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In this survey we show how 1o obtain from the analytic structure of one-soliton
wolutions, the complete action angle variable representation of arbitrary multi-
wolitons. Special attention is paid to the interacting solitons and their relation to

singularity analysis,

§1. Introduction

_ Nowadays, the field of Functional Analysis
15 sometimes called Topological Linear
Algebra. Of course, this name is chosen with a
Ce'rtain attitude of disrespect in order to set
this discipline apart from other, more in-
teresting areas like nonlinear analysis or
nonlinear differential equations. Quite often
the achievements which have been made over
the last two decades in the field of nonlinear in-
tegrable equations are then mentioned in the
Same context as a striking example for a
beautiful nonlinear theory. In order to em-
Dhasize a counter point to that popular opi-
non this survey is devoted to the theme of
showing what finear perspectives can achieve
I the area of nonlinear integrable equations
?{nd the theory of nonlinear soliton interac-
tion,

Most of what I have to say 1 will
demonstrate at the example of the Korteweg
de Vries equation. But everything can be ap-
Plied, and if necessary generalized, to other
¢quations as well. The Korteweg de Vries equa-
tion is chosen only because it is widely known
and thus may evoke some helpful familiarity
and intuition for those readers who are not to
well acquainted with the field. Of course, it is
well known that for this equation there exists a
linearizing transform in terms of the Inverse
Scattering Transform, but this linearization
can only be seen after one has discovered the
Crucial Lax representation. In this paper
however we exhibit arguments which can be
used as a heuristic method from the begin-
ning. Without further information, they can

be used to check if there is any hope for a
linearization. And if there is such a hope these
methods give some help to construct the
crucial quantities necessary for a further
analysis.

The Korteweg de Vries equation

U =U o+ 6ul,, (1.D

was found in 1895 (see ref. 19) in an attempt to
explain some observations in the area of
shallow water wave theory which were made
in 1836 by Scott Russell (see his report from
1844*). At that time the solution one was
mainly interested in, was the traveling wave
coming out of the ansatz

uix, t)y=s(x+cr). (1.2)

This solution is easily found in its explicit
form because by this ansatz the partial differen-
tial equation reduces to an ordinary differen-
tial equation which can be easily solved. The
explicit form of the solution, which we need
later on in order to describe more complex
phenomena, is

v . [y C
s(x+cf)=-% cosh™ \{7(,\‘#\1&01)1 .

(1.3)

Nowadays this solution would be called a one-
soliton solution. By the observations of Scott
Russell it was clearly known that a certain
nonlinear superposition principle must hold in
the presence of several solitons.*

* In Russells colorful language: If such a heap be

forced into existence, it will rapidly fall to pieces and
become disintegrated and resolved inio different waves,
which do not move forward in company with each other,
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Fig. 1. Two-soliton solution of the KdV.

This superposition can be clearly seen by
looking at the two-soliton solution for which |
have plotred the ¢-slices in Fig. 1. One sees that
asymptotically (i.e. for t~—o0 or [+ 00)
this wave fulfills the ansatz made above for a
traveling wave, But nevertheless these waves in-
teract in a nonlinear fashion since their speeds
are dependent on the height of the respective
waves, Since the waves regain completely their
original speed one often describes  this
phenomenon as an efgstic interaction. What |
will demonstrate in the following is:

* Bvlooking on Fig. I and by taking into
account the explicit form of the one-soliton
solutions given in (1.3) one can derive,
without anv further information and in g
purely deductive way, all the spectacular prop-
erties of this particular equation,**

———
but move on separately, each with g velodity of its own,
and each of course continuing to depart form each other.
Thus a large compound—heap becomes resolved - - by g
spevies of spontaneous analysis,

" When | expressed the opinion for the firg lime,
among other workers in the field, thar in principle one
must be able 10 determine the complete integrability of the
KdV, as well as that of other €quations, by looking at the
one-soliton thev convincingly proved 1o me that [ must be
clearly out of my mind. Their argument was that
everybody certainly must agree on the fact that the ex-
istence of a traveling wave solution h
complete integrability whatsoever.
right, with this observation, not with their more personal
claim. Surely, existence of traveling wave solutions does
ot mean anything, however the analytical form of these
traveling waves has to do 3 lot with complete integrability.
To carry that point to the extreme, [ believe it possible

as nothing 10 do with
Of course, they were

» Furthermore it will be possible to
discover by this viewpoint the necessary tools
in order to give a linearization of the ﬂOW
represented by eq. (1.1). To make this precise,
we shall give a complete action angle variable
representation for the interaction of an ar-
bitrary number of solitons. .

* A problem which will be addressed in
particular is whether or not we can derive eql_,la-
tions which will describe the interacting
solitons individually, even during the interac-
tion with other solitons. It will turn out that
this question is intimately connected to the-SO
called singularity analysis for completely in-
tegrable nonlinear equations.

§2. Linear Aspects

In this section we give heuristic arguments
which motivate the notions introduced after-
wards.

Looking at Fig. | we already discovered
that the two-soliton solution decomposes
asymptotically into traveling waves

U, 1)y= 3 six+ct+q) for 1 = £,
i=1

2.1)

I —

that one day we will adopt the viewpoint that the \'\’hOIE
theory of completely integrable flows on infinite dimen-
sional manifolds is solely an application of certain proper-
ties of some special functions. However 1 admit, that
when that happens, namely that soliton theory will be con-
sidered as an application of some fancy theorems i
analysis, then a lot of the fun, and especially a lot of the

. L b-
frontiers spirit, will have been taken away from the su
Ject.
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where the ¢; are the different speeds of the
asymptotically emerging solitons. The s, are
the corresponding functions given in (1.3) and
the quantities g;” describe suitable phases. Ob-
viously, the totality of all these two-soliton
solutions, for variable asymptotic speeds and
phases, forms a four dimensional manifold,
and we can describe this manifold conven-
iently by the parameters ¢, and ¢;=¢q, . These
parameters are scalar fields on the manifold
and it is an clementary task to see how these
parameters change during the flow given by
€q. (1.1). Obviously, the ¢, do not change at all
and by definition we have for the g; that

g w(,0)=q; (.0 +cr1,

hence they must be growing linearly with time.
S0 using the new parametrization of the
manifold given by the ¢; and the q; we can
casily express the flow as

(2.2)

i 0 0 -1 0\ (¢
djel o o0 0 -1]]a
&gl 410 0 o

> 0 +1 0 0

00 —¢, O 1
100 0 -cq 1
la0 0 o0 0

0 0 0 0

(2.3)

We observe that this is a linear system, further-
more that it is a hamiltonian system because

the vector on the right hand side clearly is
gradient

&)

(6

grad (ci+c1). (2.4)

1
2

This is not the only hamiltonian formulation,
another one i given by the second line of eq.
(2:3) since the vector to which the matrix is ap-
plied i again a gradient

=grad (¢, +¢).

Clearly the matrix in front of it induces a
symplectic structure.

Now we take into account that the traveling
waves under consideration vanish rapidly at in-
finity and that the nonlinear term in (1.1), in
comparison to the linear terms, does not give
any contribution in case of vanishing field
variables. This allows us to guess the structure
of solutions which arise when we start at — o
with three different traveling waves whose
phases are chosen such that first two of them
interact, while the other one is far away, and
then, after that, the interaction with the re-
maining wave happens. Since we have elastic
interaction between two waves this suggests
that elastic interaction also happens between
three waves and more. However, this may not
be true in general. A detailed analysis shows
that such a conclusion is only valid if there are
additional condittons fulfilled. Speaking from
a physical viewpoint, these conditions require
that all the energy of the field is carried by
the asymptotically emerging solitons, or
mathematically speaking, there must be some
invariant positive definite scalar field, which is
additive for functions with disjoint support,
and which has the property that if for finite
time evaluated on the field it leads to the same
value as the sum of evaluations on the asymp-
totically emerging traveling waves. So let us
assume that such a condition holds (which can
be easily shown for the KdV), then asymp-
totically, at +00 there are emerging three
traveling waves having the same speeds as the
waves we started with. These three-soliton
solutions we again parametrize by their speeds
and phases, and we obtain, with respect to this
parametrization, a representation of the
dynamics very similar to (2.3). This process
can be continued, thus leading for suitable N-
solitons to a parametrization in which the flow

has the simple form
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€
Cy _ ’ 0 -1

L Jgrad {cit - +cd)
d[ a, 2 I

=| j ! }grad (et +ey).
(2.6)

Here / denoted the N x N-unit matrix and A is
the matrix having the ¢; in the diagonal

'Cl 0 o 0
0 ¢ - 0

A= 0T 2.7)
0 -0 Cy

This again is a linear hamiltonian system and
the parametrization we have been led to usu-
ally is called an action-angle representation
(see ref. 1). One can draw from this observa-
tion some interesting conclusions:

* For every N there is a 2N-dimensional
manifold which is invariant under (1.1) and
which is of such a nature that (1.1) defines a
linear hamiltonian flow op it. If one defines
the obvious Poisson brackets on that manifold
one discovers easily that the ¢; are conserved
quantities which are ip involution. So, again,
(I.1) defines on these manifolds a flow for
which an action-angle representation can be
given.

