Nichtlineare Dynamische Systeme: Eine Fallstudie fiir
die Anwendung von Computeralgebramethoden

Benno Fuchssteiner

1 Vorbemerkung

Ich bin mir als ,Reiner Mathematiker* der potentiell kulturzerstorerischen Wirkung
der Computerisierung wohl bewuBt. Trotzdem flihre ich seit einiger Zeit praktische
Arbeiten auf dem Gebiet der Computeralgebra durch, und habe als Ziel meiner Gruppe
sogar die Neuentwicklung eines paralielverarbeitenden Computeralgebrasystems vor
Augen.

Wieso kommt also ein Reiner Mathematiker auf einmal dazu, sich fiir Hardware,
Software, Oberfichen und Interfaces zu interessieren, und einen Teil seiner Zeit mit

der praktischen Implementierung von Algorithmen zu verbringen?
Nun dies hat - wie sollte es auch anders sein - mathematische Grilnde. Diese Griinde

haben mich dazu gebracht, zu glauben, daf die Einbeziehung solcher Hilfsmittel in
Zukunft fir fast alle Mathematiker einerseits eine Notwendigkeit sein wird, andererseits

aber auch grofie Chancen ertffnen kann.
Ich mochte sowohl diese Notwendigkeit als auch die damit einhergehenden

Chancen am Beispiel der Strukturtheorie nichtlinearer vollstindig-integrabler Systeme
andeuten. Im Folgenden wkhle ich zur Ilustration, als typisches Exemplar fir ein
16sbares nichtlineares System, die Korteweg-de Vries-Gleichung. Diese Wahl erfolgt
aber nur deshalb, weil dies ein weithin bekanntes Beispiel ist; ich konnte ebenso gut
auch ein anderes vollstandig-integrables nichtlineares System aus dem Bereich der
Integrodifferentialgleichungen oder auch der quantenmechanischen Spinketten nehmen.

Im ersten Teil des Aufsatzes erliutere ich die spezielle geometrische! Struktur
dieses Systems. Im zweiten Teil versuche ich aus den, bei der Behandlung solcher
Systeme gemachten, Erfahrungen Riickschlisse fiir den Einsatz und die Entwicklung

von Computeralgebra zu ziehen.

2 Struktur eines speziellen nichtlinearen Systems

Wir betrachten das folgende
Problem 2.1: Ldse die nichtlineare partielle Differentialgleichung

Up = Ugper + 6ut. (2-1)

zu vorgegebenen Anfangswerten u(z,t = 0).

1Par den Hang anch analytische Probleme unter geometrischen Gesichtspunkten zu betrachten, bin

ich meinem Lehrer D. Laugwitz dankbar.
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Solch ein Problem ist im allgemeinen schwer zu lésen, insbesondere wenn es sich, wie
hier, um ein nichtlineares System handelt. Wir wollen Abstand davon nehmen, das
Probletn numerisch-approximativ zu l8sen. Denn Approximationen, die numerischen
Lésungen zugrunde liegen, kénnnen hiufig die intrinsische Harmonie und Schonheit
eines nichtlinearen Systems zerstoren 2. Natiirlich lehne ich approximative Losungen
nicht vollkommen ab, sondern ich plidiere nur dafiir, da man sie unter Einbeziehung
struktureller Aspekte betrachtet; dies auch deshalb, weil man dadurch zu besseren
Approximationen kommt.

Die Besonderheiten der KdV erkennt man in der Tat recht einfach durch
Betrachtung einiger spezieller Lsungen. Die Losung zum Ansatz

u(z,t) = se(x —ct) (2.2)

146t sich leicht ausrechnen, da man dadurch auf eine gewthnliche Differentialgleichung
gefithrt wird. Unter der Annahine des Verschwindens im Unendlichen ist die explizite
Form dieser Ltsung dann

se(z +et) = g-cosh‘2 { ‘/E(a: —xzo+ct) . (2.3)

2

[——

Wir nennen dies eine Single-Soliton-Losung und erhalten im Fall ¢ = 1.2 fiir die ¢-slices
dieser Losung folgendes Bild:

-

u

Figur 1: Single-Soliton der KdV fur ¢ = 1.2

Wenn man nun fiir grofle ¢ asymptotisch zwei solche Wellenberge vorgibt, also noch
zusitziich eine Losung der Form

?Ein gutes Beispiel filr diese serstirerische Wirkung von Approximationen liefert das physikalische Pendel.
Hitte man da nicht immer die Approximation betrachtet, die fir kieine Auslenkungen durch das sogenannte
~Mathematische Pendel“ gegeben ist, so hitte man die Theorie doppelt-periodischer Funktionen sicher
eher entdeckt. Denn offensichtlich ist die Existenz doppelt-periodischer Ltsungen physikalisch ganz einfach
einzusehen, da das , Auf-den-Kopf-stellen“ des Pendels einem Ubergang zu rein imagindrer Zeit entspricht, und
damit die Periodizitit entlang der imaginiren Achse impliziert.
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Figur 2: Single-Soliton der KdV fir ¢ = 0.6

hinzufiigt, so gelangt man iiber einfache numerische Studien zur folgenden Losung:
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Figur 3: Zwei-Soliton Losung der KdV

Fur groBe Zeiten zerfallt diese Losung also in eine Superpositior:.l von Lés'sunge.n dexf
Form (3.5). Oder anders ausgedriickt: Die Wellen verhalten sxc.h !:ihnhc'h wie bei
einer elastischen Streuung. Fir grofie Zeiten besteht also der einzige -Elnﬂuﬁ der
nichtlinearen Wechselwirkung in einer Phasenverschiebung der Single-Solitons. Man
kann dieses Phiinomen nun, unter verniinftigen Bedingungen an die Erlﬁlaltuﬂg fier,
von der Gesamtheit der Solitonen, getragenen Energie, fiir die Wechselwirkung u.amer
groBeren Anzahl von Wellenbergen verallgemeinern. Zum Beispiel wiirde man bei der
Superposition dreier Wellenberge die folgende Losung erhalten:

8.
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Figur 4: Drei-Soliton Lésung der KdV

Was uns an diesen Beobachtungen interessiert, ist die mogliche strukturelle Erkenntnis.
Um diese zu gewinnen, betrachten wir die Mannigfaltigkeit aller Losungen dieser Art,
also alle Lasungen fur die asymptotisch gilt:

N
u{z,t) ~ Zs,—(z +et+qF) furt — +oo (2.4)

=1
wobei die ¢; die verschledenen Geschwindigkeiten der asymptotisch auftretenden Wellen
sind, und die ¢ die entsprechenden Phasen beschreiben. Offensichtlich ergibt die
Gesamtheit der ¢ und ¢; = q‘ eine 2N-dimensionale Mannigfaltigkeit. Und diese
kénnen wir als Parameterraum fiir unsere vorher betrachtete Mannigfaltigkeit nehmen

indem wir setzen:

¢ =ci(u(x,0)), ¢ = g(u(z,0), (2.5)

indem wir also der Anfangsbedingung u(z,0) als Koordinaten die Daten zuordnen, die
wir durch asymptotische Auswertung erhalten. Den Flu8 selbst erhalten wir in den
neuen Parametern durch Betrachtung der Dynamik dieser Daten, welche wir mit der
in (3.4) eingefthrten Funktion leicht tiber die Definition

a(t) = ciu(z, 1), &ilt) = gi(u(z, t)) (2.6)

erhalten kénnen. Die GroBen g(t), ¢;(t) sind also die durch (2.5) gegebenen Daten, die
man erhilt, wenn man u(z,t) an Stelle von u(0,t) als Anfangsbedingung verwendet.
Die explizite Form dieser Dynamik ist nun leicht gefunden, wenn man bedenkt, daf

sich die ¢; dberhaupt nicht &ndern, und das, per Definitionem die Phasen durch eine
einfache Verschiebung des Ursprungs der t-Achse als

g (u(z, 1)) = ¢¥(u(z,9)) + it , (2.7)

bestimmt werden kénnen. Also wachsen die Phasen linear mit der Zeit t, und unser
FluB hat in den neuen Koordinaten die einfache Darstellung
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o) [0 0 -1 0 \ [ a
i [4)) 0 0 ] -1 c2
dl q +41 0 0 0 0
¢ \ 0 +1 0 0 /\O
[0 0 —e1 0 \[1
0 0 0 —c 1

e1 0 O 0 0 (2.8)
\0 ¢z 0 0 J\O

Hier haben wir, der Einfachheit halber, den Fall N = 2 gewdhlt. Wir bemerken, daf
dies ein linerares System ist, auerdem ist es ein Hamiltonsystem, denn auf der rechten
Seite steht ein Gradient

