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1 Introduction

Whe
never a quantilv. or a s . .
system. T1 Juantity, or a set of quauntities, evolves with time then we call this a dynamical
. 1 . ; . . . . .
cated o ;‘ evolution of the universe certainly 18 a d}_'nalmca} system, however a compli-
ne. 1 awe of ev - . i .
he Taws of evolution which govern such a system are called the dynamical

laws,

of ﬁn(lliigfjii;ﬁ:]bgi:l_‘l}m,li(ln.t Hyhil,‘llllh we unnal.l_\' 'mako su-it.ahle approximations in the hope

nations we mogti ’H\]’)ll()!lh of Th(‘n' i‘h’ril‘il(‘l(‘l:ls.tlt' quantities. But even after such approx-

wsully wuch 4 dé )(\ (l:l.m‘m.t write down L’.‘\'l')]l(‘l”‘\' how these quantltlc_!sAdeperz.nd on time.

Commonly write (}1 ll.( erce is lilill(‘h to ('()Ill}-)]l(‘ill(_?(l _lo bE“COlI‘l[)llM‘d explicitly. Therefore we
2 own dyvnamical systems in their infinitesimal form.

finitesinal formn has many advantages. The

Considerine a d .
sidering a dyvnamical system in its in
pven il those cases where

Ting .
zglllgg):: c(i)(lech tl‘mt .su('h an in‘fiuitvainml'c.lcs('ri
leads to 4 dri‘fr:‘l,-i:t(?“]m not .f(_‘?lh'll)l(" at .all. Fechuicaily speakn‘lg.
tion between diffe _‘f‘ (‘(]Uldll(‘m.. ‘-‘»'llrlf‘ll i many (‘il.S(-‘S‘llaS u'onlme:w‘I
a suitable sot of ll-t !—ll (!uanmaos. To find such .a differential eqnanon.\ve onl:\' )

dvnamical laws. However. solving such a nonlinear Jifferential equation for
1 a hopeless endeavor.

ntion 1s possible
an infinitesimal description
erms due to the interac-
have to know

arhitrary atart: )
¥ starting points (iuitial conditions} is afte

s an insight into the cssential

Fort

unately ST oo . .
nately, the infinitesimal description sometines give
parts of the dynamics which

stractyr
res . o . s .
can be f()_l the dynamics of the system.or at least into those
e described locally,
Speaki . . i .
of rhpfl King from an abstract viewpoint the main objects of our interest are equations
2 Torm ™
we = Wiu) {1.1)
1/ and where u denotes the general point
ension of the manifold M
| systems. For example .
describes

wWhere | .
on r[l;:\”(:i{i;E);*1Ve?'tor field on some mlemil'uld . :
this equation q('l.] -Mtl('("wv do not restrict t,h(‘ size of the d}n
could be the ;.Oi“ ‘(.(?[!l])l'lh('h an abundance ol possible dynamiea '
the 9"0]11(1017[ “ t(I('lmn of all rvl(:\'unl data of a'n v(‘gnmny. tl!en equz%tlon (1.1}
Simple. dynan; " lc.lf‘ .t't‘()nofn_\'. With I'(‘}_‘;'fi‘l'(] to size of the mt?n'lfold: this .would be a rather
S¥stems ;ve c()L—‘-' |h-\- sten s;nce.ilw ma!nloi(l certainly .llas f{mte .dn mens.son \l.'llerea? most
Most notions \'Tl-‘-’l.( l@l later on will deseri I“_’ systeins on infinite dlmens.lonéi‘ mamfo%ds.
For e)(ample\ ‘, tich we use in thg study of equation (1.1) d(? have a'\'ery intuitive rtTeam?lg.
that 5 PDim;i:?] Ca'l_i QAQUHUOH' (1.1) a flow on the‘ u11de11y111g mamfol'd. Thus we 1ma\'g1ne
the system S owing along |.ts path on the n.la.mfold. b.u.ch a path is callf‘d an Ol‘b-lt of
. Since K {u) describes the change tn the position of u for infinitesimal times.

211 Copyright © 1992 by Academic Press, Inc.

All rights of reproduction in any form reserved.

Nonlip, :
ear Equations in the Applied Sciences
ISBN 0-12-056752-0



hssteiner
212 Benno Fuc

i 3 H i Te \ . s situation under
K (u) must be tangential to the orbit of u. A simplified picture for the situ
consideration is:

different orbits:

Manifold M

Fig. 1: Tlow on a manifold A7

i in

i . . Sy ‘naniics of particles I

Systems of particular tmportance are those describing the d_xnanu(-sdﬂ bp the totd

classical mechanjcs. For these s¥stems the dynamical laws are determine HV VT
. o 4 =

encrgy of the system. As an example, we cousider the case when the energy 1y depends
o . . . . - -3 T, ) only
the sum of potential energy 17 and kinetic energy T, where Vo= V(#, ..., Tn ) only

ol the positions of the different particles and where the kinetic energy s

. i -2 g
T = EZ Mo (= mass of particle i) .

]
In order to elitiinate the masses ey (

) . Le L he system
which are irrelevant for the structure of t

we introduce new coordinates in the space IR 20 (phase space)

. (1.2}
G =T p; = mIi=1,....n.
Using Newton's law we find ) |
on aH (13
G = — = ——
! Ip T dq; oo
. . . X . .y R men
or.if we introduce the formal field variable i to be the transposed of the position-mo
vector 4 = (¢y.....q, )T then the dyvnamics has the form
(14}
A S e

—-1 0

where [is the identity iy Hn-space,

Notable ix that in this

- the
. . . - (taken 1
aQuation ouly VI the gradicnt of the energy (tak
phase space) enters.

]
- : 9 types &
Phese equations, cither iy the forni (1.3) or (1.4). are prototyp

.
‘ ‘ ons, e ’ g . do the)
Hamadtorgan systems. b Sy ey of this form have remarkable properties. Not only ty that
seem to he solely determined by their energyeobat also there is the surprising prope y then
. - . A . . A. H ¥ ‘ ot
whenever the energy functional ff gy 'vartant under eithor translation or rotati

st
o liave o carvatl 1 /. > here 11
we have conservation of momentum or angular momentimn, respectively, So u

'Sir William Rowan Hamilie,
he obtained the Chair
he gave fundament
quaternions,

V(August 4, 180

blin whert
of Aslrnnun\y i the a

. Trini B i Du

S - September 2, 1865) studied at Trinity College mr Jeast
8¢ of 220 Apart from his work in mechanics (principle o

and mathematics.

ac(ion]
and the
al contributions (o uptics

. R numbers
For example, he introduced complex
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;er:;nul:e‘l“ll;(ii;fdl‘:‘]a-tli(m l»(jt\l\'m»n the conservation la\?xs of the.system and its symmetry
Noether? in 11(;,- 1n.|l)l<(l-ll,dl-l r-l(nntn.‘\vn,\ 1'(‘\'(;:1](*(1 (91‘ (‘l'assmal H'Amlltonian.systcms by Emmy
o i bor abilitation [13] *and 1 elaion s owadass sneralcd 9 UM
form of (1.3) or ((1 N ’»“}‘ 11,\ pe for S)’\l"l{ls on mfl'mte dnnons;onal» manifolds. The spccial
the fundamental “l 1.15 (lm" t,o the h[)(‘(‘l.‘/)]-l’()Ul'(llHilt(’ systen whl(‘bv\vas cho:s'en_ whereas
beyond St““»m“; \:] I.O‘Ill -)‘( tween synuuetties and cc;nserve(l 'quantltms CertamAl‘\' must go
Hamiltonian st 1¢ ll \1\ the consequence o.i a spf‘fxal c?ordmate S}"st.en1, .So. in studying
that their stru(-lt l;r(. )llln‘t ey _1,11]“[ be analyzed in f) differential geometnc invariant setup such
the underlying o, .)(f(()I]I(‘T independent of_spvmal ('hart-s \Vth]l' were chosen to parametrize
ving rifold. We shall do that in the following sections 4 and 5.

The best k . . . .
st known examples of Hamiltonian systems probably are the Harmonic Oscil-

lator a i
. nd the nonlincar pendulum, deseribed bhelow:
Xa . :
1 mple 1.1: Harmonic Oscillator
ie evolution equations
reo= oy Y =

Where (¢ .
(H).y(t) € . dexcribe the time dependence of the harmonic oscillator. In matrix

(5), - ()G i

which cortas
ch certaindy has the form (1.1) since

fo i
rm this can be written as

P _1 2 3
(!/>;T114 1[-5(1 +y7)-

[he ;
manifol . . . . ) R -
d uuder consideration is M = R*. Introducing the abbreviations

) 01
KN(u)y = HAu.w = (;) A= (-1())

. Looking at this system we detect

the ey, .
olut o o .
Wany o} ion equation (1.5) ix clearly an example ford 1.1
¥ Characteristic f . ) N . .
this # “ acteristic featnres which carry over to some nounlinear systems. I'he evolution of

SHow 1s of the form

expitA): w() —— u(t) (1.6)
(t} defines a set of diffeomor-

which <}

LOws th; . L L
phisims s that the map from the initial condition u(0) to u
s on \ By . - . . e .

the manifald A =R *. Becanse of the v,\'pmwntml function these diffeomorphisms

“Emngy X —_—

3 ¥ Nuether (March 3, 1882 - Apub 4, 190085 was the danghter of the matician Max Noether.
L of non-compmutatise alget
i (right to teach

With oy renowned mathe
“Feonty

o madern o Ibutione o the thecry ol ieads and the fi a she influenced the developrient

alge .

) in Nazi Germany she

“Mugraced (, p

brog . .
A o great extent. After she lostm 1043 her vewia legens

vineetan
ny more

A work .
for which Fimmy Norther herself had no Bigh opinion (see {1)]. Later on she refused to take a
("verschollen”). Hermann

1 claimed that it had Leen lost

(rexs delivered in Bryn Mawr
hat time

Dotice .
W Of this work of fundamental impotance and she ever

rnonal ad
| relativity theory she gave at t
lem of differential invariants
he left sides of Euler’s

group of

1 had |
a
llege o _\(““'DI""'I) different opiion and acknowledged tlas in bis me
"o Apnl, 26, f9an: TR . )
the gemuing e 20 1939 T Gl the et signiticant sides of general
the veduction of the prob
wlentities hetween t

ancl e r R )
universal mathematioal formudation: st
second. the
tegral is invariant with respect to a

T g
Y@ purely 4| .
SGuations of gebraic one by use of “normal coordinates”
of a pre . .
prob I occur when the (multiple) in

i lem of variation whic
ansformatjons, “
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. advantage
form a representation of the additjve group (IR, +). Furtllerm»orv. \\e/il))serrrvhee;h?n hhs 1o
of introducing polar coordinates r — Va4 yz_ and ¢ = acht:ilIl(}/t ' ajong the coordinate
coordinate space the systom becomes a flow with cons.tant ve oc-l Y ‘dinates into two sets.
lines r = constant. Thus in this case we are able to split up the L'O(—?l :d rother st (ang
one set (action variables) which remains cons.tant_under Ll‘m-lﬂo\», C‘Tla_] i s having
variables) which grows on the orbits linear with time. If such spe letely intograble. Look.
these properties can be introdnced then we ca'I] suc'h a systcml CDI?l‘I{ itity st be related
ing back at our example we see that this notion of (‘,omp.let.e mt(.*-grd ‘h.anging one of the
to the existence of One-parameter symmetry groups. Th.ls 1§ I)F(dllh‘t‘ c o e movetment
coordinates and leaving the ot hers unchanged moves orbits into orbits. So

along coordinate lines constitutes a synanetry group. O

Example 1.2: Pcndu_lum‘ )
The time development in this case js

(1.7}
P+ osin(e) = 0.

Introducing

q
T = 2o p = and v =

we see that {(1.7) is of the formn (1.1

q P _ 01 ) ( sin(qg) ) ) (18
s <I1), = (-sin(q)>*<;10 P

The manifold wnder conside

: uation
. Lo P e this eq
ration again is 4/ = IR2. In contrast to (1.5)
constitutes a nonlinear flow.

