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ABSTRACT

Lagrangian subspaces of the symplectic vector space R" XR" can .be Ye;éreser‘xlt)zil
by symmetric matrices. An algorithm for computing such a representation is describe
and analysed. It is useful for paraxial ray tracing.

1. INTRODUCTION

n n ; . P i th
An n-dimensional linear subspace A CR" X R" is called Lagrangian if the

standard symplectic form vanishes on A:

i (Sj!l,-*n,xj)f-o if (Li),(yﬂi)EN
i1

i ic atrices T
For every Lagrangian subspace A there exist symmetnc 7 X n m

and L such that
>‘={(x,s)eR"xR";y+Ln=0wnh(y,n)=(x,g+Tx)}. (1)

tic change of coordinates from

T i . e ini i mplec
is regarded as defining a linear sy P uniquely determined by A. The

(x,&) to (y,m). When T is held fixed, L is )
map taking A to (the matrix elements of) L introduces local coordinates on

the Lagrangian Grassmannian
A(n)={A\; A c R" x R" Lagrangian subspace } -
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Equipped with these coordinates A(n) becomes a n(n + 1) /2-dimensional
real analytic manifold [1].

In this paper the following problem is studied. Given a Lagrangian
subspace A, how can matrices T and L. representing A as in (1) be computed
numerically? Phrased differently, an algorithm which selects a coordinate
patch on A(n) valid around a given A € A(n) and which then changes to
these coordinates is called for. For the coordinates to be acceptable the norms
of the matrices T and L may not be large. An algorithm doing this is
described in Section 3 and analysed in Section 4.

The problem considered here naturally arises from dynamic and paraxial
ray tracing, which is done in optics and in seismics, There one traces, along a
central ray, wavefront curvatures, amplitudes, and rays infinitesimally close
to the central or axial ray [2, 3, 6]. Classical methods have difficulties at
caustics. Following the ideas of Maslov [7]. these are overcome when working
with Lagrangian manifolds. This approach leads to the consideration of
curves of Lagrangian subspaces, the tangent spaces to a Lagrangian manifold
along a bicharacteristic. It then becomes necessary to change coordinates on
A(n) because a curve in A(n) may leave a coordinate patch. The algorithm
presented here automatizes this change. Such an application is outlined in
Section 6.

2. AUXILIARY RESULTS

M, ,, denotes the set of real n x n matrices; M, =M, ,. I=1, is the
unit matrix. Uppercase letters are used for matrices, and the corresponding
subscripted lowercase letters for their elements.

Recall some definitions and facts from symplectic linear algebra [1, 5]. A
linear transformation on R™ xR " is called symplectic if it leaves the symplec-
tic form

o((x.£). (. 1) = 3 (£,y,~nx,)
j=1

invariant. Correspondingly, a matrix S € M 2n Is called symplectic if STJS = J
holds with
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Examples of symplectic matrices are

(A 0) d I, O
o a7 B I,

where A is nonsingular and B symmetric. ] is also symplectic. The symplec-

tic matrices form a group.

A linear subspace A CR" XR" is called Lagrangian if it is isotropic, i.e.
o((x, £),(y. ) =0 for (x,£).(y, M E A, and n-dimensional. Symplectic lin-
ear transformations map Lagrangian subspaces to Lagrangian subspaces. The

twisted graph
G,(X) = {(y’x,ﬂ’ - g)’ (y,T]) =X(x3£)}

of a linear transformation x on R” «<R" is a Lagrangian subspace of

R2" X [R2" if and only if x is symplectic.

In the following a pair (A, B)€ M, XM, is called an L-pair if the
matrix (A B) has rank equal to n and ABT is symmetric. Note that ABT is
symmetric if and only if the rows of (A B)are orthogonal with respect to the

symplectic form o,

,;l(hi,aﬂ-bﬂa“):O for i,j=1,.-.m

(2)

The notion of L-pairs is used here to characterize Lagrangian subspaces

in terms of matrices.

subspace of R"xR" Then A is La-

Lemma 1. Let N be a linear
-pair (A, B) such that

grangian if and only if there is an L

A= {(x,§) ER"XR"; Ax + B¢ =0} (3)

Proof. Assume A Lagrangian. Choose a basis T1.---> I for A. Consider
the matrices A, BeM,, for which I7],..-> IT] are the rows of (A ‘B). Then
(A, B) is an L-pair satisfying (3)- Conversely, given an L-pair (A, B)

representing A as in (3), then A is generated by the eolumns of J(A B)'. The
proof is complete. -
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The following fact is an immediate corollary to Lemma 1. For an L-pair
(A, B), EeM, nonsingular, and S M,, symplectic, the pair (A, B) de-
fined by

(A B)=E(A B)S

also is an L-pair.

