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1. Introduction

In his beautiful book on topology and order [19], as well as in many
other fundamental papers, Leopoldo Nachbin has given invaluable con-
tributions waving the fibre of order-theory into the fabric of analysis, a
concept which has proved its advantages more and more over the years.
In fact, an order theoretic frame provides an effective setup for many
concrete situations which, on the first glance, do not seem to be related at
all to order-structures.

In contrast to that the applicability of order theoretic fixpoint theory
seems not to be widely known. But indeed, many of the fundamental
theorems in abstract analysis deal with objects which are maxima.l (or
minimal) in some intuitive sense. For example: The minimal sublinear
functionals which are automatically linear, or ‘minimal’ sets of points of a
convex set where the linear maps attain their maximum (whi‘ch lead'to
extreme points), and so on. This list could be continued for quite while.

In the context of fixpoint theory this means that there 1s a demanfi fgr
fixpoints being maximal in some sense. But alas, such ﬁxpointsvdo exnst'm
general only under additional assumptions on the maps Wi‘HCh are 1n-
volved. For this reason in this paper the notion of maximality 1$ weakened
and replaced by exposed fixpoints which are introduc'ed in the next
section. There are also given the basic definitions of this paper and an
existence theorem for exposed fixpoints is proved for decreasing maps
and families of such maps. .

In Section 3 these results are applied to the lattice of superlme.ar
vector-valued functionals on some abelian semigroup. There, *?‘e ﬁx.pomt
theorem yields strong combinations of Hahn-Banach and Krein-Milman

type theorems. . familics of
In Section 4 an iteration theorem for almost commuting amites
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i i hich
decreasing maps is presented, generalizing the 1teratziont}tllilsezll;zlzlia\lﬁcase
was proved in [8] for the case of a single map. Already  analyds (s
had turned out to be 3 rather efficient tool in many areas o

15]). _
[S]z;n[gsnpdar[ts 1))1’ this paper follow the widely circulated b(;lt l;;]::hblzlz)ij
preprint [7]. But the relevant definitions have been metl sded o
transparent, the corresponding theorem.s hgve been exte
proofs have been cast into 1 short and digestible form.

2. Exposed F iXpoints

We consider 3 partially ordered set (X, =). If x=<y, Fhen we SaI{] );hlz
above x. or, x is below y.For x<y and x # y we W“Fe X<y. that
following we assume that X is inductively ordered, which meéng;num.
every chain (e, linearily ordered subset of X) has to have an in s
Of course, inf§ thep is the supremum of X (and will be denoted by o

Now, let yg consider 3 decreasing map ¢ : X - X, i.e. ¢(x)< x for
YE X A trivial consequence of Zorn's lemma is (see [1]):

Lemma (2.1), (Zermelo’s fixpoint lemma.) ¢ has q fixpoint.

average reader may not

_ . calities we
be Interested In set-theoretic technicalities
resist the temptation tg j

nclude ap effective’ proof of this lemma at this

€35 we add such 4 proof in the appendix.

218 ¢-above y if ¢(2) = x. This implies that z is ;'1b0v€ *

since ¢ s decreasing. We say that o ¥-¢xposes y, if every z which is ab'ove

vand o- be ¢-above ¥. Finally, x 1s called qo-exposet_ia if x
Its below x. [ other words: x is ¢-exposed fﬁ for

€re is some ; = Y with ¢(z)= x such that y 1s not

In case that op]

Y one map
instead of “¢-expo

- ‘ es’
¢ 18 mvolved we say for short ‘expos
ses’.

‘Eﬁective is called eve

. i A
rything which can be proved in 7 (Zermelo-Fraenkel) without A
(axiom of choice),
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The following are easy to verify:

Remark (2.2). (1). I is exposed.

(2). x exposes every element below x.

(3). Let x, = x, and assume that x, exposes y. Then x, exposes y.

(4). Let Y be a chain in ex(X) (the set of exposed points), then the
X-infimum of Y is again exposed, hence ex(X) again is inductively
ordered.

Proposition (2.3). The ser ex(X) of ¢-exposed points is ¢-invariant.

Proof. Let x be exposed and assume that ¢(x) exposes y. We have to
prove that y < ¢(x). We know that x exposes y (Remark (2.2) (3)). This
implies x = y since x is exposed. So, z = x is above y and p-above ¢(x).
Therefore z must be p-above y, since ¢(x) exposes y. This gives e(z)=
e(x)=y. 0O

Theorem (2.4). ¢ has an exposed fixpoint.