Since we can blow up arbitrarily the dimen-
sion of the invariant manifolds on which the
flow has this nice structure, we are led to the
assumption that the whole flow is a
linearizable hamiltonian system. However,
this only is an assumption for which we have
not yet rigorous arguments, at least not un]
we really have constructed the relevant quan-
tities. Of course, even if we find structural
drguments which show that in SOme sense the
flow is linearizable, this only suggests a struc-
tural linearizability, i does not necessarily
mean that we ever will be ab]e to write it down
explicitly. But for the momen we are happy to
draw structural conclusions from that assump-
tion, the question how to obtain concrete sojy-

(Vol. 60,
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tions will be postponed for a while. .

As the main outcome of our considerations
we keep in mind Fig. 2 to represent the
linearizability of eq. (1.1). However, all this
abstract insight does not yet assist us to
discover what the N-solitons look like in real-
life coordinates. Certainly eq. (2.6) has a struc-
ture of extreme simplicity but might not be (_)f
great value to somebody who is interested in
concrete solutions and the physical interpreta-
tion of these solutions.

§3.  Group Structure and Hereditariness

Here we exhibit how the consideration -Of
one-parameter diffeomorphisms on some 1n-
finite dimensional manifold helps in the
analysis of our nonlinear system. Sometimes 1f
is argued that diffeomorphism-groups on
manifolds have nothing to do with linear con-
siderations. However, to my opinion thgt 15
not quite true and only a matter of the view-
point one adopts. Consider for example an f?ﬂ‘
tire function in the complex plane. Then going
with the function value from one point in the
plane to another certainly is not a linear opera-
tion, wheras shifting all these functions by this
difference of the two points is certainly a 1}near
Operation on that function space. These linear
operations form a one-parameter diffeomor-
phism group having the differntial operator
infinitesimal generator. Thus solving the corre-
sponding linear differential equation on 4
suitable infinite dimensional vector space g1Ves
that this one-parameter diffeomorphism group
must be represented by the exponential of the
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differential operator, an exponential which is
Taylors formula. Hence, the question whether
or not an operation is linear may sometimes
only be depending on whether one is willing
to blow up the dimensiom of the problem
considerably. Certainly, for diffeomorphism
groups on manifolds this is true, because if
one represents such a diffeomorphism group
by the induced action it has on the scalar fields
on this manifolds, then this action is the ex-
ponential of a linear operator on that space of
scalar fields.

Let us return to our linear problem. Here,
even the simple question how to find the N-
soliton solutions is not yet answered by know-
ing that these solutions can be represented
as solutions of a linear equation on some
abstract manifold. So our first problem is the
characterization of these special solutions. For
this we need the notion of symmetry group.

Take another evolution equation

u,=K(u), (3.1)

and define for it the resolvent map which
assigns to the initial value condition u(x)
=u(x, 0=0) the solution u(x, ¢). This map
we denote by R«(c). Similarly we define the
resolvent for (1.1) which we denote by R (1),
letting G stand for the vector field on the right
Side of (1.1). In case that the initial value prob-
lem on the manifold under consideration can
be suitably solved for arbitrary @, the map
0-R(0g) defines a one parameter group of
diffeomorphisms on the corresponding
manifolds. Equations (1.1) and (3.1) are said
10 commute if these resolvent maps R« (¢} and
Ra(t) do commute for all r and o. In that case
Ri(0) is said to be a one parameter symmeiry
group of (1.1). Of course, such a condition
cannot be checked by considering the quan-
lities Ry directly since the maps R and R are
rarely accessible in their explicit forms.
Therefore an infinitesimal version of this no-
tion has to be considered. One easily shows
that the resolvents commute if and only if the
corresponding vector fields K (#) and

G (1) = Uy T 6u,y,

do commute in the vector field Lie algebra. So
We require

(3.2)
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(K, G]:=CG'[K]-K'[G]=0. (3.3)

In case that we have a parametrization of the
manifold given by a vector space, the bracket
can be defined via the variational derivatives,
Here K'[(] denotes the variational derivative
of K in direction G, l.e.
0

K’[G]Zg K(u+eG W)l .=o. (3.4)
In case of a manifold which is not a vector
space one better uses Lie derivatives instead.
To this we come later on. The quantities K and
G are called infinitesimal generators of the cor-
responding groups Ry and R ;. Now, invariant
manifolds, and especially the manifolds of N-
soliton solutions, can be described as group in-
variant manifolds. Actually, this description
we already used implicitly in case of the one-
solitons. There we made use of the most sim-
ple symmetry group given by translation of
the x-variable. Let us see this: The translation
group

u(x) — ulx+a), (3.5)

has as infinitesimal generator the vector field
Ko(w)=uy, (3.6)

furthermore an obvious symmetry group
generator is given by the field G(u) itself.
Hence ¢Ky—G must again be a symmetry
group generator, and our ansatz (1.2) was the
same as the requirement that the solution has
to be invariant under the group given by that
generator. This is easily seen because (1.2) is
the same as saying that « has to be an element

out of the manifold

M={uicK,—G=0;, (3.7)

being invariant under that group. This sug-
gests that other interesting solutions can be
found by taking more symmetry group

generators
Kl’ K}s K-ﬁs T,

into account. We can define special interesting
solutions by requiring that the initial condi-
tion has to be out of the following invariant

manifold

(3.8)
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.
M= {ul there are C, such that »] C,,KH(H)ZO}-
n=1

{Vol. 60,

(3.9)

It turns out that these are the N-soliton solutions. The only problem is to find these generta;l(;rjé
This is a difficult question since, in contrast to linear systemg, nonlinear syis‘tem's mag l:(; e
any more symmetry group generators than the ol?vious ones.." Even the verlflcz;tlon t ?n leg o
quantity is indeed a symmetry group generator in general is not at all easy. For example,

necessary computation for showing that

» 2 3
K 3 (“) =Ueyyxoxy + 14u.\’.\'.\',r,\‘ u+ 42“\'“ xxxx + 70“.\‘.\1\‘(“\1‘ tu _) + 280“” Ul + 70”‘ (M * tu )’

must be a symmetry group generator certainly
takes some time and skill. In this situation the
notion of hereditary Ssymmetry offers welcome
help. A linear operator @, mapping vector
fields into vector fields, is said to be a
hereditary symmetry if the following

P[4, B]+[®4, PB]
=¢[®A,B]+<D[A,¢B], (3.1
holds for all vector fields A, B in the vector

field Lie algebra ., Having such a hereditary
symmetry one easily finds

Theorem 1: Ler @ be g hereditary symmetry

and K be a special vector field such that the
Sfollowing

DK, A]=[K, @A), (3.12)

holds for all vector fields A then the elements
of the following sequence of fields

K, 9K, 'K, ¢°K, - -,
all commute.

Proof:  Using (3.12) one checks that (3.11
implies

(3.13)

G[OK, A]=|oK, PA], (3.14)

In case of a linear system ¢, =4¢ all operators B
commuting with A are defining SYmmelry generatory By
Thus finding the spectral r

esolution of 4 is, in most cases,
the same as finding all SYMMELry group generators,

** Quite often the property of being a hereditary
symmetry is confused with the property of being a recyr-
sion operaior {see ref. 27) for some K. 1t should be noted
that the requirements for being a hereditary symmetry are
much stronger than thar for being a recursion operator
since heredirariness implies abelian structure for a se-
quence of vector fields whereas the recursiop property

only implies commutativity of a sequence with one of jts
members.
[T

Implicitly the Operator given in (3.16) already can
be found in the fundamenta] paper™’ of Peter Lax where

this operator £Ot its name of “Lenard operator” from.

(3.10)

and so forth. Hence the statement is an im-
mediate consequence of [K, K ]=0 because

[@”K, CD’”]:@”*”I[K,K]- (315)

EXAMPLE: Let D' denote integration

. . %
from —o0 to x. By direct verification** one
shows that the linear operator

®u)=D+2DuD""+2u, (3.16)

has the property required in (3.11), hence
must be hereditary. Furthermore the vector
field K(u)=u, clearly has the property re-
quired in (3.12) because @ does not depend ex-
plicitly on x. Hence the vector fields formed as
in the theorem do all commute. One should
observe that the second one of these vector
fields is the right side of KdV equation (1.1)-
Thus we have found infinitely many symmetry
group generators for the Korteweg de Vries
equation **¥*

Although this elementary result seems to be
rather smooth and useful, it somehow drop-
ped out of the sky and leaves some questions
unanswered. Apart from the fact that we want
to understand the condition (3.11) a little bit
better we have no idea how to find §UCh a
quantity for a given equation. This brings “5
back to our starting point where we claime
that all interesting quantities and struf:tufes
for the KdV can be discovered by looking a!
Fig. 1 and the explicit form of the one-
solitons.

