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LOCALIZABLE ANALYTICALLY UNIFORM SPACES
AND THE FUNDAMENTAL PRINCIPLE
BY
SONKE HANSEN

ABSTRACT. The Fundamental Principle of Ehrenpreis states that the solutions of
homogeneous linear partial differential equations with constant coefficients have
natural integral representations. Using the Oka-Cartan procedure Ehrenpreis de-
rived this theorem for spaces of functions and distributions which he called
localizable analytically nuniform (LAU-spaces). With a new definition of LAU-
spaces we explain how Hormander’s results on cohomology with bounds fit into
Ehrenpreis’ method of proof of the Fundamental Principle. Furthermore, we show
that many of the common Fréchet-Montel spaces of functions are LAU-spaces.

1. Introduction. Let 2 C R” be open and convex and denote by & (§2) the space of
infinitely differentiable functions in € with its usual Schwartz topology. Let
P(D) = (P,(D)) be an L x K-matrix of differential operators with constant coef-
ficients (where D = —id/dx). Let u = (uy, . . ., %) € & (). Then the Fundamen-
tal Principle proved by Ehrenpreis [8], [9] and, independently, by Palamodov [16]
states that u satisfies the homogeneous equation P(D)u =0 if and only if a

representation
J
u(x) = 3 [ dulz,8.)e" du(2) (L1)
17V

holds for all x € and k=1,...,K. Here J is a positive integer, () =
(dy(z, 9,)) is a J X K-matrix of differential operators with polynomial coefficients
and the Vs are algebraic varieties contained in the characteristic variety ¥ for
P(D);
V={z€Cker P(z) # 0}.

P(z) is considered here as a linear map from CX into C~. The operators d, and the
varieties ¥, only depend on P(D). The Radon measures dj ha\‘fe supports con-
tained in V, and satisfy, with a suitable positive continuous function k on C", the

growth condition

f k(z) |du(2) < +o0, (12)

which is such that it insures the convergence of the integrals (1.1) for every x EQ
More precisely, (1.2) holds for some member k of the family KX of all positive

continuous functions k on C” such that

sup |¢i)(z)(/k(z) < 4+ (1.3)
zeC
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236 SONKE HANSEN

for every ¢ € &'(Q) (here ¢(z) = gp(e™?), z € C", is the Fourier-Laplace trans-
form). It turns out that the family K defines a seminorm topology on & '(§2) which
coincides with the usual strong topology (2 is assumed to be convex). The
seminorms are given by the numbers (1.3). X is called an analytically uniform
structure for &(Q). Its importance lies in the fact that it enables one to find
measures dy; such that (1.1) is valid for all x € @ whereas the Paley-Wiener
estimates would a priori only lead to a representation (1.1) valid for all x in an
arbitrary but fixed compact subset of €, i.e. the measures dw, would also depend on
this compact.

For the proof of the Fundamental Principle it is essential that the analytically
uniform structure K satisfies an additional condition called localizability of
Ehrenpreis. Let us briefly indicate the reason for this. The kernel of P(D) is via the
Founer-Laplace transform canonically dual to a quotient space of a locally convex
space of entire functions f with seminorms SUp, c | (2)| / Kk(2) < + o0, k € K.
The proof of the Fundamental Principle therefore rests on a description of this
quotient space. More specifically, one has to find in every coset a representative
satisfying good bounds (stemming from %). Such a representative f can be given
by first constructing it locally and afterwards globally on C" using a suitable theory
of cohomology with bounds. The localizability condition on %K is then introduced
to insure that the bounds given by % are compatible with the bounds necessitated
by the cohomology.

In this paper we give a treatment of the more functional analytic part of the
proof of the Fundamental Principle, Following Ehrenpreis’ approach outlined
?bove we do this for linear partial differential equations with constant coefficients
in localizable analytically uniform spaces (LAU-spaces). The LAU-spaces which
Wwe use are closely related to but more general than Ehrenpreis’ PLAU-spaces. The
main point is that the localizability condition which we impose is well suited for
working with Hérmander's results on cohomology with bounds (see [12, Chapter
1.6]), while Ehrenpreis’ condition enables one to use a qQuantitative version of the
Oka-Cartfm procedure. So we in particular clarify the relationship between
Ehrenpreis’ method and Hormander’s results. This task was suggested to us by a
rema-rk made by‘ Ehrenpreis in his book (see [9, Remark 1.6]). We introduce
s o LA s o e B 1082 b Fundamenl P
Functions with bou.a. S~ eoregl on division 'and extension of entire