% | = Zarad(ct + ). (2.9)

Dies ist aber nicht die einzige Hamiltonformulierung, denn auch der Vektor in der
zweiten Zeile ist ein Gradient

= grad(e1 + c1)- (2.10)

e B e R

Da auBerdem die Matrix, die vor diesem Gradienten steht, eine symplektische Form
definiert, haben wir damit eine weitere Hamiltonformulierung. Im allgemeinen Fall
haben wir also

1
d C;v _ 0 -rI l 2
z| o = (I 0 )Qgrad(c";+...+cN)
aN

0 —-A
= ( A 0 )gra.d(c; + .. +en), (2.11)
wobei 7 die N x N-Einheitsmatrix und A die Matrix bezeichnet, welche in der

Diagonalen folgende Eintréige hat

(] 0 0
a=| - 0] (2.12)
0 0 en

Die gewihlte Parametrisierung ist fibrigens eine sogenannte Wirkungs- und
Winkelvariablen-Darstellung [1). Vom mathematischen Standpunkt aus ist unser
Anfangswertproblem geldst, und wir halten unsere strukturelle Einsicht in der
folgenden Figur 3 fest. Natfirlich ist diese ganze Betrachtung nur ein Trick, und
geldst haben wir, zumindest vom praktischen Standpunkt aus, gar nichts, denn die
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eingefilhrten neuen Koordinaten (in Abhingigkeit vom Anfangswert) sind gerade das,
was der Praktiker berechnen mochte. Er will also der Diffeomorphismus aus Figur 3
berechnen, und den kinnen wir ihm jetzt noch nicht geben. Wir haben die Betrachtung
eigentlich auch nur deshalb durchgeftihrt, um das Ziel der folgenden Rechnungen
abstrakt formulieren zu kénnen.

Problem 2.2:  Fiir die speziellen Losungen (2.4), welche durch Wechselwirkung
beliebig vieler Wellenberge des vorgegebenen Systems entstehen, wird ein vollstindiger

Satz ci, qi; 1=1,2,3,... von Koordinaten mit den folgenden Eigenschaften gesucht:
o der Fluff lduft entlang der Koordinatenlinien ¢; = const,

e die Koordinaten ¢; wachsen linear mit dem Flup.

Diffsomorphismus
v 's Ay
Mannigfaitigkeit des Mannigfaltigkeit des
nichtiinearen Flusses finsaren Flusses
| Vektorfolder | g ™| Vextortelder |

Figur 3: Linearisierung

3 Symmetrien

Die in Problem 2.2 geforderte Koordinatisierung der Dynamik ist deshalb besonders
geeignet, weil in diesem neuen Koordinatensystem die Losung recht einfach wird.
Ein Standardbeispiel fiir so eine Koordinatisierung ist durch die Einftthrung
der Polarkoordinaten beim harmonischen Oszillator gegeben. Man nennt solche
Koordinaten, in Anlehnung an dieses Beispiel, die Wirkungs- und Winkelvariablen des
Systems. Bei nichtlinearen Systemen sollte man sich dartiber im klaren sein, daB nur
speziell strukturierte Systeme eine solche Koordinatisierung zulassen. Die Auffindung
und Klassifizierung solcher Systeme ist eine der Hauptaufgaben des Gebiets. Die
theoretische Durchdringung des Problems wird durch die Beobachtung erleichtert, da8
die Verschiebung von Ldsungskurven (orbits) um einen festen Koordinatenwert {einer
beliebigen Koordinate) wieder eine Losungskurve ergibt.

Beobachtung 3.1: Die Winkel- und Wirkungsvariablen des Systems ergeben auf
natirliche Weise eine kontinuierliche Symmetriegruppe des Syste#w. Zu;:?ndest der
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2u den ¢; gehdrende Teil dieser Symmetriegruppe muf abelsch sein.

Diese Beobachtung gibt uns einen erheblichen methodischen Vorteil, da kontinuierliche
Symmetriegruppen eine infinitesimale Beschreibung (durch die sogenannte Vektorfeld-
Liealgebra) erlauben. Wenn wir also bisher globale Grofien gesucht haben, so kénnen
wir uns nach dieser Umformulierung auf das Auffinden von lokalen Grd8en beschréinken.
Das Problem ist dadurch viel einfacher geworden, weil wir (einstweilen} nur noch die
infinitesimalen Generatoren einer entsprechend grofien Symmetriegruppe zu suchen
haben:

Problem 3.2: Man betrachte die rechte Seite von (2.1)
G('U) = Urxx + Guuz

als Vektorfeld und sucke andere Vektorfelder K, welche damit in der Vektorfeld-
Liealgebra vertauschen, die also erfiillen:

[K,G] :=G'|K] - K'|G] =0 (3.1).

Dabei bezeichnen die K'|G] die Variationsableitungen von K in Richtung von G:

K'lG] = ggle:ﬂ K(u+eG(u) .

Man sollte bemerken, da8 diese Suche keinesfalls ein einfaches Problem ist, denn schon
bei gegebenem K ist die Verifikation der Eigenschaft (3.1) recht mithsam. Dies sieht
man sofort, wenn man sich den zweit-einfachsten Symmetriegruppengenerator

K3(u) = Ugrrzzrer t 1dlUzrrer¥ + 42Uy lUpryy (3.2)

+  TOUzzz(tzz + uﬂ) + 280Uzt U + 70.“:(“2 + u3)

der KdV ansieht. Der ungelibte Leser wird wohl einige Zeit brauchen, um zu sehen,

daB die Beziehung (3.1) erfullt ist.
Um Symmetrien zu finden, betrachten wir zuerst die Gleichung (2.10). Da

die GroBe [K,G] differentialgeometrisch invariant ist, also picht vom gewihlten
Koordinatensystem abhingt, sind die Symmetriegeneratoren hierfir leicht gefunden,
es sind die Vektorfelder der Form

0
0

3.3
o | (3.3)
N

Diese Felder werden rekursiv erzeugt durch Anwendung des Operators

A0
wx(o A), (3.4)

welcher die Matrix A (2.12) als Einginge hat. Man sollte bemerken3 daB dieser
Operator Quotient der beiden Operatoren ist, die in den Hamiltonformulierungen des
Systems auftreten. Dies ist kein Zufall sondern eine sehr allgemeine Schlufifolgerung aus
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der bi-hamiltonischen Formulierung des Systems, da durch jede Hamiltonformulierung
ein Ubergang von invarianten Kovektorfeldern zu invarianten Vektorfeldern gegeben
wird. Liegen also verschiedene Hamiltonformulierungen vor, so erhidlt man
durch Quotientenbildung eine Abbildung, welche einen Ubergang von invarianten
Vektorfeldern zu anderen invarianten Vektorfeldern erlaubt. Durch die Matrix ¥
ist also ein Rekursionsoperator zur Erzeugung von Symmetriegruppengeneratoren
gegeben. Wir miissen diese Matrix jetzt nur noch auf die linke Seite von Figur 3
hintiberziehen, um die Symmetriegeneratoren zu finden. Dies stoft nattirlich auf
Schwierigkeiten, weil wir den fiir diesen ,pull-back“ verantwortlichen Operator gar
nicht kennen. Wir betrachten deshalb einstweilen nur die Strukfur solcher Operatoren.
Die wichtigste Eigenschaft scheint zu sein, daB es sich um einen Diagonaloperator
handelt. Wenn wir dies in Bezug auf den jeweiligen Mannigfaltigkeitspunkt ausdrticken,
so bedeutet dies, da8 fir die Variationsableitung des Tensors in beliebiger Richtung B
gelten muf

