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1 Introduction

Waves travell; : - : :
aves travelling through a medium carry intormation about the medium to

dISt.aHt locations. This fact is fundamental to many metho
eﬂgl.neering for exploring structural properties and material
media. In mathematical formulations of such situations one considers the
map which sends the coefficients of a hyperbolic differential equation to the

bo aY " 3 - . - N
undary values of its solutions. The inversion of this non-linear map 1s
e inverse of the formal derivative of the

ds in science and
parameters of

(‘1‘?5‘1‘.‘?{1- In this paper we use ti
(Ot‘fffments-t,ofsolutions map to partially mvert the latter.
" he problem we study is suggested by seismic exploration of the earth.
Ve shall work with a simplified mathematical model of the earth. We assume
;(}j\i;l;rt]lm'(.‘art‘;h \ c R? consists of two layers, the up AN
v layer X_. The layers are separated by a smooth interface Z. Y = dX 1s
the surface of the carth. The surface ¥ and the interface Z do not intersect.
One may, for example, think of X_ as the earth’s core, of X, as the earth’s
Mantle and crust, and of Z as the core-mantle houndary. A wave uft,z)
tl‘avelling through the earth is governed by the acoustic wave equation

per layer X4 and the

Au — adlu = 0 (1)
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where a(2) > 0 is the square of the SlOWIl(;‘SS. @ is assnn‘](?(__l tot}ll):lzzz?zg

except for a jump discontinuity across Z. We wish to df-.t(_‘lmm‘e S h

of the reflector 7 and the size of the jutnp of o at Z from traces o

measured at the surface ¥ ) < iven a
We sketch a linear mversion procedure for a. Assume there is g

' - o vl th, the
smooth and positive function 3 on X, 3 represents a model of the ear
background model, It i smooth at 7.

- - -ox1 101
3 is regarded as a first approximati
to a. Associated with 8 1s the wav

e equation

Ny — 3ofe = 0,

—
| SN)
e

Associatod with 3 an

N e \ ‘turbation
d a solution v of this wave equation is the pertu
equation

5 3
Lt — 3t = 302, (3

U
- o . iring that (2) vanishes at least formally
this equation is arrved at by requiring that (2) vanishes at

to second order in ¢ as ¢ 0if 3 and v are replaced l)}" 3+ e ar‘1d lb;;zn
respectively, Given a source distribution JonT =R xYanda perturbat

3 on X we get causal solutions u, v, and ¢ of (1}). i2), and (3)
such that the normal derivatives of u,
space-1ime bOllndary T, We

linear map L that sends 3 to
assume tl

, respectively.
voand v 4 ¢ are equal to f onrtile
fix a source f. sav a Dirac fjlist.ributlo.n. 1;\1‘;
v{T is similar to a Radon transfofmat’lron' )1\_;
al an approximate backprojection operator for [ exists. We a]?lll )
sich a backprojection opetator to o)1 = u|Y - viT. In this way we obtai
perturbation 3. \ye take 34+ 3 as 4

The purpose of this p
ApproXimation tg 4 than
the inversion proce
linearization of the
ProxXimation, (T
IS a microloe
3 are direct]
pre

New approximation to @ better
APer is to explain in what sense At s a )Chat
3is. This task is made diflicalt by the fact t
dure involves fiq

: COTG ormal
unrelated approximations: a f
coefflicients_tq.

solutions map, and a }1igh’f"‘“lmm}:}?Cph
he latter entopg througly the hackprojection ()Pf‘-l'atm: \?.‘1“101.
al inverse of L.) However, we can show that the sillg”]a”t’l{; fe
vrelated to » and to the size of the Jump of o across Z. A (')(le
cisely, assuming that {},e backgroun model and the actual model coinci
i the upper layer, je.. 3=ain X4, we recover at = € Z the number

1)
ay(z) cos® g, (

. . 9
Here a, is the boundary valye of & at the positive (= upper) side of Z. 0+
and 4_ are the angles at > of reflection and refraction, respectively.

cotfl, — cot g
T = ———
cotf, + cotd_
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is the reflection coefficient associated with the jump of a across Z. Using con-
Cept-S of microlocal analysis we give a precise statement for a rather general
Sfattlng in Theorem 1 of section 4. The result provides a rigorous justifica-
tion for using this particular linearization approach in the hyperbolic inverse
problem.

