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1. INTRCDUCTION

For dynamical systems,mastersymmetries are a useful tool to con-

struct conservation laws and symmetry groups. They have first been

discovered in the case of the Benjamin-Ono equation and the Kadomtsev-

Petviashvili equationg.They exist for almost all the popular comple-
tely integrable systems3 and recently they have been studied on a
455 . We pgive the relevant definitions in the ab-
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Before going any further into technical details let me briefly
explain what practical purpose a mastersymmetry can have. For example,
if we fix K € L and pub L1:Kl={G€L|[G,K]=0} to be the
commutant of K then a Kl—mastersymmetry d has the property that
ax), dg(K),...,dn(K) are elements of ¥t . Hence, we are eventually
able to generate in a recursive way out of K infinitely many ele-
ments of xt , maybe even all of Kl (which in fact is the case for
most of the popular completely integrable systems) . Of course, such
a generic construction of Kl has important consequences . For

example, in the case of:

a. Vectorfields

et M be a C°- manifold, denote the variable on M by u

and consider an evolution equation

up = K(u) , (1.2)

where K is a C7- vectorfield on M . Recall that the c”- vector-
fields are endowed with a Lie-algebra structure, namely the infinitesi-
mal structure of the group of C¥-diffeomorphisms on M . Therefore

the construction of k' amounts to the construction of the infinite-
simal generators of the one-parameter symmetry groups of (1.2).

This way of construction works for all the popular completely inte-
grable systems, like Kdv, mKadv, 3G, BO, KP etc.

Complete integrapility in all these cases implies that xt

is abelian,
an aspect to which we come back. In addition to that, the Kl—master—
symmetries of, say, degree m have a direct meaning in terms of time-
dependent symmetry groups. In order to explain this consider a time-

dependent flow on M

ug = G(u,t) (1.3)

where G(t) = G(-,£) is a €= family of C - vectorfields on M
Let u(t,uO,T) be the solution of (1.3} fulfilling at time 1

the initial condition u(r,uo,r) = u, . Then the diffeomorphisms
given by u, = u(t,uo,r), ug € M, 1 € R commute with the flow (1.2)
if and only if

g, ot) = [K,6(6)] . (1.4)

t

For this reason we call G(t) a time-dependent symmetry generator

for (1.2) if (1.4) is fulfilled. A simple calculation 5 shows that,
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W i 1
hen GO is a Kt- mastersymmetry of degree m then

t = = ol <y
exp(t K)GO kEO r KGy {1.5)

=

is a time-dependent symmetry generator. Observe, that then in (1.5)

s ps. -
the "infinite" sum extends only up to m , the degree of &
o)

b. Conservation laws

Assume that (1.2) is a degenerate 6 or nondegenerate

gamiltonian system, i.e. the vector field K = p grad H 1s the

image of a gradient field grad H (H the Hamiltonian) under an im-
plectic 6 (inverse symplectic) map 6. Then in the space of zero-forms
(scalar quantities on M ) one has a canonical Lie-algebra structure

{,} induced by e (Poisson brackets with respect to @) . Now, a

zero form is a conserved quantity with respect to the flow (1.2) if

and only if it commutes with H in the Lie algebra of Poisson
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And, among the
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) " @ 0 )
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vector of H, with eigenvalue 0O (because of

< KH P > = < x,[T,Hllx > = 0) . This implies that Tlx > is again
an eigenvector of H . Hence 1x > must be an eigenvector of T
Therefore, at least in case of nondegenerate spectrum, we cannot
expect any meaningful Hi- mastersymmetries which are inner. The way
cut of this is to consider either mastersymmetries of outer type or
to consider operators with weird spectral properties (of course, only
in the infinite dimensional case). We shall give meaningful examples
for both cases.

d. A useful technical result

At this point T have to admit that I cheated over a very
crucial point. I pretended that one can use gt- mastersymmetries for
the construction of Kt But, looking at our definition for master-
symmetries, on discovers that in order to check whether or not a
quantity is a mastersymmetry,we have to try it out on all of Kl s
which seems only possible if we know Kt in advance. Fortunately, this

is not so in abelian situations.

Congider L‘1 c Bc Ll where L1 and B are sub-Lie-algebras of

B and L , respectively. Fix K € L1 such that L1 is equal to the
commutant K'(B) = {A € BI[A,K] = 0} of X inB (not in L ).
Assume that L, = Kl(B) is abelian . Then an inner derivation

d : B - L with d(L1> cB is a KL(B)—mastersymmetry if and only if
d{¥) € KL(B). Thus,we only have to try how d acts on X . This

criterion can be generalized to higher degrees.

