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ABSTRACT

A method is given to determine auto-Bicklund transformations and
hereditary recursion operators out of the hidden intrinsic algebraic struc-
ture of single soliton solutions. New auto-Bicklund transformations are

presented. Bianchi permutability and soliton phase shift are explained in
terms of commutative groups,

L Introduction

For completely integrable systems we claim that ABT (auto-Blicklund transfor'ma'
tions) can be computed from the single solitons. This does not mean that equations
admitting solitary waves do have auto-Bicklund transformations, only that solitary

waves of completely integrable systems do have hidden symmetries which yield
ABT’s.

As an introductory example we perform the necessary computations for the
Kdv

S(x+¢n) = -;—cosh‘z[-%(x - xg + cp)}. (1.2)
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The K4V is translation invariant. We consider translations by +f and —B , respec-
tively for (1.2)

Ve e Ve —Ex -B (1.3)

—x o —x+ —
5 2xBand2x—)2

and denote the corresponding solutions by sg and s_g . We decompose into odd and

even parts

1 1
V+ = E(SB + S“B) , V_= E(SB - S_ﬂ), (1-4)

and, in order to abbreviate notation, we introduce

Ve
k=—
2

g =(x—x+ ct)
NGKE) = (cosh2(KkE) cosh(B) — sinh’(kE) sinh?()}
= {cosh?(kE) + sinh?(B)} .

(1.5)

Now, we consider explicitly sg and we apply the addition-theorem for the cosh-

function. Splitting up sg into odd and even parts yields

Sp = 22 cosh™2(kE + B) (1.6)
= 2k%{cosh(kE) cosh(p) + sinh(kS) sinh(B)}
= 2U2N(KE)(cosh(kE) cosh(B) — sinh(kE) sinh(B)}?
=V, +V.
where now the odd part V_ and the even part V, are given by
V, = UEN(KE)*{cosh?(kE) cosh(p) + sinh2(kE) sint*(B)} 17
(1.8)

V. = ~4k3N(kE)*{cosh(kE) sinh(kE) cosh(P) sinh(B)}.

even part V, is a polynomial of

Considered as functions in the variable ¢, the
 Furthermore V_ is , apart from

second order in the common denominator N(kS)
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multiplication with a constant, the derivative of N(kE) . Thus we obtair? a rel_atlon
between V, and V_ . Let us write down this explicitly. Simple computations give

Vi+ YN+ 8N = (1.9)
where
¥ = —2k*cosh(2p)
8 = k%sinh?(2p)
and
DN = ( 2k cosh(B) sinh(®) 'V . D = Eai (1.10)
This gives
v, - 2k ‘cosh(ZQ) DW_+ (Dlv =0 (1.11)
sinh(2[)
Now, let B depend on k in such a way that
A = =2k coth(2B) (1.12)

is independent of k . Then we have the following algebraic relation
- | P
BM(sp,5.9) 1= (sp+ 5.9) + D Hsp - sp) + 5 (D75 - 5.p)2 =0

where the coefficients are independent of k=(Vc )2 . By translation invariance we
then have

1

BM(s , 5_0) = (5 + 5_gp) + ADN(s = 5..) 4 L (Dls 2=0 (1.13)
(5, 5_28) = (5 +5_5p) (5 ~ 5_op) 5 (D75 = 59p))

This relation between s and S8 we consider for general arguments

BY (u,m)=u+ g+ D! (u—ﬁ"H% (D7 (u - i)} (1.14)
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# and i on the manifold S of C™-functions vanishing rapidly with all their deriva-

tives at infinity. We consider u as fixed. The map

u — i = fa() (1.15)

given implicitly by

BMw ,u)=0 (1.16)
is injective around u if the implicit function theorem condition is fulfilled. This con-
dition requires that for B™ the kernel of the variational derivative Bm“ with
respect to u has to be trivial, i.e. for every v in the tangent space at u it must hold
that whenever

B® [v] =0 and BM@,@)=0 1.17)
then
y=0. (1.18)
Recall that the partial variational derivative B™,_ is defined to be
BM [v] = -g—e- BMu+ev, T e (1.19)

Those A violating this condition for u we call the spectral points of u . The other A
are said to be non-spectral points.
Obviously (1.15), or (1.16), map the soliton solution § onto S_28 where

2B = arcoth (—-%). (1.20)

This relation is called the phase shift relation. In particular § a:d all its transla-
tions are mapped onto the zero function for A=*+c. Hence P 2k are SPCCUali
points for the one soliton having celerity € = 4k, All other A’s are nonspectra
because for BM(u , ) =0 the operator B™ is a differential operator which 18
invertible on the vector space S.

~ The set of spectral points in general is ﬁn
differential equation for v having only for certain
infinity. We shall see this in detail later on.

Now we return to the special case where 4 =5 and i
cu, = K(u) = e + Guu,
cit, = K@) = e + 6 i,
solitons. Translation invariance

ite because (1.17) is an orflinary
2’s solutions vanishing rapidly at

= S_28- Recall that
(1.21)

(1.22)
of BM(u , 1)=0

because both functions are on¢-
given by the free parameter Xp yields
(1.23)

B™, [ ]+ BV %] =0

and insertion of (1.21) and (1.22) gives



A = 24
B, (K@) + BY[K@)] = 0. (1.24)

Observe that for nonspectral points A, where i locally is uniquely given by
BV, w)=0 (1.25)

the equation (1.23) is a differential equation for u ( or rather the int.egral-of u )
And if this equation is nontrivial then on the manifold § under consideration this
equation has the same number of integration constants as equation (1.21).