If.B is only close to a in Xy then.in addition, a
associated with (2) is needed to solve the inverse problem. W

Wi i . .
vith this aspect of the hyperbolic inverse problem.
e linearization approach to inver-

stability result for rays
e do not deal

_ There is a large body of literature on th
sion for high-frequency waves. In geophysics this method in sometimes called
ray-theoretic Born migration {or inversion). In recent years the linearized
problem was studied with techniques from microlocal analysis by Beylkin
[1]. Rakesh [16], and Beylkin and Burridge [2]. The problem we investigate
was studied before in the geophysics literature by Bleistein et al. [3]. They
G\‘all}a,ted’ using classical geometrical optics, the application of linearized in-
version operators to Kirchhoff (high-frequenq-') data. (4) occurs as a welght
faC.tOI‘ in their singular function of the reflector Z. Our Theorem 1 contains
arigorous derivation of the formulas obtained in [3], and it contains a precise
definition of the singular function.

The plan of the paper is as follows. In section 2 we define the boundary
trace of waves in a two-layered acoustic medium and describe its singularities.

In section 3 the formal linearization of the coefficient-to-solutions map is
defined and its singularities are analysed. In section 4 we state and prove

our 1 ey . . . .
main theorem on linearized mversion.

2 Primary Reflections

red acoustic mediun. Let Y be an

We study Lo

> study wave propagation in a {wo-laye

One . v . s _ £ > - -

i)])f n aud hounded subset of R* with € houndary ¥ = . Let Z C A

¢ a compact hypersurface. Assume that 7 separates X 1mto two disjoint
-~ YUZ, and

Open subsets Ny and X with X\ Z = X4 U X.. 0Xy4 :
IX_ = 7. We shall call ¥ the surface, Z the reflector, and X4 (resp- X'_)
the upper (resp. lower) layer of the medium X. Z 18 oriented by A4 and \’_

hroughout the paper we use the abbreviations Q=R xX,0:=RX Xt
T=RxY, and ' = R x Z. Welet §,u and On U denote the normal
derivative of u at Y and Z, with normal vectors pfdilltiil_l_g_into X _a_n__d.;-’&,
respectively. Let a be a positive function in C(X3UX.). C=(XLUX-)
denotes the space of smooth functions on X4 U X_ which extend smoothly
to the disjoint union of X5 and X_. In other words, this is the space of
functions onr X which are smooth on T except for a jump discontinuity at

Z.
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. ‘ansmission conditions
Waves are solutions uofa boundal'y problem with transmission
at the reflector:

Au—adlu = 0 ip Q,u0_
d = f onT (5)
Uy = wu_ onT
(an+tt)+ +(dv) = 0 onTl

(The subscripts 4 indicate that the boundary values at Z are to be taken
from the 4 side. _

We sa;tthat ; distribution u(t,z) vanishes initially ilf there eXlSdtS-Z 5:}_
such that ult,z) = 0ift < 7. 1t follows from the ex"mtence an Isgmap
ity theory for hyperbolic mixed problems that there is a Contmut(})]L;t oo
) — D'(Q,U07) which maps f to the unique SOIUF-I(-')H of ('5)d b
ishes initially, (See Massey and Rauch [9] for mixed imtla'l-bo.un ary Ppct o
lems with distributional data.) Since Y is non-characteristic with respe
the wave equation we can define 4 continuous map

Us&M) D), Uf = uy.

