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0. Introduction

Let X R be a bounded domain with smooth boundary, Y= 0X . Let n
denote the unit normal at Y pointing to the exterior, X,=R7\X _._Wnte
X=X,nX_. Let « be a smooth positive function in X_,and let x=11in X .

We consider the transmission problem,
u=0 in XxR,
u,—u_=0 on YxR, (0.1)
(D), —(Du)_=0 on YxR,
associated with the d’Alembertian
[ =a(x)(8/61)* — 4.

Here we have set D,= —ié/on. The subscripts + and — indicate that boundary

values are taken from X, and X _, respectively. . _
A solution to (0.1) can be thought of as a wave propagating through space

the presence of a transparent obstacle X with variable index of refraction .
The transmission problem (0.1) yields a group of unitary operators with

coercive generator,
0 I
at4 0/

So, following the theory of Lax and Phillips [LP], we can associate a szcatterng
operator with (0.1). The scattering operator is a unitar;_r (_)perator on (R x S )
mapping the incoming translation representation (of the initial state) of a solution
to (0.1), k™, to its outgoing translation representation, k°,

ks (T.9)= |f S(T-T,%0k (T, 0)dT'd,S.
Rx3§2
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i the
Majda and Taylor [MT] gave a time-dependent representation formula for
(Schwartz) kernel of the scattering operator,

ST=T',8,0)=8T—T)59- o)

= J I m T+t — (8 xS, 1 + T')d Sdt
YxR

‘ 2
= L AT +1—-¢9,x)) (Qu/on) (x, 1+ T")d Sdt . (©2)
Y xR
Here u=u(;w) is the unique solution to (0.1) satisfying the initial condition
u=u" if 140,
where

Fix directions % weS? G,
5(-, 8, W)€ Z'R). Tt i natural to ex

Ty= sup{<9~w,x>;xeX_}.
A ray reflected off X _ at
Y={xe Y;(S—cu,x)-—-To} (04
has sojourn time T 1t is known [MT; P] that Ty is the leading singularity of the
Scattering kerne], Le,
SUPPS(, 8, )]~ oo, 737,

Tyesing Supp (-, 3, w),
if the exterior formal at y,

5)
n0=(9-w)/|9—wl, o
IS a regular value of the Gauss map, if

|9+a)| <2]/oTO, 08
where
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in a neighbourhood of T,. The coefficient is given by

ao(%w)=-2m)~ " ¥ y

%e¥Yp

(a_—1+3,mdH)'"*—(,n)
a1+ S G

Here y =y(x) is the Gaussian curvature of Y. Majda and Taylor [MT] proved this
for backscattering, 9= —, and in the case where a>1 in X _. Petkov [P]
generalized their results relaxing the assumptions on a to (0.6). Assumption (0.6)
has the following consequence. Among the rays with initial direction @ and final
direction 9 those penetrating the obstacle are delayed when compared to those
transversally reflected at Y. In particular, — T, is the smallest sojourn time for this
class of rays. (See also the remark at the end of Sect.2.)

In this paper we treat the case « _ = 1. Then the index of refraction is continuous
everywhere and non-smooth only at the boundary of the obstacle. We observe that
ao vanishes if a_=1. We now state our main result.

Theorem 0.1. Let 9, we S2. Assume (0.6). Define Ty, Yo and ng as in (0.3), (0.4), and
(0.5). Then

suppS(-, 3, w)C1—0, Ty].

Assume that Ny is a regular value of the Gauss map. Then, in a neighbourhood of Ty,

S(T.9,w)=2n)"" | €7 T a(o)da,

-0

With a symbol ae S, (R). Assume that a_=1. Then aeS%, (R) and modulo S~

alo)= T (- Ay 8, ny @) - e 0.7)
xc¥p

Here -y denotes the Gaussian curvature of Y.