U¥'[B] = W[¥B] . (3.5)

Diese Eigenschaft 188t sich immer noch nicht so einfach auf die linke Seite von Figur
3 rtiberziehen, da ja die Variationsableitung keine differentialgeometrisch invariante
Konstruktion ist. Um zu einer solch invarianten Konstruktion zu kommen, miissen
wir alles durch entsprechende Lieableitungen ausdriicken (Siehe [3] oder [5] fiir eine
Einfithrung in Lie Ableitungen.). Dies fithrt zu folgender

Beobachtung 3.3: Das (1,1)-Tensor Feld A, welches durch (3.4) gegeben ist, erfilit
WLg(¥) = Lyk(¥) (3.6)

fiir alle Vektorfelder K. Hierbei bezeichnet Ly die Lieableitung in Richtung des
Vektorfeldes K.

Dies ist nun in der Tat eine differentialgeometrisch invariante Formulierung. Wir
nennen Operatoren mit dieser Eigenschaft hereditire Operatoren. Die so gewonnene
Eigenschaft ist genau das, was wir suchen:

Satz 3.4: Sei ® ein hereditdrer Operator, der in Bezug auf das Vektorfeld K invars
ist, fiir den also gill /e tnvariant

Lg®=0. (3.7
Deann bilden die Vektorfelder
K, 9K, 'K, &°K, ... (3.8)
die Basis einer abelschen Liealgebra.
Beweis: Sei Kn = ®"K.  Wir betrachten den Kommutator [Kn, Km), der ja mit

der Lieableitung Lk, K tbereinstimmt. Mit der Eigenschaft der Hereditaritat und

der Produktregel far Lieableitungen erhalten wir nun leicht i
bestigit K aus der Invarianz von ®

il

(Kn Km] = Lk, (8™K) = (Le-x®™)K + &™(L K)
(L™K ~ 3™ Ly($"K)

B 4t
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Wir brauchen also nur noch einen geeigneten hereditiren Operator ¢ zu raten, um
einen Satz von ablschen Symmetriegruppengeneratoren rekursiv zu erzeugen. DaB dies
ein recht effizientes Verfahren ist, sehen wir an folgendem

Beispiel 3.5: ™! bezeichne die Integration von —oo bis . Durch direkte Rechnung
zeigt man, daff der Operator

&(u) = D* +2DuD™! +2u (3.10)

die hereditéire Eigenschaft hat. Da er nicht explizit von x abhiingt, mu8 er invariant in
Bezug auf das Vektorfeld K{u) = u, sein. Also kommutieren alle Vektorfelder, die nach
der Vorschrift des Satzes gebildet werden. Man sollte beachten, daf das erste dieser
Felder die rechte Seite der KAV ist. Damit haben wir durch rekursive Anwendung von
® unendlich viele Symmetriegruppengeneratoren dieser Gleichung erzeugt. Problem
3.2 ist also glost. Mit Hilfe der Hamiltonformulierung, und etwas Einfallsreichtum,
kann man das Problem 2.2 ebenfalls 16sen.

Wir wollen nun die Strukturtheorie nichtlinearer Systeme verlassen und uns
damit beschftigen, welche Moglichkeiten Computeralgebra beim Umgang mit den
eingefithrten Strukturen ertffnet. Der Leser, der sich fiir diesen Themenkreis weiter
interessiert, sei auf die Uberblicksarbeiten [4], [5] und [6] verwiesen.

4 Computeralgebra

Computeralgebrasysteme erlauben das interaktive formelm#Bige Rechnen mit
mathematischen Objekten, wie sie etwa in der tiglichen Arbeit eines Ingenieurs
oder Physikers mit anspruchsvollem Hintergrund vorkommen. Im Unterschied zur
numerischen Behandlung mathematischer Sachverhalte, manipuliert Computeralgebra
Zeichen und Symbole. Eine ganz nattirliche Sache, da Computer zu allem eher
geeignet sind, als zum Rechnen mit reellen Zahlen, denn eine beliebige reelle Zahl
ist ja bekanntermaBen ein auBerordentlich kompliziertes Gebilde, wohingehen ein
Symbol, wie etwa der Buchstabe 7, ein sehr einfach strukturiertes Objekt ist. DaB
Computeralgebra moglich sein wiirde, ist schon recht lange bekannt. Ada Augusta,
Countess of Lovelace, die, den romantischen Schwirmereien des Vaters abhold, eher
den scharfen analytischen Verstand ihrer Mutter geerbt hatte, schreibt etwa im Jahre

1842

Many persons ... imagine that the business of the engine [Babbage’s engine/ is to
give results in numerical notation, the nature of its processes must consequently be
arithmetical and numerical rather than algebraical and analytical. This is en ervor.
The engine can arrange and combine its numerical quantities ezactly as if they were
letters or other general symbols; and in fact it might bring oul its results in algebraical
notation were provisions made accordingly (zitiert nach [9, p. 10]).

Computeralgebrasysteme erfillen die Erfordernisse einer deklarativen® Hochsprache
mit moderner Syntax zum Programmieren anspruchsvoller mathematischer Sachver-
halte. Um einen anschaulichen Einblick in die Moglichkeiten solcher Systeme zu

3 Deklarative Programmiessprachen spesifizieren die Eigenschaften des gewiinschten Resultats und nicht, wie
mubeiinpmtivenSpnchenmohmit,duWegwhmmdeme

9 Fuchssteiner/Luxemburg
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geben, hier einige sehr einfache Beispiele*:

o Zur Berechnung der 800-stelligen Zahl 341! braucht man genau diesen Befehl
und etwa null Sekunden Rechenzeit.

e Die Zerlegung der 34-stelligen Zahl (31!'+1) in ihre vier Primfaktoren braucht
weniger als zwei Sekunden und als Befehl ifactor(811+1) .

e Durch Eingabe von
dsolve(dif f(y(t),t,t) + sin(p(t)) = 0,¢(2))

erhilt man nach etwa einer Sekunde die explizite Losung des Pendels mit
nichtlinearer Rickstellkraft (physikalisches Pendel). Hat man noch etwas
Geduld, so kann man gleich ein Plot der Bahnen dieses nichtlinearen Systems
in druckfertiger Form mitnehmen:

«
.

s
v

Fig. 4: Phasenraumbahnen des Pendels
e Ein lauffihiges Maple-Programm ftir die Berechnung der Fibonacci Zahlen
betriigt etwas weniger als 1 Zeile.
e Fir die exakte Berechnung der ersten 50 Taylorkoeffizienten von

sin(3z% + e¥11%7)

bendtigt man einen halbzeiligen Befehl und etwa null Sekunden.
e Die Integration von
sin(z} — 2cos(x)
cos(z) — 3sin{zx)
braucht nach halbzeiligern Befehl ca. zwei Sekunden.

Bewuft wurden nur einfache, ja triviale Beispiele angegeben, doch auch diese Beispiele
verdeutlichen das vorhandene Potential.

Es wird klar, dafi das, was manchem als komplizierte mathematische Fragestellung
erscheinen mag, durch algorithmische Analyse so umgewandelt wird, da8 eine Maschine
die Losung finden kann. Dies demonstriert die grundsitzliche Stirke und Vitalitit
der Mathematik, welche die eigenen Fragestellungen so lange analysiert, bis diese
so schematisiert sind, daf sie auch von Anwendern mit geringem mathematischen
Verstindnis, oder sogar von Automaten beantwortet werden k8nnen. Wer darin

*Cerechnet mit MAPLE auf einem Macintosh [1fx
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allerdings die Gefahr sieht, da die Computerisierung eines Tages die Mathemtik
tiberfilssig machen kénnte,® muB schon einer sehr oberflichlichen Betrachtungsweise
fihig sein. Das Gegenteil ist der Fall: Die Trivialisierung von Problemen und
die Automatisierung von Routinefragen ist ein immerwshrender Prozess in der
Entwicklung der Mathematik, der uns und anderen das Feld freimacht, um tatkriftig
Neuland zu betreten, und dort neue Probleme anzufassen.