- rem will be stated without proof. We should

P(f) = sup 1A(2)]/ k(2).
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This is a nonnegative number or + oc. Let Ay, (resp. Cy) denote the locally convex
space of all entire (resp. continuous complex valued) functions f on C” with
| f(z)|/ k(z) > 0 as z — oo for every k € K and the topology given by the semi-
norms p,, k € K. Let M = IM(K) be the set of all nonnegative upper semicon-
tinuous functions m on C” such that m/k is bounded on C” for every k € K. The
set M describes the bounded sets in 44 and in Cy,. In fact, for every bounded set
B in Cy there is me M with B C {f € Cy | f(2)] < m(z), z € C"}. Now
consider the following two conditions on K.
(AU) For every k € ¥ there exists & € X with

K(z+2) (2 +|2]*) <k(2)

forall z, z2 € C* with |2/| < L.
(L) For every k € X there exists k' € K such that one can find for every
m € M(K) with m(z) < k'(z),z€(C’,a plurisubharmonic function ¢ on C” with

e? € M(K) and
m(z) < e <k(z), zeC"

DErmNITION 1. Let K be a nonempty set of positive continuous functions on C".
% is called an analytically uniform structure (= AU-structure) iff it satisfies (AU).
% is called a localizable analytically uniform structure (= LAU-structure) iff it
satisfies (AU) and (L).

Recall that a function @: C"—>[-00, +0) is plurisubharmonic iff it is upper
semicontinuous and its restriction to every complex one-dimensional line is sub-
harmonic. Besides other well-known properties of plurisubharmonic functions to
which we refer ([11] and [12]) we shall frequently make use of the following fact:
The smallest upper semicontinuous majorant of the supremum of a sequence of
plurisubharmonic functions is also a plurisubharmonic function provided this

bounded from above on every compact subset of C". This

supremum is uniformly th by a suitable
e sup Dy a

follows immediately from Lemma 3.3 in [11] if one expresses
lim sup.

REMARK. Ehrenpreis calls a subset I, C M A(
cally uniform structure (= BA U-structure) for K

%) a sufficient bounded analyti-
if for every k € K there exists

k' € X such that one can find for every m € M(K) with m(z) < 'kf(z), z E.C",
an element m’ € M, with m(z) < m'(z) <k(2), 2 € C". So condition (L} just
sin M is a

means that the set of all logarithmically plurisubharmonic function
sufficient BAU-structure for ¥. Note that in (L) one only needs to consider all m
belonging to a sufficient BAU-structure. It is therefore convenient to know that the
subset of all continuous functions in IM(XK) is sufficient if K is an A'U-structure.
To prove this just set with some fixed partition of unity (o)7° with uniform bo‘und
N > 0 on the number of overlaps and on the diameters of the supports for a given

m € M(K)

m'(z) = § sup m(z)afz), z€ C.

1 ay(2)*0
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Then m’ is continuous and m(z) < m'(z) < N-sup{m(z + 2'); 2] <N}, z € C~.
The statement now follows easily from (AU).
Let us collect some basic properties of the spaces Aq.

PROPOSITION 1. Let K be an AU-structure. Then Aq is closed under translations,
differentiations and under multiplication by polynomials, and these gperators are
continuous on Ay. T is a continuous linear functional on Ay iff there exists a

(nonunique) Radon measure du on C" with J k(2) |dpl(z) < + o0 for some k € K
and

T(f) = fcnf(z) aw(z) forallf e Aq.

If X is a LAU-structure there exists for every zy € C" a function f € Ay with
flzp) = 1.

PROOF. The first part of the pro
(AU).

A continuous linear functional T op A can be extended for some k € I by the
Hahn-Banach theorem to the Banach space of all continuous functions f on C"

with f(z)/k(z) -0 as z - o0 and the norm p,. The assertion on T then follows
from the Riesz representation theorem.

Now assume that % is a LAU-structure.
continuous functions with com
function ¢ with e® € 9 such
By Theorem 4.4.4 in [12] there

position follows from a repeated application of

Since 9 contains all nonnegative
pact support we can find by (L) a plurisubharmonic
that e ™% is integrable over a neighbourhood of zero.
eXIsts an entire function fwith f(0) = 1 and

f (2} e 2000 +12)7" dN(2) = a? < + oo,

Here dA denotes the Lebesgue measure on

C". We can pass from the L% to the
sup-estimate:

o< o f ”

[2|<

lLf(z + z’)|2 d)\(z’))

<c,a- sup e?+ o)) +|z + z’[z):‘"/2
1|11

holds for all : € (. Using (AU) we conclud
translation invariance of A
We shall now compare

our notion of LAU.-
of PLAU-structures. For

structure with Ehrenpreis’ definition
this definition we

refer to Chapter IV.1 in [9]. The

i localizability conditions (d) and (e) imply
localizability in oyr sense.