Thus (-, 9, w) has a conormal singularity in 7, or el;e T, ¢ singsuppS( -, 34, w).
Incase o _ =1 the strongest possible singularity in T 1s

S(T, 9, 0)=a,(9, @) T—Tp)-

}fere a, is defined as the right-hand side in (0.7). @, #0if, e.&., Yis connected and
(C2/0m)_40. Hence, upon making these assumptions, ~we gt
TyesingsuppS(-, 9, ). It is easy to derive the following inverse scattering result
from this,

Corollary 0.2, If a_=1,(0a/én)_+0, and if Y =JX _ is connected, then the convex
hull of X _ can be recovered from the set of leading singularities of the scattering
kernel for backscattering directions.

Results on the singularities of the scattering kernel for hypcrbolic equations
have been given by several authors. The case most studied is that of an opaque
Obstacle (cf. Majda [M] and others). For transparent obstacles we refer to [MT]
and [P].
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This paper is organized as follows. In Sect. 1 we study the .reﬂt?CtiOH of
singularities at ¥ x R. There our main goal is to obtain Fhe principal and tht}
subprincipal symbol of the Neumann operators at hyperbolic points. The proofo

Theorem 0.1 is given in Sect.2. In Sects. 3 and 4 we compute the symbols of
conormal distributions occurring in Sect. 2.

1. Solutions to the Transmission Problem

Let f g€6 (Y xR). There exists a unique extendible distribution u in X xR
satisfying the homogeneous transmission problem,

[Ju=0 in X xR,

U, —u_=f at YxIR,

(D), ~Du)_ =g at Y xR,
u=0 if Q.

(1.1)

We infer this from the basic existence and regularity theory for the mixed problem.

The speed of Propagation for [ ig bounded by 1 /l/%. Hence a standard
domain of dependence argument shows that

(x, esuppu =
there exists (g, t)e(supp Sfusuppg) (12

with = X< (e—1))/a .

n(x)=(0, 1),

Then, using the implicit function theorem,

_C We can parametrize Y in a neighbour-
hood of ¥ with yeRI“1 |y small,

=X+ (y, w(y).

15 2 smooth function with W(0)=0, p'(0)=0. In 4 neighbourhood of (£, f) We
now change to peyw Coordinates (y, 7, NeR xR « R, |y +|z/+ |t —t | small,

Here

(X, 0)(y,z,¢), X=X+(y, 9(y)+2). (1.3)

Then ¥ x R i given by z =) The exterior normal is

where M=)}~ iy, 1
D=+ e,

; land the subprincipal symbols from the full
berseript % ang », fespectively. In canonical coordinates (x, £; &9

D°=lf|2-a(x)r2, [1°=0



Leading Singularity of the Scattering Kernel 129

The canonical transformation associated with (1.3) is given by
(x,t;&, 1)z, i E=—={y'(y). ).
Therefore we have, in canonical coordinates (v, z,t;1,{,1),
Q%= =T~ P —(a? =g + T 72y, m?),
[0°=0.

Here we used that the Jacobian of (1.3) equals 1. This property simplifies the
transformation formula for the subprincipal symbol [H, Vol. 3, p.83].

A point (y, t; 1, 1)e T*Y x R)\0 is called hyperbolic for (] with respect to the
* side, (y,t;1,7)e H ., if the equation for {

Do(y: iOa Ia P CJ ’E)=0
has two distinct real roots or, equivalently, if
a T2 =P+ 3y >0 (1.4)

[H, Vol. 3, p. 424].

We recall a construction of the Neumann operators, B, on solutions to
[u=0 which are microlocally outgoing near H..

In +2>0 and near H, we can factorize the principal symbol of [],

(1% = - ) U{—12Y),
100y =d TNyt eloa T — 2+ Ty )R
Here we take ¢ = —sign(zt). This choice of sign insures that r increases along the

bicharacteristics of J{ — 29 which are issued from H , into +z>0. Asin [H, Vol. 3,
Lemma 23.2.8], we derive a factorization of [] itself,

O=(D.—A)(JD.—4,). (1.5)

Here 4,, A, are properly supported first order pseudo-differential operators which

are tangential with respect to z=0, i.e. they contain no D.. 4) is the principal

symbol of A,, k=1,2. The factorization holds modulo operators which are

smoothing on solutions to non-characteristic boundary problems. A4, and A, are

uniquely determined modulo smoothing tangential pseudo-differential operators.
The normal derivative is, in coordinates (y, z, ),

Dn:JDz—J~l<tp’,Dy>.
Set
B=A4,+D,—-JD,.

