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ABSTRACT. We introduce a canonical Lie algebra in the direct sum of vector fields and 1-1-tensors, Ll}e
perturbation bundle. This Lie algebra is extended to a full tensor structure and it is relat.ed to the Lie
algebra obtained by coupling linear systems to nonlinear ones. Using Lie algebra 1som0rphlsms'from the
original structure to the abstract perturbation bundle, new completely integrable systems are obtained. The
formalism of Lax pairs is found to be a special case of the new structure.

1. Introduction

The starting point for this paper was the question of how a coupling between linear equa-
tions and integrable nonlinear ones has to be done such that the resulting two-comp.oner}t
flow again is integrable. To avoid misinterpretation, we should mention that this question 1s
nontrivial, even for ordinary differential equations. Otherwise, for example, if all such cou-
plings were integrable then finding explicitly the eigenvectors of the Schrédinger- operat_or
would be possible for all cases where the potential fulfills an integrable ordinary differential
equation; this certainly is not the case. .

However, in section 4.3 we present a simple and direct method to const.ruct sucb inte-
grable couplings. The essential point, which makes the underlying construction possible, is
that in the direct sum of vector fields and 1-1-tensors (perturbation bundle) we can find
two different Lie algebras. One of these, the concrete one, simply results from the vector
field Lie algebra of dynamical systems like

(ut | K(u) (1.1)
v ) \Qu)e

where  is a linear operator on the tangent bundle. Tle other one is an ab§tract a?gebra.
not depending on any differential geometric assumptions, like affine connect'lons which are
needed for the concrete algebra. The surprising observation is that t‘h'ere is a one-to-one
correspondence hetween the commuting pairs in both algebras, surprising insofar as bot‘h
algebras are quite different with respect to the differential geometric set-up needed for their
construction.

The correspondence between commuting pairs in both algebr'as o ‘
start from known commuting vector fields, then apply to them Lie algebra homomorphisms

pens the possibility to
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In the abstract algebra, and to interprete the resulting commuting pairs in the concrete
algebra, thus obtaining commuting pairs of equations like (1.1). .

Other applications of the interplay between the two algebras are the ex1stenc<-a of embed-
dings of the usual Virasoro algebras for integrable systems into the perturbatfon bundle.
There the second components are those operators which usually occur in the isospectral-
nonisospectral Lax pair formulations for these Virasoro algebras.

Another application, just for the amusement of the reader, is the construction of very
many absolutely meaningless Lax pair formulations for arbitrary evolution equations.

In order to carry out all constructions which are needed in the paper, we first have
to show that tensor structures can be built up over Lie algebra representations without
asssuming that these arise from Lie modules; this is done in the first section of the paper.

2. Tensors

First we present the essential requirements needed to build up a tensor structure. In tf.le
subsequent construction the important point is that we do not need to start from a Lie
algebra module. This, although only a slight generalization, will be needed later on when
the perturbation bundle is treated.

Let a Lie algebra £ be given, furthermore a vectorspace F (called scalar fields) and
a Tepresentation of £ acting on F. That means for each K € £ we have a linear map
Ly : F — F such that the map K — L, is a Lie algebra isomorphism, i.e.

LriLk, — Ly, Ly, = Lik, Ky (2.1)
forall Kj. Ay e L.

From here we build up the tensor structure. Let f € F then we denote by V£ the lin-
ear map £ — F given by

(VAKY:=Lyfforall k¥ € L.

The map ¥ f is called the gradient of f. The set
L" separates the elements of L since k' — Ly,
F-valued multilinear form T on (L) & (LY
contravariant tensor. Qbserve that the elemen
covariant and 1-times contravari

Now we first extend the map

LG = {k.G).