Proof. Since ex(X) is g-invariant and inductively ordered we can apply
Zermelo’s fixpoint lemma to ex(X) instead of X. [

In order to show that exposed fixpoints are, in a certain sense, maximal
We give some examples.

We call ¢ order-convex if x<y<z and ¢(x)<¢(z) always mply
vl)<e(y)<e(2).

Proposition (2.5). Let ¢ be order-convex. Then for every exposed ﬁxpoinfx
we have x < ¢{(y) <y whenever x < y. In particular: Every exposed fixpoint
'S @ maximal fixpoint.

Proof. Because of y > x we have that x does not €xpose y (since x 1S
exposed). Hence, there must be some z with z =y and ¢(z) = x but not
Y<¢(z). Hence ¢(z)=¢(y)=¢(x)=x which means in particular
e(y)#y. 0O

The map ¢ is said to be monotone if x <y always implies ¢ (x)< e(y)
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Proposition (2.6). In case thar © IS monotone there is only one exposed
fixpoint. This exposed fixpoint is the maximum of all fixpoints.

Proof. Let x be an exposed fixpoint and y some fixpoint. Then, if z is
above y we have e(2)=p(y)=y (monotonicity). This means that x

€Xposes y. Hence y < x since x was ¢xposed. So x must be the maximum
of all fixpoints, in particular it is unique. [

For technical reasons we add:

Proposition (2.7). There always an exposed fixpoint x < ¢(1).
Proof, Obviously, xv°

={xEX4ngo(I)} IS g-invariant since ¢ was
decreasing, So apply

Theorem (2.4) to Xx° instead of X to find an

It is simple 1o transfer the preceding results to families of decreasing

maps. Let ¢ be 4 non-empty family of decreasing maps X — X. A point is
said 1o be o common fixpoint if it s 4 fixpoint for all ¢ € @,

A point x € X s said to be D-exposed if for every y € X, which is not
below ¥ there are ¢EDand z € X with, , =y and ¢(z) = x such that y

is not below 4} together with the axiom of choice easily

Theorem (2.3, There is gy Xposed common fixpoing for @.

A little bit more refined-

Theorem (2.8). For any ¢, € ¢ there i an exposed common fixpoint x for
D such the; X< g,

Proof For y.EX deﬁne ]\/[) :{‘p E‘DI‘P()’) 7‘)’} and let v be a choice

nonempty M, a single element and having
b Property that ¥(M,)= ¢ if oo(I) # I Define a decreasing

¢(y)= Y(M )(y) it M#8 g V= v if M — d
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From Proposition (2.7) we obtain a ¢°fixpoint x < ¢°(I ) = ¢o(I ), which by
construction of ¢° must be a common fixpoint for @ because ¢°(x)= x
implies M, = §J. Now observe that ¢°-exposed implies @-exposed. []

Remark (2.9). (1). Even if all the elements ¢ of @ are order-convex then
in general the map ¢° occurring in the proof of Theorem (2.8') is not
order-convex. Nevertheless, the proof of Proposition (2.5) carries over.
That means, if all the ¢ € @ are order-convex then for every @-exposed
common fixpoint x with x <y there is some ¢ € @ such that x < ¢(y)<y.
In particular x is a maximal fixpoint.

(2). Monotonicity does not carry over from the elements of @ to the map
needed in the proof of Theorem (2.8). In general, the result of Pro-
position (2.6) is false for families. However it carries over to the situation
where all elements of ¢ commute (an easy exercise or a consequence of
Proposition (4.3)(5).

Remark (2.10). In case that @ is a countable set, then the choice function
in the proof of Theorem (2.8) exists without the help of AA. Hence, in
this case Theorem (2.8) can be proved effectively. In general, already the
existence of a common fixpoint is effectively equivalent to the axiom of
choice as shown in the appendix.

At the end of this section we give a version of Theorem (2.8) which 1s
technically more involved. but rather useful in applications.

Definition (2.11). A set X' C X is said to be completely ®-invariant if
(1. ¢X'C X' for all ¢ €D

(2). The X-infimum of every chain in X' again belongs to X'

Q). rex.

