Uniqueness of the Cauchy problem for
convolution equations

By Sdnke Hansen at Paderborn

1. Introduction

In the study of the Cauchy problem for a convolution equation with Cauchy data on
an initial hyperplane or strip one encounters the following uniqueness problem. Let
O+pedé’(R") and let NeR", N+0. Under what conditions on x and N does every
distribution u € 2'(/R"), which has its support contained in the half space

{x; (x, N> 20}
and is a solution to the convolution equation
(1. 1) uxu=0 in R",

already vanish in the whole space? Since this problem only involves the homogeneous
convolution equation it is natural to try to express the looked-for conditions in terms of
N and the zeros of the Fourier transform fi of p.

In case (1. 1) is a partial differential equation with constant coefficients, i.e. y=P(D)d
for some non-zero polynomial P, this problem can be solved completely with the help of
the notion of a characteristic vector, which is by definition a zero of the principal part
P, of P.In fact, we have by Holmgren’s uniqueness theorem and by Theorem 5. 2. 2. in
Hormander [7]: There exists a non-vanishing distribution u € 9'(R") satisfving the equation
P(DYu=0 and having its support contained in {x;<{x,N>20} if and only if N is a
characteristic vector for P.

In Definition 2. 1. we give a generalization of the notion of a characteristic vector
to arbitrary distributions pe &'(R"). Using this definition we then extend Holmgren's
uniqueness theorem to convolution equations in Theorem 2. 2. This is our main result.
The idea of the proof of Theorem 2. 2. was suggested to the author by Ehrenpreis’ method
of proving Holmgren's uniqueness theorem for partial differential equations with constant
coefficients. Ehrenpreis [4] proves this theorem via Fourier analysis and not with the help
of the Cauchy-Kovalevska theorem as is often done. Originaily (i.e. in Hansen [6]) we
were only able to prove a weaker version of Theorem 2. 2, for invertible (in the sense of
Ehrenpreis [2]) distributions u since we were not aware of the approximation technique
developed in Hérmander [9] then.
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2 Hansen. Uniqueness of the Cauchy problem

A refined uniqueness theorem (Theorem 3. 2.) is proved in section 3 for differential-
difference equations, i.e. equations (1. 1) with u having finite support. Here we give for
two convex domains ' and @* with @' < Q* sufficient conditions, mainly in terms of
Q'. & and the set of characteristic vectors for 4, such that any solution u of the equation
(1. 1) defined by x and vanishing in Q' already vanishes in the larger domain @°.

In section 4 we shall first show (Proposition 4. 1.) that our definition of a charac-
teristic vector N for a convolutor u (Definition 2. 1.) is indeed a generalization of the
classical definition P_(N)=0 for differential operators u=P(D)J, for the condition
P,(N)=0is in fact a condition on the set of zeros of P, Furthermore we obtain a non-
uniqueness theorem for characteristic half spaces(Theorem4. 2.). Together with Theorem 2. 2.
these results show that for a convolution equation (1. 1) defined by y=P(D)d + v with P
anon-zeropolynomialand v € &' (R"), supp v € {x; {x, N)> 0}, theanswertothe uniqueness
problem stated at the beginning of the introduction and the property that N be a charac-
teristic vector for y are independent of v. That this result should become true was our
guideline to the definition of a characteristic vector. However, it is not clear to us whether
it is true for every 0+ u e &' (R") that all solutions of (1. 1) with supp u = {x; (x, N> 2 0}
vanish in R"if and only if N is a non-characteristic vector for pin the sense of Definition 2, 1.

The notation we employ is that of Hérmander [7]1 and [8]. For O+ pe &' (R") we
denote by H, the supporting function of supp p. Having introduced coordinates we shall
use the splitting of variables x =(x",x,) and z=(z",z) with v’ e R 1 x,€R, and
ZeC' - eC, for xeR" and - € L", respectively. (-, > denotes both the duality
bracket or the euclidean product (when coordinates are used) on R" (or C") depending on
whether the arguments are dual vectors or not,

I would like to thank Prof, Dr. J. Wioka who suggested this work to me and

Dr. O. von Grudzinski who read an earljer version of this paper and gave me suggestions
for improvements.

2. Uniqueness of the non-characteristic Cauchy problem

We start with the definition of a (non-)characteristic vector.

Deﬁnitfm 2. 1. Let n> 1 and let N e R" ne &'(R™. N is called a non-characteristic
vector for uif and only if there is a constant p > 0 such that the sets

E(b, 0)n{zeC" i(—>2) =0}

are bounded for every 0> (). Here E(b, §) is defined for b, 6>

- 0 and so i
coordinates with N=(0,...,0, 1) by me choice of

(2.1 E(b, 6 ={z€C" |z, 2b|Rez| +9|z], Imz, > b|Imz'| + d|z|}.