We are Interested in the stngul

arities of the Schwartz kernel of {/.
Our basic reference for w

avefront sets and for the symbol Ca.lclli“}f [(S)}(
Pseudo-differentia] operators and Fourier integral OI)el'a-t-‘O“S.iS monogff‘lfi)dean
of Hormander. We identify 5-densities and 0-densities via th? E}‘; ions
structure on R ™ For a continuoys linear operator A acting on d!stll lu by
we denote ity Schwartg, kernel by X, or, if no confusion can arise, a sZtO«r
A. The Principal symbol of 4 pseudo-differential or Fourier integral 0?61 ér]‘,
4'is denoted o(4). We assume all pseudo-differential operators p[.OIji on
Supported and polyhomogeneoys. For a pseudo-diffferential Q;)el-atOI ‘vave
0 its €ssential support WF(A) T°(9) is the set obtained il‘O“rlmthe ' We
front set WF'(ICA) via the diagonal map from T*(Q) to 7=(Q) x T (Q)i cal
shall abyse standard notatjor, and denote by A1 usually only a micro ?v.es
Inverse of an OPerator A near some point. Bicharacteristics are integral cu

| -on in ()
» - - . . n

I T*(X,) and T*(X_) for the Hamilton field of the wave equation in |

'eneralized bicharacteristics are curves in

. . 6)
Twrnouywn+u94\ouT1U\0 (
. is
mal_nly made up of broken bicharacteristics and glancing rays. The set (?f),ee
“quipped with the topology of 5 compressed cotangent bundle over X -H] for
Melrose ang Sidstrand (12), Hormander 8, Chapter 24], and Hansen {7
Precise deﬁnitions.)

| ) ist1cs
; We call Q-Iays or rays those generalized bicharacter
on which the time variable ¢ INcreases. D
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set l.e o .
(6), i.c.. (pypo) € C, if and only if there is a ray such that pp = v(s0)

and py; = ~(s;) where s5 < 55
Proposition 1 W/ (K) C €,
Proof. The results of [13] and [7] imply
WR(f) C CL(WF(f). € (7).
Testing K with exponentials we deduce
WE/(Kp) C C, UT(Y) x 0 U0 x T*(Y).

}[)a::St "‘S;(I);;)t;:‘ltllolg lin‘car ?])llo1';ft()1' defined on the space of distributions of com-
e CC\ -H ell((;\}\ﬂF (.l\,[.-) does nc_)t mtersect.*O X T“(T)\. Furtherr.n'ore
s proved. . Henee WF/(K;+) does not intersect T+(Y) x 0. The proposition
I)Oilis(j\:i)t}\ 0‘ le‘composes into the setf% of ell‘iptic, hyperbolic, and glancing
Chapter '1-1]1)%1;;“ to the wave .t‘({\laf,l{)ll. (See Melrose [10]. Hérmar.lder 8,
h."])f?l‘boli; 2 l‘chara.cterlstl_cs intersect the boundary nomtangegtmll.y at

points. Let H C T*(T)\0 denote the set of hyperbolic points.

Similarly, let Hy, H_ C T*(T)\ 0 denote the set of hyperbolic points with
o of 7. At Hy NH_ rays are reflected
metrical optics. A bichar-
resp. backward)

respec - ; )
anIl U} to the positive and negative sid
d relr ] 1 .
i 1.act.(‘(l according to the classical laws of geo
teristic 1g ) . . .
ic issued from a hyperbolic pomnt is called a forward (

bichar -

haracteristic if ti . .
cteristic if time ¢ increases (resp. decreases) along 1t.

we introduce convenient local

local coordinates on X such

that Xy = {£Tn > 0}, and
ij is Euclidean at

00(>1£ﬁr:‘a22}5ys;'r,0 ﬁem.o ! :(m(% refraction at Z

it b 5. Fix a point in Z. Let (Tys-- - n)

. . point becomes the origin. and such
{x,, = 0}. Furthermore assume that the metric tensor ¢