But there is an essential difference between (1.21) and (1.24) + (1.25), com-
ing from the important fact that the relation B™ is independent of ¢ or & :

The solutions for (1.21) are a one-parameter family (parameter x;) whereas
the solutions for (1.24)+(1.25) are a two-parameter family (parameters x; and ¢ ).
Thus the system (1.24) + (1.25) has to many integration parameters. This can only
be if the system is trivial, i.¢. if (1.24) is identically fulfilled whenever (1.25) holds.

And, since the nonspectral points are dense, this must also hold for those A which
are spectral,

Thus we have found for arbitrary arguments: Whenever

BMu  1)=0
then

B(l)u [K@w)] + BN JTKGD) = 0. (1.26)

This relation is equivalent [4] o Bm(u,zT =0 being an auto-BYcklund transforma-
tion for the KdV (1.1), i.e. whenever u(?) is a solution of the KdV and &(r) is such
that B (u(n),u())=0 then iTr) is again a solution of the KdV. Of course, (1.26) can
also be proved by explicit computation since we obtain easily

(D*+3u+@)D) B, x) =0, (1.27)
This auto-Bicklund transformation is related to the ABT

(u+m+8+~;-[D‘1(u—a)}2=() (1.28)

which is usually found in the literature [ 1]. By the formal substitution
D' D4 constant

coming out of the existence of integration constants, (1.28) goes over into (1.26).

However, there is a notable difference between (1.28) and (1.25) since (1-_25)
is compatible with the boundary condition on the manifold § , L.e. with the require-
ment that u and & vanish at infinity, whereas (1.28) is not compatible with this
requirement. This point is essential in the following where we turn our interest 10
the spectral points of u.

Since BM(u, 7) = 0 is an auto-Bicklund transformation for (1.1) the pro-
perty of being a spectral point is obviously invariant against this flow. So we have
arrived at some kind of spectral problem for which (1.1) constitutes an isospectral
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flow (see [ 9]). However, this is a nonlinear

Spectral problem :
Given a solution u of (1.1), find those A’s such that there is some nonzero

vectorfield @ and some # on the manifold under consideration such that
B (uile] =0 (1.29)

and
BM(ui) =0 (1.30)
We do not know of any criteria which give reasonable answers to the question

under what circumstances such a nonlinear spectral problem is equivalent to a linear
one. However, in case of the KdV this problem is easily linearized (see [ 9

Variational derivative of (1.14) with respect to & yields the operator:
B=I+(D'u- DD +AD.
And the spectral problem (1.29) reads as follows
0=0+ O w-DD o+ ADlw

(1.31)

(1.32)

Abbreviation D~'w = v gives

Dlu-w)= -(fvi +A). (1.33)

Writing u + i as 2u — () and then replacing all terms u=iin (1.14) by (1.33) we

obtain
2u+(£+l) +—1-(-vf+k)2—l(-vi+l):0
v *T 2y v

which is certainly a nonlinear eigenvalue equation. By multiplication with v we

obtain
- .;-W . (1.34)

If this problem can be linearized there must be operators A(v) and ‘P(.u) such th‘at

A(w)v = Cv* and A()¥(u)v is equal to the left side of (1.34). Comparison of suit-
able terms yields:

DD {v +2uv +2 D! (uv))

Hence A(v) = DvD and ¥(u) = D* + 2u+ 2071uD . | o

Going back to @=v, WC $¢€ that @ is a solution of (1.29) if and only if @ 18

an eigenvector of

1
UV + VgV — 7 Ve
=D vDy . (1.35)

O(u) =D'~I’(u)D‘1=Dz+2u+ZDuD‘1. (1.36)

And if A is the spectral point given by (1.29) then A2 is the corresponding eigen-

value of (w).
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We like to know what the meaning of this operator ®(u) is. Sincer the KdV
(1.1) is an isospectral flow for this differential (or rather integro-differex'ltlal) opera-
tor we look for the second component A(k) of the corresponding Lax-pair

%mm=mmmm1 (1.37)

describing the time evolution of ®(u) if u evolves according to the KdV. This

operator A(u) is easily found by using the fact that BM(y , 7)=0 is an auto-
Bécklund transformation.

Take the time-derivative of (1.29) and replace the time derivatives of u and &
by the right hand side of the KdV to obtain

B, Mo, K 1+ B w, D)o, K@ |+ BV, T)wy] = 0. (138)

Since (1.29) holds u can be changed in (1.30) infinitesimaly by w without changing
u . Hence variational derivative of 4 by o and i by zero in (1.24) yields that the
first two terms in (1.38) are equal to

-B™,[K "W).
Hence, we can choose o such that
@, = K'(w)[a]. (1.39)
Inserting this into the time derivative of the eigenvalue equation
du)o = Ao, (1.40)
where A is time-independent we obtain
%‘D(u) = K'(W®(u) - UK (u) (1.41)
and”
A®W) = K'(u) = D3+6Du. (1.42)

Hence ®(u) must be a recursion operator ( [12}) or a strong symmetry ([ 7]) for the
KdV. In fact this is the well known hereditary Lenard operator {11] which generates
all symmetry generators of the KqV recursively.