Non-zero vectors in the complement of the set of all non-ch

Ne : aracteristic vectors
said to be characteristic vectors Jfor . or e
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Remark. An elementary calculation shows that the sets E(b, 0)n{zeC"; i(—2)=0}
are bounded for some 6> 0 and every §> 0 if and only if the sets

{zeC" a(—o)=0,

02l Imz, 2 ¢[Imz’| + 5)7|}

are bounded for some ¢>0 and every 5> 0. Starting from this observation it is easy
to check that the definition of a non-characteristic vector is independent of the particular
choice of coordinates in C" with N = (0, ..., 0, 1) and which are real on "

It will be shown in Proposition 4. 1 below that our definition of a (non-)characteristic
vector for u e &'(R") agrees with the classical definition in case u=P(D)o for some non-
zero polynomial P. Hence the following result extends Holmgren’s uniqueness theorem
from linear partial differential equations with constant coefficients to convolution equations.

Theorem 2.2, Let n>1. Let Ne R" be a non-characteristic vector for ped(R".
Then everv u e Z(R") vanishing in the half space X5 (XU N) <0} and satisfying u * u=0

in R" vanishes in R".

Remark. Foranynon-zerou € &'(R") the uniqueness statement in the preceding theorem
1s valid in view of Titchmarsh’s theorem on supports.

Remark. If y is (semi-)hyperbolic with respect to N in the sense of Ehrenpreis [3]
then N is a non-characteristic vector for yu. Hence Theorem 2. 2. in particular covers the

uniqueness statement for hyperbolic Cauchy problems.

The proof of Theorem 2. 2. will be given at the end of this section. It may be useful
for the reader to look at it first to obtain a motivation for the following preparations.

The following lemma is essentially the Lemma 9. 22. in Ehrenpreis [4].
Lemma 2. 3. Let n> 1. Let a. b, t real and a, b> 0. Define the set

o={xeR" |x'|<a 0<x,—1t<2ab)” (& — XA

Let u be a C*-function defined in a neighbourhood of & such that v(u) =0 for every
v € (@) which satisfies for some C> 0 and every ¢> 0

2.2) (IS Cexplallm='|+ 1 Imz, +¢|z]). = € C*™E(b. b a).
Then u vanishes in .
Proof. Let f> b and let P be a non-zero polynomial in 7 variables. Define v € &'((3) by

(2.3 vi)= | (Pr)(E 1+ Qaf) & — ). v e C7 (RY.
HEY
We claim that v satisfies (2. 2) for some C> 0 and every £> 0. Once this is shown we have
v(u) =0 by the hypothesis of Lemma 2. 3. Letting P vary we may then conclude by the
Stone-Weierstral3 theorem that the restriction of « to the parabolic surface

{(Er+Qap)y™ (@ =12D): EeRm IS )

vanishes. Letting > b vary, we would then obtain ¥ =0 in @, as desired.
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The Fourier transform 7 of v defined in (2. 3) reads

(2. 4)
V) =e = [ P(L 1+ (2aB) " (P — (L, O))exp(~idz', O — iz,(2aB) " Ha® =<, 0))de
r

for e C" Here I' is the (n—1)-chain defined by I'(¢)=¢, |¢|=a, SeR™! Let e>0.
By (2.1) we have either Imz, <blImz'|+be|z|ja or Izl <b|Rez'|+be|z|la if
Ze C"™E(b, bela). Let z e C" satisfy Im z, <p|Imz'| + bé|z|/a. Using the Cauchy-Schwarz
inequality we obtain for £ e R ! I¢]|<a,

Re(—ic=', & ~ iz, (2ap)™" (& - 1€%))
<Imz(1<1+b2ap) ™" (&~ 1EP)) + (2a2) elzl(@ ~ |¢P) < allmz’| + |z,

Estimating the integral (2. 4) we hence obtain the inequality (2. 2) with a constant C inde-
pendent of ¢ and z. Now let z € C" satisfy |z,| <b|Rez'| + be|z|/a, Re Z#0.If &, peR™!