Dieser Prozess vollzieht sich nicht immer mit gleicher Geschwindigkeit.
Erfreulicherweise gibt es mitunter dramatische Spriinge und Schitbe. So zum
Beispiel bei der Erfindung des Differentialkalkiils, bei dem Fragestellungen, welche in
Spezialfillen von Archimedes bis Fermat tiefe Gedanken erforderten, so automatisiert
wurden, daB sie heute von jedem miBig begabten Anwender oder Mathematiker
erfolgreich im Handumdrehen gelost werden kbnnen.

Meiner Meinung nach ist es nicht ausgemacht, ob wir nicht durch die Verfligbarkeit
von Computeralgebra vor einem neuen Sprung dieser Art stehen. Denn war bisher
in unserem Jahrhundert die mathematische Forschung gepragt durch ,ein weg vom
Quantitativen und hin zum Qualitativen [12, p. 1], so konnen wir jetzt daran gehen,
das Quantitative wieder einzubeziehen, um zu einer neuen Qualit#t zu gelangen.

Mathematische Beispiele neuer Grofenordnung werden uns erschlossen, dadurch
da8 wir komplizierte Berechnungen mit groBem Formelaufwand scheinbar miihelos
durchfithren konnen. Eine neue Disziplin ,Erperimentelle Mathematik“ tut sich
auf, neu nicht in der Idee sondern in der Dimension, denn groBe experimentelle
Mathematiker hat es immer gegeben.  Eine eindrucksvolle Sammlung dessen, was
die Vielfalt von experimenteller Mathematik ausmachen kann, hat Michiel Hazewinkel
zusammengestellt ([8] und [7]).

Selbst wenn man dieser Bewertung nicht zustimmt, so mu man doch einrdumen,
daB Computeralgebra Auswirkungen darauf haben wird, wie Anwender in Zukunft mit
mathematischen Formeln arbeiten und umgehen werden. Computeralgebrasysteme
sind heute schon so michtig®, da8 jeder, der zum erstenmal mit diesen Werkzeugen zu
tun hat, R. Pavelle et al. zustimmen wird, wenn diese schreiben:

These programs do in a few brief minutes virtually all mathematics that most engineers

and scientists know. [11] i
Eine Bewertung, die manchen Beobachter zu einer UIberbewertung der zukfinftigen

Bedeutung von Mathematik verleiten mag:

Mathematics is a basis of technological progress, and technological progress is a key
for international competetivness. Automating an important part of the mathematical
problem-solving progress is a key technology for ¢ nation that wishes to control,
structure and accelerate technological progress. The automation of the solution of
mathematical problems is a powerful lever by which human productivity and expertise
can be amnplified many times. [9, p. 16]

Ich mochte dieses Kapitel aber nicht mit dem Anschein von ilbermé#8iger
Zufriedenheit schlieBen. Einerseits werden, wie so oft, durch sich anklindigenden
Fortschritt liebgewonnene und wertvolle Gedanken und Methoden verschiittet, und
eine neue Oberfliichlichkeit droht Einzug zu halten. Zum anderen muf kritisch
bemerkt werden, daf Computeralgebra noch einen weiten Weg gehen muB, um dem
anspruchsvollen und kritischen Mathematiker beim Aufbruch zu neuen Horizonten zu

helfen.

5Ein Gedankengang, dem die 5ffentliche Meinung allerdings stindig erliegt.
$Far einen (berblick diber bestehende Systeme vergleiche man (10}

90
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4.1 Uber den Nutzen von Computeralgebra: Ein Beispiel

Um ein tiberzeugendes Beispiel daftir zu priisentieren, da8 Computeralgebra wirklich
den Aufbruch zu neuen Horizonten erlauben mag, zeige ich hier eine Lisung

.

i

-

__——_‘\—‘_'-‘:,
x

Figur 5: Zwei-Soliton der Harry-Dym-Gleichung

der sogenannten Harry-Dym-Gleichung:
Uy = utigys . (4.1}

Die Losung selbst ist fiir Physiker interessant wegen der charakteristischen Delle. Das
Besondere der dargestellten Losung dieser nichtlinearen partiellen Differentialgleichung
fallt einem auf, wenn man eine zweite Losung daneben betrachtet:

Figur 6: Ein-Soliton der Harry-Dym-Gleichung

Beim Vergleich beider Plots zeigt sich, da8 die charakteristische Delle in der ersten

Losung mit der Zeit ¢ mindestens exponentiell schnell verschwindet. Konsequenz
davon ist, da8 sehr kieine, nahezu infinitesimale Storungen des Anfangswertes zu
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diesem charakteristischen Phinomen fihren konnen. Eine numerische Losung des
Anfangswertproblems ist deshalb wegen dieser Instabilitat unmdglich, dies obwohl das
System keineswegs chaotisch ist. Daher kann man diesen charakteristischen Effekt nur
durch die Angabe der expliziten Lésungen herausfinden. In der Tat, dies ist auch der
Weg, auf dem die angegebenen Ldsungen, durch Verwendung der im zweiten Kapitel

geschilderten Methoden, gefunden wurden.
Im Prinzip besteht Angabe solcher expliziten Ldsung aus einer Reihe einfacher

Schritte:

1. Finde ein reflektionsfreies Potential des klassischen eindimensionalen
Schrisdinger-Operators.

2. Bestimme explizit das Quadrat des Eigenvektors des Operators mit diesem
Potential.

3. Verwende die gefundene Funktion als Anfangsbedingung eines gewissen nichtline-
aren, vollstindig-integrablen, unendlichdimensionalen Systems, der sogenannten

Singularit&ten-Mannigfaltigkeitsgleichung der KdV.

4. Fihre mit der so erhaltenen Losung eine Art Hodographtransformation dgrch,
Das ist eine Transformation bei welcher abhingige und unabhéngige Variable

vertauscht werden.

5. Als Resultat erhslt man dann die geplottete Losung.

Eine kleine Schwierigkeit ist dabei die explizite Losung des Eigenvektorproblems ft‘!r
den Schrédinger-Operator zu finden. Auch hier weifl man sich mit ein wenig Theorie
zu helfen. Aufgrund der Tatsache, dafi das vorgelegte Potential reflektionsfrei ist, kann
man in der Tat einen potentialabhingigen Integro-Differentialoperator finden, welcher
das vorgegebene Potential auf die Quadrate seiner Eigenvektoren abbildet. Auf Grgnd
der Symmetriegruppenanalyse findet man diesen Operator immer als Produkt einer
Integration mit einem Polynom des Ausdrucks &, welcher in (3.10) angegebgn wurde.
Die Ordnung dieses Operators steigt allerdings linear mit der Anzahl der Eigenwerte

an.

)
i
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Figur 7: Drei-Soliton der Harry-Dym-Gleichung
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Der angegebene, frappierend einfache, Lésungsweg hat den leichten Nachteil, daBi man,
obwohl alle Schritte mathematisch leicht zu durchschauen sind, fir die Losung eine
explizite Formel erhilt, die sich tber nahezu 50 Seiten erstreckt.

Mit der Bearbeitung per Hand, und anschlieBender numerischer Auswertung, kann
man die kostbare Zeit eines kreativen Mathematikers blockieren. Verwendet man
hingegen an dieser Stelle Computeralgebra, so kann einem die Linge der auftretenden
Formel gleichgtiltig sein, denn man sieht sie gar nicht, und man erhilt das Resultat in
Sekundenschnelle.