(2.2)

of gradients we denote by £*. The space
being an isomorphism, is injective. An
is called an n-times covariant and r-times

ts of £ and £* are embedded in the 1-times
ant tensors, respectively.

s L to maps on £ by defining for all G ¢ £

(2.3)
For ;" = £* we then define Ly = by its action on the elements G € ¢
ERGG) = LG G) — (G L), (2.4)

This we then extend to suitable maps op alf tensors by defining for an arbitrary (n-times
covariant and r-times contravariant) tensor T

PRI Gu Gl G = L(T(G,. L. Gl)

—ZT(GI,...,Gn,G;,...,L;\--GZ,..-,G:)
=1
—_ZT(GI?"'7L]\’GJ""!GTL’ ;""’G:) (25)

=1



127

where .G;‘,...,G: and Gy,....G, are arbitrary elements of £ and L, respectively. This
extension fulfills

LKl LKQ ~Lg,Lr, = L[KI,KQ]- (26)
Ly is said to be the Lie derivative with respect to K. Purely covariant tensors are called
forms (n-forms if n-times covariant). The elements of F are called zero-forms.

Let a be some n-form and K € £, then by a ¢ K we denote the form where K is inserted
as first entry into o. If @ is a zero-form then we use the convention a e K := 0. Now, we
define an ezterior derivative d on forms by

d(0) =10 (2.7)
and for arbitrary n-forms « recursively by
(do)e K := Ly(a)—d(ae K)forall K € L.. (2.8)

;I;]hls derivz.xtive d maps n-forms into (n + 1)-forms. On the elements of F it coincides with
e operation of taking the gradient. d commutes with any Lie derivative and we have

d-d=0. (2.9)

A form « is said to be closed if do = 0. Gradients are closed one-forms because of (2.9).
A .tensor T is said to be K-invariant if Lg(T) = 0. Observe that, by (2.8) a closed

covarlant'tensor o is K-invariant if and only if o ¢ K is again closed.

turiolr}lﬁtlmes it is useful not to consider all possible tensors, but rather as

ure. erefore, any substructure of the set of all tensors

(i) containing F, £ and £*

(i) being closed against the operations @,

uitable substrue-

: o as well as against all Lie derivatives and the
G operations of inserting any variable from [ and £~ into elements of this substructure
iii) and being closed against forming new tensors by taking linear sums of tensors of equal

t]?_’Pe or by interchanging entries of equal type is called a tensor structure over £ and

For the following considerations we restrict our attention to a suitable tensor structure.

T : . . .
ht(?j basics of hamiltonian mechanics are:
onsider some antisymmetric linear operator © from the one-forms into

arbitrary one-forms ¥1,7Y2 the brackets

L. Define for

{71’72} = L(e"rl)’)lz - L(@'yg}')‘l + d(')/lae‘h)- (210)

Then { |} defines a Lie algebra structure in the one-forms if and only if for all one-forms

71,72 we have

{11, 72} = [O71,073]. (2.11)

g;t?&t case the { ,} are called Poisson brackets (with respect to ©)and O is said to be an
plectic operator (or Poisson operator). For the proof of this crucial fact compare [15].

(])fSERVATION 2.1: {(Noethers Theorem) Let © be an implectic operator and let K = Odf.
en Li(0y) = OLk(y) for all one-forms 7. In particular: © and f areinvariant with
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respect to K.
Proof. Using (2.8) we can rewrite
12
{17} = Lieyyr — (d11) # (7). (2.12)
Now using (2.11) and (2.12) we find for 7; = df with (2.9)

Lk©®y = [K,07] = {0df, 07] = ©{df,~}
OLry—(d-d f)e(07)=0OLgr.
This also shows the invariance of @. The invariance of f is a trivial consequence of the
antisymmetry of O.m

We complete this section by some additional remarks. We observe first that conveniently
we can represent 1-1-tensors T as linear operators Q7 : £ — £ via

(2.13)

I

(G, QrR):=T(K,G*) forall G € L*, K € L. (2.14)
Then, in this notation, for the Lie derivative of 01 we have
Lr(QrG) = (LpQ1)G + QrLgG (2.15)

which yields
Lk(Qr)=Lrk oQy —QroLg. (2.16)

This is a special case of the product rule for Lie-derivatives, which, by use of the Jacobi
identity, holds in general with respect to arbitrary tensor products. As a consequence we
remark that for arbitrary "scalars” ¢ the map exp(elg ) is a Lie algebra homomorphism.
Here, for the definition of exp(eLk) we use the application of the Taylor series of the
exponential function to arbitrary tensors T