Again the dynamics has the form (1.4) since

N 1
("”(’”) =V H =1 costg) 4 5p
P 2

AMthough this is noutinear flow i
2

itable
. suitabl
. . . ing a
can be linearized locally by introducing
coordinate systeq,.

inates.
But this coordinare system Is no longer given by polar Coordlﬂw be
part of the coordinate lin way.
given by the |ines
How 1o do this wi]

o

. ) h ar s should b

Obviously the es which we called action variables Jitable
L . inas

remaming part should be chosen in

seribed later on, O

II'= constany and rhe
I be de

The scope of 1his a
the harmouie oscillator in 4 general fr
more complicated SVstems,
and relations iy sucl
choose.

de for
- . R ations which we ma
rticle is 1o rephrase these simple observations w hl; + to other
-arried ove
amework so that they can be carrie fing notions
. ~Orresponc
f‘\ll’fhf‘l'rnm'v. We want to formulate the correspo

e
. which ¥
. -dinate systems wit
baway that they are independent of the coordinate s¥ys

We organize the articl
basic notions which le
and conserve(d quanti
for the descriptior .
way we still will
of abstraction at tl

duce s0m¢
ein the following way:

. intro
In the next section, we int
ad in Section 3 16

, etries
a description of the conncction between s".ﬂ;nsetup
ties, At that point we shall npt vet choose the most abs~nailnvariant
Instead of fox’nmlating everything in a differential geometric the lev
ork with coordinate systems. This we do in order to. keep e mostly
e heginning as low as possible. Results in these sections ar
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presented wi
by USingda“}:itgl?;-t1gizlofsf b(}‘:'““ﬁﬁ‘ -latcr on ‘pro.ofs will be given in a short and concise way
derivatives o] temors(? a .stracnou. In bectmf\ 4 we introduce Lie algebra modules, Lie
are geometrically il;vari;n tOl(ller V‘to l?a\'era nofatu)n which allows one to see which notions
on a general tovel. The nt. In Section 5 we m?roduce the notion of bi-hamiltonian fields
for hamiltonian pa.il-s asli 111; t-hei following section, we introduce compatibility, especially
(Section 7). In the ;i[1~]j( 1 lfbtlflto .the ;30\\'er of this notion by a set of suitable examples
dimensional case and “ part, Section 8, W(? dstcuss complete integrability in the finite
and we show how that notion is connected to the situation considered

before. In .
. ad :
dition the action/angle structure of the multisoliton manifolds is given

2 3 . .
Basic Notions in Chart Representation

I'hope th
at m o derr . . ) )
ost readers are acquainted with notions like manifolds, vector fields, tangent

space, differentiabil;

. entl 4 0 O H

retical back a}zllllt) and so on. lowever, | do not believe that a knowledge of the theo-

rou i ani is i

described ingth' n in manifold analysis is really necessary for understanding the concepts
is artic Cor i PP

and a heurist] 'daltule. For the most part a more intuitive grasp of infinitesimal calculus

stic o . R .

idea of manifolds as heing something like smooth surfaces seems sufficient.

remarks on this subject since

For t}
he sake . .
ke of completeness however, we include some
insofar as we avoid the cal-

iotation will djff e e conventio

\VIU C S

CUIUS(}f . _dl ¢ osoimn \Vh."lf rl'()lll t]l conv Ilti n not ti”“’
L)tﬁrlOI" f()I'IHSA

Fori . R
%) [2?3mTf;l‘i‘it;‘;dallrr!(‘.nnsi011aJ manif.olds we will use the notion of Hadamard differentiability
rle. A funct‘io‘n Fal.ll,\' weak notion which nevertheless ensures the validity of the chain
d']ferfntiable : _El — E, between two linear spaces 1 {5 said to be Hadamard-
at w € Fy if there is a coutinuous lincar map L : Ey — E; such that

.1
lim ~{Fu + ev) = Flu) = cLlv]} = 0 (2.1)

The lincar operator L, and its application

(u){v] is most

unifmml .
yin v

on each compact subset of Ej.
respectively. Of course, F'

L to v an
Pasi]l‘- C;male then denoted by F(u) and F'(u)[v].
¥ computed from the directional derivative of F
PR E— J .
[ = Pl = g, Fle b el

e fe=0

(2:2)

Ifn
ot otherw;
erwise : . . . . L p
often diff X mentioned functions are usually assumed to be O™ -functions, 1.€- infinitely
Merentiable, ) y

re the continuous maps

then vector fields a
we assume vector fields

If .
the manifold is « vector space M = E.

K. F
CE — F i
Loassig : . . B
igning to each « € Al some vector L(n) € E. Again,
Al lige,
ar s -
e Paces E are assumed to be locally convex Hausdorff topological vector spaces Usually we do not
space E- of linear functionals on E. which

ribe expl:
. xplicitly .

“harae pappn Y the topolugy on £ W rather introduce a vector
N \e weakest loc 1 that the elements

€ndow,

that

ally convex topology such
E,) of linear maps El
i.e. the weakest convex topology such
« € E; are continuous.

ts, and . -
we assume that £ is endowed with tl
- E7 are then

). Spaces L{E1,
Ep and Bz, Ef,
p{L(u)) with p € E,°.

are coutir, .

ed with d‘:‘“u: {i.e. the weak topology with respect Lo 1M
e

all linear g, Wfakesn topology given by the dual pairs Ey.
netionals 4 on L{E;, E;) given by L — #{L) =
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d by
i i ra wi v e commutator defined by
to be C™. Thus they constitute a Lie algebra with respect to the

7]
dele=0

= G'(u)[K(u)] - K'(u)[G(u)].

[K,G)(u)

{Gu + el(u)) — K(u + eG(u))} 23)

This Lie algebra is referred to as the vector field Lie algebra .

Gy — [K,6]
Recall that the definition of a Lie-algebra implies that the ma]pf ((VIX ,Lpghe JLcobi
is bilinear, antisymmetric ([F,G] = ~[G.K]) and such thar for all K,G,
identity ) o4
UN.GLL] + [[L,K],¢) + [G,Ll,K} = 0

R . . ifTerentiation.
holds. In fact this identity is easily verified by using the chain rule of differer

If the maunifolds Af which we consider are
in the usual way by parametrizing,
most of our examples the

not linear spaces. then derivatives are deﬁ}?fi??l
or modeling. manifolds by linear spaces: ATh;‘:ggt,hal
underlying manifold is a vector space we bl’IEﬂ:V lliuzhl;ﬂcalities
procedure for the sake of completeness. Those readers who do not care for Zties.
should skip the following paragraphs up to the introduction of conserved quan

. . then w
Let M be some Hausdorff topological space and £ some lincar space,

M an
C . . - . I index set ofA

M a C*-manifold if there are Blven an open covering {U/,|a € some in }
homeomorphisms

e call
d

Pa Uy — Vo, V, open susets of E

; 7.y — E
such that for all @ and 4 the overlap map p, op3'is a O™ map V50 P;?(bf}lm Lcil)[eclio“
These p, can be considered to be local coordinates for the corresponding U, . -leects of the
of these (Uapy) is defined to be an atlas. Such an atlas allows transfer of all asp o= ifall
differential structure from E to M. For example, a map ¢ on M is defined to b?m » from
the zop ! are " Consider 4 € M. then a chart around u is a homeomorphis 1

. ap pola
an open neighborhood U of u into the model space £ such that for all « the map T The
detined on P00V, i O, Now,

tangent space T, M ar the
The formal definition b

the notion of tangent space is casily introéll}:ea chatl.
point u is represented by the model space together wit which i
as to be such that it does not depend on the special rharit . 5.
chosen. hence it must be given by equivalence classes with respect to different cxav o he
for fixed u. ) consisting of a chart around 1 and a vector defined
an cquivalence relation (py,vy) = (2. U"')‘ classes
WM s defined to be the set of equivalence res the
erited from the model space, and TM dem)yorkln?
ahgent spaces and is callod the tange nt bundle. }lowmlervv\choose
ence classes is not always very practi u. we
COMMOL representatives by fixing some
of the points around u jointly by (p, E
¥ € M some element of 7
to such a common repres
(p. E™) instead, and co-vector
bundle (collection of al] T:M.
equivalence classes ag before (o

we consider pairs {p.v
model space. In these pairs we introduce
Y (p2o T Yipiuning = vy Then 4
endowed with the ohvioys topology inh
collection of afl these 1

with these equival

Yy

cal, so locally around opaces
chart paround w and representing the ml,lgm_ltt;pgav
) Then a map K : Af — TA7 which ?SSlg_nb espect
-vector field if it is locally €™ “'lthfl‘r- ’;1 by
define locally the co-vector space t"u‘ngéﬂf
fields to be suitable C*>-maps from M into the Cae agait
) Of course, strictly speaking, elements of Tp M ar~‘-ati\'e:‘
nly in the definition above, one has to replace the den

uwM is said to he a (>
entation. Similarly, we
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by suit oints

ilivaﬂ atb]e adjoints in order to leave the application of a co-vector to a tangent vector
an oordin:

repre 't Ufld(‘r coordinate changes). It should be observed that the choice of a common

epresen! . . - . . . .
sentation around some point u € M is the same as choosing a particular chart in the

manifold given by the tangent bundle.

Tt i : A .
these ¢ he manifold under consideration is a linear space. then we do not really need a
nstrictions because we then model the manifold by itself and for simplicity we

choose 1 P feal . . .
he canonical chart given by the identity function on the model space. The validity

of the i .
requirements above then follows from the usual transformation formulas of differential
1M can be identified

calculu i . .

with ES‘ I(Iil this case the tangent spaces T, M and cotangent spaces

th  anc E~, respectively, and we are back in the situation M = E which we studied at
ie hegmnmg.

to manifolds in order to indicate that differential

We have chosen this formal approach
nd that nevertheless for practical

caleulus e .
comput 0_“ abstract manifolds is indeed an easy task a
putati i v e S N .
ons it mostly is sufficient to do analysis on linear spaces.

To proceed. we consider again
w, = KN (u) . w€ M, A1 some manifold . (-

(
are called scalar fields. A

e

ical;??ipls from t.h(} manifold Af into the scalars (either IR or )
eld I(u) is said to be a conserved quantity for (1.1)if

rwkw) =0 (2.5)

for at]
u - : . . .
€ M. The reason why this name has been chosen is obvious: Take an orbit u(?) of

11
). then by the chain rule we find

(2.6)

d .
EI( u(t)) = Iu(t) N (w)] = 0.
rhits of (1.1).
Observ. . . .
the fanbber\e that. for every v € M. the quantity ['(u) is a continuous linear functional on
gent s .
are ca““;m space T, M, i.e. I'(u) must bea cotangent vector. Derivatives of scalar fields
in:teadefg,rad‘e“ts and f. Thercfore we use for scalar quantities I the notation VI(u)
then (+ ? '[(u) If we write <.> for the duality between tangent and cotangent vectors.
(2.5) is written as
< TIK > =0. (2.7)

Hene
€, (2.5) puar: .
(2.5) guarantees thar [ is constant along the ©

rved quantities which depend explic-

Some
-way on the parameter tis

timesg .
iy o I:‘ s there is sote advantage in looking at conse
aai}] o llnm_ \ family #'(u.t) of scalar ficlds depending in a =
be 4 time dependent conserved quantity if
Fu.t)y + < CE(u ). Nu) > = 0. (2.8)
Here
- 8 N - . . -
ub-t denotes partial derivative with respect to t and V F = Fis taken by ignornng

the |
© para ‘ . . .
meter ¢, The notion makes sense because it gives
d (2.9)

mF(u(f),t) =0
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i int
. o the physical poin
which implies that F(u(t),t) is constant along the orbfts of (1.'1). [.l'tofn s ir;variant with
of view such a quantity does not seem to be very significant, smc.e l. ‘IS e her interestitg
respect to a translation of time. Nevertheless it turns out that it is a
quantity from the computational point of view,.

iti ich i in t. Let
Of special interest are those conserved quantities which are linear

(2.10]
Flu,ty = folu) + fi(u)t
. ; ffi cients
be such a quantity. Inserting £ into (2.8) we then obtain by comparison of coe "
h+ <Vf,K>=0.

. more, the tern:
Hence, F(u,t) is uniquely determined by its absolute term So(u). Further
fi(u) must be a conserved quantity which is time independent.

>0 _diffeomorphisns of

Related to conserved quantities are one-parameter groups of C/: dlf‘“‘:”;lch that the

the manifold M. Recall that these are defined to be 011e-t0-0ne. C*?-m ‘pl‘lisms is a map

inverse is again differentiable. A one-parameter group of dxﬂeomOTTP),u M. cR)
(u.T) — R(7)(u) which is differentiable on the product M xIR = {(:L{-t

and assigns to every 7 € IR some diffeomorphism R(1): M — M such tha a1

R(ry + 1) = R(11)°R(73) and ROy =T
foral 7.7, e R

—7) must be
This implies that all tle R(7) do commute and that R(—7)
the inverse of R(r)

itive
. f the addi

- With other words: R(7) defines a group 1‘epresentat1"3n :_derivative at
group (R. ). One-parameter groups are completely determined by their

7 = 0. To see this let R(7) be a one-paraineter group then

, d (213

“- ER(T)V e . G(u)
is said to be its infinitesimal generator. Equation (2.13) is an ahbre\'iatlont}fz: point, &
(d/dr){R(r)(u)}h:n» Since R(t) assigns to each point of the manifold a',no' wctor field
must assign 1o each manifold point u a tangent vector at w . Hence G is a v

o oasily
- itrary 7 is easi
Because of the functional equation (2.12) the 7-derivative of R(7) at arbitrary
expressed by G

d (2'14\‘

—R(r) = GeR(T).

dr

Hence R(r)is niquely determined by the vector field Gu).
If the R(7) are linear the

ential equation (2.14)

diffeomorphisn groups

. aar differ
u (< again is linear. Then the solution of the ll:;;l;)weven
can formally be writtey a5 R(r) = exp(rG). In gem’i" vertheless
are far from being groups of linear transformations. ll-e ull-backs
their structure is more or less given by the exponential function since by use of p abstract
equation (2.14) can be transforined into a linear differential equation (on some
manifold with rather high dimension, however),

To sce this. consider F = ¢

ace
of scalar fields, Let R

, r sp
(ALR) or C™o( A1, @ ), respectively, the vecto
M — M bea C'*-map then

(213
(R f)w) = f(Ru)), fer
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defi - e
HCh;,l.es ,T map R o F — F which is linear on F. R” is said to be the pull-back given by
. Similarly, if &' is a vector field we define a map Li:F—F

(Lif)w) =< VK@) > [feF (2.16)
b, I .
d}er‘zm%flmg .to each f € F its derivative in the direction K. Ly is said to be the Lie-
vative given by K. Again, this is a linear map on F.

Th . N . R
e space of all Lie-derivatives is a vector space. The usual commutator of linear

maps
(Li.Lg] = Li°le— Le°Lx (2.17)
tructure.

endows thi .
s this vector space in a natural way with a Lie-algebra s
rphism from the Lie algebra

ObSe 1
o reclt'vatmn 2.1: The map K — L isa Lie-algebra isomo
or fields onto the Lie-derivatives, i.€. we have

Ling = Lk , L] (2.18)

Jor all vector fields K and G.

The . . i
proof is simple. since by differentiation we see¢ that the commutator bracket is

a .