L-pairs are introduced merely for technical convenience. More useful
representations of Lagrangian subspaces are obtained by aiming at L-pairs of
the form (A, By= (1, L).

The algorithm presented in Section 3 is based on two simple results about
L-pairs.

Lemma 2. Let (A, B) be an L-pair. Then, for all §, the jth columns of
A and B cannot vanish simultaneously.

Proof. Let ¢; €R" denote the standard unit vector with 1 in the jth
component and 0 in all others. The jth columns of A and B are produced by
applying (A B) to the vectors (ej,O) and (0, €;), respectively. If these
columns of A and B were both zero, the vectors (€;,0) and (0, ¢;) would
belong to the Lagrangian subspace defined by (A, B). This however would

contradict a((e,,0),(0, €;)) # 0. The proof is complete. ]

LemMma 3. Let (A, B) be an L-pair. lLet k = {1,...,n}, and let

“:(,Au A

B, By,
L Agy Azz) and B_( )

: By By, J

be the block partitions associated with the splitting R" =R* xR" % As-
sume Ay, nonsingular and A = 0. Then (Ayy, Byy) is an L-pair.

Proof. Assume, without loss of generality, A;, =1I,. The symmetry of
A4 BE, follows from the symmetry of

ABT=(' *T)
*  AgBy -
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Let i > k and j < k. Use Equation (2) to solve for b,

n

b= X bja;— > ajlbil'

Ly
I=k+1 I=k+1

This means that the columns of By, are linearly dependent on those of Ay
and B,,. Hence (A, By,) has rank equal to n — k. The proof of the lemma
is complete. nm

3. THE REPRESENTATION ALGORITHM

Let (A, B) be an L-pair of n X n matrices. The algorithm described here

produces symmetric n X n matrices T and L such that

(1 y=ea B g H (4)

holds with a nonsingular matrix E. Equation (4) implies the desired represen-

tation (1) of the Lagrangian subspace A given by (3)-

A simplified version of the algorithm designed to arrive at Equation (4)

starts as follows. The first column of A is made nonzero by adding or

subtracting the first column of B. Lemma 2 is used here. Then A and B are

multiplied from the left with an orthogonal matrix such that the first column
3 implies that the task is

of A becomes (a,0,...,0)" with «# 0. Now Lemma
reduced to treating an L-pair with dimension decreased_by 1. o

A pivoting strategy is employed in the actual algorlt(lrlll)n. Th'e a1g<lmt Z“
takes n steps to compute L-pairs (AP, BY),... ,(A("), B Whlle) relate to
(A9, B™y = (A, B), and are such that the first k columns o(fn)A_ forr.n an
upper-triangnlar matrix with rank equal to k. In pa.rliicular, A(™ is nonsingu-
lar upper triangular. With an orthogonal matrix Q®), a permutation matrix
P™ and a diagonal matrix D® the kth step is

P(k)o 5
(Ak)  Bw)=0Q¥(a*"" B“"“)( _ ptop® p(k))‘ (%)

The n x n matrices Q(k) PO and D® are chosen in the foll(():vixll)g \A;)a)]}

» : - k—1 (k-1 =0 i
Assume that (A%, B-D) is an L-pair with aij’{ﬂ:aﬁo a.l;d a3; L_pair
i<k and 1 > j. The matrices (af§ ™) j>x 204 (% gk form 88 '
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This follows from Lemma 3. Now choose p=pyE{k.....,n} and s=s, €
{1, — 1} for which the sum

n
2 (ay 0+ shigo)’
i=k

is maximal. It follows from Lemma 2 that this sum is positive. Set

ok = (I“‘ 0 )
0 H®

where H'*) is an orthogonal matrix which transforms the (n —k+1)
dimensional vector