Dies war aber noch ein sehr bescheidenes Beispiel zur Illustration des Nutzens
von Computeralgebra . Erhoht man etwa die Zahl der interessierenden Dellen
(Figur 7), oder erhtht man die Ordnung der zugrunde liegenden nichtlinearen

Differentialgleichung, bei welcher man solche Phiinomene erwartet, betrachtet man
also zum Beispiel eine explizite Lésung

%‘%

Figur 8: Zwei-Soliton der Kawamoto-Gleichung

der sogenannten Kawamoto-Gleichung,
= 10ut 4 3
Uy — Uprlzer + U Urllprrr + U Uzzrry ,

so erhilt man mit &hnlichen Methoden, die nattrlich erst mathematisch durchschaut
werden milssen, Formeln iber eine Linge von Hunderten von Seiten. Auch in diesen
Fillen werden die gezeigten Losungen, trotz der Linge der Formeln, in recht kurzer
Zeit, ermittelt und geplottet.

Interessant ist, da8 man es dabei mit Problemen der Reinen Mathematik zu tun
hat, welche die Grenzen dessen, was ein Mathematiker mit Kopf und Hand tun kann,
bei weitem Oberschreiten. Trotzdem sind dies strukturell einfache Probleme, deren
Ldsungen nicht etwa numerische Einsichten, sondern theoretische Erkenntnisse tiber
die Natur der vorgelegten nichtlinearen Systeme vermitteln.

4.2 Zum Unvermdgen von Computeralgebra

Die im letzten Abschnitt gemachten Ausfihrungen tiuschen mit ihrer einfachen
Formulierung etwas ttber die wirklichen Schwierigkeiten der Verifizierung entsprechen-

e
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der Eigenschaften hinweg. Wir wollen ein einfaches aber schlagkriftiges Beispiel daftr
vorflihren.

Wir betrachten die schon erwihnte Kawamoto Gleichung, die wir aus einem Heft
des ,Journal of the Physical Society of Japan“ entnommen haben:

U = 10“4"::::“::: + 5114“::“:::::3: + usuzzzxx . (4.2)

AL'IS Strukturfiberlegungen findet man fir diese Gleichung als Kandidaten [2] fiir einen
geigneten invarianten hereditiren Operator die folgende Groe:

&(u) = p*DJ(v)6(v)D'u "2, (4.3)
wobei v folgende Hilfsvariable
V= Ullgr — %(um)2

ist, und J und © Abkiirzungen fir folgende Operatoren sind

8(v) = uDuDuvy + 3uviy

J(v) = uDuDuvy +3(uvv: + uDv?)
+2[uDuDyD~'vu"} + D™'vDvDw]
+8[v* D ou ™t + D WY

Die Gtiltigkeit von (3.6) prifft man am besten durch Nachrechnung in einer geeigneten
Karte. In den Koordinaten der Karte ausgedriickt, ist die Eigenschaft der Hereditaritit
hquivalent dazu, dab der folgende Ausdruck fir beliebige Vektorfelder A und B,
symmetrisch zu sein hat

d9'[A}B - ¥'[®A|B .
1 jst es leider gar nicht offensichtlich, weiche der

Wegen des Vorkommens der D~
m nur einen einfachen

Terme sich gegenseitig aufheben. Man muB zum Beispiel, u
Fall anzufithren, entscheiden ob Terme der Art

D-'AD~'uD~'B,, + D~'u;AB + D"'AD 'u.B; - uAB (4.4)

sich zu Null aufheben oder nicht. Bei diesem Term kann man das allerdings noch
feicht mit dem bloBen Auge sehen, aber die wirklich vorkommenden Ausdriicke sind
bei diesemn Beispiel noch viel komplizierter. Man muB also durch trickreiche, partielle
Integration Terme in geeigneter Weise ineinander berftthren.

Partielle Integration ist aber eine syntaktische Regel und fiihrt, zusammen mit
den anderen arithmetischen Regeln, zu einer formalen Sprache. Dieses ist eine
kontextsensitive Sprache, bei der die Regeln sudem nicht einmal beschrinkt sind, da
ja die durch partielle Integration entstehenden Ausdriicke keineswegs immer klrzer
als ihre Vorginger sind. Die Beschriinktheit ist aber ein Erfordernis, welches man
im allgemeinen zur Terminierung der Ableitungen braucht. Und diese Terminierung
von Ableitungen ist es, die einem erlaubt, Normalformen zu finden. Nun man kann
sich vielleicht vorstellen, daB es an Stelle der Beschrinktheit ein anderes strategisches
Prinzip gibt, welches zur Entscheidbarkeit der Sprache fobrt.

Nehmen wir einmal an, def wir das Normalformenproblem dieser Sprache
zufriedenstellend 10sen konnen, und fragen wir uns was dann noch an Kompliziertheit
verbleibt. Eines steht fest, bevor wir an die Umformung in Normalform herangehen



232 B. Fuchssteiner

knnen, miissen wir alle Ableitungen mit der Produktregel expandieren. Schauen
wir was das bedeutet. Wenn in ©(v)D~'u~? alle Ableitungen ausgefiihrt werden,
so erhalten wir ungefiihr 20 Terme, da ja ein D vor einem Term vierter Ordnung und
ein anderes vor einem Term fUnfter Ordnung steht. Fhren wir nun die zusitzlichen
Ableitungen in J aus, welche vor Termen achter und neunter Ordnung stehen,_so
gibt das einen zusitzlichen Faktor 70. Um & zu erhalten miissen wir nun eine
letzte Ableitung vor einem Term zehnter Ordnung ausftthren. Wir haben also schon
20 x 70 x 10 Terme in ®. Aber jetzt kommt erst die wirkliche Katastrophe: Die
Variationsableitung eines Ausdrucks zehnter Ordnung hat ungefshr zehnmal soviel
Terme wie dieser Ausdruck selbst, und da ® quadratisch in (3.5) eingeht, haben wir
die Zahl der Terme in ¢ noch zu quadrieren. Nach der Entwicklung unseres Ausdrucks
liegen also ungefihr

2 x 10 x {20 x 70 x 10)2 = 4Milliarden (4.5)

Terme vor. Der Ausdruck dieses Operators, etwa um ihn einem Diplomanden zur
Handberechnung anzuempfehlen, ergibt einen StoB Din A 4-Blitter von etwa 18 km
Hohe, oder einen Blitterberg von 1000 Kubikmetern.

Schreckt man davor zurtick, diesen Operator auszudrucken und versucht ihn
im Rechner weiter zu behandeln, so kommt man auf ein algebraisches Datum
der Gré8enordnung von vielen Gigabyte. Herkdmmliche Computeralgebra-Systeme
versuchen meistens, ein solches algebraisches Datum auf einmal in den Hauptspeicher
zu laden, um es dann weiter zu behandeln. Unnétig zu betonen, daff dies zum
Widerspruch der meisten Rechner fihrt. Eine Workstation mit dem Hauptspeicher
vieler Cray’s wire daflir notwendig. Schon dieses einfache Problem ist also weit davon
entfernt, sich auf einfache Weise mit einem normalen Computeralgebrasystem und
einem normalen Computer losen zu lassen. Und bei schwierigeren Problemen stehen
wir erst ganz am Anfang dessen, was wir von effizienten Hilfsmitteln in der Zukunft
verlangen werden.

Man kann sich natdrlich fragen, ob sich solch eine komplizierte Rechnung iberhaupt
lohnt. Die Antwort auf diese Frage ist recht einfach, es lohnt sich wirklich. Denn eine
einmalige Rechnung wiirde uns nimlich fiir diese Gleichung eine entscheidende Hilfe
fiir alle erdenklichen Anfangswertprobleme geben. AufBlerdem wire die anschlieBende
Berechnung der Symmetriegruppen, wenn man einmal die hereditire Eigenschaft
verifiziert hat, von viel geringerer Schwierigkeit. Hinzu kommt noch, da8 die Kenntnis

eines solchen Beispiels die Durchdringung vieler weiterer, auch einfacherer Beispiele,
nach sich ziehen wiirde.

