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ABSTRACT

In this survey we demonstrate that interacting solitons for exactly solvable
equations can be described by nonlinear evolution equations where the
nonlinear terms are due to selfinteraction. This means that the quantity
representing the soliton appears as the only field variable in the nonlinear
evolution equation. The dynamics of the interacting soliton turns out to
be again exactly solvable and inherits all its structure from the original
system. Thus the process of soliton decomposition can be repeated, this
leads to "virtual" solitons. It is shown that, for example, two soliton solu-
tions can be understood as the exchange of one virtual soliton. Details are
carried out for the KdV, where also the solutions for the interacting soli-

ton equation are plotted.

L INTRODUCTION

We are interested in solitons for

u=Ku) , u=u(x,nt). (1.1)

or —. The evolution

The solutions u are required to vanish rapidly at either +oo ;
we either assume that

*quation is assumed to be exactly solvable. To be precise,
there is a translation invariant recursion operator ®(u) such that

K(u)y=0(u)u;
Or that we have a one parameter family of auto-Bicklund transformations
B(u,i,A)=0

(1.2)

(1.3)
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with parameter A.
Recall that being an auto-Blcklund transformation [8] means that

B [K(w+B [K(@#)]=0 (1.4)

must hold whenever u and & fulfill (1.3). Here B, means the variational derivative
with respect to u , i.e.

0 .
== B(u+ JEA). (1.5)
B [K(w)] 3 leo (u+eK (u),it,1)
Recall that ®(u) is a recursion operator for (1.1) if its Lie derivative in direction of
K vanishes [7], i.e. if
O [K(w)]=K d-DK,. (1.6)

If, for example ®(x) is a hereditary operator ([7], [9]), then @ automaticall?r is a
recursion operator for K(u)=®(u)u, . In this case the Lie algebra generated in the
vector field Lie algebra by

(PW)"u, | neNy) (1.7)
is abelian [9]. A solution u(x,t) of (1.1) of the form
u(x,t)=s(x+ct) (1.8)

is said to be a traveling wave solution [16). The quantity ¢ is the speed of that
wave. Obviously, s then must be a solution of

K(s)=cs,. (1.9)
In case of the existence of a recursion operator this means that
D(s)s,=cs,, (1.10)

Le. 5, then must be an eigenvector of O(s) with eigenvalue ¢ . A solution u out of

which there emerges asymptotically for 1 — too g traveling wave is said to contain
a soliton.

If a solution asymptotically decomposes completely into solitons we call it a
multisoliton. Here by complete decomposition we mean that there is some suitable
encrgy-norm such that all the energy is carried by the asymptotic solitons.

The problems addressed in this paper are:

L. Is there a way to describe the dynamics of solitons s in fields u of interact-

ing solitons such that only selfinteraction occurs in the description of s? To be pre-
cise: Can we find a nonlinear evolution equation

5=G(s) - (1.11)
for 5 such that u does not occur in this equation.

II. Can we choose this nonlinear evolution equation for the interacting soliton
in such a way that all the structure (Hamiltonian formulation, complete integrability,
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[hereditary] recursion operator, angle variable, auto Bicklund transformation, etc.)
which may exist for the evolution of u carries over to the evolution of s.

The reasons why we are interested in these questions are (among others):

A. Analysis of the evolution of s may eventually lead to a simple qualitative
description for interaction of solitons.

B. Furthermore, an analysis of evolution of s may give a simple way to define
trajectories for the movement of solitons.

C.We may be able to find new completely integrable systems and to get new
insight into complete integrability for flows on infinite dimensional manifolds.

The necessary steps to give a satisfactory solution to problems I and II are:

1. Find a way to identify for all finite ¢ the soliton s which emerges asymptot-
ically out of a field u.

2. Describe the dynamics of s in terms of an equation coupled to the external
field u , i.e. find an evolution equation for s which is of the form

s~I(u,s). (1.12)

A natural requirement for this evolution equation should be that it inherits the struc-
tural properties which do hold for the evolution (1.1) of the external field.

3. Decouple the evolution (1.12), i.e. find a way to eliminate the external field
4 such that the nonlinear terms in the evolution are only due to selfinteraction of s.