Also from our construction via single-solitons follows the meaning of the
spectral points in terms of multi-solitons. Consider an N-soliton solution u of th_e
KdV, ie. a solution which for large 1 decomposes asymptotically into N single soli-
tons such that the overlap of these single solitons becomes exponentially sm.all.
Then by simple asymptotic arguments the spectral points of u must be those points
which are spectral for one of these asymptotically occurring single soliton solutions.

t . . )
)Actuakly on first sight this equaton only holds when applied to an arbi eigenvector @ of
app trary

D{u). But application of suitable local-global arguments then shows that this must be true in
general (see the widely referenced paper [ 6]).
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By (1.20) the spectral points of these single solitons are the \,=t2k,=c, (¢, speed
of the n-th soliton) which correspond to annihilations of these solitons by translating

them by

f=co= -é-arcoth(--%(—) (1.43)

out of finite sight.

Thus two facts are shown, namely
i)  that the eigenvalues of ®(u) are the speeds of the asymptotic solitons,

n solution then for spectral A, the it appear-

i)  that whenever u is some N-solito
n-th soliton 18 MISs-

SR A .
ing in B! "’(u,a)=0 is the (N—1)-soliton solution where the
ing.

REMARK:
For the explanation of phase shift consider a solution y=u(x,r) of the KdV

such that asymptotically for 1= +o0 3 soliton with speed ¢; = 4k,? is emerging. Let

(A ]
B )(uﬁ)=0 be a Bicklund transformation between this solution and another solution
ic behavior of u the

T Because of the local structure of B®(.) and the asymprot
effect of this Bicklund transformation on the emerging soliton is the same as if it
were a single soliton. Hence the corresponding soliton emerging out of i i, com-

pared to u , shifted by a translation of the amount
4B -2 arcoth(——). (1.44)

Vo e Vo

Sl_ﬂce the square root is multivalued we have no information about the direction of
this shift. So, comparing the asymptotic solitons emerging at =—° with those at

{=+00 we see that they are either shifted in the same direction or in opposite direc-
tions. Therefore the total phase shift of this soliton, compared to the corresponding

soliton of u, is either zero of
i—ft-mcom(—l—) (1.45)
ey ey
addition another soliton with speed €7 = 8k, is

emerging one can show by simple arguments that if the parameter A is In between
then the smaller soliton of & com-

the square roots of the two velocities ¢; and €3

pared with that of u is forwarded and the faster one is retarded. This can be shown
without looking at explicit solutions just by considering small perturbation of _thc
Bicklund transformation. Now consider A =VC2 ie. the Bicklund transformation
which annihilates the sccond soliton with speed €2 - ‘Assume the case ¢z>C1 - Then
the annihilation is done by shifting this second soliton for (-t into plus infinity.
The phase shift of the soliton with speed c; is then

In fact all cases are possible. If in
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+—~4—arcoth( Veyley ) (1.46)
Ve

In case cy<c; we have to change the sign of this phase shift. Now, take a pure mul-
tisoliton solution and annihilate successively all emerging solitons except'the one
with speed ¢, . Then the phase shifts have to be added. Because of Bianchi permu-
tability (see section II ) the order of annihilation does not play any role. And the
phase shift of the soliton, emerging out of u with speed ¢, , compared to the
corresponding single soliton, which is the result of all these annihilations, must be

%Z g; arcoth( \c;/c; ) (1.47)
Cp i

-1 if C£>C1
g =

where

+ if¢; < .

A result well known from the literature [10].

So the result of all our considerations is that looking at the hidden algebraic
structure of the single soliton of the KdV we find the N-soliton structure (Vi§ the
auto-Bdcklund transformation), the abelian symmetry group (via the hereditary
recursion operator). Furthermore, via the operator ® , one can find the bi-
Hamiltonian structure ( [ 4]) and the angle-variables of the system (via the mast_er-
symmetries [ 8]) constructed by the recursion operator, furthermore information
about details of soliton interaction. To me this seems to be a most remarkable fact.

IL. General principles

What was done in the last chapter, with respect to the translation group, for the
KdV can be done in general for integrable systems with respect to arbitrary sym-
metry groups. Let us resume the general aspects.

Consider evolution equations given by differential equations and being of the
form

u, = K(u), 2.1)

where u = u(x,t) and where u; denotes partial derivative with respect to ¢ (time). Eq.
(2.1) is regarded as 2 dynamical system, i.e. K(u) is to be a C -vector field on the
manifold of all admissible functions in the variable x . Of course, ¥ may be vector

valued, ie. u=(u), - - - u,). Only for simplicity, the space variable x considered is
is one dimensional.
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Consider a finite-dimensional abelian i
o symmetry group G for (2.1) having
infinitesimal generators Gy, . . .G, Recall that 2 vectorfield G is a symmetry

[glzogphgencra.tor for (2.1) if [K,G]=0 in the vectorfield Lie algebra. The commutator
' ]_LKG is given by the Lie-derivative, which in case the manifold is a vec-
torspace is defined by

J
LG = se-lezo[G(u + eK(w) - K(u + eGw)}. (2.2)

In the example of section I the group G was the one-dimensional translation group

and its generator was G(u)=u, .