® Auswirkungen von Computeralgebra auf Lehre und
Forschung: Eine Herausforderung an die Mathematik

Trotz des, im letzten Abschnitt geschilderten, Unvermdgens gegenwiirtiger
Computeralgebrasysteme, werden, mittelfristig gesehen, solche Systeme weitgehende
Auswirkungen darauf haben, wie wir und andere mit Mathematik umgehen.

Schnelle und nachhaltige Anderungen werden sich zuerst, und dies innerhalb der
nachsten 10 Jahre, im Bereich der Lehre einstelien. Die Computeralgebrasysteme, die
gestern einen Meinframe erforderten und heute auf einer passablen Workstation laufen,
werden in 5 Jahren auf dem Notebook eines Jjeden Ingenieurs und Naturwissenschaftiers
zu finden sein.

Bedenkt man, da8 eine groBe Zahl der heute kreativ forschenden Mathematiker
den notwendigen Freiraum far ihre Thtigkeit dem Einsatz in der Ausbildung von
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Ingenieuren und Naturwissenschaftlern verdanken, so wird klar, daf eine Sicherung
und ein Ausbau dieses Freiraums Anderungen im Bereich der akademischen Lehre
erfordert. Denn manche Anwender, die hiufig nur unter unsiglichen Schwierigkeiten
mit mathematischen Formeln umgehen, werden diesen Schwierigkeiten nur allzu
gerne durch den Umgang mit Computeralgebra zu entrinnen suchen. Der Umgang
damit wird ihnen leichtgemacht werden, einerseits weil sie sowieso mit Computern
umgehen miissen und weil manchmal selbst der sinnlose Umgang damit ihnen das
Gefithl einer sinnvollen, anspruchsvollen Titigkeit vermittelt, andererseits weil immer
nutzerfreundlichere Interfaces diese Thtigkeit wirklich erleichtern werden. Mit den
Computeralgebrasystemen der Zukunft wird, zumindest an der Oberfliche, so einfach
umzugehen sein, daB kaum noch mathematische Vorbildung erforderlich ist.

Gelingt es den Mathematikern nicht den sinnvollen und kritischen Umgang mit
solchen Werkzeugen in ihren Veranstaltungen zu vermitteln, so wird ein Grofiteil der
kilnftigen technisch-naturwissenschaftlichen Elite einen mehr rezeptiven Umgang mit
diesen Systemen in den Anwendervorlesungen lernen, und dies bei Anwendern, deren
Aufgeschlossenheit gegenliber mathematischen Subtilititen schon heute nicht allzu
groB ist. Eine neue Dimension intellektueller Oberflichlichkeit, verbunden mit einem
weiteren Zurlickdringen mathematischen Freiraumes, wire die Folge. Die schon jetzt
beobachtbare Tendenz, daB eine immer stiirkere Mathematisierung unserer Welt zu
einem immer geringeren Ansehen der Mathematiker selbst fithrt, wiirde sich verstérken.

Es ist gar keine Frage, daf neue Inhalte filr unsere Curricula zu finden sind, die
Frage ist nur, wie schmerzhaft uns die Suche danach werden wird. Die Gefahr ist, daB
unsere anfinglichen Schwierigkeiten mit diesen Entwicklungen, wenn schon nicht ihr
Vorreiter zu sein, so doch zumindest Schritt zu halten, zu einem neuen Abschwung in
der Zahl forschender Mathematiker fihren kann.

Ich glaube aber nicht, dag wir uns auf diese Entwicklungen nur aus Notwendigkeit,
und weil wir nicht anders konnen, einstellen sollten, sondern daf wir dies
aus intellektueller Neugier gegenitber dem Unbekannten, mit Engagement und
kritischer Aufgeschlossenheit, tun werden. Ich bin sicher, wir werden auch manche
wissenschaftliche Befriedigung daraus gewinnen. Auflerdem ist es eine wichtige,
kulturhistorische Aufgage, angesichts des technischen Fortschritts, der wie immer dazu
fihren wird, daf man Inhalte mit &uferen Erscheinungsformen verwechseln wird, fir
kritisches BewuBtsein im Umgang mit neuen Werkzeugen zu sorgen. Es sollte uns ein
ernstes Anliegen sein, dieses kritische BewuBtsein zumindest in unserem Bereich, dem
der Mathematik, zu vermitteln, einem Bereich der ja wohl eigentlich im Kern allen
technischen Fortschritts liegt.

Mathematiker sind dazu sufgerufen, den naiven Glauben an die Allmacht
des Computers, der in unserer Offentlichkeit herrscht, durch inteiligente Kritik,
doch verbunden mit kenntnisreicher Aufgeschlossenheit, in eine differenziertere
Betrachtungsweise Uberzuleiten; dies zumindest bei den von ihnen ausgebildeten
Angehorigen der kiinftigen technischen Elite.

DaB die beschriebene Zukunft schon begonnen hat, sieht man daran, dab
in unserem Nachbarland Osterreich das Unterrichtsministerium eine Lizenz des
Computeralgebrasystems Derive fur alle Gymnasiasten angekauft bat (10, p. 21]. Seit
Herbst 1991 ist Derive, ein System mit dem Slogan ,£000 Jahre Mathematik auf einem
Disk“ Standardwerkzeug der Ssterreichischen Gymnasien.

Beachtliche Umwalzungen werden aber auch in weiten Bereichen der Forschung
eingeleitet werden. Dies insbesondere, weil

e durch die Verfiigbarkeit von dekiarativen Hochsprachen, die in ihrer Syntax
den tblichen mathematischen Formeln weitgehend angepafit sind, und die
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standardmiBig Zugriff auf mathematisches Expertenwissen ermoglichen, das
Rapid Prototyping (dann nicht unbedingt gquick-and-dirty ) kompliziertester
Sachverhalte fiir den Mathematiker, den Ingenieur und Naturwissenschaftler zur
tiglichen Routine werden wird,

* diese Systeme in Zukunft einen fast unbeschrinkten Zugriff auf gute (wie wohi
auch auf schlechte) Algorithmen gewshren,

* durch das Wegfallen von Routinemanipulationen neue Moglichkeiten geschaffen
werden, die auch neue inhaltliche Dimensionen erschlieBen werden.

Es ist offensichtlich, da8 die Etablierung von Ezperimenteller Mathematik dazu fihen
wird, daB leicht durchzuftthrende mathematische Experimente uns neue Anschauungen
und Intuitionen vermitteln werden und Schritte in eine ganz neue Dimension
mathematischer Forschung ermoglichen ktnnen. Die Vielzahl leicht handhabbarer
Beispiele wird zu neuen Entdeckungen und Strukturen fiihren.

Wir alle wissen, dafl die Grenzen zwischen den von uns definierten Teildisziplinen,
wie zum Beispiel zwischen Analysis und Algebra, flieBend sind, und daB wir sie
nur zur Ermodglichung einer ersten oberfichlichen Orientierung verwenden. Doch
haben diese Grenzen trotzdem in den vergangenen 50 Jahren zu einem beachtlichen
Beharrungsvermégen geftihrt, uns vielleicht mitunter auch den Blick auf die weite
Landschaft der Mathematik verstellt. Diese Grenzen werden sicher aufgeweicht werden,
und die gemeinsame Faser Mathematik wird wieder mehr zum Vorschein kommen.
Ganz offensichtlich ist, daf neue Methoden und Werkzeuge unsere mathematische
Blickrichtung &ndern werden. Computeralgebra sorgt heute schon dafiir, da8 das was
mancher gestern als Analysis ansah, er heute als Algebra erkennt. Algebra und Diskrete
Mathematik, weil sie ngiher der algorithmischen Durchdringung mathematischer
Sachverhalte liegen, werden eine neue Blilte erfahren.