\\.}:iiseern}?“onc;of the vector field bracket. Moreover, the requir'ed fact that Lx # Lo

i T, A wo c7é follows from the observation that for any two different tangent .vectors

derivatives ina:; ﬁ"fl a %Calar field (by application of 2 s.lut-a,ble co-vector) having d:fferenf

whenever R 1e direction qf these tangent vectors. By similar argume'nts w_e ﬁn.d R1' # R

of the origi;ar RZ Hence, it suffices to study the pull-backs and the Lle»del?VaLl\'ES instead
objects. For these new quantities equation (2.14) translates into

d . .
) = Ly R (7). (2.19)
arTr
which s . )
fore we Cl(jaﬂy alinear differential equation since only linear operations are involved. There-
write
1 R(t) = exp(TLR) (2.20)
s Ob inj . . e .
generat taining a representation of the one-parameter group in terms of its infinitesimal
T [0} .. . . - -
r. Of course, this is a highly artificial representation, since R*(7) and Ly act on

ifinite. g X
it > < - . . . .
mensional vector spaces even when Af is finite dimensional.

§(4\1atiA(\)n§DI:~$E(}lllul‘C"_ of these considerations is that one-parameter g,r(»)u.ps
]‘RG(T)‘T’F IRQ} }\)0!‘ linear or nonlinear, are more or less the sz.xme Ob_]etta.;
2elerator 2’. S ¢ S“,d.‘ a one-parameter group of diffeomorphisms on M wit ' e
] . Since  is a vector field assigning to each u € M the tangent vector Glu) €

T,

ue

M ow
e : .
look at evolution equation

and evolution
To see this, let
h infinitesimal

u = Glu) (2.21)
In faey
€t for any initia} condition u(0) a solution is casily found, namely
w(t) = Ra(t)(u(0))- (2.22)
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i i is a group:
This solution for the initial value problem of (2.21) musF be unique S.ulceﬁ(}?G:!:)) :gu([l).
To see this take another solution u(t) fulfilling the same mmal. condltl(clm C o nd benes
Then by differentiation we obtain that Ro(—t)(u(t)) must be mdepeﬁnteng "y
equal to u(0). Recalling that R;(-1) is the inverse of Re(t) we find u(t) =

5 o ; ator of (2.21)
This viewpoint shows that Kg(t) can be understood as t.hg flow S}f)ecrourse A
1 k)
assigning to each initial condition u(0) the solution u(t) at time t¢. oty those
evolution cquations of the form (2.21) necessarily yield one-parameter g ’ (i)ll~t <uch that
where every initial condition u(t = 0) = u(0) have a unique solution fo
the flow operator is a C™-map,.

. . ameter

This interpretation shows, thal notions and methods coming fTOIIH t‘ij(r)‘:f Ie);:lations‘

groups must lead right-away to the crux of the algebraic aspects f)f eVO'lU‘ cen that thi

Therein lies the problem of commutativity for nonlinear flows. It is eas<1 yLb oking at the
important property can be expressed in terms of infinitesimal generators. Lo

S jvalent
s e i esimal equi
exponential form of the pull-backs for these groups one discovers the infinit
for commutativity:

) ) . mof?hisrm
Observation 2.2: et Rr(7) and Re:(t) be two one-parameter groups of diffeo

with infinitesimal generators ' and G. These two groups commute,

Ri(r)Rs(ty = Re(t)ye Ry(T) for all t and 7 in IR
if and only if [1\"(,'] =

- field
. ) in the vector fi
0, 2.e. their infinitesimal generators commute in i
Lie-algebra.

. infinitesi-

In general, it is very hard to verify whether or not a vector field is Tea_lly thetilgf(‘).'ﬂ?
mal generator of a one-parameter group because usually it is difficult to see if eq;«la ucee
has a unique solution for every initial coudition. But one of the reasons fol'.":‘e' of groups
wathematical analysis is that global conditions (like existence and Commutau“t"onditionf-
Ry (1) and R (7)) can be rephrased, by use of infinitesimal arguments, as local Cbraic an
Therefore it scems natural to put the concept of symmetries onto a pur‘ely alse in those
infinitesimal basis by taking the commutativity of vector fields as definition (cven
cases where {2.21) is not the infinitesimal form of some globally defined group)-

So. we define the vector field ((u)
(L) if and onty if [N.G] = 0.

vorrectly should be tered

55 U

equatio”

rolution
to be a symmetry for the evolu for what

: s used ‘iation
Here the notion symmetry is used as abbrev
as nfinitesimal symimnetry-generator.

= Glut
. .. . . A ry u = i
Note that when ¢/ iy a symmetry for (1.1) then & also is a syminetry for

Using the Jacobi 1dentity we see

that whenever the vector fields ¢ and L are Symar(ﬂri:lof
for (1.1) then [G.Lys again a svmmetry for this evolution equation. So, the symiue
(1.1} are a subalgebra of the Lie algehra of vector fields.
It will turn out,
stitutes an efficieny ;
parame

. on-
. ) )  mmetries €
that introduction of the concept of time dependent sy Ii“ vay on the
i . . 2 _way
ool. A family of vector fields G u,t) depending in a C
ter tis said to be a time-dependent symmetry of (1.1) if

22
Gi + [K,G6] = 0.

Here, again [K.G] is taken by ignoring the parameter ¢ .
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IfG .

dependent(?” and L(u,Q are tine-dependent symmetries then [G,L] is again a time-

Time-depend{nmtme[ry- Tl.ns is casily seen from (2.23) and the Jacobi identity. Hence, the
ent symmetries are again a subalgebra of the Lie algebra of vector fields.

The alg i
ebrs I . .o P
gebraic structure of time-dependent symimetries is very similar to the corre-

spondi

ponding structure for conservation laws. For example if
Gty = Golu) + Gt (2.24)

and comparison of

15 a time-d .
ependent symmetry linear in f, then insertion into (2.23)
d by its absolute

coeflicients yi N -
term Go(u yields Gy 4 [K,Gg] = 0. Hence Gu,t)is uniquely determine
o(u). Furthermore, (7){u) must be a symmetry.

3 Poi
oiss . .
on Brackets and IHamiltonian systems

ynamical variables given by conserved

If ore
compares equations {2.8) and (2.23) for the d
ery similar. They both

Guantitie
(1tles and ot i . )
are linear evol S),]mm(tnes one discovers that these equations look v
0l ot . ) . . o
ution equations on some infinite dimensional manifold
A difference which

ese two equations.
riori’, equation

ng new solutions. "A P
here is a Lie algebra involved. This
wo solutions to

s eaﬁﬁ'“;i::i:rl:dql;e essential ‘diﬂ'orence between th
f2'23) has more QIT one looks for means of construcii
s of considerabit; :llmtu“ than equation (28] since t
find a now SOlutiol( ‘gllld‘ge because we can take the colr}mutatur of any t s
and symmetries itl: )0~ m Ol:del" to complete Lhe.analogles hetween conserved qua'mtmes
SR ‘\[‘Other‘\-ie\:eqns lnAtngmng to }ook for Lxe. algebr'a‘ st.ruc‘ture among solu‘non? of
derivative is a speci 1501“7‘ arises by looking at 'the time derivative in both cases. -”lhe time
ke validity of the jal case of what usually is said to b.e a d.erujatwn, where de.rxvatlon me;'ms
2,'23) tells s th'npicl)('l—-m«t rn'le ((?f \\'hich' th(t Jacobi identity 15 @ represent:'mon). E(.luatllon
“here an inyer (l(e : ”“f' Sllil‘Clal tnnc'—dern"atlve can be repléced b\ some inner derivation,
r,f the Structyre “‘{mon is 51)111(111111@ given by ('(’Jm'mut.anon with an element taken 'out
Y';”’“Imim. much “lll_“_)t‘f T(‘mslderatmn: Ax'xd inner derivations are, from the rflathemzmcal
“¥hamical \'ari;\})l:FLl‘t \an outer derivations. Tor exampl?,vapan from the discovery that
YHantum wechar “ 31”0 operators rather than .scnlar& on'e of the reasons {or the_ sugess of
Tner d"l'i\'atiu;s "Iﬁ was the un.-s‘aty that the time evolution of these operators is gven by

s. Tt is hard to imagine that quantum It would have been feasible

11 ity begi H
glaunin o i i
1g without this assumption.

iechanics

I'he R
refor : . X . o
eplaced | te it is natural to ask whether in €ase of (2.8) the ume derivative can be
5y some inner derivation.
Fort
un . . . e
ately. all these questions lead to the same structure, namely Hamiltoruan sys-

If one .

Problem ; analyzes the situation further it all boils down to:

to some 5 -1t Take some operator valued function O(u) mapping each ma
by near operator O(u) : TLM™ — T, M. Definca bracket among $¢@

fems
nifold element u
lar fields Fi. F2

{F,F2}e =< VF.0°VFA > (3.1)
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When is this a Lie-algebra? In addition, when is @°V a Lie algebra homomorphism info
the vector field Lie algebra, i.e. when do we have

O°V{Fi,Fle = [0°VER,0°VF,] 7 (3.2)

We easily find the complete answer to that problem:
Theorem 3.2: The following are cquivalent:
(1) The bracket { , }o defines a Lie algebra

(2) The bracket { , }o defines a Lie algebra such that ©°V fulfills (3.2), i.e. ©°V 158

Lie algebra homomorphism into the vector fields
(3) © has the following properties

. . L and
(i) © is skew-symmetric with respect to the duality between cotangent space

. ent
tungent space, ie. © = — Q% or < vi, 00 >= — < v3,0u] > for all cotang
vectors v1™, 1.

(ii) for all cotangent vectors v, 03,05 € T, M~ the following identity holds pr >=
<L OO >+ < v3, O(uY[O(up3)e; >+ < vy, O(u)[O(wilH
0.

Proof:

First we show the equivalence between (1) and (3).

) ' t
The skew-symmetry is certainly necessary and sufficient in order to guarantee e

{ . }o is antisymmetric, Computation of the double bracket vields

{F A, Blele = <« V{F. Fa}e.OVF >

<V<VF3,OVF2 > OVEH > >

F/|(OVE,. OvR)] - FJ[(OVF;, @V F )+ < V F, 0’[@Vf1]\—’ 27

Since second derivatives are

F" cancel if { Fy, {Fx. F3}e

is equivalent to the Jacob

between (1 and (3).

it

< . . ; ivatives
svmuietric with respect to their entries all second derl (30

N . o iti n
Yo+ its eyelic permutations are taken. Therefore conditio

fn : . .quivalence
Pidentity for { . }o which finishes the proof of the equiv®

._Sin(-c- (2) implies (1) it ouly remains to prove that (3.ii) implies equation (3:2) IL:
see.thx:‘s take two scalar fields Fi. F; and some arbitrary co-vector v* . Since the secone
derivatives of F. - they all cancel in the followi ng computation:

OV{FL Ao +[OVR, 0V R >

<V{A FR)e.0r > 4 « v [OVFL OV E] >

= < VF’Z.OI{@U‘]VF] >+ < v'-GI[OVFIJVFQ . (')’[OVFz]VF] >

T SVEROOUIVE > 4 < 010V vE > 4 < VR,@[OVEI

Fy are symmetric

»

<v, -
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Now :

of condition (3,ii)y iels(i’ ohbee: ta}fe the gradlfznt of < v*,u > toobtain v™. Then application

see that < v*, *@%{ FS } at the nght'hand side of this last equation es equal to zero. So we

chosen we obtain that 1£I1Z}\-(-) + [QVfl . (—).V'FQ] >= _O. M.oreover, because v* was arbitrarily
ector on the right side in this bracket is equal to zero, i.e.

—OV{F Fa}e + [(-)VFl.G)VFg] =0

which ] .
ch shows that OV is a Lie algebra homomorphism. M

Operat ;
implectic 00: Ot having m}e of the equivalent properties of the last theorem are called
perators or Poissson operators, they play a fundamental role for dynamical

svstems. The K
corresponding bracket introduced in (3.1) then is termed Poisson bracket.

The flow
we = N(u) (1.1)

iscalled a hami . .
amiltonian flow? if there is some scalar field H(u) and some implectic operator

O(u) such that
The scal w, = O(u)VH(u) (3.3)
e scalar fiel ; . .
give asuitabledf H then is the so called Hamiltonian of the systein. The Poisson brackets
Gven by (1.1 ra":‘% for d'escnbing the dynamics of scalar fields with respect to the evolution
Flu(t), ¢ N ). Using K = OVH we find that the total time derivative of some F' =
1) can be written as
d

. EF = {VH,Fje - (3.4)
ence a sealar . 4
given by the ;Io‘ﬁeld is a conserved quantity if and only if it commutes (in the Lie algebra
of thatvwe . isson brackets) with the hamiltonian of the flow. Asa particular consequence
usually i Call(:zjthat theﬁhamiltonian H itself always is a conserved quantity. This quantity
s that pow we henergy . However, the maost important consequence of the above theorem
Theorem N ave a precise relation between conserved quantities and symmetries:

3: Whenever I(u) s @ conserved gquantity for the hamiltonian flow v =

Blupev g
() then @°V{ is a symmetry of that flow.

Prgof. B

ook By T - ' .

Hhee | g heorem 3.2 we have [N.OVI] = OV{H.I}e. This expression is equal to zero
5 a conserved quantity.®

generalization of the classical result

This r

S resu R N . . s
It we call Noether's theorem since 1t1s @

hows that it carries over to time-

obtained
ed by F SN .
v Emmy Noether ([18)]. A simple exercise s

de
epende
1 consery s .
served quantities and time-dependent symmetries as well.

E
“Xample 3.4: Pendulum

Ithe
manifold is
is a vector space and O an antisymmetric operator which does

on the may;
a .
wviously have O(u) = 0. hence O fulfills condition 3 of
the

here

not depend

quired that © is invertible. But

ows it is usually re
nvertibility is 2 little

classical fini N .
finite dimensional situation for hamiltonian il
here, for Lopulogical reasons, i

we are maj
mainly | . - . .
y interested in infinite dimensional manifolds w

roblemat;
atic, the;
refore we have skipped this restrictive condition-
¢ can happen, as we will see soon, that a flow has

bit p,
€

One b
as 1o be a |j A
MOre than one W 2 little bit careful with this interpretation since i
amiltonian formulation.
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. . e ch an operator
Theorem 3.2 and therefore must be implectic. A particular example fOSr Sl:hese squations
is the antisymmetric matrix appearing in equations (1.5) and (1.7). :};eir hamiltotiars
give hamiltonian formulations for these systems and, as stated above,

are given by energy conservation.