" fNow, we consider the manifold of G-soliton solutions of (2.1). That is the

st of all special solutions u(x,f) of (2.1) where the time-development is given by
action of some one-parameter subgroup of G , i.e. those u(x,f) such that there is

some k=(ky,ky, . . . k,) with

lel(u)-chGz(u) s +knG,,(u)=K(u).

These solutions are easily determined: Take a solution s(k.x) of (2.3) and the one-
infinitesimal generator

parameter subgroup {g(t),7e R} of G having the
<k,G>=k|G kGt -~ +k,G, k=(kyseerkn)

(2.3)

Then

_ u(x.N)=g(r)(s(k.x)) (2.4)
is the G-soliton with initial condition u(x,=0)=s(k.1) -
s(k) or s(k,2), it plays the role of the function given in (1.2).

Observe that, because of invariance with respect to ime rranslation, the solu-
eter, 1.6, whenever Be G

tion S(k,X_) of (2.3) has at least one free integration param
then application of B to s(k.x) yields
spkx) = Bls(kx))

For abbreviation we denote
n of p~! we denote by 5.(k).
BM(.,") such that

This solution we denote by

(2.5}
which again is a solution of (2.3). this solution by Sﬁ(k)
and the one obtained by applicatio

Now, we proceed as before. We look for a relation

B(}‘)(S;;,Sap )=0

holds independently of the special group parameter k we had chosen. Since we have
=\, . - - ) NOW also has several com-

to do with a several parameter group our A=(

(2.6)

ponents.
The function BM(u,i) is said to be admissible around u and ¥ if i) and ii) are
fulfilled:

i) B is invariant against G
i) B™ defines a diffeomorphism around (2.6)
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The relation B is said to be G-invariant if whenever Bm(u,ﬂ)z() then

BM(g(u) , g(@)) = 0 2.7)
must hold for every ge G . An equivalent infinitesimal condition is that
BY, [Gw)] + BM [G@)] = 0 (2.8)

holds for all infinitesimal generators G of one-parameter subgroups of G . And B™

is said to be a diffeomorphism around (2.6) if the implicit function theorem condi-
tion holds, i.e. if the operators

B(l)u (SB’S‘ﬁ)[']’ B(?L)H(SB,S_B)[.]

are invertible operators between the tangent spaces of § at sg and s_g , respectively.

PROPOSITION:
Let A be the set of those A where for every k=(ky, - - - k) there is some P=P(k)
with

BM(sp(k), (k) = 0

such that B® is admissible around these points. Then for every element ) in the
closure of A

BNy, my=0 2.9)
is an auto-Bicklund transformation for (2.1).

The arguments leading to this proposition are the same as in section 1. For the
moment we put u=sg and LT=S_B. Then, since B is G-invariant, we have

Ba)u [G;(U)] + B(l)‘.‘_[G‘(m] = 0’ i-_-l, S,
Because of (2.3) this yields

BN, (K@) + BY k@) = 0. (2.10)

Since around the special u and 7 the quantity BY defines a diffeomorphism this is
an ordinary differential equation admitting as solution all solutions of (2.3) - and
this for any arbitrary set ky, . . . kn . Now, since (2.10) has the same degree as (2.3)
it has to many integration parameters (namely in addition to those of (2.3) the

parameters k,, . .. .k, ). Hence (2.10) must be an identity which holds for all ui
connected by

B® 1) = 0. (2.11)

Therefore it must be an auto-Bicklund transformation. The isospectral problem
given by the Blicklund transformations obtained this way is the same as before:

Spectral problem :
Given a solution y of (2.1), find those N's such that there is some nonzero
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vectorfield » and some W on the manifold under consideration such that
B® (um[e] =0 2.12)
and
B () = 0. 2.13)

Those \'s are said to be spectral points of the Bicklund transformation and the ®
appearing in (2.12) are called eigenvectors. This spectral problem is invariant
under the flow (2.1).

Again, the time development of its eigenvector @ is given by
o, = K'(w[o].

Hence, if the spectral problem can be linearized, then the corresponding linear
operator ®(u) is part of a Lax-pair

(2.14)

Lo = KO ~ HWKW @.15)
which shows in particular that its eigenvectors are solutions of the linearized equa-
tion (or symmetry equation) (see [ 7]). In case the general solution decomposes
asymptotically into single soliton solutions the interpretation of spectral points and
eigenvectors is the same as before.

The spectral A’s correspond to the speeds of the asymptotic solitons. This
correspondence can be found by looking at the single soliton solution where we
pick out those A’s which are limits of group actions having parameters going to
infinity in such a way that the soliton is removed out of sight into infinity. .Of
course, these A’s are depending now on the parameter k, from (2.3), characterizing
the soliton under consideration. The eigenvector itself is the soliton which is lost
by going from u to i . This explains why BM , ir) =0 for spectral A connects
N-solitons with (N-1)-solitons.