Observe that intersections of completely @-invariant subsets are again
completely @-invariant. Remark that, in case that @ = {g} is a singleton,
the set of @-exposed points is completely @-invariant (Proposition (2.3)
together with obvious considerations). This fact does not remain true for
arbitrary families. Nevertheless we obtain:

Theorem (2.12). Let X' be completely ®-invariant. Then for every ¢ & P

there is an exposed common fixpoint x for @ such that x belongs to X' and
fulfills x < i (1)
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Proof. Take ¢° as in the proof of Theorem (2.8"). Then X' is tz;lsi(;
completely {¢°}-invariant. Since the set ex(X) of ¢°-exposed :thlsn N
completely {¢°}-invariant the set X°= X'MNex(X) must have this p

perty. Take a ¢°-fixpoint x in X° with x < ¢o(1). Then x has the require
properties. [ ]

3. Subadditive Functionals

i i ' al
Let §=(S,+, <) be some preordered abelian semigroup with neut;e
. . o
element 0. In a preordered semigroup the semigroup structure has t

_ . : . n-
compatible with the glven preorder relation < in the sense that
equalities can be added.

Furthermore, we consider a com
the real numbers). Suprema and
inf{ }. We write max{A}
element ~x = inf(R)
the obvious way.
0(=2) = ().

let m: SR be a suba
N-homogeneoys

plete vector lattice (R, <) (for example
infima in R are denoted by sup{} and
in case that sup{A} € A. For technical reasons an
is adjoint. To R = R U {=oc} addition is extended in
Furthermore we define A(—=)= - for real A >0 and

dditive functional. Subadditive means that  is

m(ns) = nr(s) forallsESandn=0,l,2,...

and

(s, +5,) < w(s,) + (s,) forall s, 5,€ 8.

7 1s said to be Monotone if

foralls, s, e §.

An N-homogeneoys functional ¢ - § =R is called superadditive if

(s, +5,) > o(s)tw(s)  for all's;, s,€ §.
Since R has an order relation, the fun
endowed with no

rder relatiop
order relation we denote agq by <

Ctionals $— R are canonically
given by pointwise order on S. This
3 . . -
SINCe no confusion can arise. Sow = 7
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means w(s) < 7(s) for all s € S. In case that w < 7 then A (w, 7) denotes
the set of superadditive functionals g between w and 7, i.e. w =g=m
Observe that the pointwise infimum of two elements of A (w, 7) is again
in A{w, #) and that every ascending chain in A(w, w) does have a
supremum.

Of course, a functional which is sub- and superadditive is called
additive. We say that a superadditive o exhausts a subadditive 7 if

7(s5))+ w(s,) < w(s,+s,) foralls,s,€S.

This means in particular that o <7 As we shall see later, the real
meaning of this definition is that 7 has to be the pointwise supremum of
all additive functionals between w and 7, i.e. the additive x4 = w ‘exhaust’
7. Observe that if w < 7 then there is always a unique maximal subad-
ditive functional p = [, w] with @ < p < 7 such that w exhausts p. This
functional is given by

3.1)

p(s)=[m w)(s) = inf{-’i—(ﬂ-(ms - IsmENTES w()# "”} -

By construction [, w] is monotone whenever = is monotone. Further-
Q
more one observes that [, w]|<[7°, »°] whenever 7 < 7° and v <"

Definition (3.1). A superadditive u € A(w. ) is called weakly exposed (in
A(w, m)) if for every superadditive ¢ = o and every subadditive p <
with p # ¢ such that g exhausts p there is some s, € S with

(3.2) q(sy) < p{sy)
and
(3.3) p(50) = p(sy) -

The main point of this definition is that we have both inequalities for
the same s, and that p(s,) 1s strictly greater than g(s,).

Proposition (3.2). Every weakly exposed i € A(w, ) is additive.
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Proof. Put ¢ =y and p=[m, u]. Then g exhausts p. Since there can be

i bad-
no sy with g(s,) < u(s,) we must have g =p = u. Hence u is also suba
ditive since p is. [

In addition we have proved:

Proposition (3.3). If 4 € Mo, m) is weakly exposed then w =|m pn]. In
particular: If w is monotone then M 1S monotone.