. ; the
It should be mentioned that whenever the manifold is.ﬁnite dlnu{enslo;l;.lona?i e
implectic operator O is invertible then locally there is a coordma?e tran;odril:goml natrix
manifold such that in the new coordinates the implectic opcrator is an o 71 e ([16, pog
having —1’s in the upper half and +1’s in the lower half of the oﬂ"—dla.glona'a(n o Coonen
30])). This means that equations (1.3) represent the prototype of hamiltoni
finite dimension.

inear
- for a nonline
The importance of conserved quantities is seen from the fact that even

. telv.
; ; 4 tion completel!
system like the pendulum knowing the energy allows to integrate that equa

. :are
ft . since they 2
To see this we first remark that we already know the orbits in phase space,

S——
§ N\l
J\/E

———

—
<

[

&

“Nu2o o

- E-E W

>

Fig. 2: Plase space orbits of the pendulum

To integrate the equation along the

o
- this conserves

se orbits we clioose a fixed value £ for this
quantity, then

1 3.5
H{z.¢) = §¢2 — cos{yp)= F

is a differential equation of first order and separation of variables yields that
i do . {3.6¢
t - / TS ———=———= = constant = F
2E + Yecos(a)
must be a constant. Thi

=\ in jmplicit for®
s formula obviously gives the solution of (1.7) in impli
Expressing E again by H

(£ 42) we obtain that
N (3.7

F =4 _ /* ' da
V2H(3,¢) + 2cos(a)
must be constant along any line on w
the orbits of ( 1.7y Rewriting,
conserved quantity for (1.8)

along
eh B (s constant d0n¢
hich H(p, ) is constant. Hence F is .Consdependem
this in phase-space variables we have found a time-
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The pendulum provides the most simple which illustrates that knowing suitable and

glough conserved quantities implies that an equation can be integrated. O
T;a‘;{‘Ple 3.5: Korteweg-de Vries equation
e Korteweg-de Vries equation [13(]KdV for short)

(3.8)

w, = K(u):= 6uuy + Uzer

plays ole i . . . . . .
ys & central role in the history of completely integrable systems on infinite dimensional

manifolds.

tions fltllanyy this cquation is considered to be a flow on the space S of tempered func-

/and. A hese are the C°°-functions f in the real variable z € I having the property that
its derivatives vanish at +oc faster than any rational function.

1 derivatives grow at most

D . . . .
cfine $* to be the space of (" -functions in r such that al
functionals on S by using

polynomi e
an .‘LI;OHually at +00. This space can be taken as a space of linear
scalar product in the following way , namely
<Uu>= /U(ar)u(:v)dar, UeS,ues. (3.9)

We use .
R the convention that if no boundaries are given then integrals always go Over R
. tespectively. As topology we take the woakest convex topology making all these

funct; )
onals continuous. Then the scalar ficlds

Ip(u) = /u(z)dr (3.10)
Li(u) = /u(.’r)zdl‘ (3.11)
3 13 2
Lu) = [(w — —ur Ydx (3.12)
ale C*'.f R 2
unctions M — IR . The derivative of, for example, () is computed to be
L] = -(—)- = /{(u + o - l(u-%—cv)rbz}d:t. (3.13)
| Je | =Y 2
tegration by parts yields
(3.14)

el = /(31[Z 4 ougp)vdr.
He
th;‘(:'hepm\:ldfzd the duality between taugent and cotangent space is represented b): (3.9.).
the Same%rddxent of I, can be identified with 3u? + Uz The gradnem? oxt Io. I are'glven in
“ector ﬁel;ay" by the functions 1 and 2u, respectively. We conl\pute Ll (u)] for K(u), Fhe
uis ¢ given by the KdV. Integration by part (together with the fact that the function
€Mpered) yields

I - 1
e i Jou® + wier = Yilydz  (319)
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. . ivative of a tempered
The latter expression is equal to zero because the integrand is the d]e;v?t:;:for the ficlds
function. So, I; is constant along the orbits of the KdV. Tl)le s'ame }‘10 bd r " ot conserved
and I, whence all these quantities are conserved for the KdV. A time- ep
quantity is for example

2 (3.16)
F(u,t) = /{Tu — 3tu‘}dzx .
We can write the Korteweg-de Vries equation in the following way

U = 0° v H
where

© = D differential operator with respect to T
and

H = /(u3 — %uz2)dz.

: ints. 0
: nifold poin
Since O is an antisymmetric operator which does not depend on L1.l€ Taed ro call H the
must be implectic and this is a hamiltonian formulation. So one is mcum ng
. POV e W
cnergy of the systen. However, another way to write the KdV is the follo

U = OVH

H:%/uzdz,

0 = p° 4 2 Du + uD)
is again antisymmnetric and is show
7). Hence this is a second hamilton

where

and where (317

Sectior
1 to fulfill condition (3. ii) of Theorem 3.2 (s€¢
ian formulation for the KdV.O

, nat
at for some systems hamiltonian fOTm“la_“O;‘s ?;;n}
er, that this non-uniqueness is a highly deSHTl eiable us
tably many conserved quantities and thus wl -ation [a%s
main idea for generating infinitely many conselr‘/ opostd
formulations goes back to . Magri ([14)] ¥ lOnptitv to¢
n should be used for going from a conserved qtu; qu;nti'»‘”
second one one should go back to another Cons'erw apparem
Thus an infinite Sequence of conservation laws would be generated. There is or}? difficults
difficulty with thig concept, namely, that the map OV is not invertible. Th{b'nstead of
is overcome by transferring the resylt stated in Theorem 2.3 to co-vector fields lmiltoni-'h"-
scalar fields. Thep instead of going back to scalar fields one goes back with the hal spondj“g
formulation to co-vector fields instead and from there, by integration, to the correated this
potentials. Of course, for doing that ope requires that the co-vector fields .g"'meruh.emellI
way are closed (a notjon which we wil] introduce in the next section). Thls‘r.eq. (treatt’d
of constructing only closed co-vector fields will lead to the notion of compatibllmhen other
in Section 6). Another difficulty with this concept arises already for the KdV # ijtonial
boundary conditions at 4a are considered. Then we cannot write down the hami

This last example shows th
unique. It will turn out, howev
which will help to construct suj
to integrate the equation. The 1
from two different hamiltonian
that one hamiltonjan formulatio
svmmetry and thep by the

poses
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ARy r 1 . .

‘D.Slxlll?ssnfq(: e‘\‘:; et([llllsa“on since the integrals {3.10) to (3.12) then clearly diverge. In order

level of abstraction fg%e under a common tllegr}' we h.ave t? lift all our notions to a new

section., then provid.es a1IS new level of abstraction, which will be formulated in the next
more transparent setup so that the necessary considerations can be

tarried out more easily.

4 Lie derivatives

In this secti
sectio ; N . - .
1 we would like to review the basics of symplectic geometry and Hamiltonian

mechanics

on an . ; . . .

the selevant, res abftrﬂct level. This high degree of abstraction will enable us to represent
results in a very concise way.

Let F b .
e some commutative algebra (over R or @ ) with identity. We now assume

L) e 4L
s Lie &‘g)eb(l)-ab? a Lie-module {[17)]. Recall that being 2 Lie module means that (L,[Dis
such that a multiplication between clements of £ and F is defined and that,

{urtherm,
ore e i .
, there is a canonical homomorphism

f K — Lk
om £ into the derivations on JF. For K.G € £ and f € F these derivations have 10 fulfill
K. fGl= fIK.G1+ Li(HG (4.1)
Or tourse, being a deri i L[\.. bo — bal = bl v
ivation on F means that the product rule
(4.3)

Li(fg) = Li(Hg+ fLrg) for all fLg€F

holds. |
- In the f EU. . R . R L
ollowing we require, for technical reasons, that the map K — Ly s injective.

REma

rk 4.1: i e .

algebrg hOm;,'n Lie modules are the canonical extensions of Lie algebras admitting a L€
orphism into the derivations of /- To be precise: Let Ly be some Lie algebra

‘Ontmned ;

Fa Lie “[”;;mne F-module £ such that L is the linear hull of {fKIf € F. R €L} Then
there 15 o Zn'm homomorphism K — Lix from Ly into the derivations of F is given then
“nd 14,2 ho‘[:}{ue eztension of (Ly.[]) into a Lie module structure (L, [1,F) such that (4-1)
The :

D€ proof of this r, . .

Shvigns d‘“ﬁnittlj‘:,snlenmrk is a simple computatio

n. One takes KN,.hK2 € Ly, then makes the

aud (LKL fo ) = fufalB0 Ka] + filr (f2) K2~ FaLp, () B - (4.4)
2l the extepg

Xtension to all of £ is obtained by taking sums: L
jven then we assume that all quantities intro-

If sui

duced bz;l;::lble topologies in £ and F are g

of 4 to are continuous. For F-linear functionals v 1 £ — F we denote the application
€ L by <,k >. Such a functional 7 is said to be closed if

Ly <4.G>-Lg < 7. >=< 'y,[I\',G] > for all G,KeLl. (4.5)
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For f € F we denote by Vf the special F-lincar functional on £ given by
. 46)
VK >=Lif foradl K € L. (

. ~F
Because of (4.2) all these V[ are closed. A suitable F-module of f-h:/carsl::lﬁz t£}1at e
generated by closed F-linear functionals v :L — Fis denoted by £L". V ea?]éd gradionts
contains all Vf, f € F. Elements in £% which are of the form V[ are cfthe i
and f is called the potential of Vf. Ohserve that for f.g € F elements Odule
are in general not gradients. Therefore the gradients do not form an F-mo .

. . . . . d to all tensors.
Au important observation is that the derivative Ly can be .extenl;iedeﬁning fist
ie. to all F-multilinear forms on £* and L. This extension is obtained by

. . (Lo
LG :=[K,G] for all G e L

and then by the requirement that for L
those quantities which come from inser
This general extension of [

for
K the product rule hiolds for tensor pI‘O‘dA“ct:rafn(j_ms‘
ting elements of £ and £~ into f—mult]l}ne
K~ s again called Lie derivative with respect to K.
Recall that F—multilinear for
F which are F linear in each
covariant and r-time

V. inte
ins are maps from (507) @ (wL)™, nT C L:;:times
entry. These multilinear forms are called t'ensoi‘S 1(-5 which
S contravariant). Flements of £ and £~ are special [e“jfstingllﬁh
are l-times contravariant and covariant, respectively. In the following we ('1‘0 not}_ ven by
between an F.linear operator @ : £* — £ and the tensor @ : £L*® L . —Qd (Pg,/;,[
(:)(*”.‘)2) =< 71,072 >, In the same way we identify operators J : £ — 1: an ;wcti“el,‘"
with special tensors which are two-times covariant and once co-contravariant, resp

To illustrate the construction of Ly

tensors and for 2-times contrav
fixed

. variant
: Svativ -times €O
we compute Lic derivatives for 1 som?

{ds

. jvative for
ariant tensors. First, we compnte the Lie dernath e
7 € L7, We consider <7.G >, Ge L. The product rule applied to < 7,

SLp(7).G>=Ly < .G > — < 4,[K.C] >

i.e. the lincar map Ly(7): L — Fis

(4
Lety)=dn vy L

For later use we note that for J € F.KN €L the following holds

@
L(fl\’)("r):fll\'('y)+<7,1\'>V’/. ‘
. . je derivall*
As an additional example we take some F-linear operator © : £* — L. Its Lie

jtral}
. . re arbl
L we compnte again by the product rule applied to < 7,07, > where 11,72 &

chosen elements jp L7 This vields

(4.101
SN LK(O) >= L

SO > - < Lp().On > - < m,OLk(12) 7
Ou the right side, the Lie-derivative of the first te
and the Lie derivatives of the ~

dule.

[ e Lie-mo
rm is given by definition of the were

. d 7
s were already determined by (4.8). Since 71 31t
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arbitrary, (4.10) defi
¥, ( ) defines completely the Lie derivatives for the two-times contravariant tensor

0. In th
: he same way we Cq . .
y we can define. by induction, the derivative Ly for arbitrary 1ensors.

For pur :
el aris . .
called eXterio,:VdCeO\-alld-l‘t tensors «, i.e. multilinear forms on (QL)* we can define a so
felds. On F we d ‘;Vatl\./e d, a notion which plays an important role for hamiltonian vector
efine this exterior derivative d to be the gradient

dr =V, (4.11)

and when a
tensor is T-times ‘ari 1 ve b
15 times covariant (7 > ) then we define this exterior derivati e by

(da) e K := Lr{a) - d(a e K) for al K€L . (4.12)

Here o o I

<K >Iiv}I11:]a:SE“E} ](\ is "“Sf’l'led as the first entry in the form a, for example Y ¢ K =
of covariance. In U . )no_easﬂy sees that (4.12) is an inductive definition over the order
binding than s, i he fo“‘)‘}'mg, notation we use the convention that d and L are more
Furthermore w; le das = (da)e K # dia e 1), and similarly for the Lie derivative.
also in case of Ze‘;;-“:”'(’ that we may use (+.12) as the definition for the exterior derivative
expression f e ¥ is :m}; fe Fil we adopt the formal notation that for zero-forms f the
2 we define o I\" ., jua IL'O zero. More .gen?rally‘ for n-forms (n-times covariant tensors)
considerably Shortlg“ I) N (0 application of n+ 1e%s)to be zero. This notation will
Observati 1 subsequent proofs.

on 4.2:

(i) Exter: . .
rior derivative and Lie-derivative commute.
[pd = dLk (4.13)
i) As
usual w i L
from d e o,bta”l that d-d = 0, a fact which is well knoun for concrete situations
ifferential geomelry.