. -In) = (1?"‘ _],-n)w

t.h(‘ Or' M . X ) :
igin, ie., g7(0) = &;;. Write 2o = ¢ Then x = (2o,
' respectively. The induced canonical

where £ = (€,&)s

ator on the £ side

S G .
coor {-\I 0, "}, are coordinates on (Qandl
¢ _!( mﬂtc;?‘ on T*()) and T(I') ave (r,) and (r',£)
f—h (&0, €Y. The principal symbols p+ of the wave oper
of Z Satisfy

pe(r.£) = as(e& = €T = 67 if 2 =1 =0

H T H . .
ere ay(z") = afz”,£0). We shall also write p = P+- Hy 18 characterised

by the mequality
op 2"V — € >0 ifa" =0
The forward (resp- backward)

L
et H,. denote the Hamilton field of ps-
haracterised by the inequality

bi e
characteristic issued from H to T™(4) are €
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H,, 2, H, vy >0 (resp. H, z, I, 24 < 0), 0r. in ('()()r'dil.]atcs. Enr&‘J <b0- E\r\ejfn
$ndo > 0). The angle of reflection 0y at {2.€') € Hy 13 L.he a“gle, ¢ f‘the
the normal na(x”) and the tangent vector of the projection to Xi o
bicharacteristic which issues from (" &) to T7(01,). The tangent vector s a

multiple of (£7.&,) at o = ¢, Therelore we have

\f” " . ] B O
tanfy = _f—T where py (2. 6) = 0.2" = 0. r, = 0.

-1

Using clementary geometry we rederive Snell’s law

o's)

Voaysind, = /a"sing (&)

. . - : MR I Y dary
Recall the parametrices for the wave equation with Dirichlet bo;llt ];‘;L
. . - - . o N J(“ 4
bolic points. (See Chazarain S Let p e M.

/

At continuous mapg E(T) — D', ) such that

conditions at hyper
and £ he line

(& —ad?y 1+ =g

, +
holds madulo an operator with € keppel. and 't 2 W) with ‘/’) ‘3:
WE(mpt Iy, E+ (resp. E=Yis a forward (vesp. backward: pnr"m.nf'l‘r?.ltﬁe
Pl (pgpy e WI'(E+) (vesp. {py. p) € WECE=)Y implies that py is on
forwar| (resp. backward) bicharacteristic isned from p. Here

e VY g, N (graph{e))\ 0)

s the pulihack by the natural inclusion map - T —s O induced by the [‘ME
ural restriction of Ninctions (ﬂ-(f(‘nsit,i(_‘s). (See Guillermin and Stf?l‘ﬂbf—’rc‘:’:__[)‘
tor pull-back and push-forward by maps.) L ave constructed as Fourier
ntegral operators

% ¢ [‘l/"(Q+ P TZ(.*T}L':Q:,) .
alions defined by the forward and back
respectively. e

( [+ and ("'[‘;_

are the canonical re
ward b

haraeterisy 108,

|
A = =70, E* = ‘Ul(T)
!
\* and ;\—

. e eSPeC
: are the forpqpd and backward Newmann operators at p, rest
tively.

Stmilarly, forward (resp. backwar
CF A+ [ A
ET. AT (resp. EX AD)

(resp. F~. AZ) for th

. s ey 7 tors
) parametrices and Nenmann O])Gia "
are defined for the positive side of Z, and ET, -\-

: . on of
€ negative side of 7 . Let us state the representation
these operators in the

. coordinates ntroduced ahove. The pull-back for th
T-side of 7 i given by
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o

1
(eqe)(2',0) = p(a!, 40)|dz, |77 if =0 (

if v is a smooth %-density on {24.
The coordinates z induce coordinates (. 1)
the kernels of the parametrices are oscillatory integrals, e.g.,

Ltay) = /}R srablg g,y 0)do (10)