The proof of this simple fact is mainly based on a successive
application of the Jacobl identity, it can easily be adapted from the

consideraticns given in Ref. 4 (theorem 1).

And,even 10 we do not know the commutant KL(B), we are quite
often able to declide beforehand whether it is abelian. For example,
in the quantum mechanical case when the spectrum of the operator
under consideration has multiplicity 1. In other situatiocons we also
succeed guite often by application of ad-hoc arguments. A systematic
study of this point is contained in the dissertation of W. Oevel 5.

2. THE XYZ-MODEL

A couple of years ago much excitement was created by the dis-
covery of the guantum inverse scattering method for the one-dimen-
sional spin 1/2 anisotropic Heisenberg spin chain, the so called
XYZ-model. This model has been proved to be equivalent to a vertex
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model for which R.J. Baxters ingenious method of solution was
available. For details of these developments the reader is referred
to the work of R.J. Baxter 7, Takhtadyan and Faddeev8 and Sogo and
Wadati 7

The purpose of this section is to give a straight-forward method

for the computation of the commubant of the Hamiltonian of the XYZ-

model.,
At each point n of the 1lattice Z (all integers) a spin
operator gn = (Si, Si, Si) ig given. These operators are assumed

to be spin-1/2 operators, i.e.
iak . Jkigl
Sn Sn 6jk + 1 ¢& Sn (2.1)
1273

where 9! is the cyclic totally antisymmetric tensor with ¢ = 1.

We either consider the unbounded case, where no periodicity of the

lattice is assumed, i.e. where all spin operators at different places

commute

[s?, k1 -0 for nsm (2.2)

or we consider the periodic case where Some N is given such that

k k
S@ =+ 8%, and where (2.2) only holds for those
different modulo N.

n # m which are

The Hamiltonian of the XYZ- madel is

5 g g (2.3)

I Jdyp Sy Pn-t

n,K

SIS

H= -

where the sum either goes over all n € £ (unbounded case) or from

1 to N (periodic case with pericdicity N) . In both cases the

equations of motion are

3 - (2.4)
(2.4) S, i(H,8. 1,
or explicitly
e kKlr 1,a.r ol
ST S S: (87 4 * Spyq! (2.5)
l,r
a. The unbounded case
Consider the operator
(2.6)

_ Sk Sk
T = In 2 Jk n n_i
n

Commutation with H yields the

which is even more unbounded than H .

operator
1
81}{1' g (2.7)

k or
g, = [T,H] = r dd, n+l Sn Sn-1
r
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which commutes with H . For the periodic case, when the sum goes
only over n = 1,...,N this is the conserved operator next to H
found by Liischer 10

From the Jacobi identity we conclude directly that H2 = [T’Hi]
commutes with H . But at this moment we are not yet sure whether

successive commutation

HM+1 = [T’HM] s, M= 1,2,.. (2.9)

generates operators which commute with H . If we had a simple
spectrum for H , then this fact would follow right away from section
1.d. But Obviously,for general i , the spectrum of H has multipli-

city 2. In order to see this we define in the underlying Hilbert space

2

a selfadjoint operator o¢ with o = I wvia o S,0 = 8 An opera-

. n -
tor H 1s sald to be odd or even if o Ho = H or o¢ Ho = - H ,
respectively. Then T 1s odd and H is even, H, odd, H, even,and
1 , (I #0) commute with H , the

spectrum of H has at least multiplicity 2, and exactly two for
-3

so on. Since the projections Pt =

general J. Now, since H2 is even and commutes with H one finds
out that H2 commutes with H1 (consider suitable subspaces). Then
the Jacobi identity shows that H, commutes with H , and by similar

3

arguments one concludes that it alsc commutes with H/,H, . In this

way we proceed further and obtain that all HM commute. Hence T 1is

an Hl— mastersymmetry.

The essence of all these arguments is,that the simple ideas behind
the statement in section 1.d carry over to cases where the spectrum is
not simple but well behaved.

b. The periodic case

Because of the arguments which were presented in section 1.c
we cannot expect an inner Hi— mastersymmetry in the periodic case
since the underlying Hilbert space is finite dimensional. But, indeed
there is an outer yh- mastersymmetry. We regard the n , appearing
in (2.6),as elements of the equivalence classes modulo N and we

restrict the summation in n from 1 to N , i.e. we consider

T: 5 n2J.ss . . {2.10)
nE%/N n “n
Then T 1is certainly not an honest operator since it is undetermined
up to a multiple of H . But as soon as it is commuted with an ele-
ment of H' this amount of undetermination disappears completely.