[e o]

exp(elp)T =

Eﬂ
T
L)

n=0
and we assume that K € £ is such that this sum converges, which, for example, is the

case when the series truncates (master symmetries). Since exp(eLg ) is a homomorphism it
follows in particular for arbitrary 1-1-tensors Q and G € L that

exp(eL g }{QG) = (exp(eLy N Q) (exp(eLg)G). (2.17)

For the generation of invariant elements in £ the notion of hereditary operator [10,11,24]
Is important. A linear @ : £ — £ is said to be hereditary if

blLo(d) = Log(®)forall G e L. (2.19)

The use of this notion is well-known (see [11])

THEOREM 2.2:[fq hereditary & is invariant w.r 1. K, ie Ly (®)=0, then the Lic algebra
generated by the

Kn=@"K, n=0,1,2,... (2.20)
! Using the product rule one easily sees that this is equivalent to the usual definition

®?[A, B] + (84, 98] = ([0 4, B]+[A,9B]} for all A, B (2.18)
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is abelian.

Homomorphisms preserve properties like hereditariness or the implectic property.
REMARK 2.3: Let H be some Lie-algebra homomorphism, then if ® is hereditary the oper-
ator H(®) is again hereditary. Likewise, if © is implectic, then H(@) is again implectic.
At the end of this section we would like to mention a case where dropping the asssumption
that (£, ) must be a Lie module is essential, namely in nonlinear quantum mechanics (see
[16] for details). Another case is presented in the forthcoming sections.

3. Perturbation tensor bundle

Consider a tensor structure over the Lie algebra £ with scalars 7. Denote by Tin,m) the set
of its n-times covariant and m-times contravariant tensors. Again, as before, the eleme.nts
{2 of 7y 1y are considered as linear operators {} : £ — L. Observe that on the corresponding
operator algebra for any Lie derivative Ly the product rule (with respect to operator
multiplication) does hold. We introduce direct sums

E = E @ If(-l‘l), }A. = f@ 7}1,0)- (31)

In £ we define a bracket by
[(-Klo Ql)’ (I"ZaQZ)] = ([I(lv If?]v Lf\'l(ﬂz) - LKZ’(QI) + QIQQ B Qzﬂl) (32)

for Ky, Ky € £ and 4,9, € 7(1,1)- Observe that from £ we have a one-to-one correspon-
dence 1

(K,Q) = Ly +Q (3-3)

into (nonlocal) linear operators on £ and that by this correspondence the sec_ond component
of the bracket (3.2) goes over into the bracket given by operator commut.atlon. 'l?he reason
that this is one-to-one comes from the fact that, with respect to the manifold variable, { is
a local linear operator on £, whereas Ly is nonlocal; and splitting up linear oper’ators on L
into local and nonlocal parts is a unique operation. Hence, (3.2) must define a Lie product.

On F we define a representation of this Lie product by:

Likay(fi7) = (Lr(f), L(v) =70 ) .
where K e £ feF Q¢ T and v € Tj10)- To see that this indeed is a representation
of the Lie algebra structure we compute

Lk, oy Ly f7) = (Liy Lio (D) Livy Lio(7) = L (30 )

+y0fl0 2, — LI\';(')") o)

(3.4)

= (L, Liy()s Ly Liy (1) = Ly (7) 0 S
—Lp,(y)oth —7o Li, () +70 Q- (h).

Hence we have
(L(Kx ,91)1:1(1\'2,92) - ‘i‘(K'l,Qg)i(}\'-l,Ql)) (fr7) )
. B 0,0, — 220
= (L[Kl,Kg](f)’ L[Kth](qf) —90 {L[\'I(Q2) Lhz(ﬂl) + 4882 2 1}

= Lk, 0.y, (K201 (f+ 7)
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which shows that L defines a Lie-derivative with respect to the Lie algebra structure in L.