Also Bianchi-permutability has a very simple explanation, it is a conse-
quence of the abelian structure of G . To see this consider nonspectral A and
denote for the moment those if coming from BMu,n=0 by

=U(\ ).
Recall that if u is a single soliton then & simply is

element in G . Since G is commutative and since B
have

(2.16)
u moved by some action of an

()(.,-) is G-invariant we must

U (lz,U(ll,u))=U(ll,U(Kq,u)) 2.17)

or
(2.18)

u=¢(u),

where
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O)=U(~A,U(-A, Uk Uk 0)))). (2.19)
Certainly

T—0(1)=0) (2.20)

1s an auto-Blicklund transformation for (2.1) which reduces to the identity mapping
on the G-solitons. Hence, this must be the identity mapping everywhere and (2.17)
must hold for general u . However, only for nonspectral A’s on first view. But this
induces also for all limits of nonspectral A by density.

Let me emphasize that the condition of admissibility is an essential one. Cop—
dition i) was necessary in order to arrive at (2.10) and the following example will
serve to see that condition ii) is equally important,

EXAMPLE:
Consider the square root of the single soliton solution of the KdV

o(x + ct) = \f% cosh“l{iz_c—(x ~ Xy + cb)}. (2.21)

We perform a translation on the x-line by (20/c) and obtain for Og (resulting from
this translation)

G (0)= Ve2 cosh(®) cosh(y)-Ve2 sinh(6) sinh(y)

(2.22)
( cosh*(®) cosh¥(y)- sinh(®) sinh(y))
where
y= %\E (x=xytco).
Splitting up into odd- and even parts
06 = VAV, V, = ~(0gtae), V. = 2 (0a-0.g) 223
we find
2DV, V) sinh? @)V, Zcosh(@)V 2 = (2.24)
or
{D"l(cgz—ohez)]2+2{092+o_92-2a090_9]=0. 2.25)
Another relation between og and C_g is found by choosing © such that
cosh(8) sinh(®) = ae.
Then
20"1(092‘0—92)“1090-9 =0. (2.26)

Recalling that 6" is a single soliton of the KAV we have found the following rela-
tion between a single soliton % and suitable translates



%

243
[%[D'l(u—ﬁ)]2+u+u'} 2 40tum=0 2.27)
4(D N u~i) ) 2-o%uir = 0., (2.28)

Both relations are auto-Blicklund transformations for the KAV only for very special
choices of the parameters o . The reason they are not Blicklund transformations is
obviously that condition ii) in the admissibility requirements is not fulfilled. This
because the inverse of the variational derivative of B leads out of the manifold
under consideration. One might try to repair this by enlarging the manifold under
consideration in dropping the boundary conditions at infinity. But then the manifold
O_f single solitons also enlarges (theta-function solutions), and for those additional
single solitons the relations (2.27) and (2.28) do not hold.

Let me conclude this section by some additional comments.

REMARKS:

1) It should be noted that if there is any G-invariant auto-Bicklund transfor-

mation

B, 7) =0 22)
for (2.1) with nonspectral A then it must be found by our procedure. To see ﬂ_ﬁs
take u to be some G-soliton, ie. a solution of (2.3). Since g™ is invariant with
rspect to G and the one parameter group given by K(u) we find

BY, [K(u)-TkGiw)] + BV IK@-TkG (] =0.

But K(u)-YkG(u)=0 since u is a G-soliton. Since A is assumed to be nonspectral
this relation must also hold for ¥ instead of u. So i again is a G'S"m"‘? (having
the same k,, . . . ,k, as u ). This implies that & results out of u by some action of an
element in G . Hence, B™(u,@)=0 can be found as a relation connecting G-solitons.

2) One might ask what happens in the KdV-case if G , which was the group
of x-translations, is enlarged by adding those one-parameter gTOUPS having the well
known symmetries as generators. Then, in this case, the G-solitons are Just the
multisolitons (up to some order depending on the dimension qf G) and the
Bicklund transformations found by our procedure are simply the iterations of the
well known Bicklund transformation.

3) The content of this section was that, in a certain sensc, the auto Bicklund

relations are completely determined by the one-soliton-solutions. On first vie\lav tg;:
seems to be rather surprising, but in fact it is not if one thinks of exactly solvd

systems in terms of linearizable flows. Because, according to what we know ;ip tt;
now, the variable transformation (for example the inverse- §catmng st;fms 01':11;
which transforms the given flow into a linear one u,==A_u, A linear, trans Ofmsm
one-soliton solutions into eigenvectors of A and the multisoliton solutions inio

. : auto-
combinations of such eigenvectors. Taking further into account ht!mtt n-ﬂs:;uti:ns
Bicklund transformations connect N-soliton-solutions and (N+1)-solito '

(2.30)
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one easily guesses that in terms of the new variable the auto-B#cklund relation must
be of the form (A~A)uy=u; , where A is the eigenvalue of that part of uz_WhICh
corresponds to the disappearing soliton. But certainly, for such a linear relation we
can check whether or not it is an auto-Blicklund relation on the linear hull of the
eigenvectors by checking if it has this property on all single eigenvectors.. Now,
going back to the original manifold, where the flow was nonlinear, Fh1s then
corresponds to checking out the required properties on the one-soliton-solutions.