Die Einstellung gegentiber dem, was wir als einfachen mathematischen Sachverhalt
ansehen, wird sich wandeln. Mathematiker wissen natllrlich, da Einfachheit allenfalls
eine strukturelle Kategorie, oder vielleicht auch eine Hsthetische Kategorie ist, und
nicht die Frage nach der GroSe von Formeln. Trotzdem lassen wir uns in unserem
thglichen Arbeiten und Urteilen oft von der Kompliziertheit unserer Beschreibung
mathematischer Gegenstiinde, also der entsprechenden Formel, dazu verfithren, einen
Sachverhalt fiir kompliziert zu halten. Aber in dem Moment, in dem Formeln gar nicht
mehr gesehen werden, sondern nur von einem Interface an das andere weitergereicht
werden, klart sich unser Blick notwendigerweise. Denken wir an die im vierten
Abschnitt vorgestellten expliziten Losungen einiger nichtlinearer partieller Differential-
gleichungen. Beim Anschauen der Bilder wird man sich der Einsicht nicht verschliefien
ktnnen, daB es sich dabei um eine sebr einfache strukturelle Eigenschaft handeln muS.
Daf dies bisher nicht entdeckt oder durchschaut wurde, lag nur an dem Wust von
Formeln der zur Beschreibung nétig war; Formeln, die aber morgen unseren, auf das
Asthetische gerichteten Blick, nicht mehr stfren werden,

Welchen Herausforderungen stehen wir wissenschaftlich gegenliber? Ich glaube
nicht, dafi es sinnvoll ist, da8 wir unsere mathematischen Interessen aufgrund
des technischen Fortschritts findern. Aber unsere Aufgeschlossenheit und unsere
Neugier, diesen technischen Fortschritt ein Stuck Wegs zu begleiten, sind gefragt.
Die Herausforderungen, denen wir uns stellen missen, kommen im Gebiet der
Computeralgebra daher, da8 eine notwendige drastische Steigerung der Effizienz solcher

Systeme nicht ohne Beteiligung der Mathematiker moglich ist. Mathematik ist unter
anderem aufgerufen

27
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e das mathematische Wissen, welches die Libraries dieser Systeme bereitstellen,
stindig zu verbessern. Auch um die Leistungsfihigkeit und Schnelligkeit dieser
Systeme zu steigern.

e Wir sind aufgerufen, tiber die Standardisierung mathematischer Formeln
nachzudenken, dartber was wir als kanonische Darstellung betrachten. Es ist
die Frage zu 16sen, wie man unzweideutig, syntaktisch einwandfrei Mathematik
aufschreiben mu8, so da8 ein Computer nicht nur die Zeichen lesen kann, sondern
sie auch gemsf ihrer Bedeutung weiterverarbeiten kann. Wir brauchen eine
abstrakte, mathematische high-level-Programmiersprache, die unabhingig von
der Implementierung des sie verstehenden Systems ist.

Die Schaffung einer syntaktisch korrekt beschreibbaren mathematischen Hoch-
sprache ist aus zwei Grinden wichtig. Einmal als Kommunikationsverbindung
zwischen verschiedenen Computeralgebrasystemen {(und Textverarbeitungssystemen),
zum zweiten, um den klinftigen Herausforderungen des Electronic Publishing gewachsen
zu sein. In 20 Jahren wird ein mathematischer oder technischer Artikel nur an der
Oberfiiche ein auf Papier gedrucktes Werk sein”. Dahinter wird in jedem Fall eine
hierarchisch aufgebaute Datei liegen, die es dem Nutzer ermoglicht, Formeln vom
Bildschirm abzugreifen, dazu aufgestellte Behauptungen weitgehend mechanisch zu
verifizieren, und auch, sie in eigene Publikationen einflieflen zu lassen.® Konsequenz
aus dieser Perspektive ist, daB der Unterschied zwischen Textverarbeitungssystem
und Computeralgebrasystem ein Anachronismus sein wird. Ans#tze zur Uberwindung
dieses Anachronismus sind vorhanden.

Der Eintritt des geschilderten Zustandes h#ngt nicht so sehr vom Hardware-
Fortschritt sondern vielmehr vom mathematischen Fortschritt ab. Um einen
Punkt zu nennen: Computeralgebrasysteme sind eben Algebrasysteme und keine
Analysissysteme, geschweige denn Mathematiksysteme. Ein wichtiger Grund fUr dieses
Defizit ist darin zu sehen, daf sie mit charakteristischen Schlufiweisen, die Analytikern
eigen ist, nicht umgehen kdnnen. Sie kdnnen, bisher jedenfalls, nicht auf intelligente
Weise mit Ungleichungen rechnen. Ich bin deshalb davon tiberzeugt, daf wir in
den nichsten 10 Jahren einer Disziplin begegnen werden, die sich die algorithmische
Durchdringung unseres intelligenten und intuitiven Umgangs mit Ungleichungen zum
Ziel setzt. Diese Disziplin wird es uns ermdglichen, Computeralgebrasysteme zu
vergessen und statt dessen Computermathematiksysteme zu benutzen.

Um nicht miBverstanden zu werden, ich habe nicht Stellung dazu genommen, ob
diese Versinderungen winschenswert sind. Ich bin aber sicher, daB neben mancher
abtriglichen Begleiterscheinung, unsere kritische Beteiligung an diesen Verinderungen
dazu fohren konnote, daB wir ein GroBteil unserer taglichen Routinearbeit als
Mathematiker abgeben kdnnen, um so den Blick frei zu bekommen fiir neue
Entdeckungen im Universum mathematischer Strukturen.

6 Ein Blick in die Zukunft: Mein bevorzugtes System
im Jahre 2000

Ich mochte diesen Aufsatz damit abschliefen, da8 ich dem gegenw.rmi.g
unvollkommenen technischen Stand in der Computeralgebra die Leistungsfahigkeit

zukOnftiger Systeme gegenlberstelle.
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Beim t#glichen Umgang mit Computeralgebra stelit man heute eine Reihe von
Unzulénglichkeiten fest. Um nur einige zu nennen:

¢ Design, Spezifikation und Implementation von Computeralgebra sind
kommerziellen Interessen unterworfen. Bei general-purpose Systemen war der
EinfluB europaischer Mathematiker bisher eher gering.

o Neue Entwicklungen sind, obwohl ha#ufig das Gegenteil behauptet wird,
manchmal schwer zu erhalten,

¢ Der Quellcode dieser Systeme ist nicht vollstindig verfiigbar, was angesichts der
Tatsache, daB sowoh! die Datenstruktur wie auch wesentliche Algorithmen zum
Teil im Systemkern implementiert sind, der wissenschaftlichen Ernsthaftigkeit
der Nutzer arge Zumutungen auferlegt. Dies ist nicht nur eine Frage der
wissenschaftlichen Ethik, sondern auch der tiglichen Praktikabilitit.

Ich verkenne nicht, daB die Entwicklung solcher Systeme, und bei guten Systemen
stimmt dies in besonderemn MaS8e, nur durch groBe Investitionen im personellen und
sichlichen Bereich moglich ist. Deshalb méchte ich mich der Meinung, daf eine
Kommerzialisierung der Computeralgebra und damit der diesen Systemen zugrunde
liegenden Mathematik, grundsitzlich von Ubel ist, nicht ganz anschlieBen. Aber
die Probleme der Kommerzialisierung geistiger Produkte, von denen wir in Zukunft
abhéingen werden, sollten zumindest nicht tibersehen werden. Es sollten mehr Systeme
aus dem nichtkommerziellen Forschungsbereich kommen. Dies setzt aber voraus,
dafi die Entwickler dieses Bereichs sich auch der notwendigen Professionalitit bei
Interfaces und Dokumentation befieifligen, um nur zwei Bereiche zu nennen. Wegen
der gegenseitigen Interdependenz, wire es aber sicher eine kluge Politik, wenn die
nichtkommerziellen wissenschaftlichen Einrichtungen unbegrenzten Zugriff auf alle,
auch kommerzielle, Systeme erhalten wiirden. Dies heiBt nicht etwas zu verschenken,
sondern nur die Nutzung durch diejenigen anzuregen, deren kritische Riickmeldung fir
die Entwicklung des Systems der Zukunft unerlsflich ist.