In order to analyze the situation let us Jook
at eq. (2.3) or (2.6). For this equation a
suitable sequence of symmetry generators 1S

casily found. The flow itself is generated by
the vector field
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0

, (3.17)

(&

4 C\

which certainly commutes with all fields of the
form

0
m

¢

(3.18)

ey
These fields are generated in a recursive way

out of the starting field (3.17) by application
of the operator

(A 0 ] (3.19)

04"

having the matrix A (2.7) as entries. One
should note that this operator is the product
of the two different operators given by the two
different hamiltonian formulations of the
€quation. This is no coincidence but a general
consequence of such a bi-hamiltonian formula-
tion as can be concluded from the fundamen-
tal contributions of Emmy Noether (see the
textbook"¥ or the original paper-’). But since
We do not need this in the following we skip
these aspects. Anyway, we have seen that the
Symmetry group generators for (2.6) are
generated in a recursive way by application of
the linear operator Y.

For our N-soliton solutions this viewpoint
already shows that these were indeed
generated by symmetry group generators as de-
scribed in (3.9), because clearly the solutions
of (2.6) can be considered as elements of the in-
variant submanifold

My= { vithere are cy such that

ﬁ (Y/—c,,)vz()}. (3.20)
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Expansion of the product into a sum yields ex-
actly the condition (3.9) if the quantities are
pulled back by the diffeomorphism depicted in
Fig. 2.

Another consequence is that, in case we
have a nonlinear equation which is suspected
to be linearizable by some abstract diffeomor-
phism, we can expect that suitable symmetry
group generators are created by application of
the pull back of a linear operator. In case of
the KdV this must be the pull back of the
operator ¥ given above. On first view this
does not seem to be a promising observation
since we are far away from being able to find
the explicit form of the diffeomorphism
depicted in Fig. 2. But wrong, in order to find
what we have to look for we only have to ex-
press the essential properties of the operator ¥
in some algebraic way such that this property
then can be pulled back. Since the diffeomor-
phism 7 given Fig. 2 is far from being linear
we have to be a little bit careful in that respect.
To find suitable conditions we first have to ex-
press the essential properties of ¥ in some
differential geometric invariant way such that
it is preserved under diffeomorphisms. The
right way to do this is to work with Lie
derivatives, For those who have forgotten
their differential geometry this notion is easily
explained:

If one has a scalar field, say p(u), and a vec-
tor field K (1) on some manifold then certainly
the gradient of p in direction of K is invariant
against reparametrization of the manifold. So
we call this the Lie derivative. However, for
vector fields the derivative of the field in direc-
tion of another field is not invariant against
such a reparametrization because second
derivatives occur. So we have to combine direc-
tional derivatives in such a way that second
derivatives cancel. The ‘‘suitable’ combina-
tion is the vector field commutator, which is
just the quantity given in (3.3) computed for
an arbitrary parametrization of the manifold.
Hence we define the Lie derivative L, for a vec-
tor field G with respect to another vector field

K by
LyG=[K, G]. (3.21)

Now having such an invariant notion for
scalar and vector fields it is easy to expand that
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to all tensor fields by use of the product rule.
For example, if ¢ (u)is a (1,1)-tensor field, or
a linear operator on the tangent space which
depends on the manifold variable, then we
define its Lie derivative by

Li(®G)=L(D)G+ PLL(G). (3.22)

We call any tensor field invariant against X if
its Lie derivative with respect to K vanishes.
One should observe that condition (3.12) is ex-
actly the requirement that @ is invariant with
respect to K. Now take as manifold a linear
space E, then we may identify its tangent space
at each point with the space itself and a (1,1)-
tensor field is just a family of linear operators
¥(r) depending on yeF. Taking any
parametrization we can express the Lie
derivative ot that field as

L,\(‘I’):‘PK'—K’Y’+‘P’[K], (3.23)

where K is an arbitrary vector field, and where
¥’ and K’ denote the variational derivatives
computed in that particular parametrization.

Now let us return to the special operator W
as defined in (3.19). The essentia) property ob-
viously is that ¥ commutes with its variational
derivative in the following sense

PY'[Bl=y (¥R, (3.24)

1.e. the variational derivative is diagonal and
constant. Hence application of ¥ 1o equation
(3.23) vields on the right side the same as the
Lie derivative of ¥ ip direction of the feld
¥A. This is a simple consequence of com-
mutativity of ¥ and ¥’ Thus:

Observation 11 The (1, lj-tensor field
given by (3.19) fulfills

lIULA(SH)'":LM\('1"),
for all vecror fields K.
One should observe that given g

parametrization then property (3.25) is

equivalent to the following symmetry condi-
tion

(3.25)

YV [A)K~ '{”[‘PA]K=¥’SU’[K]A
~¥'[¥K] A, (3.26)

for arbitrary vector fields 4 and x (see ref, 9).

By observgtion 1 property (3.25) is now for-
mulated in the language of differential
geometry and can therefore be pulled back to

(Vol. 60,

the left side of Fig. 2. Thus a good property
for @ to look for seems to be (see ref. 9)

PLx (D)= Lyg (D). (3.27)

But, surprise, writing down this property in
terms of vector field commutators exactly
yields condition (3.11). Hence (3.25), or
equivalently (3.26), is just another equivalent
condition™ for hereditariness, which turns out
to be the invariant formulation for the prop-
erty that an operator has to have a constant
diagonal variational derivative.

The considerations above gave us the prop-
erties we have to look for but they gave us no
indication how to find these quantities for con-
crete cases. This problem will be addressed in
the next section. But we do not want to con-
clude this section without giving an honest
assessment about the present computational
value of the hereditary property for complex
cases,

For the KdV it can be checked in a few lines
that the operator given in (3.16) has this pro-
perty. But let us see how difficult it can be t0
check the validity of this property which has
$0 smoothly been expressed in (3.27).
EXAMPLE (see ref. 6): Consider the so
called Kawamoto equation taken out of an

issue of the Journal of The Physical Society of
Japan®™

g:= 1 OQ * CxxLrxx +5 Q 4 Oy Quxxy + 0 ’ Qraxxe
(3.28)

From the viewpoint of mathematical esthetics this is
the way how hereditariness should have been discovered.
Of course it was discovered in a much different way, of
Ways, as one should say since this property, or similar con-
ditions, came up from different directions at almost the
same time (refs. 9, 17, 22). My introduction of this prop-
erty was based on an analysis of the algebraic structureg?f
the inverse scattering method, unfortunately the paper !
published does not give any indication how this property
was found. The reason for that is that in 77 | tried t©
publish a paper where the analysis leading to the
hereditary property was described. But since | got back
the paper from the journal with the remarks that there
Was no new aspect whatsoever in that paper, I was 50
frustrated, that I decided 1o hide my thoughts in the subs¢:
quent papers. In this | was rather successful hence 1 fhd
not have difficulties in getting that in print. The condition
that the variationaj derivative of a hereditary operator has

to commute strongly with the operator itself appears 0nly
some years later.
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For this equation there is indeed a hereditary
operator which generates a huge symmetry
group. The explicit form of this operator is:

®(0)=0DJ()OW)D "0,  (3.29)
where the auxiliary variable u has the form

e
“:QQU_? (Q\')ha (3'30)

a.nd where the operators J and © are abbrevia-
tions for

O()=9DoDou,+3puus,, (3.31)

Ju)=oDoDou,+3(ouu,+ oDu?)
+2[pDoDuD™'up '+ D 'uDuDou]
+8[u2D-luQ—l+D~lu3Q—1]' (332)

The validity of (3.11) is most easily checked by
computation in some chart. As seen in (3.26)
this leads to the requirement that for arbitrary
fields 4, B the following expression has to be
Symmetric in A and B:

PP'[A]B—d'|PA]B.