Now, we define in X = A (e, ) a preorder relation <* to be the inverie)
of <, ie. x,<*x, if and only if X,(s)= x,(s) for all s € S. Then (X, <

Is inductively ordered. For x € X and ;e S we define ¢ (x):S—>R
R

¢:(x)(s) = sup{x(r) + [, ()| 1€ S, n €N with s = 7+ nt}.

The function ¢x} is su
exhausts [, x].

P={e() 1€ s)

peradditive >=x and we have px)smw s*ince X
S0 ¢,(-) must be a decreasing map on (X, <*). By
we denote the set of all these maps.

Lemma (3.4),

If x is a common exposed fixpoint for @ then it is weakly
exposed.

Proof. Observe that x is a D-fix
4 superadditive g =
exhausts p, [f

point if and only if x = [, x]. Now, take
© and a subadditive p <7 with p#q such that ¢

9 would be <*pelow then, since g exhausts p (i.e.
[P.q]= p). the inequality

diction p =g So. since x is ¢-exposed, there
d some z € X with (1) z<gqg and (2) ¢ (z)=<x
4 does not hold. From (1) and (2) we obtain

Xs)=¢ (2)(s,)= [

must be some €S an
such that (3) golz) <

™ 2Ms0)= [, 150 = [, g)(50) = p(so) = g(s0)

If g(sp) < x(s,) would
X(50) = [, z](s,), usin
9(8) < x(s;) and x i

not hold then 9(50) = x(s,) and we get from g(s,) =
g(l),a contradiction to (3): 7 = ¢,(z)=<gq. Hence,
weakly exposed. ]
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Combining this lemma with Theorem (2.8) we obtain:

Theorem (3.5). Let 7 be subadditive and monotone and let @ be superad-
ditive with w < m. Then for every fixed t,€ § there is a monotone, additive
and weakly exposed u € A(w, 7) (i.e. @ < p < ) such that

plty) = mf{nlq (m(mi,+ ) —w(@)| 1smEN,LES, w(t) # —oc}.

Proof. Theorem (2.8') and Lemma (3.4) give us a weakly exposed u
(which then must be additive and monotone, anyway) such that ¢,(w) < u.
in particular u(t)=[7 w)(t). We have to prove u(t)=[m @](%).
Because of u = w we have [m, w](t,) = [ (1) and this is equal to u(z)
since u is weakly exposed (Proposition (3.3)). [

Remark (3.6). In case that S has only countably many elements one easily
observes that all inf’s and sup’s are going over countable sets. Hence, in
this case it suffices that R is o-complete and has the additional property
that every bounded linearily ordered set has a supremum. So, in this case
R can be replaced by any C(S), S compact ¢-Stonian.

Remark (3.7). A trivial observation is that Theorem (3.5) contains the
classical Hahn—Banach theorem as well as the Hahn-Banach theorem for
the case when R is a Dedekind complete vector lattice. (This latter
theorem goes back to the fundamental paper [18] of L. Nachbin, see also
[10] or [11].) In the case that S is a vector space and that m(A,)—0
whenever A, - () (A, € R) then the required R-homogeneity follows right-
way from the fact that @ is dense in R. Furthermore, in this case no
additive 4 can attain the value —= because we always have w(s)+

(=)= u(0)=0.

Remark (3.8). If S is countable then Theorem (3.5) can be proved
without AA by using the principle of dependent choice. The same is true
in case that § is a vector space with a countable dense (with respect to the
topology induced by ) subset. However, in general the theorem 1s
effectively equivalent to the axiom of choice since a special consequence
Will be that every unit ball of the dual of a normed space has an extreme
Point and it is known that this statement is effectively equivalent to AA
(3] or [17]). This also shows that Theorem (3.5)is effectively independent of
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' Boolean
the Hahn-Banach theorem (which is a consequence of BPI, the Bo

i ; 13| and
prime ideal axiom) since the AA is effectively independent of BPI ([13]
[16]).

3.1. Simple Consequences

We adopt the same notation ag before. Let Add(w, 7) :ie t(l)liﬁ; tSe:L?Ef
additive maps in Aw, 7). Add(w, 7) is a convex set. p0</\<1’
Add(w, 7) is said to be an extreme point if < Ay, + (1 - A)w,,

v ¥, € Add(w, 7) always implies v, = »,.