4) One computational advantage of our derivation of ABT’s is that we knpw
right away what happens to solitons occurring asymptotically in fields of interacting
solitons. Since the group element B=P(k) in the proposition was chosen in suqh a
way that (2.9) holds, we now know from G-invariance of B™ that a single sqhtoﬂ
s(k) emerging asymptotically out of u is transformed by BM(,i)=0 into a single
soliton S(k)—zﬂ(k) emerging out of &. The information about the phase shift now can

be build up in the same way as in case of the KdV, provided the Blicklund transfor-
mation respects the local structure of emerging solitons.

EXAMPLES AND APPLICATIONS

IIL. The Benjamin-Ono equation

We are interested in the BQ ({ 2] ,[13]) which is

U= K(w), K(u)= Quu, + Huy) (3.1)
where H is the Hilbert transform

(HA(x) = -11? J ]é—(gdﬁ (principal value integration)

and where u is assumed to be an element of S, now S being the space of functions

having the property that all derivatives are absolutely integrable on the real line. For
convenience we have defined H1=().

Observe that K commutes with Gu)=u, , the infinitesimal generator of the
translation group. Equation (3.1) has (see [ 1,p.204))

k ik
kx) = ! — , R (3.2)
sk k(x~xp)+i k(x~xg)~i *o€

as one-soliton solutions, i.e. as solutions of ku=K(u). This is easily seen from

1 .
— if imaginary part(o) < 0
a1 X-Q.
-0

———— if imaginary part(o) > Q0
s ginary pari(c)
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We restrict our attention to positive k. Replacing xo in (3.2) by P+x we obtain
5300 = MpCx) + M gx) (3.4)
where * denotes complex conjugation and where

ok
8= Tprort 6-)

Decomposition of (3.4) into odd and even parts (with respect to B)

_ 1 1
sp=V,+ V., V,=—(op+5p) V=—(p- p) (3.6)
gives
1 - '
v+=5{n5+nﬂ+n_ﬂ+ndﬁl 3.7
(3.8)

1 * *
Vo= {ng+m = Np—"-p)

ple pole yields the same pole.

Observe that integration and exponentiation of a sim
partial fractions leads to:

Application of this together with a decomposition into

e Tlﬂ'fl‘-ﬁ *
expiD WV )=——=1+ 2B mg+n’g). (39
g w7

V_ changes the sign of the second and the

Now, observe that application of iH to
ged. Hence the second and third terms can-

four_th term and leaves the others unchan
cel in V. +iHV_. This yields

V,+iHV_=ng+ np

From this together with (3.9) we obtain

exp(2iDIV.) = 1 + 2MHV_+ V), (3.10)
where
A = Brkp-i). (3.11)
Inserting
V,= -;—(u+ﬁ), V_=-%(u-z‘t), u = Sp, =g
we obtain
(3.12)

exp(iD~ (u-@) = 1 + MiH(u - @)+ (u+ B}

Since this relation is admissible it must be an auto-Bécklund uansfmﬁon for_
with speed k one easily obtains

(3.1). The spectral point corresponding 0 & soliton
by putting == in (3.11). Hence, each soliton with speed k generates 2 spectral
point A=1/k.
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In the literature [15] sometimes the more general Bicklund transformation
wexp(iD =) = 1 + A{iH(u - &) + (u + )} (3.13)
is given. This relation is generated out of (3.11) by the formal substitution
D' - D'+ constant.

However, if and only if p=1 this auto-Bicklund transformation stays on the required
manifold of functions disappearing at infinity.

There are other auto-Bicklund transformations for the Benjamin-Ono equa-
tion. Consider

iHy, = %{ng ~N'g+Np-1"p) (3.14)
iHY_ = %’(T‘B -N'p-Np+1"4). (3.15)
Solving equations (3.7),(3.8),(3.14) and (3.15) for the ’s we obtain
Mg = %(1+iH)(V+ tv) (3.16)
and
Wiy = (-, £ V), a1

Integration and exponentiation yields the following two relations
exp(iD™ (14iH)V_) = ng/n_g (3.18)
=1+2ifing = 1 + iBA+HV, + V).

exp(iD~ (1-iH)V.)) = n"_pm’s (3.19)

=1-2pn"_5 =1 - iB-~iH)V, - V).

Hence resubstitution by (3.11) yields a new auto-Bicklund transformation consisting
of the following pair of relations

XDl D7 (L+H)u-D) = 1 + B(1+iE)u (3.20)

CXP(%D'I(I-iH)(u-E)) =1 - iB(l-ilhg . (3.21)

This tmnsformatiop certainly is not equivalent to the one given by (3.11) since it
h'as no spectral points. The transformation splits into two parts corresponding to the
eigenspaces of the operator H . This decomposition is the usual decomposition into

f}m(;tions being analytic in the upper and lower half of the complex plane, respec-
tively.



247

IV Burger’s equation

It is obvious that the BO contains Burgers equation as a speci
if a solution u of BO is analytic in the upper half of the comp
and u therefore must be a solution of

U, = (Qui, + ilhgy).