(2 =y, 0

on O xTI'. In these coordinates

where ¢ is a non-degenerate phase function satisfying ¢(r,y.0) =
lfIn—O pila, il JO)) 0, and ¢, (z, y, 0., (T, y,0)<01f1n20
small, 2 close to y, and o4(z.y,0) = 0. (Angular hrackets denote standard

scalar product.) a is a syml )o] of 01del 0 satisfving transport equations along
— 0.7 =uvy o5 =0 Obael\c that
= 0.

hicharacteristics. @ = 1 at ©, = ¥

q{aﬂi)(_l'af.) =+, at 2" = a, =0 fhelefmea if (2. &) € Hy and @

1
S(AL)('. ) = Feign(éo)lag (26 — ")

Or. using (71,

o(A)(2.¢) = Tsign(&o)1E"] cot by
Similarly. if (' € & H_ and 2" = 0.

(L) €} = Tsign(&oll¢ cot O

Let p, € M, NH_. Then AT+ AT is now- characteristic at /Jr (AT + A0
denotes a microlocal inverse of AT + AT at{ 2. €. We call

R = —(A] + 4077+ AN €V (1

arcflection operator at p,. From the formulas for the principal symbols !

+1 -
e ) . .
16 .\(_UIHHIHI Op(‘l‘at()l'b‘ g}\'en ﬂ])O\’G we Obtﬂlll

M (12

o= f, + cotl_

< s, such that ~(8g)-¥l51) = H. V{5, <

Iotjboaia\ Let s, < ¢ | !
n intervals 5o Cs,Land [s.081
{&

H* MH_, and such that 5 restricted to the ope
| ~ a primary Tay from ~(sg) 10 ¥
‘y(s")' ¥(s;) is the zeﬂectlon point of the primary ray- Define Cy as the set
ofall (p,, po) € T7(T)\ 0 x T*(T) \ 0 such that there is a primary ray from
Poto py. Cy is 1oca]l\ closed canonical relation. Let Wa denote the set of
(91,p0) e T(T)\0 x T(T)\0 such that there exists a ray from po 10 /1

w N . .
vhich is not a primary ray.

a bicharacteristic. 'lhon we cal
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Proposition 2 [ (p1,p0) € Cyy \W,. Let Y be the primary ray from pg to

P via the reflection point p.. Then, mucrolocally near (P14 p0),

U= = (AN ) B R (A+) (13)

. - ; : - . Tour ] rat07"5,r
where B is the reflection operator qf pr- MY and A= are Neumann ope .

=1 . . . + orwa
and (AY)1 45 g mucrolocal inverse of A* at py and p,. EY 15 a f :

. . _ el . .
parametriz at p,. [p particular, we have {7 ¢ | T x Y;C8) near (p1,P0

Proof. We construct an approximate solution to (5) microlocally along ¥
following the standard procedures. (See Chazarain [5] and Nosmas _[15]-) Fj‘ﬁ
brevity we leave to the reader the insertion of appropriate pseudo-dlfferentlf’l
cutoffs. Let f ¢ E'(T). Without loss of generality we assume that WF(.f) 1S
contained m a neighbourhood of po Which is small enough not to contain Z
and is such that the backward bicharacteristics issued from WF{f} are noltl mn
the wavefront set of u. Set w, = E+(iA+)_1f in Q0 and wy = 0 in Q_'- _T ef;
Po & WF,(u — wo). {See Melrose [11] or Hérmander (8] for the deﬁnzti?lill 0
boundary wavefropt sets.) Define 4, = tywo. Then p, ¢ WF,(wo — E} Ogé'
Let by = Rho and h_ = (7 4 R)ho. Then p, ¢ WF(hg + h, — h_) and pr
WF(AIho +Ath, + ATh_). Tt follows that w41, satisfies the transmtSJSrlZﬂ
conditions microlocally at Pr where w, = Ethy in Q) and w, = EF é
m O_. Hence pr & WFb(‘wo-i-wl). Now define b, = ¢"wy. Then p
WEy(E=h, - (wo + wy)). Let h, be 4 solution of Ath, + A~h, = 0 at pr.
Define 1, = E*h,in ) and w, = gip Q1_. Then p, ¢ WF(* (9w, + anw?))'
Define ¢ — Wotw;+10,. Thep P ¢ \\fF(z*anzu). Fromresults on pl'OPaga“O’n
Of_singl,llarities it now follows that p, ¢ WE (v~ w). Summarizing we have