1
are such that [{|<aq, (Rez, nd> = — IRez'| n], In] =(a® - |£]2)2, we have, using the Cauchy-
Schwarz inequality,

Re (i, ¢+ind — iz, (2ap) ! (&2 =&+ in, E+iny))
Sallmz’| - [Re | [n + |z,] 2192 2i ¢e, m|(2ap)1

<allmz'| — [Re x| (1] — |y| 120 =2i8|6Q2aB) =) + |z || In—i&lea™
Sallmz'| + gz,

Since the integrand in (2. 4) is a holomorphic (n—1)-form we may by Stokes’ theorem
replace the chain of integration in (2. 4) by the chain I defined by

1
T(é)=i—f(a2—lilz)2ﬂo~ CeER™ ¢ <q,

and o € /R_”‘ L lr(ol =1.{y.Rez"y = |[Re '] fixed. Estimating this integral we obtain, since
the foregoing estimates are valid on T, the inequality (2. 2) with a constant ¢ independent
of zand =. This proves Lemma 2. 3.

Next we need a lower estimate of the modulus of g, HEE(R™), off its set of zeros

Lemma 2. 4. ¢ HEE(R™ and ler g> (), Then there is g reql number A such that
we have for arbitrary ¢> ()
(2.9 fﬁ(:)lgCexp(—AlImz]—f;]:l)
ifzel", d(z)Z allmz| +elRe s+ 1. where € g ap

: ositive constant independent of - g
d(2) denotes the dzstam"e_/mm Zto the ser of zeros of ji ! /< Here

‘Proojﬁ (C ompare .Héirmander (9], Lemma 2. 3.) By the Paley-Wiener theorem the
plurisubharmonic function ¢, v(2) =logli(2)], satisfies for some constants C, and ¢
2

()= (G (Imz| + G log(2 + [z]).

Letxe Rmand let R> 0.127> 0. Choose a constant C; such that

tSC+ Cillmz| +7lz], e Cn,



Hansen, Uniqueness of the Cauchy problem 5

With M and M denoting mean value with respect to Lebesgue measure in C" and in R".
respectively, we have since ¢ is subharmonic

vx)= M ve)= M (v(:)—CO—Clllm:|—yl:l)+C0+(C1+}’)R+“,'I.\'|.

Jz—x|<R |z—x]<R

M iOI= G+ G +NR+YXI+ M (Co+ ClImz| + 5]z —(2))

fz—x|<R [z—x| <R
it follows that
M o= 2(Co+(Cy + PR +71x]) + [v(x)].
|lz—x|<R

Now replace x by x” and average with respect to Lebesgue measure in R" over all
x" e R"with |x —x'| < R/2. It follows that

(226) 272" M @)= 2(Co+(C+20R+9x)+ M ju(x)].
|z— x| <Rj2 jx—=x'|<Rj2
Assume without loss of generality a< 1. Let - € C"be such that d(z) > R4 and |z —x|< R/4.
Hence we may apply the mean value theorem to — v to give

—vE)Es M @)= M (@)

[z—z'|<aR/4 |z = x| <R;2
and therefore using (2. 6)
(2.7 —(4a) (@) Z2(Co+H (G +2DR+7Ix)+ M o).
|x— x| <R2
Let 6> 0 and choose x=Re:z, R=4|Im| +46|Rez|/a. It follows from Lemma 2. 2. in
Hormander [9] that

M (V)] =0 as r— + o
Iyl <t

(note, that with the help of a mollifier one can easily get rid of the condition (2. 1)
appearing there). Setting 7= |x| + R we therefore deduce using 1= (1 +a(40)™")R that the
average last written in (2. 7) is o(|z|) when = — . So we conclude that (2. 5) is valid for
e=max (4, 3(4/a)*" ((C, +27)40/a+ 7)) and 4 =8(4/a)*" (C, +2). This proves the Lemma.

With the help of the following theorem we can approximate entire functions of
exponential type by entire functions which are in view of the Paley-Wiener theorem
Fourier transforms of distributions with compact support.

Theorem 2. 5. Let Fy, F,, G, and G, be entire functions such thar G, =F +G,F,.
Assume that there are supporting functions H, and H, such that

[Fi(2)I= CexpH,(Im=z), 2|Im=|> |Rez|, i=1, 2,
and that F, and F, are of exponential type in the whole space,

[F(z)|SCetFl, zeCm, i=1,2.

[
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. . . . - _ —n
For i=1.2 and O <t <1 we then can find entire functions F} such that for all - e C

FHENS CO (14127 exp H(Im2)
and
Gy (2) = F{(2) = Gy () FL(2)]
S CHIGN P+ + 1z exp H, (Im =) + |G ()] (1 +[=)""° exp H,(Im 2)).

It is clear from the remark following the proof of Theorem 3. 1. in Hérmander (9]
that the proof of that Theorem immediately extends to a proof of Theorem 2. 5.