The same holds true for the lower half plane, we only have to replace i by 1 . This
means that the flow of the BO restricted to certain invariant manifolds reduces t0
versions of Burgers equation.

However this does not mean that auto-Bicklund tra.nsformatipns for BO
automatically yield ABT’s for Burgers equation because such an ABT is not neces-
sarily compatible with the restriction to invariant manifolds. For this reason (3.12)
cannot be used to obtain an ABT for Burgers equation. In contrast 10 that.(3.20)' +
(3.21) give right away an ABT for Burgers equation since these are compatible with
the restriction to functions analytic either in the upper or lower half of the complex
plane. Let us carry out the details for the case of the upper half of ic complex
plane. In this case only (3.21) is meaningful. Replacing H by i we obtain

al case. For example
lex plane then Hu=iu

(4.1)

expiD7 u-) =1+ 2P 4.2)
as an ABT for (4.1). Performing the substitution 1—it/5, x—ixi® we obtain for arbi-
trary values of a that

exp(8D\(@u)) = off + 1 4.3)
must be an ABT for

(4.4)

which is the general form of Burgers equation. Those readers who do not ffael :1(:
ease with the methods we proposed in this paper should take the opportunity
check that statement by a simple direct computation. o
This example actually shows that our method constitutes 2 helg}ful {fO(f)u.nc-
enabled us to compute out of the symmetry structure .Of a special family © o
tions (3.2) an ABT for an evolution equation for which these functions Were
even solutions.

In this case the recursion ope o tion (5c¢
problem given by this auto-Blcklund trans ormation é ctral
dary conditions at infinity have to be changed in the formulation of the ¢

problcm. al leads to a
One might ask if in case of BO the nonlinear spectral pm;:ll:cmis ngry compli-

recursion operator. Indeed this is the case however the lving u and other func-

cated and the recursion operator obtained is of a form involviig

tions only determined by u via an implicit function.
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V. A Nonlinear System

We investigate a nonlinear system of differential equations for w; = wy(x,7), i=1,2,
which is intimately connected to the isospectral flow of the KdV.

We introduce the differential operators

Lwy=D+y (5.1)
T(9) = 20D + 64, (5.2)
and we use the notation
Wi
W= [WJ (5.3)
WP = wi? + wy? 34
M= [(1’ '01] (5.5)
T(w
") = [ (0 ! T(g,z)] . 56)
The system we are interested in is the following
wWMw, = Tw)L( | w Pw. (5.7
or in case that t(w) is invertible
w, = ML(| w Pw.

This equation has two obvious Symmetry groups, namely the translation group Wiﬂ;
Infinitesimal generator w, and a gauge group (rotation in R, or @, leaving W
invariant). The infinitesimal generator of the gauge group is Mw .

Up to now, we have only used one-soliton manifolds defined by the
infinitesimal generator of x-translation. In our present example we take the genera-

tor of the gauge group instead, i.e. we define for the moment the one-soliton mani-
fold by

Kt w)w = tw)L(| w P)w (5.8)
where the speed parameter is now called x .

In order to compute the one-soliton manifold we observe that the single-
soliton of the KdV is the well-known Bargmann potential [10] which is the same as
saying that for the single-soliton of the KdV the square of the corresponding eigen-
vector of the Schridinger operator is equal to u (see [ 5]). The reason for this fact
is the following identity which holds for all ¢ = 0(x) and u = u(x)

8(u)” = TOM.( u )¢ 9

where
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O) = D + 2Du + 2uD.
B .
ecause of the special form of T(¢) this yields that the relation

O(u)o? = 4a(d?), (5.10)
holds if and only if
TO)LW)-0)¢ = 0. (5.11)
The function
s(c) = s(cx) = —%cosh'z{jzz(x —xp+ )} (5.12)
given in (1.2) fulfills by definition
(5.13)

cs, = O(s)s

be .
cause the KAV is of the form #=0()u,. So, in case that 4o=c the function

¢°=s(c) must be a soluti _
solution of (5.10). Hence, ¢ = Vs(c) solves (5.11) and we have
TOLOH = %cT(qa)qa . 0=50). (5.14)

C : f

O:g;?inng th15. with (5.8) we have found the one-soliton-manifold for (5.7). In

e fo see this we observe that the time evolution on the one-soliton manifold,
given by the gauge-group, must be of the form

W
w(xf) = exp(My(x) , V= ij (5.15)

5.8). If we require ¥ = 0 and consider
tution of this equation. Looking at the

f the Schrodinger operator have
) must come out of

general solution of

where the components of Yy must satisfy (
E;n ci4 then because of (5.14) v, = ¢ is a $0
mult? l?f' T(¢) and knowing that the eigenvalues 0
e P 1Cl‘ty 1 we easily gbsc?wc that the general solution of (58

solution by an application of the gauge group. Hence the

(5.8) must be
cos(p)Vs(c.0) s
w= Sm(p)m y K = c/4.
iSr:ncc: (1.14) gives an ABT for the functions s(c,x) we are now able to rephrase this
0 ;)rder o obtain an ABT for the solution w of (5.7). We apply the translation
¢ 3 to the' solution (5.12) and decompose into odd and even parts. Using the nota-
on of section I and looking at formula (1.6) we find

(5.16)

v, =2 kN(k&){cosh(kg)-cosh(ﬁ)} 617
v_=-\2 IN(KE){sinh(kE) sinh(B)) (5.18)
A straightforward computation yields
(5.19)

v,), = V_ k coth(B) (2c0sh*(kE) N(KEY-1)
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cosh?(kE)—sinh’(B)

_ h
V_ k coth(B) cosh?(kE) + sinh?(B)

k2cosh2(kE) cosh?(B)
=V_\[ kothB) - 2
B V co’(B) (cosh®(kE) + sinh?(p))>

=V_VAR2V,2 A=k coth(p).