Hence T can be considered as an outer derivation on Hl . Now, all
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our ar i = i '
guments go through for thils case. H1 = [T,H] 1is the conserved

current next to Hamiltonian H given by Liischer 10. And a repetition

of the arguments of section 2.Db yields that the sequence of operators

defined recursively by

Hyq = [Tyl s M= 1,2,... {2.11)

is in involution.

In principle, it is quite clear that from the knowledge of Hl
we are able to find a diagonalisation of H . Of course, one certainly
encounters computational difficulties doing this. Therefore, carrying

out such a program would go beyond the aim of this paper.

c. Concluding remarks

There is a rather simple way to obtain the commutativity of

the Hamiltonians for the periodic case out of their commutativity for

onsiders the equations of motion as a classi-
(0f course, this manifold is

the unbounded cage. One ¢
cal flow on a manifold M of operators.

infinite-dimensional in the unbounded case).
rements of periodicity is invariant under

The submanifold M
per

given by the requi the

sequence of flows

§n = 1[HM,§n] (2.12,)
1tonians for the unbounded case (defined

where the HM are the Hami
e commuting.

by (2.9)). Since the H, commute the corresponding flows ar

M
Now, the restrictions of the fiows (2.12M) to the invariant submani-
ns for the

fold Mper are exactly the flows given py the Hamiltonia
e these flows are commuting the corresponding

periodic case. Sinc
Hence, the Hamiltonians in the periodic

Hamiltenians have to commute.

case commute.

An interesting problem seens to be the gquestion whether cr not

there are further mastersymmetries for the XYZ-model. In fact there

are infinitely many. I obtained th
ted here.

em by a horrible calculation which

is much to involved to be presen Certainly, there must be &

simpler way to find them.

3. ARBITRARY SPIN AND CONTINUOUS LIMITS
—model yields the Landau-Lifschitz

The continuous limit of the XYZ
ethod the details
1

equation. On the level of the inverse scattering m 0
were carried out in the beautiful paper of Sklyanin .
Nevertheless, to me it was always a mystery how this worked,because:

to my simple-minded understanding, for taking the continuous 1imit,
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one should first go over to higher order spin systems thus making
the distribution of the spin-eigenvalues more and more dense. And, to
my knowledge, there is not yet any satisfactory and completely
integrable system known for spin higher than one half.

Let me present my philosophy in order to explain this puzzling
situation. I believe it possible that there 1s no chain of completely
integrable systems having the Landau~Lifschitz equation (LL) as limit.
But certainly, there are spin systems being integrable in an approxi-
mative sense such that the spin-1/2 case 1s the XYZ-model and the
continuous limit is the LL . Here, "approximation” can be expressed
in terms of the distance of the points of the lattice under considera-
tion.

In corder to explain this I need some notation. We consider a
lattice of points with distance & , the points are again numbered by
Z . At each point n there sits an operator-valued vector
gn = (Si, Si, Sz). No commutation relations are prescribed. As opera-
tors we consider P(S) , the polynomials in Sg , n €%, k = 1,2,3.
The quotient of this vector space with respect to the subspace
Q(S) = {AB - BA | A,B € P(S)} we call space of densities. Observe
that we only factored out with respect to a vector space but not an
algebra, i.e. we have AB = BA but not always CAB = CBA
This construction makes sense insofar as the trace-operation does not
distinguish between different members of the same equivalence class.

Furthermore we consider the space of operator-valued vectors ?(S),

-
i.e. functions A assigning to each n € & an operator-valued
g 1 2 3 e
vector A = (An’ A Ag) , where A € P(S) . For these vectors we

define a density-valued inner product

2 A Ko D > 2
(E,B) = equivalence class of ¥ ATBT £, € P(S). (3.1)

ol ot
1y K

A11 this is done for the definition of gradients and Poisson brackets.