: < I
broved (13). The jast statement follows from the calculus of Fourier integra
Operatorsg.

: . : d
Remark, The singularities of {7 corresponding to primary rays are calle
Primary reflect; !

1 1 . T vavs
1018 11 seismic exploration. They are often, but not a.'l\ yto’
rivals in seismograms. The most notable excepUOﬂl
. . el as
aves. These correspond to rays which parttally trav

: in the
¢ Interface 7. They occur when the wave speed in th
ower layer is greater than the waye speed in the upper layer.

glancing rays in th

1

3 The Formally Linear
Let 8 ¢ C=(X)

“backgroung”

ized Inverse Problem

Positive. We Now consider the wave equation in a smooth
medium defiped by 8 where the interface Z is absent.

Av“ﬂafv = 0 inQ,

(14)
anv = f onT.
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This problem is actually a special case of (5). Let F denote the continuous
hnf.:ar map &(T) — D'(Q) where Ff = v is the unique solution of (14)
which vanishes initially. We study the formal derivative at 3 of the map
which sends 3 to ¢*f. To define it we introduce the problem

Ao — Bo*e = ﬂﬂfv in {2,
anU = 0 on T (15)

rnel of the linear continu-

Given 3 € Ce(X) we define L3 as the Schwartz ke

ous map which maps f € £'(Y) to the boundary value ¥y where v € D'(N)
Is .the solution of (15) with v determined from (14). Both v and © are assumed
mitially vanishing. L is a continuous linear map C&{X) — D'(T x T). Here
we use the fact that the boundary problem

Aw — BdPw = g In Q, 16
gw = 0 on T, (16)

has a unique initially vanishing solution w € D'(Q7) for every g € T'(R) which
vanishes initially and satisfies supp(g) C R X K for some K C X compact.
Moreover the map G defined by Gg = w is linear and continuous.

Given 3 € Coo(X) let M 3 be the Schwartz kernel of the linear continuous
map which maps f to B@fv where v is the initially vanishing solu.tion of (14).
M s a linear continuous map C3°(X) = D'(€1 Y). We have LJ = CGMP,
B e Cge(X), where L3 and M 3 are regarded as operators.

We define (3-)rays and a ray relation Cyp for (14) in the same way as
we defined rays and C, for (5). We assume that 4 = non Y. Then the
hyperbolic sets in T+(T) for (5) and (14) are equal. We make the general
assumption that a ray which .pa‘sses over a glancing point stays completely
over the boundary. This assumption can be stated as follows:

(prs po) € C3 N (T() x T7(T)) == 1o eH

When these assumptions hold we call 3 an admissible background.

Let po, pr € T(T) \ 0UT~() \ 0 and v € T7(X) \ 0- Theth by definition,
(p1, po, v) € Cy. if there exist py,p- € T*(92) such that

(17)

(p-vpﬂ)v(plvp-i') € Cﬁ
and
Pt = (t,l‘;T,fi), v = (‘T;E+ - é—) (18)

Let y_ and 7, be the associated rays from po to P- and from py to p1,
respectively. We then call the pair (v 1)@ (singly) scattered ray from po
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to p1. Let C'p be the subset of Cse for which 4_ and Y4 are bicharacterlsilc:
Co . " . Le
instead of generalized bicharacteristjcs. Ihen po, p1 € H because of (17)

W5 be the set of (p1, po) € I*(T)\ 0x7™(T) \ O such that either (pq, po) € Cs
holds or there exists some v with (py, po, v) € (', \ Cp.