We now turn to the

Proof of the Theorem 2. 2. In view of the standard technique of regularisation with a
Dirac sequence it suffices to prove the statement of the theorem for u e C* (R"). Choose
coordinates such that N =(0, ..., 0, 1). By the definition of a non-characteristic vector there
Is a positive constant  such that the set

(2. 8) E(b2, 8)n{zeC"; a(->2) =0}
is bounded for every > 0 (E is defined in (2. D). Leta>0and v e &' (R") such that
(2.9 V)IZE Cexpla|lm='| —@p) Ly Im:z, +|z|)

if e O NE(b. b a) for some constant C independent of -. We claim that V(i) =0 if «
is sutticiently large. From Lemma 2. 3. we then deduce

=0 it Y<e and  —q(4p) ! <x,<(2ub)™! (212 —[x']3).
Alter letting « — + % we then obtain the statement of the theorem.
To prove v(u) =0 we shall approximate v e &' (R" by distributions of the form

0+ fix T where 6. T € &' (R"). supp @ € {x: {x, N) <0}, because for these distributions we
have (6 + i % 1) (1) = 0. Working on the Fourier transform side we therefore set for - e C"

(2. 10 SZy=(2) ¥(2) — (=) (o),

(2.1 T =(1=@)() A=) +0(2).
with functions ¢. 1 e L3,.(C" such that ¢ =1 in a neighbourhood of the set of zeros of 1.
Then

(2.1 VR =S+ (=2 T(o). eln

Tomake Sand Ianalytic we have to choose 1 as o solution of

(2. 13 Cty=g(2). -ecn

with the ((, D-form g defined by

(2. 14) V=0 =)o), —ecn
But first we want to choose ¢ so that the

5 modulus of g satisfies good estim;
0> 0and et - ¢ E(b. 8). Note that {(1+p71 y S stimates. Let

) HImz|< Im:-  LetfecCr satisfy
IS (1+52) (24267 !Im=| 4 o)) 4),
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Then we have

Im(z, +C) = bImz'[124+0[z(2+1m =, /2 — |¢]
ZbIm(z"+ Y2+ 01224+ 2+ 207 HIm=z| — (1 + 62|
= blim(="+ /2 +0]-| 4.

and after a similar calculation,
|7+ Gl 2 b|Re (=" + ()2 + 0] 4.

In view of (2. 8) and because || <(2+ 8)|=|/4 we therefore obtain that the distance from
— - to the set of zeros of ji is greater than (1+5:2)7! (242" Imz| 4 8]-| 4) for
sufficiently large - if 6 <2. From Lemma 2. 4. it then follows that there is a constant
A 2 0 depending only on b such that for ¢ < 2

(215 ja(=)lZexp(—A|Imz|—|z|) if =€ E(b.d).|z|=C).

Choosing ¢ < min(2, ».) and taking ¢ € C*(C") for example as the convolution product
of the characteristic function of the set

(2€C" [Z{= 14 C0)} U(C"NE(b. (5+ba) 2))

and a C”-function having its support contained in a sufficiently small neighbourhood of
zero and having Lebesgue integral equal to one we obtain a function @ such that (2. 9)
is valid in supp ¢. (2. 15) is valid in supp(1—¢) and |C¢| is bounded on C". Using this
function ¢ we define g by (2. 14) and obtain

(2. 16) lg(2)= Cexp(H(Imz) + Allm=| +2|7]), —eC™

Here H is the supporting function defined by
(2.17) Hiup=aly'|—adb) 'y, neR"

Since the right-hand side in (2. 16) is a logarithmically plurisubharmonic function it
follows from Theorem 4. 4. 2. in Hormander [8] that the equation (2. 13) has 4 solution
ve L (C"such that

“loc

(2. 18) \ e exp(—2H(Im ) =2 A|Imz| = 5|z|) dilz) < + 7.

n

where /7. denotes Lebesgue measure in C". Combining (2. 9). (2. 10). (2. 11). (2. 15) and
(2. 18) we obtain

Sexp(—H(Im-)—(A+ B)[lm- |- 3|[)e L}(C")
and

Texp(—(A+B)|Im-|—3|-|)e L(C™.
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Here we have chosen B> 0 such that H(n) < B|y|, n € R", and

max |i(=)], [#(:)])< C exp(BlImz| +|2)), ze C",
which is possible in view of the Paley-Wiener theorem. Since S and T are entire analytic
functions it follows by Cauchy’s formula that with the supporting functions

(2. 19) H=H+(A+B+9) ||, Hy=(A4+B+9) ||

we have for all - e C”

|S(2)|= Cexp(H,(Imz) 4+ 3(|Rez| —2|Imz()),
|T(z)|= Cexp(H,(Imz) +3(|Rez| - 2[Imz|)).