If now, in the considerations of section 2, we replace (£, F) by (£, F), then all assump-
tions which were needed to build up tensor calculus are fulfilled, hence we can build up a
suitable tensor structure based on (L, F). The corresponding tensor bundle is called the Per-
tubation bundle. In this bundle ’f(n_m) denotes the n-times covariant, m-times contravariant
tensors.

We demonstrate that this new tensor bundle, in modification, naturally arises when per-
tubations of flows are considered. Take some path-connected C*-manifold M (ever}tu&lly
infinite dimensional). Let an affine connection on M be given, and assume that .thu's con-
nection has vanishing torsion and curvature. Denote by Vg the covariant derivative in the
direction of the vectorfield B. Let £ now be the Lie algebra of C*-vector fields on M, and

F shall correspondingly denote the C*-scalar fields. Recall that vanishing torsion means
that for all vector fields A, B we have

V4B - VgpA =[A,B) (3.5)
The curvature is defined by (4, B arbitrary vector fields)
R(A.B)i= V4Vp - VgV, - Uy gy (3.6)

Since curvature is assumed to vanish, parallel transport of tensors around closed loops

leaves them unchanged (see [23}]), hence parallel transport from one point of the manifold
to another does not depend on the path taken.

Denote by u the manifold variable. If v is a tan
we denote the tangent vector at y obtained by parallel transport of v from ug to u. If

no confusion can arise we denote (yy,u)fv) simply by v. The same notation is chosen for

tensors, if T(u) is a tensor field then I(4,4)(T(uo)) denotes the paralle] transport of T{ug)

from ug to u. Again, we simply write T(ug) instead.
The fields just introduced are exactl

vanishing covariant derivative,

gent vector at ug € M then by H(uo,u)(”)

y the constant tensors, i.e. those tensors having a

¥. this situation can be established for any manifold, one only has
to take a (" .smaoth parametrization by

translation in the parameter space.

Now, consider a new manifold M consisting of all

pairs (u,v), where u € M and where
v is a constant vector field. On th;

s new manifold we consider flows of the form
we N K{u)
()= (acm) (37)
where K'(u) is a vector field and Q(u)

two-component systems where a secop

linear flow u, = K (u). Particular exam
original equation uy = K(u).

is a 1-1-tensor. These flows are to be understood as
d component has been coupled linearly to the non-
Ples are the linearizations (i.e Qu)v = V,K) of the

Taking the commutator of the infinitesimal generators of these flows we obtain

[( S?ll((t:;)v) ' (é?((uu))v )] = ((VK, (Q) - V['/’I:\i’(s{;ﬂ + o, QIB)U) (3.8)
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where [A, B] := AB — BA denotes operator commutators.

Introducing for vector fields & the 1-1-tensors VI defined by (VK)G := VgK we claim
that we can rewrite the right-hand side of (3.8) as

( ] (K1, K9]
~[Lk, + VK; = Q, L, + VA2 ~ o]y (3.9)

Proof of the claim. By the product rule for covariant derivatives we have

[Vk,Q] = Va(Q). (3.10)
From (3.5) we obtain
(L + VK)G = Vi G. (3.11)
Hence
~[Lx, + VK — Qy, L, + VK2 - Qv
= [[VA-'2 - Q;,V;\-l - Q}]]U (3 12)

[V, Vi, ] = Vi () + Vi, () + [Q, v
(Vikpr = Vi (@) + Vi () + [, ul)v

i

Gince v is constant the term

Here the last identity came from vanishing curvature (3.6).
d line of the right

V_[I\"x K] vanishes and the right-hand side of (3.12) clearly equals the secon
side of (3.8).m

” I;ookipg back at the definition (3.2) we find that (3.8) and the Lie algebra (3.2) are
: ated since for § — VK — Q the second component of (3.9) is, up to 2 change of sign,
_qual to the second component of (3.2). We denote this new Lie algebra by £T and write
1ts elements as

( 9 (3.13)

instead of (K, () as they were denoted in L.