B is. a first order tangential pseudo-differential operator. We can form its
Testrictions to z=0),
Bi =% BI +z=0"

B + are the so-called (outgoing) Neumann operators. They are only defined
microlocally in H.,, i.e. B, v is well-defined modulo C*(Y xR) for ve &'(YxR)
With WFye H , . (We identify conic subsets of the cotangent bundle with subsets of
the cosphere bundle. In this sense we use the notation €.)
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We now derive formulas for the principal symbol, b%, and the subprincipal
symbol, b3, of B, in the canonical coordinates (y,t;m,7)

Lemma L1. In H_ we have

bi = —tlay |yt + 72y ) (16)
and, at y=0,

Tb%=(20)" A+ (4) ™ oy — fn/22) !

Xy e Gonfon)). )
Proof. For the principal symbol of B we have
b= —~J "y
=elar® — > +J 2y, 212,

In view of the definition of ¢ we have — 7 — +elt| if +2>0. Hence (1.6) follows.
At y=0 the subprincipal symbol of D,—JD, equals

(i/2) (3}21 ¢*/0y;0n;+ 52/5t6f) (=" Ky, )
=(20)" " Ayp.

Hence the subprincipal symbol of B is

B=11+Q2) "4y at y=0. (18

We apply the composition formula for subprincipal symbols to (1.5). We get

Ds=(JCHf"‘»?)(—/li)+(-)-sz)(JC—/’»?)
+(20) I =29, J0— 20

Recalling (=0 we deduce that this equation is equivalent to, at y=0,

;le + /152 = O N
B 20+ (2938 1g )0 i,

With 2502;.?—;,3 and A9=J" Yy + ekl it follows that
26%58 = S LU [ ) at y=0,
Or, equivalently,

(2692 = — (b0, gy -

Iy} ar y=o.
Since J —1=(y?) ang C,(b%)2 =

Oat y=0 we obtain, at y=0,

1 =26 (it (Ba)az)— 2im, " - p)).

(L7} follows if we insert this into (1.8) and Observe that b%, =(+ b%),. The proof is
complete. - -

Remark, The subprincipal symbol of B,
However the Neumann Operator acting on
defined subprincipal symbol.

is not defined invariantly at Ht it
half-densities, B, has an invarianty
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In coordinates (y,?) we have B, =J'/2B.J ™'/ because d,Sdi=Jdydr. Since
J'(0)=0it follows that 5%, =b%; at y=0. We give an invariant meaning to the right-
hand side in (1.7) and obtain

+ 2B, = (%)™ XS*(n)—1*(30/n) 1 /2) + trace S* .

Here S* is the second fundamental form of the hypersurface YCcR? viewed as a
quadratic form on T*Y.

It follows from (1.6) that B,, B_ and B, +B_ are elliptic in H,, H_ and
H,~H_, respectively. So we can construct microlocal inverses to these operators
in these sets.

Proposition 1.2. Let '€ H,nH_ be closed and conic. Let toeR be such that no
bicharacteristic issued from I' in positive time direction hits T*(Y x ]— oo, to[ MO
Let Ec ¥~ (Y xIR), properly supported, such that E is an inverse for B, +B_
microlocally near I'. Then, for every f, ge &' (Y xIR) with WFfuWFgC T, the
solution u to (1.1) satisfies modulo C*, on Y x J— o, tol

(£Du)=Biu,, (1.9)
u,=EB_f+g), u_=E(-B,f+g). (1.10)

Proof. Let f. ge &(Y x R) with WFfUWFgCT. Let u be the solution to (1.1).
Consider w* e &(Y xR),

wr=EB_f+g), w =E-B.f+g).
It is casy to check that
wr—w =f, B,w'+B_w =g, (1.11)

hold modulo C*(Y x R). Using Fourier integral operators we can construct a
distribution v solving in X x ]— o0, t,[ the following problem:

QueC™
vy=w modC™ (1.12)
peC* if t<0.
In fact, near I' we construct ¢ as a solution 10
(JD,— AeC™,
v, =w-modC”.