Proof:

i Consi
Consider arbitrary Gl i .
atbitrary (i K € £ and covariant a. then by use of (+:12) We obtain:

Lgd - .

dLc;yaye i = Le(da o K) — de o Lo — LK Lo+ d{Lca® RK)
LoLra — Ladtae® L)—dae Lok — Lylca™ diLgae )
jlad - (]‘(;d-—dL(; _daelch

Yoo K)— d(ae [G.]\'])
Lgd — dliglae® K)

i

L.k
dec o (G K] - (de)o Lo N —(
(dL(; - L(;(I)((l L] 1\)

1

s by induction over

NaoK) and the claim follow
argument is

Hence

(Lgd — .

(Lgd — dLg)a)e K = (Lgd - dLG
nning of our induction

the o

18 order of i

given by thec?va“ancﬁ Observe that the necessary begi
) act that » applied to zero-forms gives Zero-
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- bi-
i onsider an ar
(ii): We again use a repeated argument over the order of covariance. C
trary covariant o and arbitrary vector fields k 4, then:

e

(d-daje K oG = (Lnda e G — d(da » K)eG
:Ll\-(dQOG)—daoL]\'G—d(d(on\')oG o
= lr(daeG) —daw LpG - Lo(da e K)o G + d(da e K e G)
=Lrlca- Lyd(as G)+ Ligrja +d(e e [K,G]) — LgLra
+Lcd(aolx')+d(L,\»aoG)~d(d(aoK)-G') K)eC
d-Lrx(aeG)—oae [G K+ Lg(ae Ky + (Lra)e G —d(ae i
=d(Lo(a s K) - d(a s K)e )
=dae K 2 )

it

. . tea plied 0
Again, the beginning of our induction argument js given by the fact tha! P
zero-forms gives zero, @

Definition 4.3; LT =0
i InT =0
(1) A tensor T is said to be invariant with respect to the vector field A f

) ) . the exterior
(1) Observe that condition (4.5) for Y being closed can be written in “’”7]75 Oérd fda=0.
derivative as dy = 0. Therefore we define a covariant tensor a to be clos

Remark 4.4

(i) Gradients are closed becaus
manifold Al and F qre the s

Lemma ([25)].

somé
€ofd-d=0. If £ is the vector ﬁ€ld_ Lie alg("bm(;:mm,-g
calar fields, then locally the converse is also true

. ct
N o . . iant with Tespe
{22) Observe that (4-12) implies thay any closed covariant tensor o is invarian

to K if and only if v o I s again closed,

(1) Let J be some invertible F.f;

those U
near operator J . £ . - If LgJ — O for all
with closed J(; then J itself r

nust be closed.

Proof of (ii) and (iii )

(ii): Direct consequence of (4.12).

re that
(iii): Because £~ ig generated by its closed elements and since J is invertible we ha‘jb[ta.in
£ is the Flinear hull of those ¢ ip L such that J¢7 is closed. For f € F a“l'f K ifit
Lispyd ~ dJfR) = HLpd ~ d(JI')). Therefore LxJ — d(JK) vanishes for  shows
vanishes for the subset of thoge G such that JG is closed. So the assumption on

that the right side of (4.12) vanishes. Hence we have d(Jye K =0 forall K. M
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Now, let @ : £~ — 3 i i i
Cin the followinngay,: £ be some antisymmetric F-linear map. We define a bracket in
(4.14)

{m.m}e = Loy — Ligum + d< 7,072 >

for 91,7, € £

B . .
Fein Zfo.re presenting the basic result for these brackets we ga
sing (4.12) we can rewrite (4.14) as

ther some useful identities.

{11,720 i= Lo 72 — (d11) ¢ (O712) - (4.15)

50 when ~, }
M is closed then by application of (4.12) this bracket reduces to

{71.72}0 := Ligs) 72 for closed 1 € L. (4.16)

PUrlherrn .

of F ore we easily find with (4.9) how this bracket acts on multiplication with elements
{7, frato = flnmle + (Lo /) 72 (4.17)

T}leore
m 4.5: a - e - . . .
qQuivalent: 5: Let © : £ — [ be F-lincar and antisymmetric,

then the following are

(i) .
{. }o defines a Lic algebra among the closed elements of L~
fi) 9
nimnle = [Odv,, ©dy;] for all closed 11,72 € L.
i
) {.}e defines a Lie algebra in L~
i) @
111, %2}6 = (@1, 07,) for all 11,72 € £

[
) Lo,(@) =0 for all closed v € L.
"'%) For arp;
arbitrary v € L£* we have that © 1s invariant with respect to Oy if and only if

d
T9(071) 0 (O7,) =0 for all 11,72 € L7~

Proof:

sub-© in the brackets {}e-

n the foligw:
i owing we omit, for simplicity, the
the antisymmetry of © implies for clos

e (i)
that {ii): Observe that by use of (4.14) then

ed ¥'s

{71,712} = L@dw)72 = —Liodv) M- (4.18)
e Jacobi identity has to be proved in ©
riple bracket

So, { . )
10 Sho;v}t,;]s a““_SY'mm(ELric anyway, and only th rder
at this is a Lie algebra. Using (4.18) we find for the t

{13.{n.12}} = -Le(nm113

Loy biem)12 = ~Lioyyliomm -

I
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. . H we find
Now, using for the cyclic sum suitable representations obtained from this formula
with (4.2)

. g — L T3
{,’3{.’1772}} + cyclic = L(Od(‘n,’n})’m + L((_)d_”)L(@da,x) 13 L(G)d'n) (©dm)
{L(@(’n vty T [L((’)d'“)’ L(@dw)]}'ﬁl

(4.19)
= {L(Q{Vlv"ﬂ)) - L[@d'“'(')d”]}73
Since y3 was arbitrary, the Jacobi identity for the triple product can only hold if
(4.20)
L©dtnmy) — Liow, O] =0

. PETS ther hand,
which is equivalent to (i) since K' — Ly was assumed to be mJe.ctl\e. On t_he; must be
whenever (ii) (and (4.20) as a consequence) holds then the cyclic sum obviously
equal to zero, which implies the Jacobi identity.

The implications (iv) — (ii) and (

. g ark 41
(i) — (iv) and (i) — (it} are either done by direct computation or by Uﬁ“‘ghr:;:vl are
together with (4.17). To see this observe that (i) gives a Lie algebra (£3,{ }). W <

clr
| . L = L@'v
the closed elements in £* and that (4.17) gives a Lie algebra homomorphism 7y gl
from L7 into the derivations of F.

. : k

Now taking the unique extension (described ;)“ ri‘::ge

L.1) to the F-module generated by L7 (which by definition is equal to L), one ¢ ;‘1 to L
Lie algebra defined by (1.14). The fact that the homomorphism © extends from L

is due to the property that ©F,

5 = Lo,
(v) & (ii): By (4.16) the condition

i) — (i) are obvious.

. 4.21)
OLeym = Liey(©71) for all closed Tmnel (

is equivalent to (ii). And by the product rule this is equivalent to (v). el
{vi) & (iv): Using (4.15) and the antisyminetry of @ we find for arbitrary 7,71, 72
< ‘;1.(L((_)3)0)“,V‘2 > =< ‘)1,L((.).,)(O72) > - < 71,@L(e»,)‘72 > N
<1090 > - <9, 0{y, 72} > + < 1,0(dy .072))
TEMO.0%) > - < 5,007,733} > —dn 0 (O72) 0 (07
Heuce we obtain

(4.22).
<1 LesO)y > tdyy e (O72) 8 (04,

=<71,(07,0%] - 0{y, 12} >
Equating the right side of

e left side (©
(4.22) to zero is equivalent to (iv) and equating its tef
Zer0 is equivalent tg (v. m

-~ therei“
' look at condition (v): If © is invertible, then the (:ondmoil1 condi
imposed on ¥ is equivalent W0dy =0 ie v myst be closed. Hence, for J = © now
tion (v) means thag Jis K4

! -Invariant (K ¢ L) if and only if JK is closed. lfo,Oklsncg)f the
iii) we see that for an invertible @ one of the equivalent Cond{“o:_l theory¥
s {ulfilled if ang only if J = @-1 ;5 closed. In the finite dimension

at 4.4 (ii) and ¢
theorem above ;

|
i
|
i
i
i
i
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the antis R ,
ymmetric closed invertible J are called symplectic. So, loosely speaking, © has

the algebrai i
¢ behav i
conditions of T(liha\mur of the inverse of a symplectic operator. Therefore, if one of the
£ e ~ . . - ’

inverse Symplec:?rem 4.5 is fulf}lled‘ O is said to be implectic, a name which stands for

For reasns WhiChlc..“S?mctmu‘s instead of implectic, the name Poisson tensor is chosen
will become obvious i X i ¢ i ‘

brackets with respect o O in the next section the { | }o are called the Poisson

ndition because of the infinite dimen-

We deci P
ecided not to insist on the invertibility co
symplectic for this more

sion

genearla.ln:tttr:y()f .our manifolds. so we have to extend the notion

dosed. and if‘iz“;i]lllt‘ope.rator J L — L~ is called symplectic if it is antisymmetric and

Lie ideal meany of (-l lor} its kernel I\:er(J) = {G e L}JG = O} is a Lie ideal in £. Being a

tional ideal-coﬂdmom-”sc that [I.\,(,] € ker(J) for all G € ker(J) and K € £. This addi-
n is automatically fulfilled if J is invertible because then ker(J)=0.

o can use symplectic operators J to construct in

In a an: .
aanalogy o implectic operators on
G such that 7 = JG;, 1=

JL suitabl i
e Poisson hrackets: o § .
1.2, Then we define seackets: Take v1.72 € J£ and choose G,

(1o} o= Loy () = Lo ()t < q1,Ge > (4.23)

Rewriti .
ing that with (4.12) and using d(J) = 0 we obtain

{7,721 = .

) 132} = L (Gy) — d(JGy) e Go = TLa Ga t d(J) s Gy Gy = J[G1.Ga] -

ince ker S .

choice of (GJ)CI;S an ideal with respect to [, | the bracket { , }(‘” does not depend on the

ker(J) 1o JI’L il Furthermore, because J is one-to-one from the equivalence classes modulo

from { Jon ) L1e[bre]ncket {, }V) must be a Lie algebra such that J is a homomorphism
: into [,

We m o

Module (L'ail summa‘rlze this section: An implectic operator makes out of L™ @ Lie algebra

homonwrph’i . Yo.F), with corresponding F-derivations L3, .7 € L= such that © is a

that for aiy s from this Lie algebra module into (L,[. ). F). Here homomorphism means
all 51,7y, € L™ we have

and 0{mn.12)e =[O0, 07l (4.24)

o1, = Lo - (4.25)

\ tensors suitable Lie algebra clements

will see, the search for symmetries,

he like may be subsumed under this

hat symplectic and implectic tensors

ed elements in L7 imediatly give rise

In genoral it ic 1

Whigch el:l;;t;; ll.lg'hly desir.ahle to construct for giver

CDnservali(;n l:?e Fellsnrs invariant. Indeed, as we

Beneral theme \;S' f.nvarm"t spectral problems and t

must play g fu.x d“ view of that problem it is obvious t

o such i;lva Ny rdamental role because for them the clos
rlances.
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5 Hamiltonian and Bi-Hamiltonian Fields

. - f the results
In this section we always assume that © is an implectic operator. Follblom[i;] (14) 19)
presented here the reader is referred to the fundamental papers ([10,] {11,) )

. . one discovers
Comparing the different Poisson brackets defined in Sections 3 andoiions are easlly
that they are defined on rather different spaces. However, these two n

: . nents of F is
connected if, as before in the concrete situation, a bracket among the elen
defined as follows:

5.1)
{h, ke =< df;,0df >= Lieapyfo for fi,fae F. (

One easily sees that ¥ maps the F-brackets into the £*-brackets:

(5.2
Vifi.file ={VfQ,Vfi}e .

) is is the case, the
This suggests that these F-brackets also form a Lie algebra. Indeed this 1;3
proof is literally almost the same as the proof (i) < (ii) in the last theorem’.
Definition 5.1:

) irnplectic © ar¢
(i) Elements K € £ which are of the form K = Oy with closed v and imp
called hamiltonian (with respect to Q).

led

. . - d are cal

(i) Given some symplectic J, then elements K € L such that JX is close
inverse-hamiltonian® {with respect to 7).

Then
. . 0 0.
(12i) Let O be implectic and J be closed, and assume that J is not the inverse of

i
; f JK is closee
some K is called a bi-hamiltonian field (with respect to © and J) if J
and if there is some closed 7 such that K = 0.

The power of bi-hamiltonian fieldg is seen from:

Observation 5.2. Consider q bi-hamiltonian field

N=0y Ji = Yi- 7 and v, being closed

i = Jh, 0%
as described above, and define K,,, = (OJ)VK. Then all the K, and n :
invariant with respect to Iy,

Proof:

"An interesting question is w
guarantee that © jg implectic.
Lemma to0 show that.