PROPOSITION 2. [ ¢ K bean AU-

Structure. If X is prodyet localizable in the sense
of Ehrenpreis then % is 4 LAU-

Structure,
PROOF. Let k € be given. By (d)in[9, IV.1], there is a &
con

_ € XK so that for any
tnuous m € M, with m(z) < k'(z),z € C*, and every z, €

C” there is an entire
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function f(-; z,) such that | f(zy; z5)] > 1 and
m(z)|f(z; z¢)| < min(k(z), m(z)), ze€C,

for some m’ € 9N independent of z,. Now choose a sequence ()", z; € C", such
that m(z) < sup, m(z,)| (z; z)|, z € C", and let ¢ be the smallest upper semicon-
tinuous majorant of the function sup, log(m(z)|f(-;z)|). Then @ is plurisub-
harmonic, e® € M and m(z) < e < k(z) for all z € C". Hence (L) is true for
all continuous m € 9. As explained above (preceding Proposition 1) this suffices
to conclude that K is localizable.

The product decomposability condition (i.e. the “P” in PLAU) which Ehrenpreis
imposes on K is necessitated by the induction-on-dimension arguments occurring
in the Oka-Cartan procedure. This condition is superfluous when working with
Hérmander’s results on cohomology with bounds instead.

3. The Fundamental Principle. The Fundamental Principle will be given for
localizable analytically uniform spaces defined below. The definition of these
spaces is essentially the same as Ehrenpreis’ [9, Chapter IV.1].

DeFINITION 2. Let W be a locally convex space. Iff there exist a (L)AU-structure
% and a separately continuous bilinear form {-, -] on W X Aq such that W is
isomorphic under this pairing (i.e. under map w —[w, -], w € W) to the strong
dual of Ay then W will be called a (localizable) analytically uniform space
(= (L)AU-space) with (L)AU-structure K and pairing[-, ]

ExaMmpLE. Let £ C R” be open and convex. Then & () is a LAU-space. The
LAU-structure ¥ is given in §4, example (iii), and the pairing [, -] between & ()
and A4 is given by

[u.f] = F '{u), wu€b(@andf€ Ay (3.1)

Here F denotes the Fourier-Laplace transform which maps & (), the space of
distributions with compact support in £, isomorphically onto Ay and is defined_ b_y
Fo(z) = ple ), z € C", p € 6'(). Since & () is a reflexive Fréchet space it is
in fact a LAU-space in the sense of Definition 2. ’
Using the examples (iv) and (v) in §4 we see in the same way ?hat the Fréchet
spaces &,(R) and & (R, (M,)) of ultra-differentiable functions in the sense of
Beurling (with weight ) and of Roumieu (with weight sequence (M,)), respectively,
are LAU-spaces. o
For the spaces & (), 6,(2) and & (@, (M,)) the following abstrgct_deflmgon of
differential operators with constant coefficients on AU-spaces coincides with the
usual definition if D = -id/dx.
DEFINITION 3. Let W be an AU-space with AU-structure and pairing -, -]. Let P

. K
be an L X K-matrix of polynomials. Denote by P(D) the linear mapping from W

into WL which is the transpose with respect to[-, -] of the lineaerappmg from A

into AX given by the matrix multiplication f— (- f € 'Agc. These operators

P(D) will be called differential operators with constant coefficients with symbol P.
With the definition (3.1) of the pairing for & () we have

u(x) = 8(u) =[u, €77}
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for all u € () and x € & (§, = Dirac measure at x). Therefore the integral
representation (1.1) follows from the

FUNDAMENTAL PRINCIPLE. Let W be a LAU-space with LAU-structure K and
pairing [-, ). Let P(D): WX WL be a differential operator with constant coeffi-
cients and with symbol P. Then there exist (only depending on P) a positive integer J,
aJ X K-matrix (dy(z, 9,)) of differential operators with polynomial coefficients and
algebraic varieties V; C {z € C"; rank 'P(z) < K}y, j=1,...,J, such that u =
(uy, . .., ug) € WX is a solution of the homogeneous equation P(D)u = 0 if and only
if forevery f € Ay.andevery k = 1,. .. K

J
CUED> fVJd,-k(z, 9~ 2) duy2).

Here the dy, are Radon measures on V, depending on u but not on f which satisfy for
some k € K

fyk(z) ldwl(z) < +o0, j=1,..., 7.

In particular, the integrals representing u converge absolutely in W.

The hardest part in the proof of the Fundamental Principle is the proof of some
deep theorems on division and extension of holomorphic functions. We shall only
state them here. These results have been proved by Ehrenpreis [9] and Palamodov
[16]. More recent proofs making heavy use of Hérmander’s results on cohomology

with bounds [12] have been given by Bjork [6] and by Liess [14]. Bjork’s statement
of these results is closest to the one which we give now.