T
k-1 k-1 k-1 k-1
(a,(p >+ sbi, e @l )+ shik, )) )

P = Py, S = s, into the nonzero vector

(a®.0,...,0)"

This involves a QR factorization technique. H*) may be obtained as a
Householder reflection matrix; see [8]. Let P be the matrix representing
the permutation which interchanges k with p, and leaves all other indices
fixed. Let D) be the n X n matrix having d{Y = — s, as its only nonzero
entry. Now define (A®), B%)) by Equation (5). It is clear from the construc-
tion that a‘ﬁ’% 0 and aﬁij?):O for j<k and i> j- The last matrix on the
right in equation (5) is symplectic. Therefore (A% By also is an L-pair.

From the equations (5) and the initial condition (AP, B®)y—(A B)a
direct relation between (A, B) and (A", B™) follows by induction:

(6)

(A Bm)=0Q(A B)( ’ 0)

-PT™ p

Here Q=0 ...0W p=pw... P™, and T jis obtained from the
recursion

TR = pRIPR-bp) 4 Dk

starting with 7 =0. It is easily proved by induction that the diagonal
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el kY with 7
ements ¢t{} with j <k are the only matrix elements in T which can have
nonzero values. It follows that T~ and P k) commute. Herce

TG = p® 4 ... + DO, (7)

rfFina]ly a b.ack substitution followed by a removal of the permutation is
performed. This amounts to a multiplication of Equation (6) from the right

with
-
o PT
and from the left with PA™ ‘ s . .
< patm BMPT a‘:t] _ The result of this is Equation (4) with

T = PT™P". (8)
The description of the algorithm is complete.
Turorem 1. Let A and B be real n X n matrices such that
A= {(x,g) eR"XR"; Ax+ Bt =0}

nxR" The algorithm in this section deter-

is a Lagrangian subspace of R
trices T and L such that A is given by the

mines real symmetric n X n ma
equations

A:y+Ln=0

in the symplectic coordinates (y,'q)=(x,$+Tx). T is a diagonal matrix

having only +1 or —1 on its diagonal.

Proof. (A, B)is an L-pair. From the description of the algorithm it is
already clear that it arrives at a representation (1) for A with T, L eM,
symmetric. Equations (7) and (8) imply the assertion about T- ]
Remark. If (A, B) is an L-pair such that A is nonsingular, one can

apply QR factorization followed by back substitution directly and arrive at
~1g  The number of essential operations in

(1) with T=0 and L=A4
floating-point arithmetic needed for this is about 5n/3. The additional work
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needed for computing and updating the scalar products used for pivot
selection plus that for adding the columns amounts to about 7n? operations.
Thus the algorithm presented here, which does the selection of and the
change to new coordinates in one stroke, uses essentially the same amount of
time as an algorithm which only changes to predetermined coordinates—the
case where T is known beforehand. In principle the desired coordinate
change on A(n) could also be achieved by checking through all the 2"
possible cases for T. Evidently such a procedure is not very reasonable for
n = 3, say.

REMsrx. Let A be a Lagrangian subspace. Let T = T, and L=L, be
Symmetric matrices representing A as in (1). Then (3) holds with the L-pair
(A,B)=(I+ LTy, Ly). Starting from this L-pair, the algorithm constructs
matrices T; and L, such that A is represented as in (1) with T =7, and
L = L,. Applied in this way, the algorithm computes a change of coordinates
on A(n). T, will differ from T, if T,=diag(+1,...,+1) and if L, has a
column with Euclidean norm greater than 1. To see this look at the value of
s, determined in the first step of the algorithm. When used in this way the
algorithm will be called the transformation algorithm.

4. ELEMENT GROWTH

The algorithm described in the previous section leads to a representation
of a Lagrangian subspace in the desired form (1). It also works without
pivoting, i.e. when p, = k is chosen. However, the pivoting strategy adopted
in the algorithm makes it possible to derive a bound on the norm of the
matrix L. The bound only depends on the dimension n.

THEOREM 2. The symmetric matrix L computed by the algorithm in
Section 3 is bounded:

i< ngn? for i,j=1,...,n.