This means in particular that Fi:=S,F,:=T and G,:=} satisfy the assumptions of

Theorem 2. 5. Hence there exist entire functions S,and T,,0 < <1, such that for all
tel”

(2. 20 [S{N=C) (1 +z))"® exp H, (Im ),
(2.2 IT,()I= C(0) (1 +12])"*® exp H,(Im z),

and we have for some constants C and M
(2.22) PO =S — (=) T(&)|= Cr(1+[EPM, Ee R,

Here we have used (2. 12) and the fact that § and ft are of polynomial growth in R".
By the Paley-Wiener theorem and (2.20), (2. 21) there exist distributions 6, T,€E(R™)
such that ¢,=S, and 1,=S,. If ¢ satisfies ¢> 4b(A4+B+9) then H,(N)<0 in view of
(2. 17).(2. 19), and hence supp g, € {x; {x, N> <0} by (2. 20) and the Paley-Wiener theorem.
From (2. 22) it follows that o +f*t,—vast—0in ¥ In view of (2. 20), (2. 21) and
the Paley-Wiener theorem the support of g, + i = 7, belongs to a fixed compact subset
of R” 50 that we have in fact convergence in &'(R"). If ue C*(R") satisfies =0
and has its support contained in X3 (X, N> 20} we therefore obtain

viu) = lmg (0,+ 1 * T:) ()= liI% (Gr(u) + Tr(” * “)):O‘
1= t—

It has already been pointed out that this completes the proof of Theorem 2. 2.

Example. Let 4 be the distribution defined by the characte
ball given by some positive definite metric on R".
non-characteristic for #. In view of the remark
introduce coordinates in &”

ristic function of the unit
We shall show that every NeRn is

! following Definition 2.1, we may
such that the metric is euclidean and N=(0,.... 0 ). As is

er [1], p. 235) the Fourier transform of g is given by
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Here J, is the Bessel function of order % Let z e C" with fi(z) =0. Since J . has only
2 2

real zeros (see e.g. Watson [10], p. 482) we have

0=z, zp=|Rez|*— |Imz? +2i{Rez, Im=z)

and hence
(2. 23) Imz|<|Rez|,
(2. 24) Rez,| [Imz |<|ReZ’| Im:z'|.

Using (2. 23) we have if [Rez | < |Re |
|z,/=|Rez,|+|Imz |< 3|Re |,
and if [Rez'| <|Rez,| using (2. 24)

Mmz |<|ImZ’|.

So we may for example conclude from Theorem 2. 2. that the only function ue L] (R")
with

u(x)=0ifx,<0 and | u(x+yydy =0, xeR"

ES
is the function u = 0.

Using the asymptotic properties of the Bessel function and the fact that the set of
real zeros of J, is unbounded we may deduce that p is invertible but not ¢ *-elliptic in

2
the sense of Ehrenpreis [2]. Hence we have found an example of a convolutor i showing
that the non-existence of characteristic vectors does not imply C*-ellipticity. For linear
partial differential operators with constant coefficients, however, it is even true that
(analytic-)ellipticity is equivalent to the non-existence of real characteristics vectors (see
e.g. Hormander [7]).

3. Uniqueness in convex domains

In this section we derive a refinement of Theorem 2. 2. for differential-difference
equations with constant coefficients in convex domains. This will extend Theorem 5. 3, 3.
in Hormander [7].

Proposition 3. 1. Let n> 1 and let 0% p e &' (R"). The set of non-characteristic rectors
Jor wis open in R",

Proof. Let N° € R" be a non-characteristic vector for . Choose &,...., & | e R"such
that the ¢; and N° spanR". If Ne R" is close to N° then the ¢; together with N still
span R". More precisely, there exist ¢’ e R""' and ae R, x+0, such that every zeC"
which has coordinates (2, z,) with respect to the basis (&,,..., ¢._1» N°) has coordinates
(z'+a'z,, az,) with respect to the basis (,,..., &,_;, N). A look at Definition 2. 1. shows
that N is a non-characteristic vector for u. Hence Proposition 3. 1. is proved.
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Let O e &' (R") and let Q be a convex, open subset of R". Then the convolution
o where iy e &' (Q) is defined in

Q ={x;x—1€Q when yechsuppu}.

Here we denote by ch.4 the convex hull of a subset A<k Q will be called p-round
if and only if

Q=0Q, —ch suppp.

Any open and convex subset of R" is clearly P(D)é-round when P is a non-zero polynomial.
Let 7 be real and let N e R". The half-space {v; (v, N 27} will be called characteristic
for wif and only if its inward normal N is a characteristic vector for 4.