Because of the D dispersed in the expression
for @ it is unfortunately not at all obvious
which terms in that expression cancel. This is
because most terms cancel with others only
after performing some tricky integrations by
Part. Since integration by part leads to a con-
text sensitive language, it 1s anyway difficult
tnough to find an algorithm which checks the
fesulting expression for equality. So, 10 do
that one first has to expand all derivatives by
the product rule. Let us see to what that
amounts. If in @ (u)D ' ~* all derivatives aré
Performed we roughly obtain 30 terms since
one D is standing in front of some 4th order
term and another one in front of a Sth order
terrp, Now performing the additional
derivatives in J, which stand in front of 8th
and 9th order terms, yields an additional fac-
0r 90. For obtaining finally @ we have to per-
form one last derivative in front of some 10th
order term, So right now we already have
3090 1] terms in ®. But now comes the
rea! increase in numbers: The variational
derivative of a tenth order term has 10 times
the size of that term. And since @ enters
Quadratic in (3.32) we have to square the
MNumber of terms in @. So we can expect after

(3.33)
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expansion of our expression to have around

2x 10 times(30x 90 x 11)*=17Billion, (3.34)

terms in the expression which we have to
check. Quite a lot and not a very simple prob-
lem!! But one should not be afraid, this
operator is indeed hereditary.

§4. Phase Gauges and Backlund
Transformations

We should observe that there is a simple

gauge invariance for the solutions (1) of (2.6).
Here we used the abbreviation

C
Cn
o)=| (4.1)
q
g~ .
The replacement
g~ g+ 2A@i(ct, -0, ), 4.2)

transforms one solution ¢ of (2.6) into another
solution #. To write that explicitly, we have

v—i+Ap=0. (4.3)

This trivial observation is not uninteresting
since on the nonlinear side of Fig. 2 the phase
gauges correspond to the so called auto-
Bicklund transformations, which will provide
the essential tool to compute the quantity @
which we need so badly for our symmetry
analysis. Of course, the only thing we have to
do is to pull back the relation (4.3) from the
right side of Fig. 2 to the left. This then yields
a diffeomorphism, maybe in implicit form,

B(u, 1, 1)=0, (4.4)

between different solutions of our nonlinear
system. Doing that seems to be rather hopeless
on first view. But it is not, because in reality it
turns out to be a rather simple exercise in
elementary catculus.

We first have to observe that the effect of
(4.4) on the one-solitons only resuits in an x-
translation because there we know that the
phase shifts are nothing but x-translations, a
fact which, due to the nonlinear nature of our
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system, is not true for higher number of
solitons. Secondly we observe that the explicit
form of (4.4), and (4.3) as well, is not depend-
ing on the speed of the respective solitons. Let
us emphasize these two remarks:

Observation 2:  For the one-solitons

—

c Ve
s(x+ct)=? cosh™? {7 (x-x0+ct)},

4.5)
there must be q Jamily of diffeomorphisms
B(u, i, 1)=0, (4.6)

between s and its suitable X-translation which
is independent of the speed parameter c.

It will turn out that the important part in
this observations the independence with
respect to ¢, because it is not trivia] at all that
such an independence is possible at all. One
has to keep in mind that the totality of
translated solitons, with different speeds, is a
two parameter family of functions and that in
the observation we require a one-dimensional
family of functions which are independent of
one of the parameters byt nevertheless
preserve the fibers with respect to that
parameter.* In fact the assumptions we made
in this observation are sufficient in order to

§=(X—Xn+cr)andk:;2—,

N(k§)={

Now, consider explicitly s,
into odd and even parts we find

$5=2k* cosh™ (k¢ + g)
=2k* {cosh (k&) cosh (8)

::V¢+ V_,

(Vol. 60,

compute these diffeomorphisms. This will lead
to the so called Bécklund transformations. In
order not to be misunderstood, we do not
claim that whenever a solitary wave has a sech-
square-profile then there is a Bicklund
transformation. What we claim is, that if all
solitary waves have a sech-square-profile such
that the speeds and amplitudes are related as
in (4.5) then there is a Bicklund transforma-
tion. Let us see how that is done in the KdV
case:

EXAMPLE (see ref. 13): For the KdV one-
solitons (1.3) we consider the following transla-
tions by +4 and — g, respectively

- I L
Ve vc c ve

N
TX - —2—x+ﬁand-2—x - “"z"”x B,

4.7)
and denote the resulting solutions by s; and
$-p- The negative translation has only b.eerl
chosen in order to make the computation

more symmetric, We decompose into odd and
even parts

V 2% (Spts-p), V_ :% (s5=5-0), (4.8)

and, in order to abbreviate notation, we In-
troduce

4.9)

cosh’ (k&) cosh? (B)=sinh® (k&) sinh? ()
= {cosh? (k&) + sinh> (B

and apply the addition-

(4.10)

theorem for the cosh-function. Splitting ss up

where now the odd part V_ and the evep part V. are seen to be

Vo=2kN(key

@.11)
+sinh (k¢) sinh (§)} -2 (4.12)
=2L°N (k€Y {cosh (k&) cosh (B)—sinh (k&) sinh (B)}?
{cosh® (k€) cosh? (8)+sinh? (k¢) sinh? (8)}, (4.13)
{cosh (kZ) sinh (ke) cosh (8) sinh ( 3)). (414

Vo= kN (key

* . .
hi hﬁ;c;uzll.y th1§ was the property, or rather its suitable mathematical formulation and extension to several dimensions,
which I had in mind ip footnote of P. 1474 whep | spoke about “‘cerain properties of special functions’’.
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Considered as functions in the variable &, the even part ¥+ is a polynomial of second order in the
common denominator N (k¢). Furthermore V- is, apart from multiplication with a constant, the
derivative of N (k¢). Thus we obtain a relation between V' and V- Let us write this down ex-

plicitly. Simple computations give

V. +yN+0ON*=0, (4.15)
where
y=—2k*cosh (2), (4.16)
§=k*sinh’ 2), (4.17)
and the derivative DN of N is
DN=(2k cosh (f) sinh (pN~'V-. (4.18)
This gives
_ 2k cosh @h) D WV_+{D'V_}=0. (4.19)

V
T sinh (28)
Now, let B depend on k in such a way that
= —2k coth 2f), (4.20)

is independent of k. Then we have the following algebraic relation

- L - 1
B(sy, 5_p, A):=(spts-p)+ 4D (st (D™ (sp—s-p) 1 =0, (4.21)
where the coefficients are independent of K=( '¢)/2. And by translation invariance we can now

get rid of the negative translation

L p- 1
B(s, 5-35, A)=(5+s_2ﬂ)+/1D_I(S—S-zﬂ)+“2_ (D7 (s—5-20))"=0. (4.22)

For other completely integrable equations such a relation can be found in a similar fashion. Let
us see what we can do now with this remarkable relation between an arbitrary soliton and its

translation. We begin by considering this as an implicit function for general arguments

T 2
B(u, a,)t):u+ﬁ+w"(u—u)+?{D fu—u)ir=0, (4.23)

variational derivative B, with respect to the
variable u has to be trivial, i.e. for every win
the tangent space at u it is required that

where » and # are assumed to be on the
manifold where our multisoliton solutions are
taken from. That is the manifold & of C*-

functions vanishing rapidly with all their whenever
derivatives at infinity. If u is fixed then the B,[w]=0 and B(u, i, )=0, (4.26)
map
(4.24) then
= ), ‘
u-—ua=f(u, 1) =0, w

given implicitl
plicitly by must hold. This guarantees that small changes

B(u, @, H=0, (4.25)  of y cannot happen without changing u.
Those A violating this condition for a certain u
we call the spectral points of u. The other 4
are said to be non-spectral points.

raelly is a function if the implicit function
theorem condition is fulfilled. This condition
requires that for B(u, i, A) the kernel of the
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Let us see what the spectral points are in
case of the one-soliton. Obviously (4.23) maps
the soliton solution s onto S-y5 where

A
2f=arccoth (~—_)

‘ (4.28)
Ve

For reasons seen later we call this relation the
phase shift relation. In particular s and all its
translations are mapped onto the zero func-
tion for A==%+'c. Hence + v¢ are spectral
points for the one-soliton having speed ¢. All
other A’s are non spectral because for B(u, u,
4)=0the operator B, is a differential operator
which is invertible on the Vector space &.
The set of spectral points is finite in general
because (4.26) is an ordinary differential equa-

B,[K(u)]+B, [K(#)]=0 around B(u, u, 2)=0.

Observe that for non spectral points 1, where j 1s local
(4.32) is a differential equation for u (or rather the i
trivial then on the manifold & under consideration thj

integration constants a5 €q. (4.29).*

However, there is an essential difference between (4.23) and (4.29)

the solutions for (4.32) are a two
parameter c). Thus the system 4.

BuIK )]+ B; K ()] =0,

1S identically fulfilled whenever B(u, u, i)
dense,this must also hold for thos
arguments:

Observation 3:

B.[K(u)]+B, [K ()]
So, whenever i is defined by B(u, u, A)=0

In both these equatio

vanish rapidly ar infinity,
In the literature this

(v=)}*=0. However there i

Whenever Blu, i, ))=¢ then

=0 around Bu, q, )=,

s one degree of freedom has been consumed by

(Vol. 60,

tion for w having only for certain A’s solutions
vanishing rapidly at infinity,

After this detour we return to the special
case where u=s and U=s_»z are one-solitons.