4. Check, whether or not the evolution equation for s provides a solution for
problem IL.

Surprisingly, to carry out steps 1 to 4 turns out to be extremely simple and straight-
forward; at least in the presence of a recurston operator. In the following we briefly
indicate how that can be done. For more details the reader is referred to the existing
literature (in case of step 1 and 2) and to the papers [12] and [13] for the remaining
steps.

I1. Coupled Dynamics of Interacting Solitons
For the Korteweg-de Vries equation

Ul HOUU, (2.1)
it was observed in 1974 {14] that a for a multisoliton solution u there is alw:ilys a
decomposition of u, in terms of the squared eigenfunctions of the Schridinger
operator

u=y¥,2 2.2)

n=1
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This was proved via inverse scattering theory. In fact, inverse scattering can be
completely avoided for obtaining this decomposition [6]. Since the x-derivatives of
the squared eigenfunctions are the eigenfunctions of the recursion operator of the
Kdv

Ow)=D+2u+2DubD} (2.3)

we find that a solution is a multisoliton if and only if w, is the linear sum of eigen-
vectors of the recursion operator. This characterization holds for all equations with
recursion operator ([7], [9]). It subsequently appeared many times in the literature
(see for example [21] - [24], [17], [10] ).

Because of this observation we define s to be an interacting soliton in the

field u - even in case that u is not a multisoliton - if and only if s, is the eigenfunc-
tion of the recursion operator ®(u).

This seems to be a reasonable definition since:

o. The flow (1.1) is always - because of (1.6) - an isospectral flow for the
operator @ . Hence an eigenfunction is present for all time ¢ if it is present for one
L.

B. If O(u) is reasonably localized and if asymptotically there is a soliton then,
because of (1.10), asymptotically there is a corresponding eigenvector. Hence,

because of (a.), there is always an eigenvector of ®(u) which corresponds to this
soliton,

Y. The dynamics of eigenvectors of the recursion operator is uniquely deter-
mined. These eigenvectors have the same dynamical behavior as infinitesimal gen-
erators of one-parameter symmetry groups ([7], [9]).

Let us make (y.) a little bit more precise:

If w(tp) is an eigenvector of D(u(1y)) then we may choose w(r) such that for
all t we have

Qu(D)W(t)=cw(r) (2.4)
w=K,[w]. (2.5)

Combining this with the definition of the soliton
S,=w (2.6)

we find that equations (2.4) to (2.6) completely determine the dynamics of s. Since
w is a solution of the linearization (perturbation equation) of (1.1), and because
these linearizations inherit, as coupled systems, the structure from (1.1), we may

expect that the evolution of s has the same structural properties as the evolution of
u.
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IXL. Dynamics of Selfinteraction
The idea for obtaining the dynamics of s in terms of s alone is extremely simple:
Consider equation (2.4) as a Bicklund transformation between u and s . Use
this to express u by s and insert then u=F(s) in the evolution equation (2.5). Thus
we obtain the evolution for the interacting soliton.
By using the fact that Bicklund transformations preserve structure (Hamil-
tonian formulation, [hereditary] recursion operators, etc.) we then can transfer the

structural properties from equation (1.1) to the evolution equation for the interacting
soliton. To do that explicitly, we only need the transformation formulas from [5] or

[8].

On first view there seem to be the following difficulties:

(1) The Bicklund transformation is an eigenvector equation and solving
eigenvector equations is difficult.

(2) The transformation formulas of [8] or [5] for Bicklund transformations

were only derived for diffeomorphisms between u and s . But certainly (2.4) not
even defines a map from u to w since, obviously, the implicit function theorem for

B(u,w)=(D(u)—c)w=0 (3.1)

does not hold because w itself lies in the kernel of the variational derivative B,

But both difficulties are easily discarded for the following reasons:

(3) Of course, eigenvectors are difficult to find, But given an eigenvector then
going the other way, namely to find the potential, often is extremely simple. And
this is what only is required in our case.

(4) Although the implicit function theorem is violated we nevertheless can
apply all the wransformation formulas given in [8] or [5]. This because we know
that the kernel of B,, consists of the function w and this function is a symmetry
group generator [7]. Hence, for the equations of the interacting soliton, we can
work in the algebra modulo an additional and obvious symmetry (see [12] for
details).

So let us carry out the necessary computations in case of the KdV.