S0 in case of p=0 we have found for the special solution (5.16) the following rela-
tion between w and its translation W

Wy +w)), = (wl—fv])‘\/lz -~ ‘;“(Wl + Wl)z_ (5.20)

Since this relation is not gauge-invariant it cannot be the ABT we are looking for.
But, certainly the ABT must be the gauge-invariant relation coming out of this

(w; + w)), = (wi—u_«',-)‘\/lz—%l w+wP, Q=12 (5.21)

However this relation is still unsatisfactory because we have not yet used the com-
plete single soliton manifold given by the two one-parameter groups taken into
account (translation and gauge). Considering this extended manifold we should get
an auto-Bicklund transformation with two free parameters instead of one.

For obtaining the second parameter we let the effect of the application of the
gauge group depend on x since this can be compensated by adding to the equation
under consideration a linear combination of infinitesimal generators of the transla-
tion group. To be precise: Replacing (5.16) by

_ [cosmwﬂs(c,x)
7 |sintrerp)sien)

we see that this must be a solution to

W+ 2MwYw = (| w Pw, (5.23)

hence a solution on the soliton manifold given by gauge and translation. Insertion
of (5.22) into (5.21) shows that the contributions coming from the x-derivatives of
cos(yx) and sin(yx) can be Compensated by replacing wi, and w,, by w, + yw, and

Wax~YW; , respectively. The same has to be done for the components of w. This
yields

(5.22)

004 = (0 + 3) + (i T (524

as an auto-Backlund transformation for (5.7
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V1. The nonlinear Schrbdinger equation (NLS)

Since the NLS is the restriction of (5.7) to a special invariant submanifold we easily
find an ABT for the NLS.

Consi.der solutions of (5.7) where both components vanish rapidly at oo,
TT}en on this manifold the kernel of T(w) consists only of the zero-element. So in
this case (5.7) has the form

Wy, = W2 + wy )Wy (6.1)

Wy = +w1H+(w12 + whwy.

Consider real valued solutions of this equations and look at the corresponding €vo-

lution equation for ¢ = wy + iw, instead of (6.1).
This equation is easily found to be
iy, = D+ WOV
since M corresponds to multiplication with i . Hence, all those auto-Biicklund
transformations (5.23) which connect real valued solutions vanishing rapidly at too
are ABT’s for the NLS.

Rewriting (5.23) in complex form we obtain

{6.2)

(¥ + ¥, = By + W) + (w—?n/ 12—-;?1\;: +yf 6.3)
n from the literature ( 31, [141)

l-known ABT

as ABT for (6.1). This is exactly the ABT know
extension of the wel

In other words: The ABT (5.23) is the analytic
for the NLS.

VII. The inverse problem

recipes. For example, if we

We can also run in the opposite direction through our
Jation (independent of the

have a one-parameter family of functions admitting 2 1€ ; :
parameter) between these functions and corresponding translated functions, then, In
the admissible case, this relation is an ABT for the evolution equation(s) having the

translations of our one-parameter family of functions as one-soliton manifold.
o ucimte dhis for the most simple example. CoTSider ® transiarion”

invariant evolution equation having
1
sixd) = oos(p G4 o

as one-soliton solutions. Such an

(7.2)
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Then looking at the special form of (7.1) one immediately sees that there should be

4 one-parameter family of ABT for (7.2), since tanslations of (7.1) can be
expressed in cosine-functions,

Let us carry out the details. Consider

s(k.x) = cos(x/k) (7.3)
Splkx) = cos((e+BY/k) = cos(Brk) cos(x/k) ~ sin(B/k) sin(x/k). (7.4)

This yields the relation
(s~ 5 cos(Brk)) = sinX(Briy(1 ~ 52, (7.5)

Since this relation is independent of & it must be an ABT for the equation (7.2).
Thus, replacing cos(3/k) by A we have found an ABT for

(== (1 -1 - (7.6)

or

W+ T - D=1 -2, 7.7

Actually, there is one dubious point; Equation (7.2) is not exactly of the form (2.1)
which was considered in the second section. Since the square root is a multlva}ued
function it cannot be transformed into (2.1). That means the notions we have given

tells us that certainly our notions and methods carry over to evolution equations
which are given in (eventually multivalued) implicit form,

To phrase the result of this section vaguely: Two-parameter families of func-

tions having Strong symmetry properties can be considered as one-soliton solutions
of evolution equations admitting auto-Bicklund relations.
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