Lemma (3.9). Every weakly exposed p. is an extreme point of Add(w, 7).

and
Proof. As above let (*) u <Ay +(1-M)v,. Put p=max{u, vy Va}

; trivially
9= miniu, v, »,}. We have to show p=q. If p# q then, since g triv
exhausts p, there would be some s, € S with

min{v(s,), Vyspl} < (s5) = max{,(sy), v,(s,)} .
Clearly a contradiction to (%), [

Corollary (3,10). Add(w, 7) has an extreme point.

Corollary (3.11), (Maximum
on Add(w, 7) alreqd

equal to |7, w](s,).

. - m
principle.) Every s, € § attains its Supfem“is
m
Y on some weakly exposed element. The supremu

€S. Since every , ¢ Add(w, 7) is between @ and 7]: nthl;
casily seen from the additivity of v that v(sy)) <|[m, w]|(s,). Now, take
weakly exposed u with 1(sy) = [, @](s,} given in Theorem (3.5). O

Thus,

via the biopolar theorem,
Bauer's

maximum princj
consequence is that [
between w ang 7. Hen
all additive elements b

the Krein-Milman theorem and
Ple are special cases of Theorer (3.5) Anothetar
T, w] is the supremum of all additive elements

T f
€, g exhausts p if ang only if p is the supremum o
etween q and p.

3.2 Vectorielly Exposed Poingg

In the case thar R # Wwe have additiong) interesting consequences.
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Assume that w and 7 do not attain the value —= and that R has an order
unit I. Then by the fundamental Kakutani-Krein-Stone-Yoshida theorem
[11, p. 95] R must be isomorphic to the vector lattice C(K) of real
continuous functions on some extremally disconnected compact set K. So,
let us put R = C(K) which gives us a multiplication in R, since C(K)is an
algebra. By §,, k € K, we denote the point evaluations on C(K). By
Ay (0, 7)= A(8, °w, §, > w) we denote the real-valued superadditive func-
tionals between 8,°w and 8,0 . In the same way we define Add,(w, 7).

A superadditive u € A(w, 7) is called vectorielly exposed if there is a
meagre subset M C K of K such that for all k € K\M, the functionals
6;°op are weakly exposed in A, (o, 7). As an exercise for the reader we
leave that vectorielly exposed implies weakly exposed.

In analogy, a u € Add(w, 7) is said to be vectorielly extreme if, except
on a meagre subset M of K, the real-valued functionals §,° u are extreme
points of Add, (w, 7) (k € K\M).

Whenever u is vectorielly extreme such that u < Ay, + (1 - A)w,, with
AEC(K), v, 1,€ Add(w, m) and 0= A(k)<1 (for all k € C(K)) then
Wy = vy =p . where H ={k € K|1>A(k)>0}. Hence, ‘vectorielly
extreme’ is a stronger property than ‘extreme’. An application of Lemma
(3.9), for the case R =R, yields that vectorielly exposed points are
vectorielly extreme.

Now, it is interesting to observe that the Bauer maximum principle also

applies to this situation:

Corollary (3.12). (Vector valued maximum principle.) Every s, € S attains
is supremum on Add(w. w) already on some vectorielly exposed element.

Let us sketch the proof. Take X' C A(w, ) the set of those superlinear
q such that 8,04 is for all k€ K\M (M some meagre subset) the
maximum of weakly exposed elements in A, (w, 7). In fact. this set is
completely @-invariant. Hence, the u in Theorem (3.5) can be assumed
to be in X', which implies that u is vectorielly exposed. If the reader
wants to check in detail that X' is completely @-invariant, he should keep
in mind that for lower bounded subsets B of C(K) the functions

f=inf B (infimum taken in C(K)).
fo(k) = inf{b(k)| b€ B} (pointwise infimum),

coincide except on a meagre subset of K ([22] or [11, p. 99)).
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At this point we like to remark that not only Bauer’s maximum
principle carries over to this situation but also Choquet’s theorem [10].

In general, even in the situation R =R the set of weakly exposed
points is strictly smaller than the set of extreme points (see [6] or [9] for
situations which may serve as counterexamples).

4. Other Applications

4.1. Boundaries for Compact Sets

Let K be some compact set and @ a point-separating family of upper
semicontinuous real valued functions on K. Max{K} denotes the set of

those k € K such that for every compact K D K°D {k} with K # {k} there is
some ¢ € @ with ¢(k) = max ¢(K°) > inf ¢ (K°).