Viel entscheidender aber als diese beklagenswerte Situation ist die Tatsache, daB die
bisher vorhandenen Computeralgebra-Systeme in ihrer Leistungsfihigkeit unzureichend
sind.

Alle vorhandenen Systeme stellen zwar wunderbare Werkzeuge dar, die den
effizienten Umgang mit, nach dem heutigen Stand, groBen algebraischen Daten bis zu
einem Megabyte, oder auch etwas mehr, erlauben. Die vorhandenen Systeme wurden
eben entworfen, um den heutigen routinemiBigen tiglichen Umgang mit Mathematik
und mathematischen Formeln zu erleichtern.

Geht man aber davon aus, da8 durch den Einsatz von Werkzeugen dieser Art auch
im Bereich der Anwendung von Mathematik auf technische und naturwissenschaftliche
Probleme ein Schritt in vollig neue Dimensionen mbglich sein sollte, so wird
man feststellen, daB es nicht darum geht, bisherige mathematische Titigkeiten
zu vereinfachen, sondern den Umgang mit mathematischen Formeln villig neuer
Grdfenordnung, meiner Meinung nach im Gigabyte-Bereich und jenseits davon, zu
erlauben. Dies ist notwendig, um neue, praktisch relevante Probleme zu behandeln.
Diese Perspektive wird von den vorhandenen Systemen nicht gentigend unterstiitzt.

Ich bin sicher, daB, gemessen an den Systemen der Zukunft, die heutigen
Computeralgebra-Systeme als bescheidene Spielzeuge belachelt werden. DaB diese
Perspektive nicht falsch ist, sieht man unter anderem daran, daf bei meinen
konkreten Arbeiten im Bereich recht einfacher nichtlinearer Systeme durchaus relevante
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algebraische Daten vorkommen, deren Gréfe vom mehrstelligen Megabyte-Bereich bis
in den zweistelligen Gigabyte-Bereich gehen.

Ich glaube meine Erfahrungen besitzen eine gewisse Allgemeingltigkeit. Ich will
sie deshalb kurz zusammenfassen:

e Die landlsufige Meinung, da8 die Leistungssteigerung bei Computern so rasch
vonstatten ginge, da8 in Zukunft Speicherplatzerwiigungen und Laufzeitaspekte
keine Rolle mehr spielen wirden, ist falsch, ja sogar grundfalsch.  Bei
wirklichen Problemen, gerade auch im mathematischen Bereich, wird auch in
Zukunft die Effizienz beziglich des tkonomischen Umgangs mit Laufzeit und
Speicherplatz eine entscheidende Rolle spielen. Noch immer ging der Wettlauf
zwischen technischem Fortschritt und dem Appetit der Nutzer zu Ungunsten des
technischen Fortschrittes aus.

o Selbst unter Einbeziehung guter Computeralgebrasysteme sind wir immer noch
deutlich davon entfernt, wirkliche mathematische bzw. algebraische Probleme
sufriedenstellend losen zu konnen. Wir werden noch viel mehr Arbeit in die
Entwicklung leistungsfihiger Software hereinstecken missen. Ich glaube, wir

sind da erst am Anfang.

o Das immer weitere Ausweichen auf hohere Programmierebenen ist nicht
sinnvoll. Ich glaube, man sieht dies zum Beispiel daran, daf CA-Systeme,
die in Lisp programmiert sind, depen, die in C programmiert sind, an
Effizienz unterlegen sind. Nattrlich ist der Nutzen von Hochsprachen fUr das
,Rapid-Prototyping* nicht zu {ibersehen, aber dauerhafte software-Tools sollten
assemblernah geschrieben werden. Es macht sicher wenig Sinn in einer High-level-
Sprache (z.B einem Computeralgebrasystem) zu programinieren, um dann bei
der Compilierung mehrere andere High-level-Sprachen dezwischen zu schalten.
Diese Effizienznachteile kann man sich beim Vorliegen wirklicher Probleme nicht

leisten.

¢ Die meisten Computeralgebrasysteme orientieren sich an einer zu simplen
Nutzervorstellung. Natirlich ist man heute leicht begeistert, wenn ein Computer
das tun kann, woftir ein ausgewachsener Mathematiker vielleicht zwei Tage
braucht, aber unsere Vorstellungen was ,einfach® ist, werden sich, wie gesagt,
drastisch &ndern. Es fehlen deshalb ,heavy duty* Systeme mit kleinem aber
effizientem Kern, die nicht ber zu viele Libraries verftigen und bei denen die
wesentlichen Routinen und elementaren Operationen auch auf Prozessorebene

realisiert sind.
e Die Entwicklung und Fortentwicklung von Parallelrechnern und den dazu geeig-

neten Programmierumgebungen ist das Gebot der Stunde. Computeralgebra ist
dabei ein vorzigliches, weil einfaches, Anwendungsbeispiel.

6.1 Mein System im Jahre 2000

Aus dieser Situationsschilderung ergibt sich folgender Wunschkatalog fiir mein System
der Zukunft
e Das System ist ein general-purpose System, welches aus wiederverwertbaren
Programmodulen besteht. Die Quellcodes stehen jedem interessierten Wissen-
schaftler offen.
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Das System erlaubt parallele Verarbeitung gemiB einem nutzerdeﬁnferten
Profil. Es kann eine automatische Parallelverarbeitung grofier a]gebra:sc.:her
Daten vornehmen. Die parallelen Aspekte des Systems bauen auf einer
rechnerunabh#ingigen Kommunikationsstruktur auf.

Das System verfigt Ober Routinen, mit denen eine effiziente, aUtOIPat'_SChe
Parallelisierung von Nutzerprogrammen vorgenommen wird. B‘el fileser
automatischen Parallelisierung wird nicht nur die syntaktische Abh#ngigkeit von
Programmteilen, sondern deren logische Abh#ngigkeit berticksichtigt.

Das System hat eine flexible Programmiersprache, deren Struktur auf einen
weitgehenden Konsens innerhalb der Mathematischen Welt aufbaut. Das System

stellt Crosscompiler von und in alle herkdmmlichen Computeralgebrasysteme zur
Verfligung.

Das System stellt entsprechende Interfaces, sowohl zu rechnerunabhﬁnglge“
Oberflachen wie zu intelligenten ‘Textverarbeitungssystemen, welche in ihrer
Formelbehandlung auf der mathematischen Syntax dieser Formeln aufbauen,
zur Verfigung. Die Unterscheidung zwischen Computeralgebrasystem und
Textbearbeitungssystem ist weitgehend aufgehoben.

Das System verfligt Ober eine Vielzahl von Elementen zur a‘a.lt?matischen
Programmgenerierung. Dies ist nicht nur eine Frage der Praktikabilitit, sondern

in diesen Aspekten sollte sich auch die Nihe zu algebraischem Arbeiten in der
Mathematik widerspiegeln.

Das System hat sich davon gelost Algebrasystem zu sein, es ist ein
Computermathematiksystem.

Das System ist lernfahig, und nimmt wihrend des interaktiven Arbeitens,' mit
Hilfe seiner Werkzeuge zur Programmgenerierung eine steuerbare automaﬁlscl_‘e
Verlinderung seines funktionalen Teils vor, es hat damit einen ersten Schritt in

Richtung dessen getan, was durch das anrlichige Wort Kiinstliche Intelligen:
ausgedriickt wird.

Die sténdige Weiterentwicklung dieses Systems, und seine Portierung auf alle
geeigneten Rechner, ist Angelegenheit der Mathematical Community, die den
damit zusammenhiingenden Problemen eine besondere Sorgfailt angedeihen l4Bt.

® Wesentliche Teile des Kerns des Systems sind auf Prozessorebene realisiert.
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