})VS may summarize now:
SERVATION 3.1: In £T we have a Lie-algebra defined by

[ K K 7 P
[E3 5] Y Ot

B (Vh"l(92) - Vi, () + [ ]

T ; . A .
he Lie algebras in £ and LT are related in the following way:

(K s\ S
(o) ()] - (%) o

When

Q
then
(1, VE, - 0,), (K, VK - 92)] = (K1, Kol Vi g = ) (3.16)
Hence commuting pairs of £
(3.17)

(K1, 1), (K5,9Q)] = 0
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correspond uniquely to commuting pairs in £

K, K, o (3.18)
VK, -0, \VK, - 0,

On FT ¢ representation for [ , ] is easily found:

i (Y Vk(f) 3.19)
L(g)('y) = (Vl\-(‘y)+'yoﬂ) (

Only the statement about the representation is not yet proved, but this is exactly the same
proof as before, this time based on the fact that the connection is curvature free. Examples

for well known notions where implicitly the Lie algebra structure of the perturbation bundle
is involved are easily found.

EXAMPLE 3.2: )
(1) Consider in £ the commuting pair

(K, VK + B), (0,A)]=0 (3.20)
then by using

Li(A) = VKA +[A, VK] (3.21)
we see that relation (3.20) is equivalent to

ViA ={A, B] (3.22)
hence to (A, B) being a Lax pair for u; = K{u).
(2) By the same argument we see that

[(#£.0).(0.8)]=0 (3.23)

is equivalent to Ly ® = 0 hence to @ being a recursion operator for u; = K(u)

(3) Via observation 3.1 we see furthermore that when (A, B) is a Lax pair then the flows

ul  f A(u)
(n) B (—B(a)v) (3.24)

and

do commute. This generalizes the well known fact that when v evolves according to v, =
~B(u)v then the spectral decomposition of v(t) with respect to A(u(t)) is independent of
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4. Applications
4.1. LINEARIZED EQUATIONS

Obviously the Lie-algebra £ can be embedded isomorphically into any of the pertubation
algebras in £. However, this fact does not mean that automatically the tensor structure
based on (£, F) can be embedded isomorphically into (L, F).

However, in case of the existence of a torsion-free and curvature-free affine connection
we give a simple proof that for the Lie product [ ,] such an embedding indeed can be

achieved. To see this we choose a matrix € # 0 with ¢ =0 (say a two-by-two-matrix).
Then as coefficients in front of elements from £ and F we admit linear combinations of the
unit matrix J and ¢, To this new structure (£*,F~) we extend the Lie-algebra structure,
and hence the tensor structure, in the obvious way. Furthermore we embed £ and F via
K — IK, f — IK into this new tensor structure.

So we may consider the tensor structure (L, F) as the efree substructure of (L%, F*).
We choose now an arbitrary constant vector field v in £, and we consider the isomorphism
exp(eL,). Observe that because of ¢2 = 0 all terms higher than first order cancel in the
Taylor series of this exponential function. We now consider the isomorphic image of the
tensor structure (£, F) under exp(eL,). We claim that this is isomorphic to a tensor struc-
ture of (E, j—") (pertubation bundle). To see this we write (g) instead of A + ¢B. Then we
can write for f € Fand K € £

exp(eL, ) K = (VII\‘v) (4.1)
f (4.2)

exp(eL,)f = ((Vf,ﬂ)

and the Lie bracket coming out of that isomorphism is exactly the one considered in (3.8),
which if rewritten leads to the Lie-algebra (3.14). Now, in order to identify elements of

(_U,f"‘) as elements in the tensor siructure over LTwe write

(V"ff) and (VAI\) instead of ((V;, v)) and (VI;“)) (4.3)

Using
Liexp(cLojky(exp(eLy) ) = exp(eLo)(Lx f) (4.4)
we find that this rewritten as an element of F yields
ald) - (o) -0
(ex)\Vf V(Lxf) V(VKS)
Vkf (4.5)

- (VK(Vf)+ VfoVK

which is a special case of the representation given by (3.19). Using this map we have found



134

OBSERVATION 4.1: All tensors which are invariant under the flow u; = K(u) are mapped
by exp(eL,) onto invariant tensors of

(u:) _ ( K(u) ) (4.6)
vy VK (u)v

As a consequence, complete integrability of v, = K(u) yields complete integrability of
the coupling between the original equation and its linearization. These arguments can be
applied to any order of perturabtion, say n-th order. For this one only has to use instead
of € another nilpotent matrix ¢ with €*~! # 0 and ¢* = 0. Certainly this result is not so
surprising, but usually in the literature, a fair amount of computation is needed in order to
prove this observation even for special cases (see for example [25] in case of the KdV).