Kk = g .
For A = A(Sn; n € , K:l,E,B) € P(8) and B € P(3) we consider
the directional derivative

AMIE] = asF v e85 neml k- 1o
= LS € 5.5 n s = 1,2,3),

JE n l£=0 {(3.2)

Qur nctlon of density was chosen in such a way that there is always
a unique operator-valued vector VA such that
-2 -
A'[B] = (va,Z3) for all B € P(8). (3.3)

This quantity VA 1is called the gradient of A
For example, the gradients of
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_ k ok
A= I Sl'l SI’I (3.4)
- -1 k ok
H 2 2 Jk Sn Sn—l (3.5)
are
k _ k
(AA)n = 2 Sn (3.6)
k1 k K
(V) = = 5 3, (8] 4+ S.4q) - (3.7)
We introduce a vector-product
2 2K 1 rsk,,r .5 r .8
B = = -
(B x &) 5 I & (B, A - AL B,) . {3.8)
rs
Some examples
2x5:=0 (3.9)
k _ _ 1 rsk oS 8
(5 x VH) | = - ¢ Z& I A8 (8 4+ 5,40 (3.10)

s 5 r
* (Sn—i ¥ Sn+1)sn}

Cbserve that in case of the XYZ-model, where the Sn’sm commute for

different n % m, the equation of motion can be written as
=2 (3xvH) (3.11)
Therefore we are going to study dynamical systems of the form
- -2 (3 x ) (3.12)

on the submanifold M(32 - ¢) of operators given by the constraints

all n € %

i
@]
bty

(89,557 = paip _ed7 ST 5 T os sy = e for
m n,m n o1 m

Fortunately, all the flows (3.12) leave this manifold invarian
en to the special case where H = Ho s

{3.13)

t.

Particular attention will be giv
_ Ko, oK oK
HO = - 6(2H +}\A) - 6 nzk(Jk Srl Sn—i A un un )

L

§ ,in the spin 172 case,the equation of motlon

of  the XYZ-model. On M(S2 = ¢) we introduce a pracket for densities

fg,H = -2 (VG, S x VH)
def

which fulfills the Jacobi-identy on this specia
This makes sense since &

7.,12) if and only if

3

yielding for special
{3.14)

1 manifold. We call

this Lie-structure the Poisson brackets.

density G 1is invariant under the flow (
(3.15)

G, + (G,HY = 0,
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therefore H 1s called the Hamiltonian of (3.12). Furthermore, the

map G - -28 x ¢ is a Lie-algebra homomorphism from the Polsson
brackets into the vector fields.This is very much the same as in the
continuous case 2. Hence g x maps gradients of conserved densities
into infinitesimal generators of one-parameter symmetry groups.

Now, we are loocking for mastersymmetries for the Hamiltonian HO
in the Lie-algebra of Poisson brackets. A good candidate seems to be
< Si (3.16)
since it lead to success in the spin one-half case. But alas, it is not
a mastersymmetry in the case of arbitrary spin. Fortunately, we can
consider it as an approximative mastersymmetry. Let me explain what
that means. Recall that & was the distance of lattice points. Terms
of the form 6N we call of N-th erder, furthermore differences like
S, Sn-q 2are called of first order,and so on.For other terms the 6-
order is introduced by the reguirement that it shall be multiplicative.
A vecborfield or a density is said to be an approximative symmetry
generator or conserved density if 1ts commutant with HO or & x VHO,
respectively,is at least of first or higher order in 6. Now, even 1in

the case that we put in (3.13)

o= & - (3.17)

the quantity (3%.16) is an approximative mastersymmetry in the sense
that {T,HO} is approximately conserved. Hence, we obtain (after some
commutativity arguments) a mastersymmetry if we put & - 0. Assuming
that 8§ then becomes a differentiable function we can replace sums

by integrals and (6-1—times—differences) by derivatives. Then the
Hamiltonian HO goes over into

i = [ (E 3 s SR v s sK(x)) ax  (3-18)
Limit k o

and, after a sultable rescaling, the equation of motion goes over

in the well-known LL-equation.

8. =8x8 41 Sx (FS) where ()% = 5 gk . (3.19)

Qur 1limit procedure ylelds mastersymmefries in the Poisson brackets,
as well as in the vector fields. These are exactly the mastersymmetries
described in great detail in Ref. 12. Rather puzzling is the fact
that the artificial mastersymmetry of the XYZ-model becomes an honest
inner derivation by this procedure.

Still,we are allowed to interprete (3.19) as an evolution equa-

tion for operators or scalars. But in case of operators we have to
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keep in mind definition 3.8. Of course, the mastersymmetries given in
Ref. 12 are only these for the scalar case. They have to be modified
in the operator case. However, the operator case Seems rather dubilous
to me,since it means that we have to look for a solution in a space
of operator-valued distributions which can be multiplied. Maybe,

that carn be carried out in the context of slmost-bounded distri-

butionsls.
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