Tt 10
. dition
. jent cOI .
hether or not the Jacobi identity for the F-brackets is a suffic

. Poinc:
f kind of
In most situations this is indeed the case. One only needs some

s the

nvertible © or J the nutions foctit

€ dimensional theory the notj

med o be non-degenerate. In the infinite dimensional situation however,

. d dep®’
. . - i i ns a0
advised because invertibility of operators usually involves topological consideratiol

aces under consideration,

incide. This i
. . . . . ncide.
hamiltonian and inverse-hamiltonian do col

. symp
. . . ce there
©on inverse-hamiltonian does not appear, sins

tion
the assump! nds

#Observe that for
reason why in the finiy,
forms are usually assy
nondegeneracy is not
very much on the sp,
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k 4.4 (ii) and from Theorem 4.5

Usi . I
sing the bi-hamiltonian nature of K we see from Remar
by the product rule, all Ky, have

(vt i i
to)b h:dt Ofmd J are invariant with respect to K. Hence,
¢ invariant with respect to K'. B
Let us now i i
-, w lllsztra,te' the notions and techniques of the last chapter in the light of the
. situation which was considered in Sections 2 and 3.

itandard situation :
et M b .

vector ﬁefda C*_manifold, we consider C*-tensor fields on M. In particular let £ be the
bundle whisvhf be t.he scalar fields and let £ be those C°°-maps from M into the cotangent-
space TuMcatd:_s given by assigning tou € M 2 continuous linear functional on the tangent
ives we should show what these

In order -
der to carry out computations with Lie derivat.
f the Lie derivative is the usual

look like i
sradien in charts. As we already kuow, for a scalar field

Laf =< Vf.A>=[14] (5:3)

and the applicat:
e application of L4 to a co-vecior field 7 is found to be
Lav =7 [Al+ ATy (5.4)

where A™+ der,
denotes the transpose of the operator A’ with respect to the duality between

tan
gent and cotangent space.

Furthermore, if © : T°M — TM and J : T
then their Lie derivatives are

M — T*M are two-times contravariant

and two-tj .
times covariant, respectively,

1,0 = O'[A] - 04" — A0 (5.5)

Finally the L; o Lo = (A + AT+ JA (5.6)
ie derivative for an operator @ : TM — TM is equal to

L,® = &[a] - A2+ oA . (5.7)

and only

Fix 5o -
X som .
e K € £, then f € Fand G € [ are invariant with respect to K if

if fis
a C 5 ; H . ENY
Lie deri\cl{Ilser»ed quantity and G a symmetry group generator, respectively. Using the
fulfilied ;;twes’ we see that O is implectic if and only if conditior 3 (ii} of Theorem 3.2 s
- In the same way we obtain as equivalent condition for J being closed that

G3, G >+ < J(U)I[G;g]G),Gg >=10

onsidered in

< Ju)[Gh)Gy, G > + < J(u)'[Ga) (5.8)
Just h M . . .
Sectionogi for all Gy,G,,Ga € £. Hence Section 4 generalizes the situation ¢

Now . .
, we consider again the dynamical system

u = K(u) -

(.
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In analogy to Definition 5.1 we call (1.1} a bi-hamiltonian system if there arc closed
J(u), implectic O(u) and closed Y0,71 such that

K =0y and JK =+, . (59)

If that is the case then we obtain as cousequence of 5.2
Observation 5.3; Define inductively

K = K and Ky = OJK, (5.10)

1
Tne1 = JO~, (31 )

then all the K, and +, are invariant with respect to Kk . Hence the I, are symmetry group

. -
generators for (1.1) and, if the ~,, are gradients, then they are gradients of conserved qua
tities for the evolution €quation (1.1).

Example 5.4: Korteweg-de Vries equation

Consider the situation as jn Example 3.5. We observe that the inverse of D

(D7 yi= [* pieyee

is a well defined operator D~ : S . & The Korteweg-de Vries equation

8
U = 1\’(’“) = Guur + Uzzs (3 )

1s a bi-hamiltonian system since for the implectic @ = D* + 2ADu + uD)and Z;‘:
symplectic J = D~ we have that (5.9) is fulfilled when ~, and 71 are taken to be
gradients of I and 1) as given in (3.10) and (3.11), respectively. Hence putting
) ) 12
Koy i= (6 R, where & = N? 4 9pyp-t + 2u, (6121
then all thege I, are Synmimetr
metry group generators, thig
strong symmetry, for exar

Although Observation 5.3 i very useful for constructing symumetry groups, there stll r'e[;
mains & major problem is the analysis of the system (1.1). ifltilnalely- we are imereswvd'ls
constructing suitahle coordinates (action variables) for the flow, 50 we need scalar quantiti®
which are invariant under the flow. ('ertajnly, action variables give rise to symmetry group
generators, however the converse is not always true, because the corresponding "O'Vecn?r
fields may not be closed. Therefore the question whether or not the fields 7 are Closedllf
of great importance. If that happens then, by the Po; ncaré lemma, one can, at least locajl .
coustruct sujtable coordinates. And if, as in the example, the manifold under consideratio?
1$ @ vector space then evep the construction of global potentjals is a simple excercise:

. -
¥ Broup generators. Since ¢ is recursively gener.a“nga;zoa
usually is called a recursion operator [20(]Jsometimes

nple in (21, [5.)03). O

Lemma 5.5: 1¢ the manifold of aif 4 _vector field 1
is the gradient of a scalar field F(i) if ;lnf{ [:)enl?/ :)/’efytol: ifgsfa. Then @ co-w

Proof:
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Sinc i
e gradients are closed we only have to prove the existence of F for closed 7. So let y(u)

be closed. Consider the scalar field

F(u) = /0‘ < v(Au),u > d. (5.13)
i§ Take some arbitrary v(u) in the tangent bundle. Then by (5.4) we obtain
| <VF(u)v> = /OI{A < Y'Qu)phu > + < 7(du)v >}
(5.14)

1
S L
Jo
1 d
= —{< M(Au)v >HA =< y(w),v >
o dA
Thi
I proves V F'(u) = y(u) since ¢{u) was arbitrary ]

Observe the i
param:t .thdt this proof can be generalized to the situa
rized by a star-shaped subset of a vector space.

tion where the manifold can be

6 Compatibility

In thi .
tiatthil; :s:m we intro.duce .t,he essential structure wh.ich will be responsible for the fact
\ use of Obsérvca~ses Of. bl-ha.mlltonian systems the inva.nam cc?—vector fields constructed by
| at a rathér atl?n 5.2 are mflec::d closed. Agajn we w111' consider the necessary arguments
abstraction %enclaj level. This is not done in order to introduce an unreasonable lev.el of
general for ut Tather to get tid of unnecessary ballast. Further, it tu.rns ou.t. that with a
mulation of compatibility in Lie algebras one is more flexible with respect to

applicationg
ations. In our presentation we follow closely {9.]

We call (L,[, ]) the reference

L
et, (£,[, ]) be some Lie algebra over R or € .
Now, consider a linear

algebr
tr a. Let furthermore A be a vector space over the same scalars.
ansformation
T:A— L.
product { . } in A (not

fI'Om i
Ainto the reference algebra £. We call some {bilinear)
hism into (£, ])-

tecessarily
. sarily assurned to be a Lie product) 2 T-productif T'is 2 homomorp

te. if
1 T{a b} = [Ta, TV for all a,b € A (6.1)
o . .
.‘zmphaff“ that some product is a T-product we write [, 1 instead of { }. A linear
=~ L is said to be hereditary if
[a,ble := [®a.b] + [a, ®b] - ®[a, b (6.2)
defi . .
Onll;lie; a @ -product in £. Using then ®{a,ble = [Ba, Bb], we see that ® is hereditary if and
®%[a,b] + [®a, &b] = {[®a.b] + [a, PO} for all abe L (6.3)
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. . r i iant witk
Rephrasing a notion introduced ecarlier we call a linear map ® : £ — £ invari
respect to k € [ if 6.4)
¥ ®[k,b] = [k, ®b] for all be L (h :
. Then
. . ) jant with respect to k. !
Theorem 6.1: et & be g hereditary map which is invarien nkin €7} i
{q>w?|n € DNo} is an abelian subset of (L, f]) If ® is invertible then {ﬂq) [n
abelian as well.
For the proof we need: ) . Then & is
Lemma 6.2:  Let ¢ pe hereditary and let it be invariant with respect to k. The

t variai y : to &1k as
invariant with respect to ®k . If & is invertible then it s invariant with _rc:[;edve & invari-
well. Thus the set {k1® invariant with respect to k} of all elements which lea

e -1 s
ant is a subalgebrg of L which is invariant under the application of ® (and of ¢ f
invertible ).

Proof:

R fourth term
Replace a by £ in (6.3). Since @ is invariant with respect to k the first and fo
cancel and the equality reads

6.5)
[k, Bb] = B[Dk,b] for all b . (

L. . replace @
This clearly implies that & s invariant with respect to ®k. If ¢ is invertible, we rep
in (6.3) by =14 ang apply @1 1o the remaining two terms. M

Proof of Theorem 6.1:

. t to any omk
From the Lemma 6.2 we obtain by induction that & js invariant with respec
and k. Hence using antisymmetry we find

(07, @™k = &™+ [k 4] = o

for all m, n. For invertible ¢, in this ar

gument ! Las to replace . W
Remark 6.3: 1.t d be hereditary an

dlet ay and a, be eigenvectors of ® , i.e.
Qa; = Na; | A = sealar, i =19,

Then for these a; relation (6.3) is equivalent to
(6.6
(P - Ao - /\2)[(11,(12] =0.

. Iy
) . and 0N
Hence, when on operator @ has a spectrgl resolution, this operator is hereditary if
if all the corresponding spectral Projections are algebra homomorphisms. Lin A we
Now. et us returp 1q the general situation of maps from A into £. Assume tha

) aid to be
have T— ang ¥ —products [.]r and [, Je, respectively. These products are sal
compatible if

(6.1)
{a.b} = [a,bl7 + [a, 8],

defines a (T + ¥)-product iy A

Lemma 6.4: Let

| rdet
< s and { | 1g be T— ad ¥ —~products, respectively. These p
are compatible if qn only if

(6.8)
Tla,bly + W, b)y =

{Ta, wb) + [(Ya,Tb] for ali a,be A
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Proof:

Observe that — -
0 at Tla,bly = [Ta,Tb) and ¥[a,bly = [¥a, Ub]. So, (6.8) is obviously equivalent

- (T + W){[a.b]y + [a-blu} = (T + ¥)a. (T + V)], (6.9)
gh;Ch proves the claim. W
servati .
[AT‘)_prodéifu?HS‘ Let A be a scalar. Obviously, [, T defined by [a, b := Ma, bl is @
wd], g Phenever [, Jr is a T-product. Now, replacing in (6.8) ¥ and [, Ju by AY
Y (as wellya:'spe;twely' we see that (6.8) remains calid. In other words, (6.5) i linear in
[ Iy h inT ). Hence, if [, ]y, and [, |1, are compuatible . and if both are compalible
en [, Ivp, +[. lor, is always compatible with [,]r-

Obser\zat'

and put TIZHIG\I';GL Consider the case when the rcference algebra is equal to A, de A=L
U = &. Furthcrmor, assume that {7 18 the given product in (L,1)), and

that [ _ .
Then };\g)_h{ld} s a second product such that ® : (LA D — (Ll 1) isa homomorphism.
if and on fu s if and only if { } is the product defined in (6.3)- Hence, ® is hereditary
In order ty ll(ﬁ'{ . }) and (L., ]) are compatible.
2 ando shorten our notions we call ¥ and T compati
itary OPer;Et' |7 are compatible. By application of this notion to th
hereditary ors @, $, we see that ¢; and &, are compatible if and only &1
ThEOre

m . -y .
e Assuﬁ.[ Consider maps T,V : A — L and their corresponding products [, |1 and
is hereditar;he that U is invertible. Then T and ¥ are compatible if and only ife=T¥"

ble if their ¥- and T- products,
e special case of hered-
+ @, is again

Proof:

Defin
¢ a second product in £ by

{a,b} := \y[up—'a,\lr-‘b]T fora b€l .

Then ¢ .
LA =L, )isa homomorphism. Using the definition of { . } and (6.1)

for ¢
" ¥ instead of T') we obtain

(T+\I/)\Il"([a.b]+{a.b})

(7 + ®)(Ja.b) + {a,b})
(T+~I/)([W*‘a,lll"b]w +{¥

“lg ¥ lhlr) -

~1p] if and only if T
b and equal to the
£ T and ¥ and
is equivalent to

i

T30 ta(T+ LAY
I+ ®)a, (I +®)
the compatibility ©
6.6 we see that this

Fﬂr
gene -
and g drr:l a.be L the right side is equal to [«
left sige i compatible, but this expression is equal to
that of aa(;ld only if I and & are compatible. Hence
bei nd & are equivalent. Now using Observation
‘o g hereditary. B
Y simj
ser::,l:r-argumems we find:
4 cm,:lon 6.8: Let &, W be compatible hereditary operators and assume that & and
mute. Then @V is hereditary. As @ consequence. if ® be hereditary, then any

POI T : .
Ynomial in & is hereditary.
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Now consider again the

Lie-module situation: i g
Let (£,[],7) be a Lie module as considered in Section 4 and define A = £~. If ®: £

is a tensor, then condition (6.3) is easily rephrased as

10
PLA(®) = Lig)(®) for all A€ L . (6

; ion this can
So @ is hereditary if and only if (6.10) is fulfilled. In case of the standard situation this
be expressed in charts as

6.11)
®[A]B — B[ A]B = @&/ [B]A — B['B]A for all A, B € L (6.11)

X -product in
a condition which appeared in [3.] Because of Theorem 4.5 (4.14) deﬁne:‘: a Olprwoe Lave:
L™ = Aif and only if O s implectic. Since © enters the definition (4.14) linearly

Observation 6.9: Two im

L if O + 6
plectic operators 91,0, are compatible if and only if ©:
is again implectic.

From Theorem 6.7 we obtain: ) hen O + 61
Corollary 6.10: [¢; 01,03 be implectic and assume that Oy is invertible. Then ©1
s implectic if and only if d = 0,071 s hereditary.

These results we apply to the

Bi-hamiltonian case: Let 9,

. r O, IS in-
.02 be compatible implectic operators such that O1
vertible. Let i be a bj.

hamiltonian vector field

=01 = 0292, 1,72 closed .
Then define

$ = @201—1, ot .= 0;1@2

(6.121
gy = orler, Ony1 = $7Q,
Theorem 8.11:
(1) Al J, and all 4y, are closed,
. . .o particule”
(u) All tensors ¢, 0% K, Yy Jn 9, are invariant with respect to every Km, i poT

al K, K, commute.

(i) If. in addition, 0, is invertible, then the O, are implectic.