EXAMPLE 1:
For the KdV
U=t Aouu, (3.2)
equations (2.4) to (2.6) have the form
CSy = Sy + 4us, + 2u.s  (eigenvector eq.) (33)

Sy = Sy + 6us,  (coupled evolution eg), (3.4)
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here already w was replaced by s,.
Now, solving (3.3) for u in terms of s we find

cs — S
u=+l i

2 \es? - 5.2 + const.

(3.5)

Inserting the boundary condition at infinity we find for the integration constant
const.=(} . Hence we finally have

- tlﬁ;.ff‘_ (3.6)
2 \Jes? - sxz
Insertion of this into (3.4) yields
525, = 525 — 355,85, + %sﬁ + %c s%s, (3.7)

which describes the evolution of interacting solitons for the KdV (no matter how
many other solitons are present).

The same simple procedure can be applied to obtain the evolution of interact-
ing solitons for:

Burgers equation:

S8; = S8y ~ 28,8, + 2¢ 55, (3.8)

mKdV-equation:

3(c s ~5.)?

;= S Sy (3.9)
: 2c s* - 512)
sine-Gordon equation:
TCs(8) — sge(®)
Sy = -%—s COS % (3.10)
“ 2\es()? - sgle)?
and the nonlinear Schridinger equation:
VP, = iy P iy [y + =, P iy + i)y (3.11)

In the last equation v is the x-derivative of the interacting soliton.
See {12] for the details of the computation.

IV. Interacting Solitons in the Two-Soliton case

In the presence of a recursion operator O we find for the two-soliton (f101, {12D

u=witw, 4.1)
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where
Pyw=cw; , i=12 4.2)
and where the c; are the asymptotic speeds of the solitons. This yields
(@w)—c N DPW)—cy)u,=0. 4.3)
Now, we apply the obvious identity
1= czicl (Pu)—c )+ c;-l-cz (D(u)—c,) (4.4)

in order to obtain

U= 1 (D(u)—c;)u+
€

Co—

1
(D(u)—cy)u, 4.5)
C1—C3
or
1 1

(K(u)—cu )+
€y C1—Cy

U= (K(u)—cyu,).

Because of (4.3) (D—cy) cancels the first term of the decomposition (4.5) and
(®-c,) does the same for the second, therefore we find

1

W= (K(u)—cyu,) (4.6)
€1=C
and
1
Wa= (K(U)—Clux). (47)
€2y
Here we made use of equation (1.2).
This shows that
5= 1 DN (K(u)-cyuy) (4.8)
C}_Cz
and
$y=—— D (K(w)—cyu,) 4.9)
€2—¢

are solutions of the nonlinear equations for interacting solitons.

In case, of multisolitons of higher order the same analysis goes through (see
[12] or [10]). Only the K(u) occurring in (4.8) and (4.9) then have to be replaced
by suitable sums over higher order symmetries.

For the two-soliton of the KdV, which is plotted in Fig.1, the corresponding
interacting solitons are plotted in Fig.2.A and Fig.2.B, respectively. (In order tz
have better plots in these pictures we have, compared to the variable x, enlarged the
height of the solitons by a factor 7 and the time by a factor 4. The slices to be
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seen are the functions for constant time t.)

In a fundamental paper [16] a detailed discussion of different types of interac-
tion can be found. However, this beautiful discussion only applies to the superposi-
tion of solitons (i.e. solutions like the one on Fig.1) and not to the interacting soli-
ton itself. Looking at different interacting solitons one finds that there really is only
one type of interaction (see [12] for details). Thus the qualitative description of
soliton interaction can be considerably simplified by considering the interacting soli-
tons instead of their superposition fields.

V. Algebraic Structure and Virtual Solitons

By application of transformation formulas for Bicklund transformations ([8].[5]) we
find that if ®(u) is the recursion operator for (1.1) then by, a straightforward com-
putation (see [12]),

Y(s) = DT'OW[s,JF(s) + D'DW)D  where u = F(s) (5.1)

must be the recursion operator for the evolution of the interacting soliton. Here
u=F(s) is the solution of the eigenvector equation (2.4)

Quyw=cw , s.=w. (5.2)

It tums out that ¥(s) is hereditary whenever ®(u) has that property. Thus an
abelian hierarchy of nonlinear equations is found

5 =YE)s, n=0,1.2,. (5.3)

of which the first nontrivial member is the equation for the interacting soliton.