In case u¢ = K(u) admits a recursion operator ® then the corresponding operator for
(4.6) is easily found. Application of exp(eL,) yields that

b = ( > Wj’ﬂ) (4.7)

must be that recursion operator. Here [V, ®] means the operator mapping each vector field
(: € L onto the linear operator

V(8G) - dV(G). (4.8)

In the case ¢ is hereditary, then @ has the same property.

4.2, LAX PAIR HIERARCHIES

As we have seen, the recursion operator of a hierarchy of commuting flows can be under-
stood as a new symmetry {with vanishing first component) for the canonical embedding
of the hierachy into the perturbation bundle. The same viewpoint can be adopted for Lax
pairs. However there, not the trivial embedding but a more sophisticated one is needed.
FurF?ermore an affine connection is necessary since all constructions have to be carried out
im L.

We consider a Virasoro algebra of vector fields (ie. an algebra of symmetries and mas-

tersymmetries, or a hereditary algebra, see [4,12-14]). The commutation relations of such
a Virasoro algebra are

(Ko K] =0 (4.9)
[t K] = (m + p)K i (4.10)
[Tas Tm] = (M = n)Tym (4.11)

where p is a fixed number (depending on the hierachy under consideration), and m, n run
fr_om either 0 or 1 to infinity.? Let furthermore a Lax pair (A, By), say for u, = K;(u), be
given. Then for almost all completely integrable systems a sequence of related isospectral
and nonisospectral equations can be found in the literature (see [3,5-8,18-22]). Looking at

2 .
There are also meaningful cases where the m,n run from —oco to +cc (see [27]).
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those results, and reformulating them in the purely Lie algebraic setup of this paper, one
discovers that there are sequences of operators A,,. B,.m.n € B such that

’[(U “ (ml -0 (4.12)
H(B) (m - (4.13)

Now, using the Jacobi identity, one discovers that, modulo parts commuting with A, these
vector fields must fulfill in £7

(K. (K

n =\ 4.14
()-(32)] - "
[ Tn ]\'m _ ’ ]\'7?1+71 415)
() (2)] = () (

Tn Tm _ _ T m (4.16)
G-

Implicitly, almost the same relation can be found in the important paper [20] of Wen-Xiu
Ma. Indeed, the uncertainty with respect to the parts commuting with A is easily excluded
by scaling arguments and t‘hus the relations (4.14) to {4.16) are fully established. Hel.xce _\;,e
have found an extension of the original Lie algebra to a nontrivial Virasoro algebra in L.
This then gives rise to a new integrable hierarchy, where the (Ko, Ap)T correspond to the
action variables and the (. Bm )T to the angle variables. As a consequence all flows

(u:) _ | Kalw) (4.17)
Ut Aq(u)e

do tommute, a result which for the case of the kd\ was already observed by Degasperis

9] (using spectral methods),

One should observe that having estab
Now have at our disposal a powerful computational tool. since suc
finitely generated. Consequently we only need to know the elements

K\ [r 4.18)
()3 () <

The . :
I the others are simply computed by recursion

lished the Virasoro relations for this algebra, we
h a Virasoro algebra is

(4.19)

(n+P An e ; - NI ‘4 B
JAng1 1= ¥, (Ay) - Vie (B + [An. B1] (4.20)

("= DBy 1=, (B) = Vo (By) + [Ba. Bl

e applications of this kind are possible. So for example, when one equation llS) obta:;xl:i
Y 20ther one via a series of Lie isomorphisms {in the vector field Ll.e a,lge :z()e, then
isoe COrre.sp onding Lax pairs can be transferred from .the omglr.aal. equatu;:ilsmyderivation
of ':Illlorph]-sms (canonically extended). For example. using the'Lle 1sorEorp e e
for t}? Wlindrical K4V from the KdV (see [17]) one easily obtains the Lax p

® ¢ylindrical KdV.
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4.3. COUPLING

Linearizations and isospectral pairs are examples of cases where a linear field has been
coupled integrably to a nonlinear integrable evolution equation.