Before we can prove this we heed to introduce a canonjcal extension £ of L.

The affine extension of (-
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let £ = :
el f ® C[€] be the Lie algebra of formal power series in the indeterminate & with
ntsin £. Extend in the same way F and £°
y F= Foae. L= s
efine that : i ivati
at all Lie derivatives, and consequently the exterior derivative, i

fle.
(A7 Bu€™) = S An Bl (6.13)

m

gnore the variable

an embed the tensor structure of L into

Obviously (£ =
lously (£,[ ], F) is again a Lie module. We ¢
f coefficients we then obtain that a

that of £ .
tovariant by trefm“g £ as scalar. By comparison o
tensor T[] with respect to L

T[E} = Z T.E",

igiven by ,
if all the)Ta formal power series in € with tensors in L as
w are closed. Now having this additional structur

coefficients) is closed if and only
e we present as a simple excercise:

}éroof of Theorem 6.11:

onsid ot N

have tk?;[ﬂg ?fﬁ._“e extension L of L. Since ©y,0 are compati

et : £* — £ defined by O = 0, +&O0g s again im
e that © has an inverse J

J=07"'=0;"" }_:(75)“(92@;1)" .
=0

ble implectic operators we
plectic (Observation 6.5).

(6.14)

Hence j
must be closed in £. Therefore every

. Iy = 0,710,071y = 078N
st b . . -
e closed in £. This is the essential step where we necded the extension of £. From

oW on we argue in L‘
n 5.2) that the ©,,02.9

and allirf)hr: ;\l-m abiEhIa’”_‘”tox{ian formulation we know (Observatio
41 We ajl‘ea?] 'fl:? \-invariant gproducl rule). N '
IR mu;:l now that’ .],.I is closed and & -invariant.
i We knoW‘ o e Cl"_sefl- Fl}ls lml('ls for all n. ' .
Since 07 and t’}‘at ® is invariant with respect to all the' K. (consequence of Lemma 6.2).
.!_4 (ii}). By th 1e v, are closed, (-)‘_‘ must be invariant with respect to Kn = Oylr% (Rema_rk
invariany e product rule we then find that I = @1—1@"‘ and 41 = @ '@, are Kn-
ity .

-1 @, is invertible as well we may interc

that j
Jn =05 1p-n g IR
2@ is closed. So its inverse o7 must

Hence by Remark 4.4 (ii) the

hange the role of ©; and O in order to see

be implectic. B

7
Examples and Applications

Obse

rve ; . .

E-‘(&mplet;lat when the duality between tangent and co-tangent space is represented as 11l
5 then the differential operator D is wrivially implectic. In this section we show

fiow | frg R
m this knowledge, new pairs of implectic operators can be constructed.
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; i i d variable trans-
We first point out the relation between Lei-module-isomorphisms allll Which e intto
i i i i
formations. This connection allows efficient use of the invariant manner
duced the main notions.

FoE ie product
Consider Lic modules (£, F)and (£, F). In both modules we 3eno.teft}_lf ;J:']?spsa.id o
by [ ] since no confusion arises. A pair ($,0) of maps §: £ — £ and o :
be a Lie-module-homomorphism if

i and F.

i i s in £ and

¢ S and o are homomorphisms with respect to the algebraic structure
respectively,

* S(fR) = o(fIS(I) for all fS€Fand K e .
oS Ly = Lis(ry forall K e .

. . . morphisms
If $and o are invertible then thig is called a L1e-module-1somorphlsm- Iso

A this we first
allow us to carry over the whole tensor structure from (£, ) to (£, F). To do
define for 4 ¢ £~ the corresponding § € £~ by

. _ (7.1
< T, K >:= og(<y,57K >3 .
. ) -tensor (r-times
The map 5~ . T — 7 is called the reciprocal image. Let ¥ be some K t;:ﬁned by
contravariant and n-times covariant), then the corresponding L-tensor ¥ is

. . . Kiel.
B S SR B = 0 % K K for o € £ and ,

(7.2
=9
. . . jon then (72
For example, if 5 two-times contravariant tensor O is taken in operator notatio:
means that . (7.3
<8591,057y, >= < 1,072 >) for all .72 € L
where < | > denote the respective dualities in £ and L. This yields
7.4
0= 5057 ¢

where §T . £+ pn i the transpose of § given by
a(< ST, i >)=< 3,85/ >

Observe that ip this
mation formulas m
definitions we find

.

B . r transfo

formula we used 5T = 51, With the same ease other jnvariant
. . u

ay be explicitly determj ned (see [4)]. As a consequence of o

"
) ) . invariant unde
Remark 7.1, The notions tmplectic, symplectic, closed and hereditary are invart
Lie-module isomorphisms.

. and
. . . . . . . ations &%
The most Important Lie-module Isomorphisms are given by variable tra.nsl"ormf implectic
these constitute an efficient tool for the construction of new compatible pairs o
Operators,

Variable transformations:
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let M and M 0o .

i Asume tAl:Iatb:hie -.mau;folds. and den?te the respective manifold variables by u and

b ) are O, Lot 'th is a function u — @ = T(u) such that T and its inverse (denoted

he comresponding Liee meanmg‘of £ and F be as in the standard situation and consider

vansformed b .mo'dule with respect to M. Then vector fields from M to M are
y the variational derivative of T

K(u) — K(@) = T(F@)KT@)] (7.5)

and for scalars we define
These transformations define a Lf(“) 3 f(ﬁ) " f(TFﬁ)) . "
ie-module isomorphism.
m is when M is a vector space and
(7.7

hat §:=T' =A1Id

The ;
most simple example for that isomorphis
a=Au+ta,

where )
Is some scal
ar a :
214 we obtain and a some constant vector in M. Then we have t

Reﬂlark

; 7.2: Und N

i each tensor the pe,:, the substitution u — Au+ a (a a constant vector and A some scalar)
perties: implectic, symplectic, closed and hereditary are preserved.

Exam
ple 7.3; .

3: Construction of compatible pairs
_functions f in the real variable
oo faster than any ra-
As S; we denote
anged. Between

Fort
e(‘hnica.]

T

easons, we now consider the space S— of c*

€R havi
N ng th . .
e property that f and all its derivatives vanish at —
¢ polynomially.

‘lona] flln .
. ctior
1 and that at +oc all derivatives grow at mos
has been interch

"€ Cortes i
. and Sf‘“;‘j{ng space where the role of —0 and +o©
introduce an L? scalar product as in (3.9)

<Uu>= /U(I)u(r)dz, Ue S, ueS—-

A5 before
X o z thdf}?mes d.iﬁ"erentiation with respect to z and -1 denotes integration from
iﬁd invertible W,C ma“ffold under consideration be M = S_. Observe that D is implectic
"2, becayse .01‘ t; consider the variable transformation @ = T(u) := u?+uz ON M. Observe
?'J“Clion Theore e boundary conditions we have chosen, this is one to one by the Implicit
linear djff, o To see that, compute for T"(u) = 2u+ 1 the inverse of T"(u) by solving
erential equation T'(u)> = g for given ¢ and unknown z. On S_ this has @

que solytj ]
on and the operator T'(u)”! mapping g into z is

T'(u)™! = exp (—Q(D'lu)) D~ lexp (+2(D—1u)) .
anifold variable u)we find by

(7.8)

in

(7.9)

Marting wi
. ng with i i
“ariable trap fthe implectic operator D (with respect to the ™
sformation (formula (7.4)) that
&(a) = T'(u) DT (w)"
= (2u+ D)D(2u - D) ' "
_ D 4 2D( + ue) + 2w’ + ua)D
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Using the relation between u and @ we see that
= 711
Olit) = D* + 204 + 2aD) (711

. itution ifor
is implectic as it was claimed already in Example 3.5. Now performing the substitu
() = 1) as described in Remark 7.1 we find that

O+1) = D¥ + 2pa 4+ apy4an = O(a) +4D ‘_”2“
is again implectic. Because D is already known to be implectic we have that D and 0 are
compatible. Hence by Corollary 6.10

®=00"=D? | papt 4 9q. (1
must be hereditary.
Using Theorem 6.11 we find that
0a(@) = b(i)6(a) r

again is implectic, We ¢

o 7 order
ransform that back from the @-variable to the u-variable in
to obtain with (7.10) t}

he following implectic operator:

Olw) =T 0y ~1y7
=T oD (T
=TT DT pipr pepe ety
=D(T"\p-7p '
= D(2u— D)D"V (24 + D)D

~D* 4+ 4Duptyp

it

Now using v — gy, we find with Remark 7.1 that

N Wmnar = D3 4 4DuD ' yp

is implectic, Using Remark 7.2 and y — (1/4/2(2u + 1) we find that
1
OGardne, = 3O nkar +O(u) + D)
is also implectjc. here O u)
Since O(u) and p are comy
minst be compatible,
servation 6.5) and su
Hence ©

v
is the implectic operator given in (7.11) (only @ rePlac@efu?F
atible O(u) 4+ s again implectic and ©,, x4y and ic by Ot
Taking now L/40, av + 3/4(O(u) + D) (which is impk‘fd-lcl Jectic.
hstituting = (2u - 3) we find that O, g1 + (3/4)D is imP
mhdl and D are compatible.

he
. . then l
Qbservgtmn T.4: If the duality betieer, function spaces is taken to be (3:9)
differential operators

60 = D
Orav = D3 ¢ 2Du + 24D
Onmrav = D3 4 4DuD "y p
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are im, ic
plectic. Every two of these are compatible.

Exam .
considlget}?éizl(jo'nserved quantities for the KdV
ituation of Example 3.5. where the operator

Opav = D +2Du+ 2uD

was introduced. Taking i
. Taking into acconnt the compatibility between the implectic operators D

and O p 4y i
Kdv (as just proved) we get from Corollary 6.10 that
| ®=0Dp"' = D? + 2DuD™ + 2u. (bihamK dV)
is heredit
itary. As a consequence (Theorem 6.11) we have that the

= 6uty + Urzx (7.16)

— D1y -
Va1 = DTV 4y = D71 O(u)" K (w), where K(u)

are closed co-
vector fields. These fields are invariant for any of the fiows uy = Kn(u)- Hence

{Lemma 5.5) all

1
In(u) = /0 < Ta(An),u>dr = /1 A 7n(/\u(z))u(z)d/\dz
o

are conserv.
ed P
easily seeg tha(tu:lllm“es for every one of these flows, especially for the KdV. In addition, one
these quantities commute with respect to the Poisson brackets defined

b cither Okev or D. O

(7.17)

Exam
ple 7.8: Further systems
generate easily by

e up to now, and more which we
ary operators. For

Usin

t .

€ the compatible pairs we hav
nerate new and nontrivial heredit

-'ariable t
ransfe i
example ormations, we can ge
b ppav = Omrav D™’
DGardner = OGardnerD_l
@, =28}
sineGordon — mAdV

®ppar_iikelv) = (1= D) @Kav(V = Ope )
@,6_rav = Py PsincGordon

patibility of known pairs.
_and must te hered-

bility of Orav

ily seen from com
ritten as O;\'dve,_nlkdv
v) we use the compati
= v — Vgz-

re all invariant

The hered:

or ex;:l‘;'llari'a}l:ature of these operators is €as

Wy since tileseet ®,;_jqv then this can be w

and of p_ ps wo are compatible. For dppa—tike(
, and then we performed a variable transformation u

i

Sinc,
e none of these operators depend explicitly on z we find that they 2l

with reg
€ . .
pect to the special vector field uz. So for the equations

u = P(u)us
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: rators
we find (by application of Theorew 6.1) infinitely many symmetry group gene

7.18)
Ka(u) = D" (u)u, (
Let us list these equations (following the above order) o
Ut = Upzy + 6uly (modi fied KdV)
t = Uzzg T
dner eqg.}
U = Uy + 6ulu, + 6uuy + u, (Gar
) ; eq.,
up = sin (2/ U(f)df) (potential sG &g
o ,
M like eq.)
U= Vgt = Ugpr — 200, - 4,0, + 6ov, (BB

"~

. (dV _sG €q)
Urt = 2Upy cos(2v) + vy — vﬁ)siu(?v) + 'Zvrz/ sin(2v(£))d¢ (&

L ariable trans-
In the case of the last equation (KdV_sG), we have performed an addltla(l)?a(j ‘;ine Gordon
formation y = vz. The equation (potential sG) is connected to so calle

jon in the
. otation 1n
equation since substituting first 4 = ¥y and performing then a 45-degree 1

space of independent variables yields

. , tion)
Ve ~ Dy = sin(20) (sine_Gordon equa
nm = .
Most of these equations are wi

- i-hamiltonian
ell known from the literature. They all have a bi-ha
formulation if the solution m

weﬂ
anifold is suitably chosen such that these oPeramrsaﬁrflosed
defined. The invariant co-vector fields generated by this recursion mechanism areompatible
because they are they generated by a hereditary operator, which stems from g cq equation
pair of implectic operators. For example, in case of the modified Korteweg-de Vries

. . he equation
(modifiedKdV) the compatible pajr of implectic operatars is [ and Oppav. T
itself has the form

1 (7.19}
Ut = Ugrp + Guzur = @ml\"dV(u)vg,A{ uz(f)df ‘

Furthermore 1 (7200
D™ tprr + 600y = v (~d2(€) + §u“’(§))d€ .