Proposition 3 I (pr,~po, ~v) € WIKL) then cither (py, po) € gfi;ir
(1, po,v) € Coe. Lety ¢ oY X T) compactly supported with WF(x)NWs =
0. Then

XLe 1=y oy X;om.

Here C7 is obtained from €y by multiplying the second and third (ﬁbﬁ’f) tclferf
Ponent by —1. Furthermoye, X is non-characteristic at (py, po) and if

B . N on-
8 exactly one p ¢ T(X)\ 0 such that (1, p0,v) € Cp then XL is n
characteristic o (p1, —po, ~v).

Proof. The kernel of A1 cay, be written

o - N g - 19)
K = K & ()f}\.F) (

where [ is the identity operator on D'(X) and where p” is the pUH:baCk bgl
,t.'.f(t,l‘) (S‘y)vz) = (I,Z,(t,;lf), (S,y)), s € -]R, r,.z e ‘X', and Yy € Y. Recat
WH(Kp) ¢ Cs. Since the pull-back of the wavefront set of the tf?flS(?f.I)f'o':iucl
m (19) does not intersect the zero-section the right-hand side in (19) is Edee[;
well-defined. 17, _, 77 WEKy) with py = (1,2,7,6,) € To( )\
po € T7(Y) V0, and p — (5,0) ¢ T*(X)\ 0 then one of the following tfhlé‘f
Cases st holds (1) ¢ # 0 and (p_.pg) € Ca where p_ = (t,2,7.£.), & =

S EGH C=0and (o, ) e (1 (o) pe = (1,2.0.¢) with ¢ £ 0,
The kernel of L can he written

| | ‘ (20}
Ni= 6K "o O Aar) |

{

where § i (he pull-back hy (he diagonal map

W) (6,2),(5,5). 2 = ((s.m), (6, 2), (L0), (3, 7). )

nd where 7+ the push-forward by the natura] projection

?“((Siy),(t,a:),(é,z}),z) =((s,9),(3,9), 2).
Let (p,. —p,, ~v) € WF(K,). They there e

: —v) €
' X1sts py such that (py, —po,
“’FUCM) and (pl,._p+) € WF(K M

ion of
, *c)- From results on the propagation 0
singularit; LG - 1stic.
mrovarities we haye WF'(’Cl-G) CCs In particular, p, is character ;
ghls e)«fl.udes (ii1) of the Cases stated above, If (i) holds we obtain (p1, PO’.V_) .
e (i) b i - The first assertion in the propositio
IS proved.
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Now assume, in addition, {p1,po,v) € Cr and (p1,p0) ¢ Wg. Then
the kernels in (19) and in (20) are Lagrangian distributions near the points
which contribute to WF(K ) near (p1, —po,—¥). Kr. K=y 1% and 7.6"
are Fourier integral operators of orders —5/4, —5/4,n/4, and 0, respectively.
The composition calculus of Fourier integral operators applied microlocally to
(19) and (20) implies that K, is a Lagrangian distribution of order (n—2)/4
associated with the Lagrangian manifold Cy.

The principal symbols of Kr and of K¢ do not vanish because they are
solutions to first order linear ordinary differential equations, the transport
equations, with non-zero initial conditions. The last assertion of the propo-
sition follows from this. The proof of the proposition is complete.

