has to perform a canonical
construction given by embedding (A x As)

into the sequence structure A «x A: , where

A: denctes the space of sequences in AS .

*

This extension of d1 is given by d1

defined by
* =
d1| = 4
A
d? (so,s1,52...) = (0,50,51...) (24)
*
for (50,51...) € As .

The map d: is a derivation on the algebra

A x AY (products given by A - Ay =0 .

All these extensions are minimal, the detailg
have been carried out in [10].

Recall that A were distributions. Now, what
is the distributional meaning of, say
(0s...,0,5,0,...) (n-th place) ? That is
easy! Recall that s is unequal to zero only

on a discrete set, say s = a on the
Xy k=1,... . Then identify (Oyeeo,s,..0)

with T a, é(n)(x—xkhnd there is found a
k

one-to~one linear map from A x A: onto

B(R) the space of almost-bounded distri-
butions. Take on A the derivation d intro-
duced at the beginning of this paper, define
dIAm =0, then D=4 +d? is again a

S

derivation on A x A: - And the most ip-

portant point is that D is carried over, by
the isomorphism between & x A: and B(R),

into the usual differential operator,

Since A «x A: is an algebra we have found an

algebra on B(R) having the required pro-
perties,
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The second algebra is found by interchange of
products in (23), Thig algebra has also the
property that (21) defines a derivation.

Now, what is the real meaning of all thig
algebraic humbug ?
The real meaning is

i) that the algebra of almost~bounded
distributions is the canonical
extension of the shock algebra given
by (20.1) and (21) to the space of
almost-bounded distributions

ii}  that (relying on the isomorphism we
have constructed) we can be sure to
obtain, by use of the algebra of
almost-bounded distributions, the
same shock solutions as from (18),
and, that our results do not depend
on the choice of either of the two
algebras (2.1) or (2.2).

One additional remark in defense of the
algebraic considerations in this section:
These considerations give the guideline for
generalizations of the algebra to different
situations since none of the results really
depends of the meaning of E* but only on
the algebraic properties of these operators.

Qur example revisited

First, we observe that the equations (4.1)
and (4.2) are of the form required in (9)
since they are given by the conservation
laws (17.2) (mass) and (17.3) (mean signal
velocity). Therefore (18), applied to these
conservation laws, should describe the
shockfront.

At this point one really suffers a mild
shock since (18) does not give the same
solutions as (5.1) and (5.2) (which were
the physical solutions as we claimed). This
looks as if there is a contradiction to the
algebraic considerations of the last section.
Fortunately, this is not true. Weonly used
the wrong conservation laws! We should have
used (17.1) (momentum) and {(17.2) (mass)
instead. Then their evolution equations
really correspond to te ones given by (5.1)
and (5.2). Sure, they are equivalent to (4)
in case of continuoug solutions, but not so
in case of discontinuous solutions.

This observation answers several of the
questions which we posed in the second
section: We are able to find the relevant
equations for the noncommutative case of
shock waves without going back to the
physical problem by choosing the correct
conservation laws. But the decision, which
of the conservation laws are correct, depends
either on our insight into the physical
problem or on additional mathematical
requirements (hyperboliticity etc.). our
algebra does not lead us in this choice.



In fact, from the algebraic point of view
either two of the four conservation laws of
the system lead to mathematical meaningful
equations. All these equations coincide for
continuous solutions but not for dis-
continuous ones.

Only those conservation laws which we used
for the extension of our eguation to the non-
commutative case remain valid in this case,
all others are - in accordance with the
physical observation - destroyed by this
extension.

This does not mean that all the corresponding
symmetry-generators will be destroyed.

In case of {5) for example, time translation
invariance is still preserved whereas the
corresponding energy conservation law is
disturbed. The reason for this is the fact
that the Hamiltonian structure is destroyed
by shock solutions, i.e. in the non-commu-
tative case. This is not surprising since for
a one-form, say of polynomial type in the
field variables, being & gradient is a rather
restrictive condition, usually depending on
the algebraic properties based on the
commutativity of the field variables. These
delicate properties are heavily disturbed by
the noncommutative case.

Since we have now for the flow an infinitesi-
mal description which also includes shock
waves we are able to consider small per-
turbations v = 6u and n = &h in the usual
way. They have to fulfill the linearization
of (5.1) given by its variational derivatives:

(nu)x + (hv)X +ong = 0
1
nau ¥ hva + h uv, + o g(n h+hn)x +

{25)

+nu. + h Ve = 0

t

where u and h have to be solutions of (5).
Particular solutions of this system are given
by the infinitesimal generators of time and

x-translation for the flow (5) (easy exercise

in noncommutative distribution multiplication).

In this case these guantities v,n have
6-singularities if shock solutions for (5)
are considered. This also shows that there
are real physical quantities making evolution
equations necessary which admit higher singu-
larities (like 6-functions). For example, the
equation for the accelleration of the particle
and the velocity of the change of the height
of our fluid. Equations like this can now be
treated from an infinitesimal viewpoint in a
consistent way.
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