Dr1vision- aND EXTENSION-THEOREM. Let Q be a K X L-matrix of polynomials.
Then there exist a positive integer J, K-vectors d(z, 9,) of differential operators with
polvnomial coefficients and algebraic varieties V, C {z € C"; rank Q) <K}, j=
1, '

-+« J, and there is a positive constant M such that the statements (Div) and (Ext)
hold for every plurisubharmonic Junction ¢ on C.

(Div) For every entire Junction v: C" = CL e have

Ha0)QN) =0 ffzev,j=1,..
Conversely, if an entire Sunction

‘ g: C" - CX sarisfies d(z,9,)g(z) =0 if z €V,
J=1.... J. then there exists an

entire function v: C* — CE with g=QovinC,

Sup |o(z)]e”#(5)(2 +|z|2)_M < sup |g(z)|e ™, (32)
e zeC

Here and in the following ¢,, denotes the Junction

oy(2) = sup{e(z + 2'); 7’ & T2 < M}, zeCn. (33)
This supremum is in Jact a maximym since @ is upper semicontinuous.
(Ext) For any entire Suncti

C" = C such that on g C - CX there is another entire function f:
dj'-(z,az)(f-g)(z)=0 ifze V:r.andj= 1,“.“’

su z -WM(Z) h—M
38 VN0 )

?

< max sup Jd(z, 3, )g(z)e
J zEY,
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Since we cannot refer to the literature for exactly this statement we have to make
some comments about it. One can prove this theorem by constructing v and f in
(Div) and (Ext), respectively, at first locally near every point in C" and then
globally by correcting the resulting cochains with the help of Hormander’s results
on cohomology with bounds. The local construction can be done keeping the
necessary uniform bounds on the cochains if we use coverings of C* with cubes of
size O(|¢|™™) as the centers § of the cubes tend to infinity. Here m is a constant
depending only on Q. This is in fact the Semilocal Quotient Structure Theorem of
Ehrenpreis. To apply Hormander’s technique (see [12, Chapter 7.6]) for passing
from local to global we have to note two simple refinements to his approach.
Firstly, the coverings to be used to define the cochain groups have to be chosen
such that the sizes of the cubes belonging to the covering are bounded in a manner
we have just indicated. HSrmander works with coverings consisting of congruent
cubes. But it is easily checked that his results are not essentially changed when
working with the more general coverings which are necessitated by the local
construction. Secondly, we do not require the plurisubharmonic functions ¢ to
satisfy a Lipschitz-like condition |@(z) — @(z")| < ¢ if |z — 2| <1 (see Theorem
7.6.10 in [12]). Hormander uses this condition only to pass from L*-estimates for
holomorphic functions to corresponding sup-estimates. This is achieved with the

inequality

1/2
|u(2)] < C,,e""‘(‘)(jl.z |u(z')f2€—2¢(z') d)\(z’))

which holds with a constant C, depending only on the dimension n for every entire
tion @ and all z € C". Since this passage
is plurisub-

-7|<1

function u, every plurisubharmonic func
has to be made several times we have to know that the function ¢,

harmonic if ¢ is. Because of the uniformity in all plurisubharmonic functions (1) of
the L2-estimates for the d-operator (see in particular Theorem 4.4.2 in [12]) we can
then see that the constant M > 0 occurring in (Div) and (Ext) may actually be

chosen independent of ¢.

LeMMA 1. Let ¢ be plurisubharmonic and let M > 0. Then @y, (defined in (3.3)) is

also plurisubharmonic.

PROOF. Let z € C" and ¢ € R with g (z) <c be given. By the upper semicon-
tinuity of ¢ there exists for every z’ € C" with |2/| < M a positive ¢ such that
@t + ¢) < e for all §, ¢ € C" with |z — §[ <e and |z — §'| <e. From the
Heine-Borel theorem we therefore get g,,(§) < cif [z = § | < 8 for some positive 8.
Hence g,, is upper semicontinuous and therefore also plurisubharmonic by Theo-
rem 1.6.2 in [12}.

Let us now show that

(Div) and (Ext) imply the Fundamental Princip
solution of the homogeneous equation P(D)u = 0
pairing [-, -] a continuous linear functional on the quotient space

A%/ QA% »

Jle. A “function” u € wKis a
if and only if it defines via the

(3.4)
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where Q is the K X L-matrix of polynomials given by Q(z) =‘P(—z), z € C". This
follows by duality from the definition of differential operators on LAU-spaces.
Choose J, d and V; as in the Division- and Extension-Theorem. Let C'“:x denote
the locally convex space consisting of all J-tuples (hy, ..., h) of continuous
C*-valued functions k on ¥, with |h(2)|/k(z) > 0asz — o0, z € Voi=1,...,J,

for every k € K and carrying the topology defined by the family (parametrized by
k € K) of seminorms

(Ao, B) > max sg;’)/>|hj(z)|/k(z).