Recall that the one-solitons were solutions of
e =K (u)=u, +6uu,, (4.29)
and
cu,=K(a)=u,,,+6ii.. (4.30)

Translation invariance of B(u, , A )=0 yields
for the variational derives the relation

Bulu)+B.[2,)=0 around B, i, A)=0,
(4.31)

and insertion of (4.29) and (4.30) gives

(4.32)
ly uniquely given by B(u, u, /1)‘=0 €q.

. : 32) has to many integration parameters or degrees of freedom.
This can only be if the System is trivial, j.e. if

(4.34)

We are able to prove (4.33),** directly. This indeed
explicit computation leading to:

B, [K (u)] T Bi[K (i) =(D’+3(u+ u)D)B(u, i, A).

(4.35)

the requirement that the solutions have to

~1
Y written in a different way, namely as (u+a)+i+i/2{D'
een this notation angd our form since (4.23) is compatible with

quirement thag y and i vanish at infinity, whereas the usual
will be essential in the nexi s

. s o
ection where we turn our interest t
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§5. The Spectral Problem Given by Phase
Gauge

We did not abandon the problem to find the
operator @ which was the tool to generate the
one-parameter symmetry groups. In this sec-
tion it will turn out that this operator is given
by the spectral points which we introduced in
the last section for the auto-Backlund transfor-
mation.

Since B(u, &1, A)=0 is an auto-Bicklund
transformation for (1.1) the property of being
a spectral point is invariant against this flow.
So we have arrived at some kind of spectral
problem for which (1.1) constitutes an isospec-
tral flow. However, this is a
NONLINEAR SPECTRAL PROBLEM:
Given a solution  of (1.1), find those A’s such
that there is some non zero vector field w and
some # on the manifold under consideration
such that

B.(u, i, D{w]=0 when B(u,u, 1)=0. (5.1)

I do not know of any criteria which give
reasonable answers to the question under what
circumstances such a nonlinear spectral prob-
lem is equivalent to a linear one. However, in
this and other cases this problem is easily
linearized (see ref. 12) in a purely algorithmic
way:

Variational derivative of (4.23) with respect
to u yields the operator:

B,=I+(D "u-u)D"'+1D".

And the spectral problem (5.1) reads as
follows

(5.2)

0=w+(D '(u—i))D 'w+iD"'w. (5.3)

This is only formally linear since i and  are
not independent. Abbreviation D~'w=t
allows to write

D"(u—z))=-—(%+i). (5.4)

_Writing u+i as 2u—(u—i) and then replac-
ing all terms &~ i in (4.23) by (5.4) we obtain

) 2 v
2u+ (E‘H) 1 (f’fu) -2 (—L—H) =0,
v 2 \v v

(5.5)
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which certainly is a nonlinear eigenvalue equa-
tion. By multiplication with 2* we obtain

At (5.6)

| 1
2+ —— 4
UD“+ Dy U 3

P UylUx=

If this problem can be linearized there must be
operators A(v) and ¥ (u) such that A(v)e=
Cy? and such that A(v)¥(u)v is equal to the
left side of (5.6). Comparison of suitable
terms yields in an algorithmic way:

D 'wD{vo+2uv+2D " (ur )} =AD" "vDr.
5.7

Hence A(v)=D"'tD and WY(u)=D'+2u
+2D"'uD. Going back to =10, we see that w
is a solution of (5.1) if and only if w Is an
eigenvector of

gp(u)ngv(u)D“:D3+2u+2DuD“‘. (5.8)

And if A is the spectral point given by (5.1)
then A2 is the corresponding eigen-value of
® (u).

This clearly is the operator which we
already introduced (3.16) in order to give an
example for a hereditary operation. That this
operator is the pull back of the operator in-
troduced in (3.19) is quite obvious. Since the
spectral points are those where a soliton is an-
nihilated the operator @ exactly has the same
eigenvectors as the matrix given in (3.19)
which also does the job of annihilating
solitons. That the ecigenvalues are the ¢
follows from the interpretation of the spectral
points given before. Hence, since (3.19) was
hereditary, we know that @ again must be
hereditary, at least on the N-soliton solution
manifold.

One should note that the operator @ is
isospectral under the flow (1.1) since its spec-
trum does not change with this flow. The sec-
ond element in the corresponding Lax pair in
this case has a very simple form, namely it is
given by the variational derivative of the right
hand side of the corresponding eq. (1.1). This
can be seen directly from the Backlund
transformation as demonstrated in ref. 13, but
also can be regarded as a consequence of the
hereditariness of @. Because of translation in-
variance and G{(u)=®(u)u, we obtain from
(3.12)
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PG, A]=[G, ®A4], (5.9)

for all vector fields 4. Expressing that by varia-
tional derivatives yields

P'NGI=G'd—-dG'. (5.10)
So, when u evolves according to (1.1) we have
the Lax representation

d
a—f@(u)=£l¢—q5zl, (53.11)

where

A=G"=D+6Du, (5.12)

It is an interesting question how this isospec-
tral problem is related to the well known
isospectral problem given by the Schrodinger
operator. The answer to that will turn out in
the next section in a rather natural context.

But before we leave this section we like to
demonstrate that by now we already arrived at
a point where our structyral considerations
yield some practical results which are of impor-
tance to the physical interpretation of corre-
sponding phenomena.

Observe that we introduced in (2.1) two
different phases ¢* and q at £, For the
one-solitons these quantities of course are the
same, whereas for genuine multisolitons, due
to the nonlinear interaction, these quantities
are different and result in a phase shift

A=q"~-q", (5.13)
We want to compute this phase shift.

First we emphasize the meaning of the spec-
tral points. Since asymptotically multisolitons
decompose into single solitong We may apply
the phase shift relation 4.28) to multisolitons
as well. Consider a N-soliton solution u of the
KdV. By use of (4.28) the spectral points were
demonstrated to be the 1,=+, ¢» which cor-
respond to annihilations of these solitons with
speed ¢, by translating them by

2ﬁ=00=arcoth(il), (5.14)
out of finite sight. Thus it is shown

* that whenever y js some N-
tion then for spectral A, the 3
B(u, a4, 4,)=0is the (N=1)-s0]
where the n-th soliton w
missing.

soliton solu-
appearing in
iton solution
ith speed ¢,=4 is

(Vol. 60,

For explanation of the phase shifts A, consider
a solution u=u(x, ) of the KdV such that
asymptotically for 7=+ o a soliton with
speed ¢, emerges. Let B(u, 4, A)=0 be a
Backlund transformation between this solu-
tion and another solution 4. As we have seen,
the effect of this Backlund transformation on
the emerging soliton is the same as if it were a
single soliton. Hence the corresponding
soliton emerging out of i has, compared to u,
undergone a x-translation of the amount

4 2 A
fﬁ=? arcoth ( —T) .

(5.15)
V| v V(]

The factor 2/v¢, is due to (4.7) where it is seen
that s, is obtained out of s by exactly that
transiation. Now consider another solitpn
with speed ¢, and choose the spectral point
A=+cy, i.e. the Bicklund transformation
which annihilates this second soliton with
speed c;. Assume the case ¢,> ¢, and asymp-
totics at + o0, Then, since the second soliton is
faster than the first one, the annihilation must
be done by shifting this second soliton i{lfo
plus infinity. Hence we have to choose the sign
in the square root in such a way that the
resulting expression becomes positive. The
translation for the soliton with speed ¢ is then
also positive and equal to +2/vc arcoth
(verfcy). At t=—w we have to reverse the
direction of the translation in order to propel
the soliton with speed ¢; into — o0, Thus the

resulting x-translation when going from u to
uis

+—=arcoth (v&r/c)). (5.16)

v()

In case c;< ¢, we only have to change the sign
of these translations.

Now, take a pure multisoliton solution and
annihilate successively all emerging solitons ex-
cept the one with speed ¢,. Then the resul'tl.ﬂg
shifts have to be added and they are posit1ve
for those solitons annihilated with higher
speed and negative for those with lower speed.
Since out of that annihilations results a one-
soliton, i.e. a solution with no phase shift at
all, we just have to change the sign of these suc-
cessive shifts when we want to compute the
phase shift which the soliton with speed ¢; has
undergone when interacting with other
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solitons.