Proof. The main task is to estimate the absolute values of the elements
of the matrices A™ apd B™ by the absolute value of the diagonal element
in A in the same row. To simplify the notation assume that P(*) — J , i.e.
Pr =k, holds for k = 1,....n. Essentially no generality is lost when assuming
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this. Let i,j€ {1,..., n}. Recall the steps in the algorithm. Observe that

(n) — () if 4 X .
al™ = .
i =aly if j<i, alp = al?, b} = b{). The elements of A satisfy
a{P=0 if j<i,
laW|<lal] i< (9)

The inequality follows from the following chain of estimates valid if i < J:

n
. - s
a2 = 3 (a‘,; l’+sjb(,}’”)
1=i

(GJ-D i—13)2
(at™ + sbl")

fl
™

N
> laI> + a1
> |ail®.

in step i of the algorithm.

alar products between the
(k)

;hhe first inequality is a consequence of pivoting
e equality following it holds because the sc

Proje'ctions to the components i to n of the jth columns of A% and B
remain unchanged when stepping with k from i—1 to j—1. The other
f step j in the algorithm. The last

t.BquaJity is clear from the definition 0
inequality follows because a(jg) * 0.
The pivoting in step i also implies

n
Ao S e i iz

I=i

So, in particular,
By <lal  # J=E (10)

It remains to estimate |b{}’| for j <i- To do this it is convenient to pass to the
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scaled matrices A and B, arising from A™ and B, respectively, by
dividing the ith rows by a{™. (A, B) is an L-pair. Now (9) and (10) become

i

@gl<1 i i<j,
bil<t i i< (11)

1

Assume j<i. The rows of (A B) are orthogonal with respect to the
symplectic form o:

Z (Eik&jk - I;jkﬁik) =0.

k=1

Use the equations in (11) to solve this equation for l;i ;- Estimate this solution
and obtain, using the inequalities in (11),

bijl< X 1byd i)+ ¥ 1B i)

k> j k=i

< X 1byl+2(n —i+1)

j<k<i
=Bl_]__

The last equation is a definition. Add B, ; to the inequality just shown, and get
Bii_1< 2B, ;- Hence

bl <ngr-1, (12)

Similar arguments apply to the back substitution, i.e. to the passage from
(A, Byto (I, L). Again use (11) and obtain

max|l; < 2"~ max|b, |.
ij i,j

Now combine this with (12). The proof of the theorem is complete. u
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Remark. It is not clear how large the computed matrices L can actually
become. Certainly the bound derived in the theorem is overly pessimistic.
Numerical experiments were carried out to see how the algorithm performed
in practice. For the task described in the remark at the end of the last section
tests with collections of randomly generated matrices T, = diag(£1,---. 1))
and L, symmetric were made. it was found that the resulting matrices L,
had row sum norm greater than 1 in less than 5% and greater than 2 in less
than 1% of all cases. The dimensions n were taken in the range from 3 to 8.
This range of dimensions is of interest in applications to ray tracing; e.g.,
n = 8 occurs when dealing with symplectic transformations on space-time.

5. ERROR ANALYSIS

When the computations in the algorithm are done in floa.ting-point
arithmetic the computed matrices T and L will, because of r?undlng erTors,
not represent the given Lagrangian subspace exactly. Here estimates on these
errors are given. For simplicity, all permutations P® are a.ssum'ed to be
equal to the identity. This assumption will not restrict the generality of the
error analysis. _

To handle the accumulation of errors the following elementary estimate
will be useful.

Lesmma 4. Let a>0, b= 0, and let ak>?, gy <(+a)a+b for
k=0,1,2,.... Then ak<(1+a)ka0+k(l+a)k' bfork=12 ...