Theorem 3.2. Let O+ pe & (R™ with finite support. Let Q' and @ be convex.
open and ground subsets of R with Q' « (P Assume that every characteristic half space
mtersecting Q@ also meets Q. Then every ue 7' () satisfving ihe equation u * u=0 in Qi
and vanishing in Q' vanishes in Q2.

Proof. (Compare the proof of Theorem 5.3.3. in Hérmander [7] and the proof
of Theorem 2. 2. above.) Let ye ¢ (€?) be given with

=0 in Q" and puxy=0 in &,

We shall sho.\\' tha} #=01n Q. In view of the standard regularization technique with Dirac
sequences this suffices to prove the theorem.

~ Let vy be a point in &, Choosing a point ¥y € 2 (note that Q) is not empty since
Q' is p-round) we denote by K, the set of all points at distance at most ¢ from the line
segment bcl}vceﬂ Trand 1y, Let d be a positive number so small that K, is a compact
sl;bsct of & and !y: v =1 <o) <. Then we can find an open, convex set () € Q!
with ¢! boundary so that every characteristic half Space intersecting K ;-ch supp palso meetg
the set @ =" =chsupp . In fact, if we Jot " e Ky—chsuppu and let N° ¢ por be a
characteristic vector for #. We can find, using the assumption of Theorem 3.2, ! e Q!
“'f‘f‘h that (v — 0y 20. Since Q' is yrround we therefore obtain an open ball
2T€Q such that 37— ¢h SUPP frmeets the half space [y ¢y — 1, Ny 20!

e T PP y and consequently
?)luts every half space with inward normal close to N° contdining a point near \*. By
roposition 3, | ; o B o a4 cef o 1 . e
p I. and the Bore| Lebesgue lemma a set ) €Q, with the required properties

can therefore be constructed by takin ' " a fini
S 3 g the convex hull of a finjte number of
bulls T €Q! | o ofopen

Now Jet o, 0= 1<

1. be the convex hull of o and the o
and center at (1—4

! ( Yo+t It is geometrically evident that ¢
We clznlm that =0 in @, = &, —ch supp y when 0< t= 1. This
)y cQ - Let 1 be the supremum of all 7 between 0 and 1 su
u=01in . We shall show that y=
course prove our claim.

pen ball ¥, with radius o
he boundary of w, is C'.
is true when 1= because

. : ch that u=0 ip w,. Then
0in a neighbourhood of @ if T<1. This will of
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Let x” be a boundary point of .. If \° € Q!, then clearly =0 in a neighbourhood
of x°. Now assume that x° ¢ Q'. Then we can write ° = y! — v with v ech supp i and
x' e ¢! such that the outward normal N of ¢ w, in x* is a non-characteristic vector for .
In fact. if 7 is a characteristic half space not intersecting w,. then TN =0 which
implies that 7n(K;~ch supp x) =0. Hence nN (X, —ch supp u) =0, so that

NG, =rnm <

Assuming without loss of generality that x*=0 and N =(0,..., 0. 1) and recalling that
the boundary of ¢ is C* we have for any &> 0

(3.1) X x[<o(e). x, < — x|} c o,
Since MV is non-characteristic we have for some 4> 0 and every 0> 0
(3.2) M(—===0=*0 if ze Eb, ), 2|2 C). | <1.
By (3. 1) we may choose @> 0 such that

K={x;[¥[=a. x,=—a@b) ™'} €an,

n

(i X |=a, —adb) ' = NS (A2~ X)) Qab) ! L EQ

Let H be the supporting function of K, i.e. H(n) =aly'| —a(4h) ™! N, nekR" Let >0
and let v e &'(£%) be given such that

(3.3) V()= Cexp(H(Im:) +¢|z]) if -el"E(b, beu).

We are now going to prove that v(u#)=0. This will be done along the lines of the proof
of Theorem 2. 2. That u has finite support means that its Fourier transform iis an
exponential-polynomial. But for these it is known (see e.g. Grudzinski [5]. Theorem 10)
that for some constant C>

(3.4) 1/?(4:)E;Cepoﬁ(I111:)
if - e C" has distance at least 1 to the set of zeros of ﬁ. Hence it follows from (3. 2) when
taking 0 =(2a) "' be that (3. 4) is valid for all sufficiently large - e E(h. (2u)™"'he). We may
therefore choose a C”-function ¢ which is equal to one in a neighbourhood of the set
of zeros of ﬁ and such that [(g] is bounded in C" and the estimates (3.3) and (3.4)
are satisfied in supp ¢ and supp(1 — ). respectively. Defining the (0. 1)-form ¢ according
to (2. 14) we then have
oS Cexp(HImz) = Hy(Imz) + ¢fz]). ze C".
Let H' denote the supporting function of a convex set A" € o, with K < K’ — ch supp u. Then
HZH + H; and hence
lg() = Cexp(H'(Im2) +¢|z]), -eC"