Let N denote the linear mapping from A% into (7% given by f-
(dy(+, 3.)] Voo d;(-, 3,)f| V_,)-

Since X is an AU-structure, N is well defined and continuous. We shall show
that the kernel of N coincides with QA‘JLC and that N is a homomorphism (in the
sense of functional analysis). From this would follow that N identifies the quotient
space (3.4) with a subspace of (ix and the proof of the Fundamental Principle is
then completed by a standard application of the Hahn-Banach theorem and the
Riesz representation theorem (as in the proof of Proposition 1).

Since N is continuous it follows from the first part of (Div) that QA% is
contained in the kernel of N. Now let g € AX be given with Ng = 0. Since K is
localizable (i.e. (L) holds) there exists a plurisubharmonic function ¢ with e? €
M(X) and | g(z)| < e™?, z € . Therefore there exists by (Div) an entire func-
tion ¢v: C"—C" with g(z) = Q(z)u(2), 7 € C", and (3.2). Applying (AU) re-

peatedly we see that v € 44, So QAjy; coincides with ker N and is in particular
closed.

Now let us prove that N is a homomo
as in (Ext) choose k € ¥ with

rphism. Let k, € K be given. With M > 0

k(z + 2)(2 +12)Y < ky(2), (3.5)

for all 2, 2" € C" with |2'| < M. This is possible by (AU). Choose k' € K (depend-
ing on k)asin (L). Letg € AX with |d(z, 3,)8(2)| < Kiyifzev,j=1,...,J,
be given. We are done once we have exhibited an entire functiojn f € A% with
Nf = Ng and |f(2)] < ky(z), z € C", By the localizability (L) of % there exists a

plu}'i§ubharmonic function ¢ (depending on g) with ¢® & M(K), |d(z, 3,)g(z)] <
e"’(":szVj.j=],...,J,and ’ z

") <k(z), e (3.6)
From (Ext) now follows the existence of an entire function f: €5 CK with
Ni-8=0 ) <2+ |zZP)Meoe®, ; € . Using (AU) we get f € AX and

ith (3.5) and (3.6) we obtain |A2)} < ky(2) for every z € C", as desired. This
completes the proof,
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support in £, € Cc R" open and convex, is an example for such a space. Our
purpose is to show that a rather large and important class of inductive limit spaces
of entire functions (containing in particular the example just mentioned) can be
given LAU-structures defining the spaces algebraically and topologically.

Let 2 = (g)){° be a sequence of continuous real valued functions ¢, on C" such
that for all j

0(z) <a,(2), z€C, (4.1)

and
0/2) = 6, (z) > —0 asz—> 0. (4.2)

For complex valued functions f or C” set
g(f) = sup |f(z)|e_"f(‘), j=12....
zeC?

Let A[Z] be the space of all entire functions f which satisfy g(f) < + for
some j depending on f. Equip A[Z] with the natural locally convex inductive limit
topology. Analogously, let C[Z] be the locally convex inductive limit space consist-
ing of all continuous complex valued functions f on C* with g(f) < + oo for some
J =Jj(f). Let K = ¥, be the set of all continuous functions k on C" which are

given with some sequence (8,);° of positive numbers §; by
k(z) = sup 8% forallz € C".
J
Recall that a (LS)-space is a countable inductive limit of Banach spaces wit_h
compact spectral mappings. It is well known (see e.g. [10, §25]) that a (LS)-space 1s
Hausdorff if the spectral mappings are injective and that Hausdorff (LS)-spaces are

in particular Montel spaces.

ThEOREM 1. Let 3, A[Z] and K = Hy be as above. Then A[Z] is a (LS)-space
and A[Z] = Ay as locally convex spaces. If for every positive integer j there is another
positive integer | such that oz + ') + log(2 + |25 — a(2) < C forall z,2 € C7
with |z'| < | and some finite constant C independent of z and Z', then K is an
AU-structure. If, in addition, there exisis a sequence of plurisubharmonic functions
(@)} with

oj(z) < q-}(z) < °j+l(z)3 zeC, (4.3)
forallj=1,2,..., then X is a LAU-structure.
this theorem has been proved
3-solvability in his proof and
urely functional-analytic proof
d Summers (see [3] and

Remark. Except for the localizability statement,
by Taylor [17]. He uses Hormander's results on
therefore assumes the g; to be plurisubharmonic. A p
of Taylor’s theorem has been given by Bierstedt, Meise an