Proof. Observe that, in the case of equality, a, ., =(1+a)a,+ b for
k=0,1.2,..., the following solution formula holds:

k-1 ‘
a,=(1+ a)a,+b Y (1+ a)l.
=0
]
The estimate follows from this.
Let A=A and B®=B. A floating-point implementation of the kth
step (5) of the algorithm with P® =1 reads
G = AG-D — B’(k—l)ﬁ(k) + 8C*k- b (13)
(14)

(A"(k) ﬁ("’)‘—‘é(k)(é("’” g(k—l))+(8A(k) SB"‘))—
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Here A® is upper triangular in the first k columns, O® is unitary, and D®
is zero except for the kth diagonal element, which is +1 or — 1 with the sign
chosen according to the strategy described in Section 3.
For the errors caused by roundoff one has, with u denoting the machine
unit,
IBCE0l < p( A% D)1+ | BE= D))+ O(2) (15)
and (cf. {9, pp. 152-160]), with a moderately growing function ¢,
IBADY] < ¢(n)ul|CH )1+ O(p2), (16)
BB < ¢(n )| B¢ D)+ O(p2). (17)

In general, because of errors, (A®, B®) will not be an L-pair.

LEMMA 5. Assume [1+ ¢(n)]np < 0.1. Then

IA®)| < 124l Al + n||BJ]] + O(n%?), (18)
IBOY| < 1L11Bj|+ O(np2), (19)
ICH™ DI < L4[)J A+ (n + 1)||BJ]] + O(n%2), (20)

fork=1,2 ... n.

Proof. The assumption implies [1+ p + ¢(n)u]™ < 1.11. Equations (14)
and (17) and the unitarity of Q) imply

BRI < [1+ ¢(n)p] 1B D)+ O(p2).
Lemma 4 leads to

IB® < [1+ ¢(n )] "B|+ O(np?)

for k < n. This proves (19).
Equations (13) and (15) imply

ICE™D < (1 ) (LA D)y B ) + O(u?). (21)
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From (14) and (16) one obtains
AR < [1+ ¢(n)p]ICH M+ O()-
Inserting first (21) and then (19) one arrives at

LAS| < [1+ (n)u+ p] (1A% D+ LILBID + O(ne®).

sumption, one deduces (18). The

Again, applying Lemma 4 and using the as
rtion of (18) and (19) into @n.
|

remaining inequality (20) follows upon inse
The proof of the lemma is complete.

The important goal is to estimate the error

sa smr-(am Ben-0a B 1§ e

Where Q~ = é(”)_._ é(l) and T = ﬁ“')—f- et ﬁ(l).

LEmma 6.  Assume [1+ ¢(n)]np <01 Then

18A[l < pn 1.4[1+o(n)][IAN+(n +2)[1Bll] + O(n%7).

I8B|| < pn 1 11(n)[IBlI+ O(n?).

Proof. Consider the matrices

ER — Ak @(k)(A"(k-n _ B’(k*l)ﬁ(k))’

FU = B — Q‘(k)ﬁ(kfl)

and
Ut = @(n) e Q(H b,

JU = D™ 4 -+ + DED

for k<n U®M=1, and T =0. Equation (22) can be written in the
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following way:

(64 8B)= ¥ UM(p F"")( - 0)'
k=1 -T I

U™ is unitary. T js diagonal with diagonal elements equal to — 1, 0, or
— 1. Hence

I8A] < Z(JIE“"HHIF”"II)

BBl < X [|[F™)).
k=1

A comparison of the definitions of E%) and F® with (13) and (14) shows
E% = (j(k)(s;c(kfl) + (S‘A"",
F® = §Bk),
With (15), (16), (17), and the estimates proven in Lemma 5 one obtains
HESN < )8CH 1)+ 1540
< s AR g BE D)4 o (n)ul|CE D)+ O )
<eLalt+o(m)] AN+ (n+ DB + O n%u2)
and
IE®N < po(n)IBE )+ O(p2)

< L.1lpg(n)||B||+ O(nu?).

Adding these ine

qualities leads to estimates for lI8A|| and ||8B|| proving the
lemma.
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For simplicity, back substitution is viewed here as the computation
of an approximate left inverse Z with residue R to the upper triangular

matrix A",
1=7ZA"™ +R, (23)
and the subsequent multiplication
L=2ZB™+S, 124)
with error
ISH < I ZIIB 1+ O(k)- (25)
Tueorem 3. Let (A, B) be an L-pair defining a Lagrangian subspace A
as in (3). Let T and L be the matrices computed with a floating-point
implementation of the algorithm in Section 3, (13), (14), (23), (24), with

errors as in (15), (16), (17), (22), (25). Assume || Z||[15A]| < 0.5 and ||R]) < 0.5.
Assume [1+ ¢(n)lnp < 0.1, p denoting the machine unit. 1hen