Here we use that ¢ increases along the bicharacteristics of J{ — 4 issued from H ;
into +2>0. Recalling the definition of B and of B, we obtain

(+D,v),=B.w* in Yx]—oc,tol. (1.13)

Combining (1.1),(1.11), (1.12), and (1.13) we see that u—uv is, modulo C*, fort < to,
an outgoing solution of the homogencous transmission problem. The basic
regularity theory for mixed problems implies that, modulo C®(Y x J—c, tp]),

Uy =Uy, (D) s =(Da?) s - (1.14)
Now (1.9) and (1.10) follow from the definition of w* and (1.12), (1.13), {1.14).
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symbol of the Neumann operator, however,

. - iond,
We remark that the results in this section are valid for any space dimension
d=2, not only for d=3.

2. Proof of Theorem 0.1

n
We fix 9, we §2 satisfying (0.6). Note that %, =<1. Hence 9+ w and the ﬁrsft trersglojt.
the right-hand side of (0.2) vanishes. We shall write S(T)=S(73_9, w) fo
Integrating, in (0.2), with respect to ¢ and setting T'=0 we obtain

S(D)= [ vl(x,<8,xy—T)d_s 21
Y
with
v=D3, 1D, ~DJuy g

. ; ions on
Here u is the solution to 0.1) satisfying y=yi» for 1<0. The operations

in

distributions performed here are legitimate because the wavefront sets are

favorable position, [H, Vol. 1, Chap.8.2].
From (2.1) we deduce

(22)
SUpPS C{<8, x> —1; (x,7)esuppo) .

. . i he
The scattered wave W'=y—ui solves (1.1) with f= —uy, g=—Du"),. T
Supports of f and & are contained in the compact set

Z={(x,t)e Yx]R;t:(m,x)} .
Clearly SUPprC suppun(y x R). Hence, using (1.2),
SUPPUC{(x,1)C ¥ x IR; there exists (x,t)e Z with
=51 St~ fy) oy .
(2.3) and the firg assertion in Lemma 2.1 below, we deduce

SuppSC] g, 7})] s
in Theorem 0.1.

Now, using (2.2),

the first assertion
The follow

ing elementary geometrical fact was ysed by Petkov [P] to prove
that T, is the |

cading singularity of g (See the remark at the end of this section.

-
Lemma 2.1, dssume (0.6), 15 D€YX and (%,7) e 2 wirh x — x| (2 — 1)}/ %o

Set T=(3,x)t. Then TSTy T=T, holgs if and only if xe¥,, (x,1)=(%,1).
Proof. With

t1=t—i+(9+w,i—x)/2, =T —<{9~w,5+x5/2

Wehave T, _ 7. htb 200y definition of Ty, and 1, =0 holds precisely Wge(;]
X, Xe Y, The assumption imp|ieg that ¢, Z2o(t~1) for some &o>0. Hence 1; =%
and t, =0 holgs i and only if ;=7 The proof of lemma is complete.
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From now on we assume that, in addition to (0.6), no=(3—w)/|3—w} is a
regular value of the Gauss map. Then Y, and
Zo=Z(Y;xR)

are finite sets. Only the behaviour of v and u near Z, matters when studying § near
T,. To give a precise statement we choose, for every X € Yo, gz € Co'(Y) with y.=11n
a neighbourhood of x and

Yonsuppys={X}-
Let u; be the solution to (1.1) with
f==() s, g=—(tDi",
and set
vy =[(t:)*DACH, m)D, — D™
+1:Dd<8,nyD, — D] - (2.4)
Lemma 2.2. In a neighbourhood of T,
S(Ty= % if/ vx, {9, x>—TH),S.