[4]). We shall essentially follow their method in the ‘ -
ProOF oF THEOREM 1. From Monte!l’s theorem and (42) 1t follows easily that

every sequence of entire functions which is bounded with reSpect.to the seminorm
g; has a subsequence which converges with respect to the seminorm g, - This

implies that A[Z] is a (LS)-space.
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To show A[Z] = Ay let us first prove the corresponding result C[Z] = Cy fc?r
the associated spaces of continuous functions. Provided X is nonempty, C[Z] is
obviously continuously imbedded in C. To prove the converse let U be a closed
absolutely convex neighbourhood of zero in C [Z]. We have to find k € K such
that {f € C[Z]; p() < 1} C U. By the definition of the inductive limit C[Z]
there exists a sequence (&)7° of positive numbers such that

oo

U {fecz]q(N<e) cu. (4.4)

Jj=1

Choose a locally finite partition of unity (a,)° on C*, o, continuous with compact
support, such that

exp(o,_y(2) ~ 0/(2)) < 2%, if az) #0and/ > 1. (4.5)
Choose a sequence (8,7 of positive numbers §; < I such that

8, exp(a;(z) - o,(z))_( min(8, 27'¢) if afz) #0,1 <7< . (4.6)
Since this involves for every §; really

only finitely many conditions such a sequence
(8)7° can be found. Now set

k(z) = sup 8% ;e 4.7

J=12, . .

It follows from (4.6) that this Supremum is locally a maximum and therefore k is
continuous and k € K. In par

ticular, i is nonempty. To show that pi is the
required seminorm let f € ¢ [Z] with

1f(2)| < k(z), :e€ C,

and recalling that 8, < 1 we then have by (4.1) and (4.7)

MMK??ﬁMWPMm

given. Defining o, = g,

< sup max(exp(o,hl(z) - 0/(z)), sup §; exp(o,(z) - a,(z)))-
a(z)#0 1<

From (4.5) and (4.6) now follows that g/(a,f) < 27%, for all / = L2....

ince exp(s(z) — 0;,1(z)) tends to
t the above series converges with
respect to the seminorm Gy i

ges in the inductive limit topology.
Thus we have now shown that the subspace topology on C[Z] inherited from Cy

and hence conver

prove that more generally any bounded subset of Cy is already bounded with
respect to some sem;

fonorm g. Assume that, on the contrary, there exists a bounded
subset B of Cy which is unbounded with respect to every seminorm g, We may
thus choose 3 Sequence (f)° in B with

W) > 1e, poy (48)
for 'a. Sequence (z)P° in C" which tends to infinity, Choose a sequence () of
positive numbers § < 1 such {hat e  e%a) } < 1 ¢ J» and such that the
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function k(z) = sup, z‘)‘je"f'(z), z € C", is continuous and therefore in K. Then we
have k(z,) < €% for all /. But this implies together with (4.8) that the sequence
(f)® cannot be bounded with respect to the seminorm p,. This contradicts the
assumption that B is bounded in Cy. So we have shown that Cq, = C[Z] and that
this space has a fundamental sequence of bounded subsets. This implies that C[Z]
is a (DF)-space (see e.g. [13, §29)).

These facts enable us to apply a homomorphism lemma of A. Baernstein II to
the inclusion mapping 4[] < C[Z] to derive the (nontrivial) fact that A[Z] in its
inductive limit topology is actually a subspace of C[Z]. In view of C [Z] = Cy we
then know that A[2] = A4y as locally convex spaces.

HoMOMORPHISM LEMMA (BAERNSTEIN). Let E be a Montel space and let F be a

(DF)-space. Let T be a continuous linear mapping from E into F with the property
that T~ '(B) is bounded whenever B is. Then T~ is a continuous linear mapping from

TE onto E.

For a proof see §2 in [1].
Now assume that there is a sequence (/());=, of positive integers /() and a

sequence (a,);° of positive reals g; such that for allj

afz + z') + log(2 +]2°) < oyplz) —log g,
if z, 2/ € C" with |2/| < 1. Let k € ¥ be given. More specifically, let us assume
that k(z) = sup, 8,¢%, z € C", for a sequence (8)7° of positive numbers. Making
constructions as above we can find k' € X with

k'(z) < sup ;- 8 e, z€C
J

(4.9)

From (4.9) now follows
Kz + 2)2 +]2f) <k(2) 22 €CL|Z]<
Thus ¥ is an AU-structure.