Thus the phase shift of the soliton, emerg-
ing out of u with speed ¢;, compared to the cor-
responding single soliton, must be

4 -
Ai=—= > garcoth (vci/c), (5.17)

vV
where

&=—1 if ¢;>c, and+1 otherwise. (5.18)

A result well known from the literature.*”

§6. The Interacting Soliton

There is another aspect which catches the
eye when looking at eq. (2.6). Namely that this
system is purely a superposition of N single
soliton systems and no coupling between
different solitons is visible. Thus eq. (2.6) sug-
gests that the different solitons may be re-
garded individually. Of course, comparison
with that system also suggests how this
dfﬁcoupling has to be done in real life coor-
dinates. Observe that the one-soliton on the
right side of Fig. 2 can be picked out by re-
stricting the attention to the corresponding
tigenvector of the operator A. So we can
egsily carry over that decomposition by con-
sidering the corresponding eigenvectors of @
on the left side of that figure. This transfer,
which leads to a complete decoupling of
waves, has been discussed in all detail (see ref.
14), s0 we conclude this section by briefly men-
tioning this aspect which shows that the spec-
tral resolution with respect to the hereditary
Operator ¢ provides the nonlinear superposi-
tion principle for the KdV.

Guided by this comparison we define s to be
a0 interacting soliton in the field u if s 1 the
eigenfunction of the hereditary operator @ (u).

This definition is also suggested for other
Structural reasons:

* As we have seen the flow (1.1) always is
an isospectral flow for the operator . Hence
an eigenvalue is present for all time # if it is pre-
sent for one time #,.

* If ®(u) is reasonably localized, and if
asymptotically there emerges a soliton, then
asymptotically there must be a corresponding
Cigenvector. So, due to the fact that (1.1) is an
IS.OSpectral flow for @, there is always an
eigenvector of ¢ () which corresponds to this
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soliton.
« The dynamics of eigenvectors of the

recursion operator is uniquely determined by
(5.11). In fact these eigenvectors have the
same dynamical behavior as infinitesimal
generators of one-parameter symmetry
groups. So it has to be expected that this
dynamics again leads to a completely in-
tegrable flow.
Let us make the last point a little bit more
precise:

If w(t,) is an eigenvector of @ (u(4)) with
eigenvalue ¢ then by use of (5.11) we may
choose w(t) such that for all # we have

Putyw(t)=cw(t), (6.1)
w,=K'[w]. (6.2)

Combining this with the definition of the
soliton
ST W, (6.3)

we find that equations (6.1) to (6.3) completely
determine the dynamics of s. Since w is a solu-
tion of the linearization (perturbation equa-
tion) of (1.1), and because these linearizations
inherit, as coupled systems, the structure from
(1.1), we may expect that the evolution of s
has the same structural properties as the evolu-
tion of u. Indeed this can be easily proved in
all detail. We get the dynamics of self interac-
tion, i.e. the dynamics of s, in the following
way:

. Consider eqs. (6.1) and (6.3) as a
Bicklund transformation between u and s.
Use this to express 4 by s and insert then
u=F(s)in the evolution eq. (1.1). Thus we ob-
tain a nonlinear evolution equation only de-
pending on s this is the evolution for the in-
teracting soliton.

« Using the fact that Backlund transforma-
tions preserve Structures (Hamiltonian for-
mulation, hereditary operators, etc.) we then
can transfer the structural properties from eq.
(1.1) to the evolution equation for the interac-
ting soliton. To do that explicitly, we only
need to apply the transformation formulas for
the pull back.

On first view there seem to be the some
minor difficulties:

. The Bicklund transformation is an
eigenvector equation and solving eigenvector
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equations is a difficult task.

* The transformation formulas coming
out of the pull back seem only valid for
diffeomorphisms between u and s. But cer-
tainly (6.1) not even defines an honest map
from u to w since, obviously, the implicit func-
tion theorem for

B(u, w)=(®u)—c)w=0, (6.4)

does not hold because w itself lies in the kernel
of the variational derivative B, i.e. eigenvec-
tors are only determined up to a scalar factor.

Both these apparent difficulties are easily
discarded for the following reasons:

* Of course, eigenvectors are difficult to
find. But given an eigenvector then going the
other way, namely finding the potential, often
is extremely simple. And that is what only is re-
quired in our case.

* Although the implicit function theorem
is violated we nevertheless can apply all the
relevant transformation formulas. This
because we know that the kernel of B, consists
of the function w and this function is a sym-
metry group generator of the equation under
consideration. Hence, for the equations of the
interacting soliton, we can work in the algebra
modulo an additional and obvious symmetry
(see ref. 14 for details).

In order to ilustrate this procedure we carry

out the necessary computations in case of the
KdV:

U=ty +6uu, (6.5)

here eqs. (6.1) to (6.3) have the form
CSe =St dus,+2u.s, (6.6)
§1= Syt 6us,, 6.7)

where already w was replaced by s,.

Now, solving (6.6) for u in terms of s we
find

€ Sy §t

1
U=y 5 Tyt constant —
s

4 25 4y (6.8)

Inserting the boundary condition at infinity we

find the integration constant to be zero. Hence
we finally have

L Si
U=——__

4 2s+4?2 ' (6.9)

(Vol. 60,

Insertion of this into (6.7) yields

3 3
5257828 — 385, S+ = 53+ = 575,

5 5 (6.10)

This describes the evolution of interacting
solitons for the KdV (no matter how many
other solitons are present).

The same simple procedure can be applied
in order to obtain the evolution of interacting
solitons for other evolution equations.

At the end let us look what such an inter-
acting soliton looks like in the two-soliton

case. Here we have the spectral decomposition
Ue=w,+w,, (6.11)

where
Puyw=cw, i=1,2 (6.12)

and where the c; are the asymptotic speeds of
these solitons. This is the same as

(@@)~e) @) —c)u,=0,

and we can apply the obvious identity

(6.13)

1
I= (P)—c)+—— (D (u)—c2),
G—q =
(6.14)
in order to obtain
1
U= (@W)~c)u+ (D (1) — )y,
L6l & C1—0C;
(6.13)
or
1
U= (Gu)~cu)+ (G (u)— 2o,
Q= =0

(6.16)

where G is the right side of the KdV (I.1)-
Because of (6.3) the operator (@ —c,) cancels
the first term of the decomposition (6.16) and

(P~cy) does the same for the second term,
therefore we find

1
= —c 6.17)
Wi Cl_cz(G(u) o), (
and
L 18
W= (G (u)—c\u). (6.18)

GG
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This shows that
|

Ci—C

5= D G (u)—c.u.), (6.19)

and
|

aG—C

$1= D' Gu)—cu), (6.20)
are solutions of the nonlinear eq. (6.10) for in-
teracting solitons,

In case, of multisolitons of higher order the
same analysis goes through. Only the G (u) oc-
curring in (6.17) and (6.18) then have to be
replaced by suitable sums over higher order
symmetries.

For the two-soliton of the KdV, which was

plotted in Fig. 1, the corresponding interac-
ting soliton with larger speed is plotted in Fig.
3. This method of decomposing the field
variable with respect to the eigenvectors of the
hereditary recursion operator can again be
applied to the completely integrable system
(6.10) this then leads to the introduction of vir-
tual particles which only pop up during the in-
teraction (see ref. 14).
. An additional aspect is discovered by look-
Ing at (6.9). This is a nonlinear relation be-
tween u and s. One might try to linearize that
by introducing a nonlinear reparametrization
on the s manifold. Insert

s=h(w),
to obtain out of (6.9)

(6.21)
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¢ 1 Wax 1 (h')’ h" ,
4 2 h +"'4—< hz 27) 63 8
(6.22)

In order that this can become a linear relation
we have to require that the coefficient in front
of w,: vanishes. This yields

h(w)=w?=s, (6.23)
and transforms (6.9) into
, ¢
(D“+u)w=? w, (6.24)

which again must define an isospectral prob-
lem for (1.1). This is the well known result
that the Schrodinger problem remains isospec-
tral under the KdV, thus we have provided the
link to the usual Lax pair.

§7. Action Angle Variables

We want to find the complete action angle
representation for the KdV. The parametriza-
tion given by the asymptotic data (speeds ¢;
and phases g;) yields such a representation, so
we only have to look for a way to compute
these parameters for a given field u. The idea
how to do that is easily found by looking at
the gradients of, say ¢, and c¢,. If these quan-
tities are mapped, via the symplectic structure,
into the vector fields, they go over into

Fig. 3. Interacting soliton of the KdV.