Theorem (4.1). Every o€ P attains its K-maximum already on Max{K}.

Proof. Let X be the set of nonem
inclusion. F

given by

Pty compact subsets of K ordered by
Or every ¢ € @ denote by ¢’ the decreasing map ¢': X > X

¢'(K°)={k € K° ¢ (k) = max e(K°)} K°€eX.

The set @' = (¢ &

} consists of order convex maps, hence (by Remark
(2.9)(1)) there is some

fixpoint K, € X such that:

.1 #i(Ky) C pi(K).
(+2)  Forevery K, c koc x with K, # K° there is some ¢’ € @'
with K, C o' (K°)c Ko
Since @ is point SCparating any P'fixpoint must be a singleton K, = {kf{} '
(4.1) means that ¢, attains on k) jts K -maximum and (4.2) yields that ko is in
Max(K). O

The interegt int
subset of the Chog

his Max-boundary stems from the fact that it is always 2
Max(k ) is strictly

“etboundary (6] or [11]), Byt ig fact it may happen that
smaller thap the Choquet boundary of K.
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4.2. Iterations

Consider a partially ordered set (Z, <) and a family @ of decreasing
maps on Z such that:

(4.3) @ is composition-closed, i.e. if ¢, ¢, € P then ¢, e, E P,

(4.4) @ is almost commuting, ie. if ¢, ¢, € P then there are

®3, 0, € P with @300, = ¢,00;.

Standard examples for a composition-closed almost commuting set are
given by the composition-closed families of maps which are generated by
families of commuting maps. A subset Y C Z is said to be @-directed it
for all y,,y,EY and ¢ € ® there is some y,€ Y with y,<¢(y,) and
Vo< ¢(y,). We assume about Z:

(4.5)  Every nonempty ®-directed subset of Z has an infimum .

As usual, a set Y C Z is called ®-invariant if o(Y)C Y forall ¢ € ¢. A
map F . Z - 7 is said to be ®-absorbing if

(4.6) Feg=F forallg€E®.
and
(4.7) whenever F is constant on a @-invariant and @-directed set

Y then F is constant on Y U{inf Y}.

Finally, a decreasing map It : Z— Z is called an iteration of @ if it is
@-absorbing and fulfils:

(4.8) Folt=F  for every ®-absorbing map F.

There can be only one iteration. For if F is any decreasing @-absorbing
map then Folt = F implies F(z)<1It(z) for all z € Z. Hence, the iteration
must be the maximum of all decreasing @-absorbing maps, therefore it 1s
unique.

Theorem (4.2). There is an iteration for ®.
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. 1 1 t
Proof. Fix some arbitrary x in Z. Let X be the family of all @ 'mvarlan
®-directed subsets J of Z, = {z € Z| z < x} having the property:

4.9 Whenever J° is a @-invariant ®-directed subset of J with
inf{J°} >inf{J} then inf{J°} belongs to J.

X
Observe that X is not empty since @[x]= {p(x)| ¢ € @} belongs tgqut-
This follows from the fact that ¢ is a composition-closed ah.’nost com

ing set of decreasing functions. For Ji LE X write J, < J, if

(4.10) LT

and

4.11) if y, € J\J, and Y,€J, then y <y,

Observe, that X s inductively ordered. Define a monotone (for that we
need (4.9)) and decreasing map @°: x - x by

¢°(J)=Ju{cp(inf1)l pEQorp=1d,}.
Now. take the maximal (or exposed) fixpoint J. of @° (Proposition (2.6)).

rgest, i.e. smallest with respect to C. element of X
containing x and its infimum. We define

It(x) = inf J

Then, by construction, It(.)

has the required properties: It() is @-
absorbing, because every n

on-empty
()= {2 € 7] It(z) = x,)
st be constant on J, and if

the same. Hence, F must 'be
on any It '(x,), which implies

It(x") = It(x) then the inf’
constanton J U J.. Ther
Felt=F

sof J and J. are
efore F ig constant

Propasition (4.3), (- If xy is some . fixpoint then It(x,) = x,.
). It(-) is idempoten;, ; o MY =1t
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(3). It maps Z onto the fixpoints of Z.

(4). Let Fbe ®-absorbing such that F(z) < ¢(z) forall ¢ € ® and all z with
F(z)<z. Then F(z)<1t(z) whenever F(z)<z.