Now assume that, in addition, there exists a sequence of plu of
with (4.3). Let kK € K be given. Choose a sequence (g;);° of positive

risubharmonic

functions (¢,)7°

reals with
ge™® < max ge®? ifz € C' 7| < I, (4.10)
J<i
forall/=1,2,..., and choose k' € K with
k'(z) < sup g™ <k(z), zZE C. (4.11)
J
Using (4.3) and the continuity of g; such choices can be made. Let m € M(K) be
continuous with
m(z) < k'(z), z€C. (4.12)

Since {m} is bounded in Cy we already know that m(z) <! e?® z € ", for
some / € N. By (4.2) we can find an integer I, > 1 +2with

m(z) < g,,e%? ifz€C|Z| > o (4.13)



246 SONKE HANSEN

By (4.10) and (4.11) we have

kK(z) < max ge¥ ifz € C", |z < [,
This results with (4.11), (4.12) and (4.13) in m(z) < ¥ < k(z), z € C", where
@(z) = max; (@2} +logeg), z € C.

Since obviously e¥ € O (%K) and since @ is plurisubharmonic we have shown
that K is localizable (recall that the continuity assumption on m is no restriction
when dealing with AU-structures). This completes the proof of the theorem.

ExampLEs. Theorem 1 applies to the following examples of spaces A[Z], 3 =
(0;)7°, in full strength to give localizable analytically uniform structures ¥ = Hs
with 4[Z] = A

(1) The space of polynomials in n variables with complex coefficients. In fact, this is

the space A[Z] with the sequence 2 = (0){° consisting of the plurisubharmonic
functions

ofz) =j-log(2 +|z|), :zecCj=1,2....

For this example the proof of the Fundamental Principle leads to a generalization
of Hilbert’s Nullstellensatz to submodules M of §X (K €N, ? = ring of complex
valued polynomials). This follows from the geometric description which one

obtains for the quotient module X /M. This example was given by Ehrenpreis (see
[9. Chapter V. 8]).

(i) The space of Laplace transforms of analytic functionals on an open convex
subset & C C". By the Ehrenpreis

-Martineau theorem (see [9, Theorem 5.21] or [12,
Theorem 4.5.3)) this is the locally convex space AlZ), 2 = (o))", with

Uj(Z) = Sup RC<Z, §>’ _] = 17 2) L)
K,
for a sequence (K)y

K, Cint K., In the case Q =

apter V.1]). He proved X(CHtobea LAU-space.

_(m) The space of Fourier- Laplace transforms of the space &'(Q) of distributions
with compact Support in a convex open subset  of R*, In fact, by the Paley-Wiener-
Schwartz theorem the Fourier-Laplace transform maps & () isomorphically onto

AZ]f welet 3 = (0,);en consist of the functions

a(z) = - log(2 +|z|2) +H(Imz), ;e C,jEN.

Here (H)._. is the i i '
jeN sequence of supporting functions corr. nding to a fixed
Sequence (X)), .\ of compact conve K cint

X subsets K, Cc Q with K. C int K, , which
exhausts Q. This means that H(y) = J , J+1 W
. j 1’) = sup <x’ ; € K. ”n i

H; are Plurisubharmonic sincejth N 7} 1 € R". The functions

: : €y are continuous and 2 f plurisub-
harmonic functions, Therefore all , supremum of pluri
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This example was for polyhedra & C R” shown to be LAU by Ehrenpreis (see [9,
Chapters V.5 and IV.5]). The statement of analytical uniformity follows for
arbitrary open convex £ readily from Taylor’s theorem [17].

(iv) The space of Fourier-Laplace transforms of the space of Beurling wltradistribu-
tions &/(§) with compact support in an open convex subset & of R". For the
definition of these ultradistributions and their basic properties we refer to [S]. Here
w is assumed to be a continuous real valued function on R" satisfying the
conditions

(2) 0 < (0) < W + 1) < () + w(n)forall§,n ER,

(B) f w1 + [&)™""" df < + o0, and

() @(®) > a + b log(l + |&)), ¢ € R, for some real 2 and positive b,

The preceding example (iii) is contained in example (iv) since the Schwartz
distributions correspond to w(§) = log(1 + [£))-

By the Paley-Wiener theorem for Beurling ultradistributions (see Theorem 1.8.14
in [5]) the Fourier-Laplace transform maps &,({) isomorphically onto A[Z] if we
let = = (0;);n consist of the functions af(z)=j+j w(Rez) + H(lmz),z € C,
J € N. Here (H));c 1s chosen as in example (iii).