1490 Benno FUCHSSTEINER

-1 0
0 §
: 0
0 ad | +1 |, (7.1)
0 0
0 0

which are exactly the eigenvectors of the
crucial operator

o,

7.2)
0 A (

given in (3.19), and their corresponding eigen-
value is ¢;. So all we have to do in order to
obtain the action angle variables is to take
suitable eigenvectors of @ and to draw these
back onto the cotangent bundle (by the Lie
algebra  homomorphism provided by the
hamiltonian formulation). However there is a
minor difficulty hidden in the word suitable
since the quantities we are looking for have to
be closed in order to admit, at least locally,
potentials. We have to make sure that this re-
quirement is met by chosing suitable in-
tegrating factors. For the action variables this
usually does not pose any problem whereas
for the angle variables finding these in-
tegrating factors is not so trivial at all. So we
apply a little trick:

To find the required normalization for these
eigenvectors we assume that we already have
the vector fields which correspond to the gra-
dients of the action variables ¢.. Consider the
time dependence of g: given in (2.2). In terms

of Poisson brackets this dependence can be
written as

{H,q}=c, (7.3)

where

1, :
H==(ci+ e}, (7.4)

is the scalar field which defines the flow (2.6)
via its gradient. Other Poisson bracket rela-

tions which are easily seen from the hamilto-
nian structure of (2.6) are

{an q/} =0, {Ci, qi} =0, (7.5)
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because of the hamiltonian structure we have
a Lie algebra homomorphism from the
Poisson brackets into the vector field Lie
algebra. Hence the vector field W: which
represents the angle variable ¢; must fulfill the
following commutator relations

[G, W=V, (7.6)

and
(Wi, Vil=1W,, Wi]=0, (7.7)

where G is the field of the KdV-flow and the Vi
are the fields corresponding to the ¢;. The last
sequence of brackets vanishes because of (7.5)
and the fact that the gradients of the d are
zero. These brackets determine the fields Wi
uniquely up to addition of fields coming from
action variables. Here we arrived at a formula-
tion which easily can be pulled back via the
unknown diffeomorphism in Fig. 2. The only
additional ingredient we need is the hamilto-
nian formulation of the KdV in real life coor-
dinates. This formulation is easily found. It is
the well known representation

+ oo
m:ngdX (%wmn+uﬁdn (7.9

where as duality between tangent and
cotangent space we assumed

), K (u)): =S+m y(u(x))K (u(x)) dx,
N (1.9
and where the operator
D: cotangent space — tangent space  (7.10)

induces the symplectic structure. Now, if for
multisolitons we represent u, as in (6.11) by @
linear combination of eigenvectors V; of @

N
U= Z Vh
i=i

then, because of the hamiltonian nature of the
vector field u,, it is guaranteed that the D~'Vi
are closed, i.e. do have potentials. Hence they
are the gradients of the action variables. SO W€
found:

Observation 4:  Given the decomposition
(7.11) (defining a multisoliton solution) then,

if the second eigenvector W, of ®(u) are
chosen such that

(7.11)



1991)

{Wi, Vi]=[W, Wk]ZO,
then the

(7.12)

D™'w, (7.13)

are the gradients of the corresponding angle
variables.

Of course, for the application of this result
an essential ingredient is still missing. Namely,
that we show that we are really able to com-
pute the second eigenvectors of @. For
multisolitons the computation of the first
eigenvector was simple, we just had to apply
suitable polynomials of the operator @ to the
field u, (as shown in (6.17) and (6.18)). But the
eigenvalue problem for @ yields a third order
differential equation, hence finding any other
eigenvectors explicitly by using the given one
may not be possible at all. Fortunately that is
not so. There are two different and simple
ways to give a direct construction of these addi-
tional eigenvectors. One is given by use of par-
tial derivatives of the field function u with
respect to asymptotic data (see ref. 16). Here
we present another method, a method which I
chose because it leads in a natural way to some
results of the next chapter.

Actually, we already know, more or less,
that given one eigenvector V; of @ (eigenvalue
¢i) then we can compute explicitly the other
solutions of

do=c;¢. (7.14)

This observation indeed is a direct conse-
quence of the linearization between u and the
Interacting soliton which we gave at the end of
§6. The content of that linearization was that
when replacing the interacting soliton s by the
square of the second eigenvector of the
Schrodinger operator then eq. (6.9) 1s left in-
variant, Hence this replacement yields up to a
derivative a second solution of (7.14). Unfor-
.tunately that is not the eigenvector we are look-
ing for since this function clearly violates the
bOlmdary condition at infinity. But having the
second solution of a third order problem then
the remaining last solution can be found by
variation of constants. So we are sure that we
can determine the second eigenvector explic-
itly, and we see that we even can make a short-
cut thus avoiding the *‘variation of constants”
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for the third order problem.
Let w; be a solution of
Ci
(D*+uwm=7 o, (7.15)

then by the Wronski determinant, or variation
of constants, we easily find the second solu-

tion of that equation as

w=w D o (7.16)

Thus, as we have seen by linearization of the
interacting soliton, for arbitrary constants «
and S the function

5= (cew, + fwn), (7.17)

fulfills

(PD)s=ciSx. (7.18)

Since the linear superposition principle is valid
for solutions of that equation obviously
differentiation with respect to « or/and f
again yields solutions. Using this we find the
third solution for that equation as & w,. Thus
the three eigenvectors of @ are

(w %)X’ (w %).\" (wl wl),l’- (7 . 1 9)

And simple analysis shows that when (wi),
fulfills the required boundary conditions at in-
finity then (w o), does the same.

§8. Singularity Analysis

We first give a very brief account of the
usual Painlevé test introduced by Weiss et al.
(see for example ref. 35). This test provides a
high probability for complete integrability and
was motivated by the Painleve conjecture of
Ablowitz, Segur and Ramani based on the
well known results about Painleve tran-
scendents. There are numerous excellent sur-
veys on that subject (see for example ref. 24 or
29). In the presentation of the subsequent
results I follow closely the joint work with
Sandra Carillo').

We consider solutions of the evolution equa-
tion

u=G(u), (8.1

where G(u) is a polynomial in u and its
derivatives. We make the ansatz

u= Z W_HF(n)(Wx, Wiy * '), (82)
n=0
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in negative descending powers of a quantity y.
We say that eq. (8.1) passes the expansion test
if this ansatz is always compatible with a time
evolution of y given by

vi=a(y), (8.3)

where ¢ is only depending on y and its spatial
derivatives and where it is assumed that in the
Laurent expansion of ¢ with respect to its
dependence on  only negative pOwers occur.
These requirements of course are severe restric-
tions since in general an ansatz like (8.2) when
introduced into (8.1) yields the equation

G (Z W"FM)) = Z W_”{ _'nW_lF(n)'i_F(In)}
n={ n=0

xa(y), (8.4)

where very many mixed derivatives occur. As
before, in this formula the prime in F’ stands
for the variational derivative of F with respect
to w. Formula (8.4) gives, by comparison of
powers in y, rise to an algorithmic determina-
tion of the F,,, once the starting point Fg, has
been chosen. There are two important cases
for this algorithmic procedure,

« Case 1 (Painlevé test):

We assume that g(y) is only depending on
the spatial derivatives of ¥, l.e. no y without
x-derivative occurs, This corresponds to say-
ing that the t-derivatives affect the singularities
given by the zeros of ¥ in the same way as x-
derivatives, This, of course, is the requirement
one usually tacitly assumes in the Painlevé
test. Hence this assumption singles out the so
called Painleve expansion. Looking at lowest
order in ™' in the €xpression (8.4) one
discovers in this case as a consequence

F(m.. =0 (F(O)),

which proves that

(8.5)

azF(O)’

(8.6)
again has to be a solution of (8.1). Looking at
the next order one finds the wel] known fact
that

G’(ﬁ)[Fm]=Fm(w)’[6]=ﬁu,, (8.7)

which implies that Foisa Symmetry generator
for (8.1) around the manifold point 3.

If one considers the e€xpansion singled out by
that case one obtajns for the Kav

(Vol. 60,
d)%’ (bx,\' ( 1 ¢’,r,x'x 1 ¢§\)
==2—=+2—+|-—= ——1]. (8.9
e R RPN e
The term without negative powers in ¢
"(d’)'( 2o Ao |

is called the constant level term. There are a
number of remarkable interrelations between
the interacting soliton equation, the singular-
ity equation and the Painlevé expansion. For
example, using the substitution

S=¢y,
the constant level term can be rewritten as
2

T

(8.10)

=~

2.5

Formally this corresponds to the interacting
soliton representation of the field variable u
given in (6.9) (for eigenvalue 0). Another sur-
prising fact is that

{5

Which means that a replacement of ¢ in (8.9)
leads to a recovery of the Painleve series (8-8)
from its constant level term. All these observa-
tions suggest that there is a close relation be-
tween the interacting soliton theory and the
Painleve analysis. An explanation of these
and similar phenomena is provided by the
discovery that usually the representation of u
in terms of eigenvectors of the hereditary
recursion operator yields an expansion of an
algorithmic nature very similar to the Painlevé
test. Let us summarize this as

* Case2 (constant highest order case,
soliton test): .

In order to distinguish the field variable‘ln
this case from the previous one we use s -
stead of y. If u=1 (1 a constant) does satisfy
€q. (8.1) then we put g(s)=D"'G(x)D and
Fio=2 where we let vary the value of the con-
stant 4. This is possible since any constant 0b-
viously satisfies the condition on the higf_IeSt
order term because the variational derivatives
of F disappears. In this case it does not mat-
ter at all whether or not negative powers of ¥
appear explicitly in (8.3). .