[=L+8L,

where L is the symmetric matrix representing A with respect to the coordi-

nates defined by T as in (1). The error 8L satisfies the estimate
I8L|| < pldn[1+e(n)]IIANIZI
+ ula(n +1)(n+2)[1+ ¢()]IBHIZI
+ |RINLI
+ O()ZIIn°?)-
Proof. (22), (23), and (24) imply
(1 [)=2(&» B™)+(R S)
—70(A B)( Az (I))+Z(8A sB)+(R S)-

A—R is invertible.

The assumption of the theorem implies that [ —Z38
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Define L by
(I-Z8A-R)L=1—-7ZsB—5.

Then (4) holds with an invertible matrix E. Hence T and L represent A
exactly. The estimate on 81, = [, — [, follows from

IBLIL < (NZHit A+ IRIDILLI + | Z )18 B) |+ ||S)

and Lemma 6 and (25). The proof is complete. =

REmark. In the theorem conditions are formulated which imply that the
computed solution is close to an exact solution. Note that this exact solution
is, in general, different from the solution obtained with the algorithm in exact
arithmetic. This is related to the fact that 7" is not everywhere continuous as
a function of the L-pair (A, B).

Remark. Theorem 3 provides a posteriori error estimates. For a full
forward error analysis a bound on the condition of the back substitution is
necessary. Note that a bound on this condition is implicit—for exact arith-
metic—in the proof of Theorem 2. No attempt is made here to extend
Theorem 2 to floating-point arithmetic.

6. APPLICATION TO WAVEFRONT TRACING

Wavefronts in a medium with smoothly varying refractive index »(x)>0
can be obtained from solutions of the eikonal equation IVe(x)] = r(x),
x €R®. (Here |- | is the Euclidean norm.) The wavefront at time ¢ is given by
the equation ¢ = ¢(x). The Hessian of ¢,

Wix) =v2%(x),

contains information about the wavefront curvature. More precisely, the
wavefront curvature form is the Quadratic form defined by v(x) " 'W(x)
restricted to the orthogonal complement of ve(x). Rays x(t) hit the wave-
fronts orthogonally: dx /dt =r72y¢(x(t)). The propagation of wavefront
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curvatures is governed by Ricatti-type ordinary differential equations. In the
case considered here,

dW
— +WW+C=0
dt

for W(t)=W(x(t)). Here C + (VP XV ») + < 2p = 0. This follows from dif-
ferentiating the eikonal equation twice. A solution to this equation may blow
up in a pole. This actually does happen at caustics, e.g. at foci. For more
details see [5] and [6].

ExampLe. Consider the case » = 1. Then ¢(x) = 1 — |x| solves the eikonal
equation for x # 0. Here W(x)= — lx|” YT — §£7) with £ =v¢(x). Along a
ray x(¢) = (¢t — )&, 1§] =1, W(¢) will cease to exist at t = 1.

With W = W(¢t) is associated the Lagrangian subspace A = A(t),

A= {(%£.4); wi—£=0}.
Application of the algorithm results in a representation

A:g+Li=0  for (§.7) = (£, £+ T%)

o points where L(t)

with L= — (W +T) ! Here caustics correspond t
forms to a differential

becomes singular. The differential equation for W trans
equation for L,

dL

I+(LT+1)(1+TL)+LCL=0. (26)

Equation (26) is an ordinary differential equation on A(n) written in the
coordinates induced by T. Its solution is a curve of Lagrangian subspaces,
A(t), which are the tangent spaces, along a bicharacteristic curv:e, of a
Lagrangian manifold solving the (generalized) eikonal equation [1, 3, 6]. A
bicharacteristic curve is a solution to Hamilton’s canonical equations,

aH . JH (27)

f=—a—g, §———a—x‘,

where H = |£}/v(x) is the Hamilton function.
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Let ||-|| be a matrix norm. Assume ||T|| <1 and ICN<vy, v a ConstaPt.
Then, for a solution to (26), ||dL /dt|| <(1+ y}1+ }|L|)% Comparison with
the solution to the initial-value problem

Z'Z(l"'Y)(l"f'z)z’ Z(to)ZHL(to)

';

leads to an estimate

1
]|L(t)“<m for t,<t<t,,

where

1
o WD OHIL D)

t—

is a lower bound for the life span of the solution L(t).