The reason why we are so interested in this hierarchy is the following:

To this hierarchy we can apply the same considerations which were applied
before to the hierarchy of equation (1.1). This is obvious because the recursion
operator was the only technical tool we needed.

Since the spectral properties of ®(u) are the same as those for W(s) we find
that the interacting soliton coming out of an N-soliton solution u must be an N-
soliton solution of the interacting soliton equation (i.e. a decomposition into eigen-
vectors like the one given in (2.2 ) for u must hold for s ).

But there is one notable difference: Asymptotically only one soliton can be
secen emerging out of the interacting soliton even if that comes out of an N-soliton
solution for u. Hence, for the equation of the interacting soliton, there are solitons
which cannot be seen asymptotically. Those we call virtual solitons.

The virtual solitons in the two-soliton case can be computed in the same
manner as before. For the decomposition of s;, i=1,2 given in (4.8 ) and (4.9 ) we
obtain:
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S"=G,',1+O'i'2 , =1 ,2 (54)
where
021012 (5.5)

is the virtual soliton. As before, we can easily express these quantities in terms of §
and s can be expressed in terms of u. This gives

C2,1 = 012 = ~(¢; = ¢ 2{4D ™ uK(u) - 2uD~'K () (5.6)
(see [12] for details). The o, and Gy, are then easily computed by (5.4) and (5.6).

For the two-soliton of the KdV (given by Fig.1) these parts of the “"second
soliton decomposition” are plotted in Fig.3.a, Fig.3.b and Fig 3v. Looking at the vir-
tual soliton (Fig.3.v) one easily sees that this quantity only pops up during the time
of interaction. Hence the shapes and sizes of the virtual solitons can be considered
as a measure for the interaction.

V1. Absence of a Recursion Operator

All the results which were presented so far depended heavily on the existence of the
recursion operator. Furthermore, it was essential that this recursion operator was of
local structure. Hence the problem remains what to do in case of absence of a local
recursion operator (like Benjamin-Ono equation, KP and the like).

Actually, in this case the ABT (auto-Bicklund transformation) can replace the
recursion operator. In [11] we have demonstrated that a one-parameter auto-
Biicklund transformation yields a nonlinear spectral problem which - in case a local

Tecursion operator exists - is equivalent to the spectral problem given by the recur-
sion operator.

Let us indicate briefly how to use this equivalence for the derivation of evolu-
tion equations of interacting solitons. This method then carries over to the case
where a local recursion operator does not exist (see [13p).

Consider the one-parameter family of ABT’s:

B(u,i1,1)=0. (6.1)
Then the nonlinear spectral problem is:

SPECTRAL PROBLEM:
Given u, and &1 by (6.1), pick those A's such that there is a nonzero w with

B [w}=0. (6.2)

Then the w plays the role of the eigenvector of the recursion operator. Thus we
find the following set of equations for the evolution of the soliton s

B(u,a,A)=0 (6.3)
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B, (u,a,0)[w]=0 (6.4)
WK (u)[w] (6.5)
S, =w. (6.6)

Now, solve (6.3) to (6.4) for u and @ and insert these in the dynamics given by
(6.5). This nonlinear equation then gives the evolution of the interacting soliton.

The reason that the whole procedure works is founded on the Bianchi identity
which is the equivalent of the hereditaryness for the recursion operator.

VII Concluding Remarks

Ever since the discovery of solitons there was constant work on decomposition of a
field into its soliton components. This work started with the fundamental paper [14],
where for multisolitons the decomposition into squared eigenfunctions is given, and
goes until a recent series of interesting papers on this subject [22] - [24], and [17]
and others.

At first glance, it looks as if all those decompositions were the same. And in fact
they are, and they are the same as the one given in this paper. Nevertheless there is
a fundamental difference between the present paper and the results of others.