xeYo

Proof. Set
Z,={(x,ne YxR; S, x> —t=Ty}.
In view of (2.1) it suffices to show that

Z,rsupp (u—— ¥ v,-‘> =¢.

xeYo

(2.5)
APP]ying (1.2) to u=u, and using the last part in Lemma 2.1 we deduce that Z, is
disjoint from the supports of the following distributions,

[(1 - Xx)Dr(<‘g, n>Dz_Dn)“x] + for xe YO s
(= 5 ) -

xeYo /
Z, also does not meet the support of

[(1 ~ .5 (X"‘)2> Dt(<3,n>D'—-DH)uin}

*cYo +

Hence, if we recall the definitions of v and ¢, we obtain (2.5). The proof of the

lemma is complete. o
Fix e ¥,. We analyse v,. To ease the notation we shall drop the subscript X,

Le, L=y u=us, v=v, Without loss of generality we assume
ng=n(®=(0,...,1).

We then have §,= — w, >0, ¥ =o', where §'=(3,, 32), o' =(@1, W3).
As in Sect. 2 we parametrize Y near X by yeR?, |y| small,

x=x(y)=%+(v¥)-
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X1 3 new
we have coordinates (1) on Y xR near (x,1). Hoyvevcr, we shall rather use
coordinates (y, s) obtained with the change of variables

0:0-(19),  s=t— (o, x(y)>. 2.6

t i is gi i =0.
X,1) has new coordinates 0,0). z, is given by the equation s in fact,
( ’)I‘hc distributions ™), and (D), are conormal with respect to Z, in fa

W D=0t | g, @
i) 0=2m) T o™ gt m5yde 28

. e
where x=x(y), t = o, x>+s, |y + Is| small. Observe that the canonical transfo
ation associated with (2.6) is given by

2.9)
SAR RN GREOY X3, 0)=(y, 55, 0). (
Lemma 23, If suppy is sufficiently close to X then Te H, ~H _ where

F=WF(u), WE(xDu, .
Furthermore we have, modulo ¢ “(YxR),

t=Py, (2.10)

with -
P=1Dt(<9,n>D,+B_)e ¥HY xR), 2

U1 =EB, (). —y(D,uin), ). @12

ina
Here Ecyp- (Y x R)isq properly supporteq microlocal inverse Jor B, +B_in
conic neighbourhoogd of I

Proof. The wave-front sets of w'n
bundle of Z, N*Z\Q,
Coordinates ( Y. 8.1, 0).

) i . |
and (D,u"™), are contained in the 001‘101221
N*Z\0 is defined by N=5=0, 00 in the canon
The first assertion wil| follow from

(0,0;0,o)eH+r\H_ if ¢+0. (2.13)

H. is characterizeq by the inequality (1.4), Transforming with (2.9) we sce that
(2.13) follows if

hsigns. Note that 0,4, x(0))> =

Set /= — (), and 8=—~(xD,u™), .
It follows from (2.4) that

4

E=ADLCS, n3D D, gy @14

We‘can ow apply Proposi;
X,
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modulo €C* in a neighbourhood of suppy. It follows that, modulo C* in a
neighbourhood of suppy,
u, —f=E@g—B.f),
Dy, —g=B,u,—g

=B,f—g+B,Eg—B.f)

=—-B_E(g—B.f).
We now insert these expressions into (2.14). The proof of the lemma is complete.

Corollary 2.4, v is conormal with respect to Z if suppy is sufficiently close to x,
o, )=2r)" 1 | e"c(y,0)do, (2.15)
— a0

X=x(y), t=5+<w,x), with c € S4,(R* xR). We have
0, 0)= — 267 u(A— p)/(A+ 1), (2.16)
where p=(9,n,> >0, A=(x_(F)—1+ud)V2

Proof. We just apply Theorem 18.2.12 in [H, Vol. 3] to (2.10) using (2.7), (2.8), and
(1.6) with (2.9).