Since H'(Im-) is plurisubharmonic (whereas (H — Hy) (Im-) need not be!) we obtain.
using Theorem 4. 4. 2. in Hérmander [8]. a solution to the equation cr =g with

(3.5) [ le@)? exp(—2H (Imz) = 3¢|=])di() < + x.

Cn
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The functions S and T defined by (2. 10) and (2. 11) are entire analytic, and combining
(3.3).(3.4).(3.5) and the Paley-Wiener estimates for § and A we obtain
Sexp(—H'(Im-) — Hy(Im- ) — 2¢] - |) € 12(C")

and
T exp(—max (H, (Im- ) —Hy(Im-), H'(Im-))—2¢|- ) e L3(Cm.

With the help of Cauchy’s integral formula we can pass from the 72- to the sup-estimates

|S(:)l§Cexp(Hl(Imz)+28(|Rezl—2lImzi)), ceCn,
lT(z)féCexp(HZ(Imz)+2e(|Rez|~2|Imz|)), zeC"

Here we have introduced the supporting functions

Hy(n)=H'(n) + Hy(n) + 6¢ln|, nern
Hy () = max (H, (n) — Hyn), H () + 6¢lnl, n e R",

Choose ¢> 0 such that
Wy S H, (), neR" €w and {x; x, WE=H,(n), ne R™} €.

Applying Theorem 2. 5. as in the proof of Theorem 2.2 with F|:= 5, F,:=T and
; i i " T, , , that o, + fix 7, — v in &(22)
as 1 — 0 and supp g, €w,, suppr, @Qﬁ. Hence v(u) =0. Recalling that v was an arbitrary
@stnbu.tion in &'(P) satisfying (3. 3) it now follows from Lemma 2. 3. that u vanishes
In a neighbourhood of +°. So we have proved that #=0 in a neighbourhood of @&, and
hence =0 in «,. Since ¥2 € Q was arbitrary and since QP =0 _ch supp u the proof
. H
of Theorem 3. 2. is complete.

Remark. ~It is .eas_ily seen by inspecting the foregoing proof that Theorem 3. 2. is
true not only for distributions with finite support but also for distributions y e &' (R")
which satisfy for every ¢> 0

(3. 6) ) 2 Cle) exp(H“(Im:)—glzl) If d)21+¢z, zeCn

However, if 4 is the characteristic function of the unit ball in R", n> 1 (recal] section 2,

Example) then using the estimate [f(z

1
; IS cexp(lIm(z, - 2|) and the reality of the zeros of
the Bessel function J, one can see

by considering the line {125; teR} for z; e C" with

2
Hmz|> |Rez | =1 (%o-20) = —1. that (3.6) d '

. KZpaZgy = — 1, . oes not hold for 4 Th :
pointed out to me by O. v, Grudzinski, g o Sample was

4. Non-uniqueness of the Cauchy problem

For a non-zero Polynomial P let 4 denote its degree and P, its principal part

Propesition 4. 1. 1o y ¢ o
SUPPVE (v (v N > 0}
and only if P (N)=0.

and let P be g non-

=ero polynomial and v ¢ & R™ wi,
. Define U=P(D)o+v. Then oy

N is a characteristic vector for u if
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Proof. Let ¢ € R™ First note that since H,(—N) <0 we have by the Paley-Wiener
theorem with some constants 4> 0, §> 0

V(z + &)= exp (0 Imz, + A|Imz'| + 4|¢| + 4 log (2 + 1=]))
forz e C"and ¢ € C satisfying Imz, =0, |t|]=0(z|).

Here coordinates are chosen such that N=(0,..., 0, 1). Since the degree of the
polynomial P,,— P is at most m— 1 we therefore obtain for fi= P + ¢ with some positive
constant C

4. 1) [Pz +18) — Az + &)= C(1 +|z))m !
if z e C"and t € C satisfy
1= 1z] and —Imz,2 C([Imz'|+ 7] +1log(2 + |z])).
If P,.(N) # 0 we have with some positive constants C, and C,
(4.2) IPu(DZCilz|™ i |z,) 2 Gl

In fact, since = belongs to a given conic neighbourhood of N if |=1/]z,| 1s sufficiently
small and since P,(0,...,0,2,)%0 if z,+0, (4.2) follows from the continuity and
homogeneity of P,,. Combining (4. 1) for =0 and (4. 2) we have [P (2)—p(2)] < |P ()]
and hence ji(z) 0 if |z,| = G|z, ~Imz, > C(IIm='|+log(2+|:])) and |z| large. Hence
N is a non-characteristic vector for .