It is immediately clear that Theorem 1 applies to give A[Z] = Ay for a certain
AU-structure. But the localizability is not obvious because «(Re -) need not be
plurisubharmonic. However, since there is for every j € N a positive g with
Hyn) + gln| < H;,,(n), n €R", we can infer the localizability of K from state-

ment (a) in

LEMMA 2. Let @ be a continuous real valued function on R” with (a), (B) and (7).
Then there exist for every € > O plurisubharmonic functions ¢ , and @ _ such that

(@) — ¢ — ¢]lm z| < @, (2) — W(Re 2) < e[lm z],

(b) —c — ¢|lm z| < p_(2) + ARe 2) < ¢|Im z|,
for all z € C" with a constant ¢ independent of z.

one can approximate Lipschitz functions by plurisub-

REMARK. More generally, oy pl
owever, the approximation for

harmonic functions (see [15, Proposition 2.1). H

large |Im z| given in {15) is too crude for our purposes. ‘
PROOF OF LEMMA 2. Let e > 0. Choose an entire function f with f(0) # 0 and

zeC. (4.14)

The existence of such a function f is related to the existence of nontrivial test
functions in 9, with support contained in {x € R"; |x| <¢} (see [S]). In fact, f can

be chosen as the Fourier-Laplace transform of such a test function. Ncl)lw tIi:ho(:hse
8 >0 wi £ 12| < 8. Choose a sequence (2)7" z; € €' suc at the
L o, Le be the smallest

union of all balls with center z; and radius & covers C". Let g,
upper semicontinuous majorant of the function

z - sup(log|f(z — z)| + o(Re z;) — ¢[lm z])-
J

If(z)] < exp( —w(—Re z) + ¢[im z}),

Then ¢, is plurisubharmonic on C".
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Given z and z; we have, using (a) and (4.14),
log|f(z - z))] < —w(Re z) + w(Re z) + e[Im z| + ¢|Im z|.
From this the second inequality in (a) follows. Using () we obtain for |z — z| <4,
log|f(z ~ z))| + w(Re z;) — ¢|Im z|
> log 6 — w(Re z — Re z) + w(Re z) — e|lm z| — eé.

Hence the first inequality in (a) follows with ¢ = ~log § + ¢§ + sup{w(§); |§| < &}
Choosing f with

f(2)] < exp(—w(Re 7) + ¢lmz)), zeC

instead of (4.14) and defining ¢ _ as the smallest upper semicontinuous majorant of
the function z — sup;(log) f(z — z)| — o(Re z) — ¢llm z) we can derive (b). The
proof is analogous to the proof of (a) and is therefore left to the reader.

The space of Beurling ultradifferentiable functions on R” was considered by

Berenstein and Dosta] (see [2, Chapter 11, §2]). There it is shown that & is
analytically uniform. The localizability of &,, 1s not shown there.

y

[7] (in the notation of [7), &/(R, (M)
Wiener theorem for Roumieu ultradistribu-
tions (see e.g. (7, p. 37) the F ourier-Laplace transform maps & '(Q, (M,)) isomor-

Phically onto A[Z] if we let 3 = (9);en consist of the functions o(z) = M(jz) +
H(mz),z € C",j € N. Here again (H), _. is chosen as in example (iii) and
M(z) = sup log(]z”]/Mp),z e C.

PEN

is the space Sé(M( o ). By the Paley-

ions 9 are continuous and plurisubharmonic

As for some LAU-structure X.

» §2.3)) that & (@, (M,)) is analytically uniform.
proved by Fhrenpreis (see [9, Chapter V.6]) in

case ) = R”.
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ultradistributions 9/ (R") is an AU-space and by Chou [7} to a proof that the space
of Roumieu ultradistributions D’(, (M,)) in an open convex subset Q@ of R" is an
AU-space. In [9] and [2] also the question of localizability of &)’(R") and 9D/ (R"),
respectively, is studied. However, the definition of localizability used in [2] (see
Definition 3(viii) on p. 21) only requires for every m € JM(K) the existence of a
plurisubharmonic function ¢ with m(z) < e%?, z € C", and ¥ € IN. But when
working with this definition the proof of the Fundamental Principle given in [2,
Chapter IV, §2] is not complete. Note that our stronger localizability condition (L)
is essential for proving N to be a homomorphism (last part of §3). The point in all
this is that one has to insure that a subset M, c IN(K) is a sufficient BAU-struc-
ture in the sense of Ehrenpreis (see [9, p. 97]) when M(K) is to be replaced by
9M,. However, even in [9] this point is not always treated carefully. On p. 127 in [9]
it is implicitly assumed that all functions B’ exp(4’] - |) form a sufficient BAU-
structure for the space of holomorphic functions of exponential growth. But there is
no reason for this to be true. A sufficient BAU-structure is easily found though
when looking at the last part of the proof of our Theoem 1. Unfortunately, we have
not yet fully understood the localizability proof for &’(R") given in [9]. But it
seems that [9] contains more or less all those ideas which should be essential in
proving a theorem analogous to Theorem 1 for a suitable class of (LF)-spaces of
entire functions containing as particular examples the spaces of Fourier-Laplace
transforms of (ultradifferentiable) test functions in an open convex subset of

euclidean space.
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