We are interested in the case where «_ =1. Then ¢°(0, 5)=0. We shall need a
refined description of ¢ in this case.

Lemma 2.5. Assume that x_=1. Set
q()=1—18,, x)2 + <y, 8, o, x)p20 2.
There
ey, 0)= —(a%/2) ()7~ <8, m) (1 =</} a),
and, modulo S°(R),
(0, 6) = (iof4) {3, n)> ™ *(Cor/En) - =5 -

The proof of Lemma 2.5 is given in Sect. 3. ) )
We now turn to the computation of the singularity of S in T,. Set

B(y) =<8 —w, x(y)—x>.
¥=0is a nondegenerate critical point for @, #(0)=0, 9'(0)=0,
A=9"(0)=2(8,n,>%"(0)

is negative definite.
Shrinking suppy still further, if necessary, we can apply the method of

Stationary phasc to
a(—a):= {7y, o) (¥)dy.
Here ¢ is the symbol in (2.15). It follows that ae S (R),

a(—6)=(det(a.A/2)) (<0, 0) + (o)) (217)

]
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reSYR), and

PO Gxd =TS =0m) 1 | T Torgggg
Y

. : - =T,ina
In view of Lemma 2.2 this proves that § is conormal with respect to T=T,
neighbourhood of T,.

In Sect. 4 we prove the following result on the remainder r in (2.17).

Lemma 2.6. Assyme that & =1, Thep reS%R). )
; 217),
Assuming that ¢ — 1, we can use Lemmag 2.5 and 2.6 and derive from

AOV= —tm/ayy ™2,y ~3anjom)

X

modulo §~Y(R). This proves the last assertion in Theorem 0.1.

. . Itsin
Remark. Inthe case *_=+1 we can insert (2.16) into (2.1 7) and recover the resu
[MT] and [P] on the filtered Scattering amplitude.

ing singularity of §, if 0.6) is assumcd-f:?l/:
is argument, From [17] one deduces that the wav;—front set o] o
scattered wave, y* jg 4 union of rays (or generalized bicharacterist{cs). See [Hadar |
the definition of rays associated with (0.1). Using this together with the stan hat
Wave-front estimate for push-forwards applied to (2. 1) one can show

. ith initial direction
Tesingsupp 50,9, 0) onlyif — Tis the sojourn time of 4 ray with initial direc
® and fina] direction g, This means that
T=¢(y, X9 = {9, x(t)> —¢ for >0,
where z(t) is the Projection of ray down to Space satisfying

tw for <0
x(t)=
t94+x, for >0,
. . . . s from
Mt)is a Lipschit curye with (1) < 1/)/ay almost everywhere. Now it follows fro
Lemma 2.1 that T, is the leading singularity of § if (0.6) is assumed.

3. Proof of Lemma 25

The Principal and t

he subprincipal Symbols of B
(2.9) we have in th

) . , sing
+ ar¢ given in Lemma 1.1. U
€ Canonicy] coordinates (v,

31, 0),
A
hi=—a1 TIEP <y, 22y e
with E.':o“r;—ﬁy(co,x), and

+5%(0,0;0, o)=(2i)“mp(o)

; / 2
4 (9, ny> ‘2((aa/an0)i(f)—2<w/, V(). (G2
To derive (3. from (1.7) we yge that the Jacobjap of (2.6) equals 1.
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Lemma 3.1. Let p be the symbol of the pseudo-differential operator P in (2.11).
We have n
p’=a*S,n>—)/q) if s=n=0, |yl small, (3.3)

and, modulo S°, ]
p(0,0;0, 6)=(0/4i) {8,ne> ~ *(8at/Ono) (%). (3.4)

Proof. In a neighbourhood of y=0 wherc y=1 we have
p°=0({8,n>a+b%).
(3.3) follows if we insert (3.1). The full symbol, p, is given by

2 .
p=p°+p+ <Z a*p°/dy;om;+ 52p”/6sf?a)/ 2i
1
modulo S°. At y=y4=0, s=0, this simplifies to