To trace A(t) along a bicharacteristic curve, proceed in the following
way: Start with L(t) and T representing A(t). Solve (26) as long as
HL(t)l]| <! for some fixed (large) threshold I. In case the threshold ! is
reached, change, with the transformation algorithm (Section 3, last remark) to
a new representation of A(¢) with different matrices L(t) and T. Continue in
this way. If ! is chosen large enough, then it is guaranteed that every
integration of (26) proceeds at least for some positive time span which
depends only on ! and y. This is evident from Theorem 2 and the estimates
on solutions to (26) shown above. Hence, with the foregoing procedure, a
curve of Lagrangian tangent spaces in A(n) can be continued indefinitely
along a bicharacteristic curve.

This procedure was implemented and tested. The results obtained for two
examples are reproduced below. The first example is the example above for a
particular ray. Here the computed solution can be compared with the
analytic solution, which may be obtained from analytic continuation. The
second example models a ray system issuing from a point source at the origin
and passing through a strongly refracting circular lens embedded in a
homogeneous medium. The Runge-Kutta-Fehlberg method of order 4(5) with
automatic stepsize control [4] was used to compute both the bicharacteristic
curves and the solutions to the paraxial-ray-tracing equations (26) numeri-
cally. In the integration of (27) and (26) the relative and absolute error
tolerances were 105 and 1073, respectively. To avoid stepping over a pole
in L(t) inadvertantly, the stepsizes were taken to be less than the estimated
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lifespan t, — t,. Blowup was tested for with the threshold value I=5and L]l
equal to the sum of the absolute values of the elements of the upper
triangular part of L. The integrations started with the parameter value ¢t = 0
and stopped when t =10 was reached.

NuMericaL ExamprE 1. Here v= 1. The initial values at t= 0 are
x(0) = ( —1,0,0), £&0)=(1,0,0), and a Lagrangian subspace A(0) given by
W(0) = diag(0, — 1, — 1) The transformation algorithm is used to obtain the
following representation for A0):

LT(O)=diag(l.O,0.5,0.5), T =diag( — 1, — 1. —-1).

{Here and in the following the dependence of L on ¢ and T is emphasized by
use of the notation Lp(t).] Starting from this initial value, the numerical
integration proceeds from 0 to 1.705 using 5 steps. The integration stops at
1.705 because L exceeds the threshold:

L,(1.705) = diag(1.0, — 2.394, — 2.394), T = diag( -1, -1, - 1).
The transformation algorithm changes to

I.,(1.705) = diag(1.0, — 0414, — 0414), T =diag(—11L1):

Starting from this initial value, the numerical integration proceeds from 1.705
to 10.135 using 30 steps. The integration terminates at 10.135. At the output

time ¢ — 10 the computed result equals the exact result

Ly(t) = diag 1,——;‘—,———— , T=diag(—l,l,1).

1-+ 1—t
2

up to a relative error 2.174E — 06.

NUMERICAL EXAMPLE 2. Here »(x;, Xg, X3) =17+ 0.4b[(x, — 3y +
x2+ x3], with a C? function b, b(s)=0if s> 1,

b(s) = _@s+1)(s—-1)° i O0<s<l.

The initial values at ¢ = 0 are x(0) = (0,0,0), £0) = (0.99,v1— 0.992,0), and
L(0)=0, T= diag(—1, - L — 1). The Lagrangian subspace A(0) corre-
direction slightly off the axis of

sponds to a point source. The ray starts in a
al approximations to La-

symmetry. The following sequence of numeric



174 SONKE HANSEN

grangian subspaces results on applying, in alternation, the integration algo-

rithm to (26) and the transformation algorithm to the latest values for L(t)
and T:

689 0 0
L;(0.628) = —168 0 |, T=diag(-1, -1, —1),
0 —1.689
-o. 386 0 0
L;(0.628) = ~0.386 0 . T =diag(1,1,1),
0 ~0.386
-0.921 - 0.436 0
Lp(2947)= | — 0. 436 —2.002 0 T = diag(1,1,1),
0 —1.976
—0.795 0.145 0
L(2.947) = 0145 0666 0o |, T = diag(1, -1, — 1),
0  0.669
4295  0.898 0
L,(3.749) = 898 -~ 0.098 o |, T = diag(1, — 1, — 1),
0 0.274
~-0.118 o
L, (3.749) = 0118 0.114 0 T=diag( -1, —1, - 1),
0 0.274
~0330 —1.537 0
Lr(4656) = —1537 —_3 197 0 T =diag( -1, —1, — 1),
0 0 ~1.249
0321  —0.212 0
L,(4.656) = | —0.919 —0.431 0 » T =diag(—1,1,1),
0 0 - 0.357
—2.964 -0.713 0
L(5811)=] —0.713 —0.762 0 - T =diag(-1,1,1),
0 0 —0.631
-0.428 —0.103 )
L, (5811)=| —0.103 —0¢l15 0 > T'=diag(1,1,1),
0 0 - 0.631

- 0835 —0.012 0
L;(10.067)=| — 9012 _ 0.856 0 > T =diag(1,1,1).
0 0 ~0.856
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There occur six solution intervals during each of which T’ remains unchanged,
the intervals of integration. These intervals are separated by the times 0.628,
2.947, 3.749, 4.656, and 5.811, where the blowup test stops an integration.
(These blowup points do not bear an immediate relation to caustics.} The
integration finally stops at 10.067. The numbers of steps taken by the
Runge-Kutta-Fehlberg method in the intervals are 4, 22, 9, 7, 10, and 42,
respectively.

Remark. In view of Theorem 2, the choice of the threshold value in the
foregoing examples seems to be rather optimistic. However, as remarked at
the end of Section 4, the matrices L obtained with the transformation
algorithm are almost always small in practice. The results obtained with the
examples suggest that, for the application considered here, answers to the
questions of error accumulation and computational effort are likely to depend
more heavily on the numerical properties of the method for integrating the
ordinary differential equations than on the numerical properties of the
transformation algorithm.

ReMark. The application given in this section only serves as an indica-
tion for the possible uses of the algorithm presented here. Full dynamic ray
tracing [2, 6] requires the solution of ordinary differential equations for the
amplitudes, called transport equations, in addition to equations like (27) and
(26). The main motivation for the algorithm presented here is its use in an
extension of the application to full dynamic ray tracing. This extension will be

presented elsewhere.

REFERENCES

1 V. L Arnold, On a characteristic class entering into conditions of quantization.
Funktsional. Anal. i Priloshen. 1:1-14 (1967); English transl., Functional Anal.
Appl. 1:1-13 (1967).

2 V. Cerveny, 1. A. Molotkov, an
Karlova, Prague, 1977.

3 G. A. Deschamps, Ray techniques in electromagnetics, Proc. IE
(1972).

4 E. Fehlberg, Klassische Runge-Kutta-Forme!
Schrittweiten-Kontrolle und ihre Anwendung auf
puting 6:61-71 (1970).

5 V. Cuillemin and S. Sternberg, Geometric Asi
14, Providence, 1977.

6 A. Hanyga, Dynamic ray tr
Astron. Soc. 79:51-63 (1984).

d 1. Pientik, Ray Method in Seismology. Univ.

EE 60:1022- 1035

In vierter und niedrigerer Ordnung mit
Warmeleitungsprobleme, Com-

ymptotics, Amer. Math. Soc. Surveys

acing on Lagrangian manifolds, Geophys. I. Roy.



176 SONKE HANSEN

7 V. P. Maslov, Theory of perturbations and asymptotic methods (in Russian),
Moskov. Gos. Univ., Moscow, 1965; French transl,, Théorie des Perturbations et
Méthodes Asymptotiques, Dunod, Paris, 1972.

8 G. W. Stewart, Introduction to Matrix Computations, Academic, New York, 1973.

9 J. H. Wilkinson, The Algebraic Figenvalue Problem, Oxford U. P., London, 1965.

Received April 1988; final manuscript accepted 26 January 1989



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 