The reason for calling that the soliton test 15

(8.11)

(8.12)
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that the representation of u in terms of the in-
teracting soliton, as given in (6.9) fulfills the re-
quirements of that case.

Before we now go into a comparison of

these two cases we need the fact that the KdV-

has negative scaling «=—2. Here scaling o
means that the replacement

X = mx, u— mu,t > mbt(somep),
(8.13)

leaves the equation invariant. As a conse-
quence of negative scaling we obtain that an
expansion of u in terms of powers of the in-
teracting soliton s must be of the form

1 1
u=c+—rIn+—1y -, c=constan!
S s

(8.14)

with I';, polynomials in s, .. etc. This is the
form which was required in case 2 of the ex-
pansion test. Since the members of the expan-
sion test are uniquely and algorithmically de-
termined we know that this expansion is the
unique representation for case 2.

Now, we compare the Painlevé series for
(8.1) with this soliton expansion. We look at
the constant level term i#=Fq(¢) which is a
homogeneous rational function in the
derivatives of ¢. We consider an expansion in
negative powers of the lowest derivative ¢, in
the denominator of that expression

i= Z ¢(7\:;G(H)(¢(N'+l), ¢(N+2), t ) (8- 15)
n=1

The zero order term of that has to disappear
because it only could be a constant (independ-
ent of ¢) which would be in contradiction to
I{egative scaling degree. Obviously, that expan-
sion again is a case 2-expansion for # (instead
of u), since only ¢y has to be renamed by s.
Since the case 2 expansions were unique we
know that (8.15) must coincide with the
Special expansion for #. It remains to compute
the N (order of derivative). For this we look at
the next order term in the Painlevé series. This
term is of the form

F(l)((bxs Prxs " )/(;25

Sin.ce any rescaling ¢—a¢ leaves the whole
Painlevé series invariant we know that Fy, is of

(8.16)
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first order, and because of the scaling degree it
has to bear —a derivatives. Hence we obtain

Fuy=Cé-a, (8.17)

where, without loss of generality, C=1 can be
chosen. Since we know that F{;, is a symmetry
around # and that the eigenvector §, of @ (i)
has the same dynamic as a symmetry generator
around # we find the crucial identity

QS(—a):j\'- (818)
Hence we found the N to be
N=—a—1. (8.19)

Let us resume these results in a somewhat
more systematic way. Again we consider

u,=G(u), (8.20)

with negative scaling «<0. We write the
Painlevé series and the special expansion series
for u respectively as

(8.21)

(8.22)

u=PE(¢) (Painleve expansion),
u=_SE(s) (special expansion).

If 7 denotes the constant level term in the
Painlevé expansion for u then we also consider
the expansions for this solution & of (8.1).

PE (), (8.23)
SE(3). (8.24)

U=

i

The map going from u, s, ¢ to i, $, o we

denote by SoSi( ), i.e.
i=S0Si(u), (8.25)
§=S0Si(s), (8.26)
é=50Si(9). (8.27)

The fundamental result is the following
DUALITY:

5= ey =B (8.28)

So SoSi changes, up to derivatives solitons
in singularities and vice versa. This explains
the name, since SoSi is meant to be an ab-
breviation for Sofiton-Singularity transform.

Interchanging the role between u and & in
the respective series shows that SoSi is an in-

volutive map i.e.
SoSi*=1 (identity).

Now we want to compute S0Si explicitly, at

(8.29)



1494 Benno FUCHSSTEINER

least the effect it has on s and ¢. Then its effect

on u can be computed by considering the

series obtained from one of the tests. In order
to compute SoSi( ) we make the ansatz

v

§=—

o*’
where ¢ is of the form

z‘ZFO(QB.\‘, Gxs - ')+¢Ul(¢xv ¢xxy o )+¢2 T

(8.30)

(8.31)

Insertion in u=SE (s) yields
u=SE (/). (8.32)
Since the special expansion series was

homogeneous in s we see that only those parts
of the derivatives of s contribute to powers of
zero order in ¢ where the ¢’s are left
uneffected by the derivatives. Since for those

terms the powers of ¢ cancel, we easily obtain
the constant level term i as

u=SE (). (8.33)

Comparison with the special expansion for g
leads to

v=f5, B constant, (8.34)
or
L $ §
5=SOSI(S)=[)’E;=/3W. (8.35)

Since SoSi( - ) has to be reciprocal we find
that only the values ¢= -2 and a=—1 are
possible, because for other values this transfor-
mation never can be an involutive map. In
both cases we find for ¢ that

0=50Si(¢)=1/60. (8.36)

Hence the substitution ¢ — | /¢ is a generic in-
variance for the equation of the singularity

manifold. Since only derivatives occur in this
equation another invariance must be

¢ ~ o6+c¢, cconstant. (8.37)

These two invariances combined yield the

Mobius group
ap+b
co+d’

ad—bc#0, (8.38)

A consequence of this is that the full
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Painleve series is always obtained from its con-
stant level term. This is seen from

u=SE(5)=SE(S0SI(5))=SE (S0Si(D"'""¢))
=PE (¢). (8.39)
So substitution of

s=80Si(D~'"¢), (8.40)

into the special expansion u=SE () yields the
Painleve expansion u=PE (¢) for u.

We like to point out that we already know
other obvious invariances for the singularity
equation (and the interacting soliton equation
as well). These are related to our explicit con-
struction of the angle variables of the KdV via
second eigenvectors of @. What we used there,
and what we proved, was that the interacting
soliton equation is invariant under the
transformation

ve=avs+s(D7(1/s)). (8.41)
This yields the invariance
¢ = a’d+2aD (D} (1/¢y)
+D (6D (1/ 0P, (8.42)

for the singularity equation. In other words:
We have shown that the transformation fror}i
the action to the angle variables for the KdV is
(up to trivial transformations) given by 4
natural invariance of the singularity manifold
of this equation.

§9. Concluding Remarks

Of course, very many methods and prob-
lems have been left out in this brief survey. We
Just mention some of them:

* All achievements given by the beautiful
Inverse Scattering method have been com-
pletely neglected in this paper. The same holds
true for all results concerning the direct
linearization transform. The obvious reason
for omitting these aspects is that there ar¢
much better sources than I could provide. The
reader interested in these aspects should con-
sult the work of Ablowitz and Fokas, and Qf
course, if he does not know it in detail
already, he should read the classic.? Some
Survey papers are appended in the reference
list. For further work on the direct lineariza-
tion transform one should also consult the
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work of the Dutch school around Capel (see
for example ref. 5).

* There is an important extension of
hereditary operators to multi-dimensions.
This allows similar ideas in order to in-
vestigate equations like the Kadomtsev-Pet-
viashvili equation and the Benjamin Ono equa-
tion (see for example ref, 33). With respect to
multidimensions one also should observe that
Inverse Scattering has contributed to that sub-
ject a wealth of remarkable results throughout
the last years. Surveys can be found in the
reference list.

+ The angle variables we only character-
ized in terms of the spectral resolution of the
operator @. It turns out that indeed for the N-
soliton case a description in terms of local den-
sities is possible, but that this description
becomes more difficult if continuous parts of
the recursion operator become important.
Altogether the analysis is involved and tedious
(see ref. 16 for details, see also ref. 34). The
essential tool for carrying out this analysis are
the so called mastersymmetries (see ref. 11).
_* Other interesting aspects are discovered
If one looks further into the Painlevé analysis
and its relation to the interacting soliton equa-
tion. For the singularity equation many results
are known how this equation is connected to
other well known equations via reciprocal
transformations (for example to the Harry
[?ym equation (refs. 30 and 31). These connec-
t{ons can be used to derive direct transforma-
Qons between interacting solitons and solu-
tions of other equations. These aspects have
been systematically investigated in joint work
with Sandra Carillo (see ref. 15). But we are
far away from understanding all details of
these aspects,

_* Wehave left out completely all computa-
tional and algorithmic approaches to complete
Integrability. For example the ugly size of the
h-ereditary operator of the Kawamoto equa-
Uon suggests that there must be strategies to
Perform such computations. Since these
Strategies require formula manipulation by
Computer and parallel processing, their ex-
Planation goes beyond the aims of this paper.
Another question is how to find equations like
the KdV in the first place. We are developing
nght now in Paderborn algorithms which
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determine whether a given equation is com-
pletely integrable. These algorithms are
already implemented for certain classes of
nonlinear equations, however they are far
from being perfect. Detailed reports about
this work will be given soon. For other
algorithmic approaches compare for example
ref. 23.

This paper is dedicated to Professor Heinz
Konig on the occasion of his 60th birthday.
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