2
p=ob’ +(c/2i) Y 6*h° /oy en;modS°. (3.5
1
We claim that
i 3%b% [Oy;0m; = Ap +<9,np "~ 2w, p" ')
1 if y=np=s5=0. (3.6)
(3.2), (3.5), and (3.6) imply the remaining assertion (3.4). To prove (3.6) we
differentiate b°=5%. From (3.1) we derive
abojon, = —q 1?0 Kw, x> +0(y?)
at n=0. Here d;=0/dy;. Hence, at y=5=0,
ab°/en ey, = —q V2w, x>
+27 g7 ¥} (0 Kw, X))

Evaluating g, <w, x) and their derivatives at y=0 we arrive at (3.6). The proof is
complete.

Consider v, in (2.12). v, is conormal with respect to Z,
b(x0=2m) "t | %, oMo,
X=x(y),s=t--{w, x), with ¢, € S°(IR? x R). This follows from Theorem 18.2.12in
[H, Vol. 3]. For small |y|
Q=(b +b%)"BS - 1+ 0L, m)y=s=0
and thus
c9=(1— (e, /)92

Here we used (2.7), (2.8), and (3.1). To compute the symbol ¢ of v we apply formula
(18.2.16) in [H, Vol. 3], to (2.10). We obtain

°(y, 5)=p°(», 0;0. 0)c}(y, 0) (3.7)
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and, modulo $°,

(0, )= p(0, 0;0, o), (0, o)

i (z @0 /on)(oct/ov,
1

~(ap°jas) (ac?/ao)> : 38
y=n=s=0
Note that p°(0, 0 0,6)=0 and 0¢?/06 =0. Obserye that »
o, ny)/g=0y?). (3
Consequently 2c3/0y =0 at ¥=0. Therefore (3.8) simplifies to "
«0,9)=p(0,0; 0, 6)c (0, 5). G

It only remains to insert the formulas for p and ¢, into (3.7) and (3.10).

4. Proof of Lemma 2.4

L. tionary
The remainder 7 ¢ g1 in (2.17) containg the non-principal terms of the sta
phase €xpansion. From Theorem 7.7.5 in [H, Vol. 1], we obtain

4 4.1)
ior()= ¥ 2"‘<A-1Dy,0y>k(gk—1c0./)/(1z...k!),y=0 (
k=1

Lemma 4.1, At y=0

4<A"1Dy, Dy>c°+(A"D,.,Dy>2(gc°)=0‘
Proof. From Lemma 2.5 we i

==/ 45 m)+ 00y, 42
The Taylor CXpansion around y=¢ of g is
) =83+ (o, ays — CAY, Ap)/4 4 Gy, y, )2
', 4yy /29,2 +0(y%).
Here G g the cubic form

G=g¥0)= 28,53%0)
Hence

Va) =834(299) (g0 g2 43
~@5) 7w, ayy2 gy, '



Leading Singularity of the Scattering Kernel 139

Observing <9,nd> =950 7' — <y, 3>+ 0(y%) we derive

{8, ny=8;—(29,)7'KY, Ay>
+{Ay, Ay>/4+ Gy, 3, 9)/2)+0(3%). 4.4)

Combining (4.2)~(4.4) we obtain

Hence

¢’ =—0%(293) " {2{w', Ay) + G(y,y, @) +0(°).

{A7'D,, D> = ~0%29;) (A7 'D,, D,>G(y, y, @) +0(y). 4.5)

Next we observe that

ge®=—0?G(y*) (', Ay)/3! 85 +0(°).

Hence, using the symmetry of A4,

a7 2319,{A"'D,, D,>(g¢°
=—<(A D, D> (G(?) <, Ay»)+0(*)
= —6G(y, y,0)— <@, Ay> (A~ 'D,, D,>G(y*)+0(y)

and, consequently,

31850 2(A 1D, D,)* (gc®)=12¢A'D,, D,>G(y, y, )+ 0y).

We compare this with (4.5). The proof of the lemma is complete.
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