Now assume that P, (N) =0. Choose ¢ such that P (&)+0. Denote by d, 1= d=<m,
the order of the zero w=0 of the non-zero polynomial P_(N+wé) in the complex
variable w. Hence we have with some positive number &

[P (SN 418> 8]s|™ ¢ if |r]<d]s], t,seC.
Replacing = by sV in (4. 1) we therefore obtain with some constant C> 0
(4. 3) [P, (SN +1&) — i(sN +18)| < | P, (SN + 1&)]

if s.teC satisfy |s|>C, |f|<Clsf'"" and —Ims2=C(1]+log(2+]s)). In view of
Rouché’s theorem we may now conclude from (4. 3) that we can find for every sufficiently
large 0> 0 a complex number ¢ such that 4(—ioN+1t&)=0 and |¢t] < Clo* 14, It is
easily checked that N is a characteristic vector for p in the sense of Definition 2. 1. This
completes the proof of the proposition.

The following non-uniqueness theorem generalizes Theorem 5. 5. 2. in Hérmander [7].
The new feature in our theorem is that we do not rely on the Puiseux expansion but
instead use the holomorphy of certain functions symmetric in some of the zeros of I
Possibly this idea is flexible enough to prove non-uniqueness for more general convolution
equations than those considered in Theorem 4. 2.

Theorem 4. 2. Let N € R" and let P be a non-zero polynomial and let v e &' (R") with
supp v € {x, (x, N)>0}. Assume that N is a characteristic vector for u=P(D)d+v. Then
there exists a function ue C*(R") with 0 € suppu, suppu < {x; {x, N> > 0} and pxu=0
n R",
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Proof. We have P, (N) =0 by Proposition 4. 1. Let EeRm, P (&)+0.and d=1 be as
in the proof of Proposition 4.1. Recall that (4.3) is valid then. From (4. 3) and
Rouché’s theorem it now follows that there are positive constants p and C such that
forevery s € C with

(4. 4) —Ims> C(1 4|5t 14
the holomorphic function g defined by g(t) =[N +1&), 1eC, has exactly o zeros
1(s)j=1...., d (counted with multiplicity), satisfying

(4.5) () < pls|t 714,

Hence it follows from the argument principle that for every x € R" and every s with (4. 4)

a

(4.6) eXP i<, 1)(5)$p) = (2m) ™! feiktx® (&' (1)/g(2))dr,
1

J

when integrating over the contour |¢| =pls|' "', and therefore the left-hand side in (4. 6)
is a holomorphic function in s in the domain of all 5 satisfying (4. 4).

Now choose 1> y> 1 — 1/d and define for large positive ¢

d
4.7 u(x) = j Y exp (ix, sN+ 1(s)E> —(is)y)ds, x eR",

Iy j=1
where I_ is the contour defined by

(4. 8) —Ims=0(1 + |Res|?)t -t/

and (i) is defined so that it is real and positive when s 18 negative imaginary. The

i_nteg‘ral (4.7) is convergent and independent of ¢ by Cauchy’s theorem. for when x is
in a fixed bounded set we have in view of (4. 5) for large s ’ .

(390 Re(iCx N +,(5)¢) ~ (is)") < — Im s, ND+plxl 2] Is' =1~ |5]7 cos(my/2)

S —Ims(x, N> =2C|s).

Hence tor s satistving (4. 8) with ¢ large we have

(4. 10)

This estimate also shows i ; ;
S estimate also shows that the Integral is uniformly convergent after arbitrary diffe-

rentiations with respect to x. Hepce T i f

atio : X. ue C* and since AN +1.(5)6) =0 '
rent  with T _ : (5)$)=0 we obtain b
Lon?xdermc Riemann sumg H*u=0 in Rn Letting ¢ — 4 o \fve)q)' ]0bt‘“” ‘
(4. 8) and (4. 9y that wx)=0if (x, N <. T conclude from

NOW 1(3) = drf /o s .
OW H(X) =dur({x. NY) when {x, & =0, where we use the notation

r(r) = | exp(ist—(is))')ds, teR.
I

o

which we refer the reader for fu i 2 2. in Hormander [7] to
: rth :
This proves Theorem 4 er details we obtain ( ¢ SUppv and hence ( e supp u.
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