(5). If all ¢ € @ are monotone then 1t(-) is monotone and It(x) is the
maximum of all @-fixpoints <x.

Proof. (1). If x, is a fixpoint, then obviously J,, = {xo} (C-minimality of Ji)
hence It(x,)= x,. (2) is an immediate consequence of (4.8) and the
fact that It(-) is itself @-absorbing. (3). Since It(-) is ®-absorbing and
decreasing we obtain (with (2)) for every ¢ € @

It(z) = (ItY(z) = (Ite)lt(z) < @ It(z) < It(z).

Hence, It(z) must be a ¢-fixpoint, and a @-fixpoint because ¢ was
arbitrarily chosen. (4). The condition implies that F' is constant on J. and
attains a value less than or equal to inf{J,}. (5). Let x, be some arbitrarily
chosen fixpoint <x. Define F(z)= x, for all z€ Z. Since all ¢ € ¢ are
monotone we have ¢(x,)= x,<¢(y) whenever x,<y. Hence, F fulfils
the condition required in (4). So, x,= F(x) <It(x). In particular, x, < It(x)
which proves that It(-) is monotone (for z, < z, put X, = It(z)). U

For the case that & is generated by a single function Theorem (4.2) was
first given in [8]. In this paper very many applications were given: Tarski’s
fixpoint theorem [23], Banach’s fixpoint theorem for contractions and
generalized contractions [4], Edelstein’s fixpoint theorem for condensing
maps [5], Sadovski's theorem for limit-compact maps [21]. and the Kirk
and the Belluce_Kirk theorems for normal structure [14] and [2]. The
corresponding generalizations of these theorems to almost commuting
families we leave for the fun of the reader of this paper.

Furthermore, we would like to call to attention the survey paper [1] of
Amann, where similar ideas (based on [8]) have been applied to boundary

value problems.
An extensive study of the iteration theorem has been carried out in [15]

by Th. Landes.

S. Appendix

Here we gather those details which were off the mainstream of the
Paper and therefore left out.
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5.1 Proof of Zermelo’s Fixpoint Lemma

We adapt the proof of [20, p. 391] following an idea of Halmos [1?." P. 6411;
A family I" of linearily ordered subsets of X is said to be admissible i

(). {Ijcr.
(). I€yforalyer,
OD i)y €T then 5 U{pGnfy)e T -
(iv). If GCT is upwards directed with respect to inclusion
then U{y|ye Gler.

The family of all linearily ordered subsets O {1}is admis.sib.le. ObviOllJS.lya
the intersection I'* of all admissible families is again admissible. We claim

. . *
that y* = U{y|y €1} is an element of I'*. If that is true, then mf{}./ }
must be a fixpoint since ¢Is decreasing. So it remains to prove the claim.
Take

F°={yEF*ffora]lBEF*wehave'yCBOYBCY}-

Fix some arbitrary § € I'°, consider

r(5):{YEF*\yCSorBU{qp(infé)}Cy}.

Both I'* and 1'(3) fulfill (), (i1)
has from being
Hence [(5)

and (iv) of (5.1). And the property WhiC.l?_ 0
an element of implies that I'(8) also fulfils (5.1)(111')-
=TI*. But then from the definition of I'(§) we obtain
O Ufe(inf 8)} & I, Hence, since 5 wag arbitrary, I must fulfill

(5. 1)(iii). So we have [ = I'* and this set must be Iinearily ordered. Then
(3.1)(iv) implies y* € [+ O

3.2. Proof that the Existence of q Fixpoint js Effectively Equivalent to the
Axiom of Choice

Let M be aset andd

(power set) and wher

formally f(g) = #).

enote by # the set of 4| pairs (N, f), where N C (M)

¢ fis a choice function for N (if D€ N then we define
We define ap order relation on ¥ by

N <N, e N> Nyand f, = f,.
Then (%, <) is inductive]

Yy ordered and (
YEYCM we define 3

18}, 8- 9) is its supremum. For
map ¢y,Y by
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(N, f) if YEN,
y,Y(Nvf) = o] _
¢ (NU{Y}L f°) where {]{O(I’;/) Iy , otherwise .

The maps ¢, are decreasing and the common fixpoint must be of the
form (2(M), f*). Hence there is a choice function f* on all of M. []
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