This can be generalized: Consider a sequence K, of commuting vector fields. Embed
these isomorphically by

K, — K, := (K,,0) (4.21)
into £. They again do commute. Now, we take an arbitrary element in £ of the form
H=(0,Q) (4.22)

and we apply the Lie algebra isomorphism exp(—Af,H) to the algebra generated by th.e KT-;-
The result again is a commuting algebra. The interesting point about this isomorphism is

that its application does not change the local part because the first component of H is
equal to zero. This we see from the formula

exp(—)\ﬁH)(A, 0)= (A, i %/\n(—adg)n_l(VA(Q) + [, VA]])) (4.23)
n=1 "
where
adp(B) := [, B]. (4.24)

Of course, in order to avoid convergence difficulties we should restrict our attention to
those Q such that the series in (4.23) truncates. Now we use the one-to-one correspndence
between commuting pairs of £ and LT to see that all the flows

(ut) _ ( Ka(u) (4.25)
W AT = (S 3 ada) =V, (@) 4 [0, VE,])
do commute.

EXAMPLE 4.2: Take the KdV hierarch
containing derivatives of )
Urrr + 6u-u we obtain

¥, and take for @ any polynomial in z and z (not
. Then all these series do truncate. For ! = w and for A :=

> IN—adar Ve + [, VK]
n=1

n!

= -3\u,D* ¢ (=3 g, — 6/\21.:3)]_’) - 6/\2uxu” - 6A3u3.

Hence, the flow

Uy - UIII+6UIU (4 26)
v Pree 4 6(u0)e + Bhuzves + (3hups + 63202 )0, + 6320 0,0 + 6A%u3v )

belongs to a completely integrable hierarchy.
different ways.

In this construction one should observe, that in order to obtain nontrivial pairs, the trick
that an isomorphism in £ (instead of fT) is used, is essential. If instead an isomorphism in
LT s taken, then the pairs obtained are rather trivia] because then there is a unique way

to relate solutions of 4, = K (u) with those for the two-component system obtained by this
procedure.

This construction can be continued in many
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4.4. LAX PAIRS GALORE

In {2] the authors show that there are lots of meaningless Lax pairs. This observation for
first order equations was already made in {26] when commenting on {1},

In the seque!, we show how to construct impressively looking Lax pairs, which are nev-
ertheless meaningless.

Consider an arbitrary evolution equation

u, = K(u) (4.27)

where the vector field is supposed to depend on u and arbitrary derivatives of u with
respect to z. Then for any differential operator P = P(z, D) which does not depend on u

we obviously have

Vi P =[P,0] (4.28)
ie.

[(K,0),(0,P)] = 0. (4.29)
Take again

H=(0,0) (4.30)

where now H is a multiplication operator depending on x and u, but not on any derivatives
of u. Then apply exp(—Lz) to (4.29) to obtain a nontrivial, but nevertheless fake Lax pair.

Because of

K ) 0 =0 (4.31)
VK - 2?;1 ﬁ(—adg)n—l(vh-(ﬂ + ﬁQ,VIx ]]) exp(—adQ)P
the flow u; = K(u) must be an isospectral flow for the operator

A = exp(-adq)P. (4.32)

Since now this operator really depends on the field variable u it is, for general cases, far from

obvious that this Lax formulation is absolutely meaningless. Carrying out the computation
for the simple case P = D% and 2 = u we find the operator

A = exp(-adg)P = D? + wpe + 2uzD + 20} (4.33)
looking almost like a decent Lax operator. That this really is not the case follows however
from the fact that for any A (u) of the above type we find a B such that

VirA=[B,A] (4.34)

Therefore the question by what kind of conditions a Lax formulation is made meaningful

deserves some attention.
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