A rather unessential difference lies in the methods applied in order to obtain the
desired decomposition. Mostly, inverse scattering transform methods are used for
the decomposition, as it was already the case in [ 14] . In fact this is not necessary
as it was shown already in [6]. This change in method has two consequences. First,
one discovers that the method must work also in cases where inverse scattering 1s
unapplicable or only more difficult (e.g. other boundary conditions at infinity).
Secondly, this observation opens the road for the discovery, that solitons, as dynam-
ical systems being coupled to the Superposition field, also make sense in cases
where apart from solitons (discrete parts of the Spectrum of the recursion operator
or of the scattering method) also continuoys parts of the spectrum contribute.

But even this discovery is rather ancient. For example in [7] [9] it was stated that
the eigenvector of the recursion Operator can be considered as soliton in interaction
and that furthermore this soliton in interaction has a well defined dynamical
behavior, namely that of a gradient of a conserved quantity,

But the present method, we believe, contains a new aspect. Namely, that in prin-
ciple it is possible to find the dynamical behavior of the interacting system in such
a way that no external field and no Superposition with other solitons enters in the
description of this dynamical behavior. Furthermore, that the dynamical system
found this way also makes sense in cases which are not pure soliton solutions. So,
the coupled systems which are given by other authors are decoupled, only self-
interaction plays a role. To be precise: The dynamics given by other authors for
interacting solitons is the one expressed by equation (2.5) which then in the multi-
soliton case leads via (4.1), or its multisoliton analogue, to a coupled system. In
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contrast to that the dynamics expressed by (3.7) even holds in absence of the
decomposition (4.1).

This decoupling is an essential prerequisite for finding a dynamical description of
interacting solitons which is independent of the number of solitons present in the
field. )

Contrary to that, in the soliton-decompositions which can be found in the litera-
turc one will discover that the coupled equations change with the number of soli-
tons present.

This decoupling, which mathematically turns out to be a triviality, then allows to
study the structure of the interacting solitons (i.e. show their complete integrability
in the general case, and find their recursion operators). Another important conse-
quence seems to me that very many new systems, which are completely integrable,
can be constructed this way, and, if one likes it, many new Lax pairs can be found.

Without finding the dynamical "behavior in a selfinteracting way the second
decomposition, which to my opinion offers a better qualitative understanding of sol-
iton interaction, would have been impossible. With the knowledge of the dynamics
in terms of uncoupled equations the second decomposition, as well as the third, the
fourth etc. reduces to an observation which is more or less trivial.

There is another consequence of decoupling interacting solitons which seems even
more important to me. One of the ultimate aims of decomposition into solitons
seems to be to find simple dynamical descriptions for the "trajectories” of solitons.
That means one tries to replace the dynamics (given by some nonlinear partial
differential equation) by a system of ordinary differential equations describing the
positions or "barycenters” of the different solitons. Thus a flow on some infinite
dimensional manifold is described by a flow on a finite dimensional manifold. Of
Course, such a method, if it is known on a systematic basis would provide a better
understanding and a simpler description of soliton interaction. There are very many
interesting contributions towards such a method (see [20], [15], [4], [1], [2], [3] and
the most interesting recent papers [18] [19]). But to my knowledge a systematic and
foolproof method how to find particle systems imitating the soliton collision is still
missing,

In principle, such a method is a consequence of our present results (although the
technical details may be cumbersome). Let me describe this briefly, say for the case
of the KdV:

Choose a set of trajectories y(f), k=1,...,N (to be specified later on) and consider
a multi-soliton solution of the KdV, say some N-soliton. Define quantities
pi‘k(’) (r=0,1,2; i,k=1,...,N) to be the values which the r-th derivative of the soliton S;
attains at y, Then by the eigenvector equation (2.4), and the decomposition given
by (4.1} or its multisoliton analogue, the values at the y, of higher derivatives than r
of the s5; can be expressed by the pi.k(’). Now, using the dynamics which is explicitly
given for the s5; we can express the time evolution of the Di _k(’) also by these quanti-
ties and the time derivatives of the Y- This suggests that reasonable trajectories are
those, where the time derivatives can be expressed also in terms of the p; “t('). Then



30

for those we have a complete description of the dynamics of the Pi,k(r ). But such
trajectories are easily found, for example, take y; to be the zero of s;,. Then

d
E Sk(yk(t) ’t)x =0

together with (3.7) easily gives the desired relation between ¥y and the pi-,k(’). Here,

again the explicit knowledge of the dynamics of the interacting soliton plays an
essential role.
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