Application of Theorem 6.11 then shows that

1 1 7.21)
li(u) = /0 A{ ‘),‘(/\u(.'r))u(f)(ll'd/\ = / A‘ (D‘I@m[\'dv(/\u(l')))n"(x)d/\dx (
J o JR

hese
modified Korteweg-de Vries equation. Observé“:j'zl(;teq‘)
r the potential sine Gordon equation (PUFenm _uments
by the inverse of the operator &, pqy . Similar arg
ns given above.

since that equation is generated

g0 through for the other equatio
We like to mention that t

way exhausted by

€quation, two-com

o no
he applications of the theory presented in this Paperha;;zge[
these examplies, There are Many more such as: the nonlinear SC. rs given
ponent systems, Spin chains, and the bi-hamiltonian [Ormu}atxoﬂ These
by Fokas and Santinj ([2,] [24) [23)) [22)] for €quations in two independent variables-

. . - 1 .Ons a‘n
last examples are interesting in so far g they require the ful] generality of noti
methods ag introduced in Sections 4,5 and 6.
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8 Integrability and Solitons
Let us briefly review:

Complete integrability in the finite dimensional case:
The hamiltonian flow

w = O(u)VH(u). (3.3)
ona QN—di_mensiona.l manifold M with invertible implectic operator 0 is called complet.el)’
l_n'tegrablelfit admits N conserved quantities [y := H, Iz, ..., In such that the corresponding
Smmetry group generators O VI, 0V, .- OV Iy commute. Furthermore these fields are
: A
eq\.“md to be linearily independent at each manifold point. These L, I, ..., In are called
action variables.

Observation 8. 1:

I .
" this case one can find N closed and pairwise commuting vector fields Az, ..., AN such that

Lal; :6,_71,' (8,1)

o
r. by use of (4.16) and Theorem 4.5
[A‘,@VIJ'] = §;0VI; . (8.2)
T .
he OV 1, are called action fields and the Ai are called the conjugate angle fields).

T . .
" proof of this statement is technically involved, so we will only give 2 brief sketch. The

argy
Suments are an adaption of (16, page 28]

Proof :
STEP 1.

First
o . .
ne shows that around each manifold point %o coo0

be ch,
way: osen such that J(u):= O(u)~" is constant in that ¢

rdinates {11,..,IN,Q1,..‘.QN} can
hart. This is done in the following

ace B with coordinates

Repr,
Present the manifold around ug by some open ball in a vector sp
; ug) and take a

“LH.IN.'Ql""QN}- Then consider the operators J(u) and Jo(u) = J( take 2
A mation Jy(u) 1= J(u) + t(Jolu) - Ju)), 1 2t > 0 from J to Jo. Obbefr'\e a
phil:(;) = Jo(ug) is invertible for all t with 1 2 > 0. The open'ne‘ss of Fhe sfet, c;n)s;méog
¢nci 115>sh0w5 that there is a ball B around uo such that i],(u) is m\"emlble or e
find by | £ > 0. The inverse of J,(u) we denote by ©.(u). Since (Jo{u) — - (u))is ¢ e
4 by the Poincaré lemma a 1-form 7 in B such that (Jofu) — J(u)) =47 and 7(uo) = 0-

~\ ' . .
oW take the t-dependent vector field I\'(t,u) = Oy(u)y and consider the equation

defor,

3

v = K(t,v) (8.3)

maSB. Since K(t = 0,u) = 0 we can assume (by eventually restricting B agajn)' thatf (g?;;

o ta unique solution for all 1 > ¢ > 0 and all u € B. Define @(u) to be the solution o))( i.:
= land initial condition v(t = 0) := v and let [;(u) = (), @ilw) = Qule(u))
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[ i i . i se Tew
..., N. Observe that / = [ and that J(u) now is constant in the chart given by these
coordinates.
P i dinates
Consider the constant J{u} as constructed above in the vector space given b:Y thfe];;g\rl Since
{Ii,..,In,Qn, --»@n} and endow that space with the usual Euclidean metric o . -
J(u) is invertible and antisymmetric its matrix representation must be of the form

(553)

where S is invertible and symmetric. Hence by a change of basis among the Qs we ;ﬁ\q
assume that S is the N x N identity matrix. Finally, taking 4, = —OV([(;) we locall
find the desired vector fields.

STEP 3: ) .
We observe that different local realizations of (8.1) differ on the overlap of their d01¥alllli2
only by a suitable combination of the OV, hence by globally defined vector ﬁ‘flds' o the
property allows us to patch the A; from one chart to the next so that they coincide o
overlap. Hence we can define them globally. m

Observe that locally potentials for the A; exist, let us call them ;. Then (8.1{)[;:;
plies that for every of the flows w = O(u)VI, the Qp,n # m are conserved qua:in Xuan,
whereas Q. changes with ¢ byt is the absolute part of the time-dependent conserved 4
tity Qn - tI,. So taking these coordinates we arive at
Observation 8.2: On some 2N -dimensional manifold, endowed with the invertible 17::15151_5”‘5
tic operator O let there be given N pairwise commuting scalar fields I, ..., IN (wmv Jocdl
with respect to the corresponding Poisson brackets). Then around each point there are],'n(ar
coordinates {h, . In. Q. . QNY such that the hamiltonian flows uy = O(u)VI, are

; . . is such
in these coordinates so that all but Qr. are invariant and that the action on the Qn
that this grows linear with t.

of
Now we yse the ve

. . erat
ctor fields from Observation 8.1 to define the following oP

Sl — "
N (5_4
h=3 0" A 6l - dl; 5074, .
_ . = 1 O ar
Obviously this is an antisymmetric tensor and it is closed because both df; anc
closed. So it may serve as a symplectic operator and one easily finds that
(3
[ RES @JQ
is hereditary. Using the relations (8.1) we see right away that
LOVI = vy, (50

Jadi = Lo 4,

. e
and that therefore the eigenvalues of  are given by the action variables. So we hav
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Observati LR Lo .
SPﬂCe.r;?tthu:lrclts's' For a finite dimensional completely integrable system in 2N -dimensional
' ion varaibles {1y, ... In} there always exists o hereditary operator ® such that

s spect, . oy .
COrrfs orud"'l s dpubly degenerate. The eigenvalues are given by the action variables and the
ponding eigenvectors arc the action fields and their conjugate angle fields.

hase f{ecr‘ézl_’::r, the converse 1}&' also true: Whenever on @ 2N -dimensional manifold we
9 such that O@ylopjmtor ® with doubly degenem?e spectrum arzd some implectic operalor
0 onto Uéctorﬁc;j L;:SCII. then when ihe. the gradients of the eigenvalues are mapped with
53). Hence st eylfm'm a comm%mng algebra of vector fields (consequence of Remark

any dynamic of system given by any linear combination of these vector fields

must be completely integrable.

infinitely dimensional manifolds. Here the
definitely defined in the literature. Often
ts an infinite dimensional abelian
somehow loose definition since it

”OIiOnN(?fwcloer;uf return to tl§§ general situation of
uch Systemp.etel integrability has ‘not vet been '
— grouls (fallle(l .com.plot‘e:ly mtegr'ahle if it ad¥m
i easy t(; ConstI; o Iéjtrmltf)nlan fields. This of course, 15 a
2 parametrizati uct S't”at'lohs where such a_symmetry group does not s-uf’ﬁce to guarantee
definition we sh(:ll] by action and angle variables. II}S.tead of atte.mptlng here a gen?ral
biharmiltoniny n: show that, under 'reasonal.)lfz Condltl.ons,.the e‘qutence of a Com.pamble
the Cﬂrresp()nd'pa”_leads to complete integrability on f:m]t.e dimensional reductions glven.by
an be obt,aj“eldng aymme.try group generators. We will give a survey on the results which
in that direction, for details the reader is referred to [8]-

Let us . . .
lution e 'ls.rem]] the situation we considered before. On 2 suitable manifold M the evo-
quation w, = K, (u) where u = u(z.1) € M was considered. We assume that there

s 4 heredi . ; . o .
1tary recursion operator ®(u) generated out of a compatible hamiltonian pair

d(u) = Og(n) O7'(u) = Oq(u) J(u) -
AS show
own the operator ¢ then generates a hierarchy of pairwise commuting infinitesimal

\,}mmetry group generators
ot the v Ko (u) = @KW
olution equation under consideration.
SCalinI; :3;1::::“ to what we assumed until now we require furthermore the existence of a
etry 79(u). By that we mean:
[ro. K1l = (ot 1K, (8.7)

and

L,2=90. (8.8)
¢ application of  on Tp produces a sec-
mmetries [6] 7« = $"ro such that the
etries Kn and the mastersymmetries

Asa cons

ond hie:aequence of the scaling property the recursiv
OH()winar_Lhy of vector fields, the so-called mastersy
7 g commutator relations hold between the symim

K K] = 0, [ra, K] = (m+ @Knem [farTm) = (M= P)Tatm - {8.9)
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i roperty of
Indeed, these commutator relations are a simple consequence f)f th¢=t heri(ji\l,:[titpto Ic)he fact
& One should observe that the relation [T W] = (m+ 0)Knym is eq of 1w, = Ko (u). A
that 7, + (m 4 2)Knym is a time-dependent symm(.atry groupsenel(’iaittoarry algebra, These
Lie algebra consisting of 7’s and K 's fulfilling (8.9)‘15 called a here o oven in those cases
scaling symmetries exist for almost all popular soliton equations, an ortheless construct &
wlhere a scaling symmetry or a hereditary cannot be found one can ulev + u i the scaling
suitable hereditary algebra. For example, in the I'(dV case Ty(u) z adru: () = oy +
symmetry, and for the mKdV and the potential sine-Gordon one finds 7

ifold
the submanifol
From the invariance of the syminetry group generators one finds that
(see for example [19])

LA (8.10)
My = { u]there exists ay such that z ank, = 0}
n=0
- : . = K;(u). This
is invariant under any of the flows u, = K, (u), in particular under u; 1

. ical two- and
manifold is called the manifold of N-soliton solutions. For the KdV typ!
three-solitons are given in figures 3 and 49 |

\ N ///
e = 3
Al \%W
2 \\Q.&&Zj\\\\iﬁz;////

= ==

Fig. 3: Two-soliton of the KdVv

I am indebted to Thorsten Schulze for plotting these figures.
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//é//////% .
e = =
= ////////// ==

'////////} =
= === =
-

= . ——
="\ /%
e \_’/\_// -
= s \ ) < /\J_/é%
-
=

Fig. 4: Two-soliton of the KdV

olutions u are chosen in
by a lengthy but simple
m this structure the

In ca i

such 4 w'cdsp when the boundary conditions at infinity for possible s

analysic "g that the resulting manifold My has dimension 2V then

follow; [8] (mainly of the hereditary structure of @) one obtains fro
‘)Wlng result 2

ThEOrem 8.4:

(1) For
) Forallv,p € Ny we have the following representation of the tangent space TuMx of

My al the point u

T, My = span {I\',,1\',“,...,Ix’,+,\;1.rp,rp+1....,r,,+,v_1 } -

{2 . . ,
) Whenever the o, are the coefficients given by (8.10) (to define the manifold point u/

then the following hold

(i) For allv € Ny we have the following identities on MN:

N N
Zanl\'n+, = 0 and Eanrn+, =0 .
n=0 =0
(it) The discrete eigenvalues ¢1, -1 CN of @ are given a8 the zeros of the characteristic
 polynominal P(§) = Tnzo @nt” -
(1) The corresponding eigenstates aT€ v, = Li(®)Ko and W

L(€) = P(O/(E - &) -

= H‘(Q)To B where
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B : @ leaves the
As a direct consequence of Theorem 8.4 we obtain that the recursion operétt?;n o= B
tangent space T, My of the reduced manifold invariant. Hence, I,h‘e‘restrlc lmr p .has o
of ¢ to My is a linear operator on a finite dimensional space. This opera
properties listed below in:

Observation 8.5:

d = 0,0 O, .6 tible pair
(1) @ is invertible and can be written as & — 0,07 1 where 01,02 are a compa
of implectic operators.

(2) The eigenvalues €ly-yeny of @ are doubly degenerated.

coar . : millonian
(3) Renorming the eigenstates V; W, leads to eigenstates V; and W; which are ha
vector fields w.r.t. ©, and Q,.

(4) The eigenstates Vi and W fulfil the commutator relations

. 8.11)
VoVl =0 = wow] . [vw,) = &, . {

f
S . . : » members 0
These last two results show that the finite dimensional reductions, given by thoser

. . A ion is, under
the abelian symmetry group which is generated by the bi-hamiltonian formulation

e L oo : completely
suitable boundary conditions al infinity, the same situation as we found in the
integrable finite dimensional case.

. fulfill the
Since the eigenstates V..W; are hamiltonian vector fields and since theytjgn/aug}e
Canonical commutator relations (8.9), their potentials can be interpreted as ac
variables for the flow induced by (1.1) on My

Although all our considerations were
that in most cases which are
(with vanishing boundary cop
N single waves for ¢ — +oc

-emark

of a purely algebraic nature we Shoumollutioﬂs
. . H s

relevant from the physical viewpoint the N-soliton ® e into
ditions at infinity) are those solutions which decomp

N
un F Y szttt %) .
=1
This can be seen for the Kdv
data we get in these case we
operator.

tic
. . M s asympto
from Figures 4 and 5. By comparison with thtlds'ecur\-ion

. T . . e > T B
get a simple method for finding the eigenstates of the

. . . - e a
Observation 8.6: Taking the partial derivatives of uy w.r.t. the asymptotic dat

auN and duy
¢ " De;

‘ ‘ B nction
one obtaing £igenstates of the TECUTSION operator & for the eigenvalue c;. The fu
Oun[Bg; then is the vector field correspon

is is called the
ding to the action variable and this is ca
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interacting soliton [7/.

)

L . ined (see Figure 3
KdV equation a plot of such guantities 18 easily obtained {
KdV eque

In case of the

W

Al
,4,%/// A
y
/ \

\
A
A
W

//%/

Al
.
L

\
\
\
/////W//////
N

DR
W /W//

\

\
)

| s

,NN,//,,/A ///7/
A -
A /%////ﬂ////

Fig. 5: Interacting soliton of the KdV

A corresponding conjugate eigenstate

of the field function un with respect 10

fecursion operator.
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Fig. 6: Derivative of Angle-variable density of the KdV

1ves satisfy
It should be remarked that the field functions given by these P]‘?ts t};cmsel
nonlinear equations which have a compatible bi-hamiltonian formulation [7]
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