The locations of receivers and {point) sources often do not range over all
Y XY but only over a submanifold § C ¥ x Y. The particular case where
= A(Y), the diagonal in ¥ x Y, is called the zero-offset configuration in

cophysics. We then define

e

as o

Ls = x3L (21]

where x7% is the pull-back operator for the map

ks R xS =T xT, (t(rs))— (t,7.0,5). {22)

= . . ) . . : A .
%5 1s a Fourier integral operator of order n/4 with canonical relation C.KS the

Wisted conormal bundle of the graph of x. &% is defined on half«lensities?. [t
corresponds to the restriction of functions via the identification of functions
and half-densities with the induced metric on S. It follows from Proposition 3
that the dual components of time do not vanish on WF(L). Hence, 'D.y
general results about wavefront sets and operators, the composition (21) 13
well-defined. Define the composition of (', and C'K; by

Cre = {lo,v); F{o.p1.po) € Cﬁg, (p1, —po: V) € Cr}. (23)

.\\-'e call a closed submanifold § ¢ ¥ x ¥ a SOUTCE-TECEIVET manifol.d if Cr.
N locally the graph of a canonical transformation, and if the ‘canonzeal pro-

chtion Cre — T(X) is injective. Note that dim(S) = dim(}") must hold if
Lo

1S a source-receiver manifold.

et S be a source-receiver

COro]lary 1 Let 3 be an admissible background. L J 7
Manifold. Let y € PO(R x S) with WF(x) QCK::(WB) = 0. 'Y.’hen xLs €
I(nﬁlm(lR x § x X;C}_). Furthermore, LixLsisa PSfudO'diﬁerentmf op-
trator of order n — 1, whsich is non-characteristic at v € T*(X)\ O for th_h
there ezists q unique ¢ € T"(R X $)\ 0 such that (o,v) € CLs and x 13
non-characteristic at o. Here Ly denotes the adjoint of Ls-
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. of
Proof.  The assertions follow from Proposition 3 and the calculus
Fourier integral operators, o lkin
Beylkin [1] and Rakesh [16] proved results similar to Co.rollaryh'l. B:i’m;
assumed the existence of a globally defined traveltime function. T (lisliidium.
tion implies that there are no caustics on rays over the backgr(;)un e
If a globally defined traveltime function T' exists then Lg can be w

Ls(tr,s) = /°° e TCNTEN 41 2 ) du (24)
—co |
with A determined by solving transport equations along the blcharacftj;l;
tics - and ~,. In (1] Ls is called a generalized causzq Radon tran‘sectiona
and a microlocal inverse (L‘S‘Ls)'ng 1s called a generalized b-aCkpleJolocal
Operator. Rakesh [16] derives mapping properjﬁies of Ls and its micr
inverses. His assumptions do not exclude caustics. _
Remark. The eIr)npha,sis in 1], [2], and [3] is on formulas whl?h filf‘);
numerical computation of backprojection operators. The fton.IPUta“OILOI .
and A for (24) requires ray tracing. In addition, the p'l“lﬁfllpal Syrll;ol 2
L% Ls is needed. Tt is obtained from the formula for the prmCIpé}l Syhm i
product of Fourier integral operators. For an explicit form.ula n the Spa;(rix
case (24} see Beylkin [1]. The formula involves a determ]nfxnt of atr_nr'l T
consisting of first and second order derivatives of the traveltime functio e
In seismics the algorithms of dynamic ray tracing are used to compute
type of data. (See Cerveny" [4] for dynamic ray tracing.) . s
Corollary (1) essentially states that Ls is microlocally invertible i N
A source-receiver manifold. Then we have dim(S) = dim(Y). One can a

. this
il Lsis also invertible if § Y %Y. Beylkin and Burridge [2] study
problem for the acoustjc wave equation

Kju -V . oWy =

and for the system

: : : . aking a
of isotropic elastodynamics. The reason for t
large source-recejver

. S hat two
configuration is to have more information so t I
. . : te Lg
coefficients can he recovered. 'I'he essential problem is to compu

] lus of
or [*[ symbolically, The following fact enables one to use the calcu
Fourier Integral Operators for clean compositions.

Proposition 4 Assume

: 7t x Cr
B is an admissible background. Then Cf
intersects the diagonal

T"(X) x A(T*(T)) x T(X).
cleanly wit), €xcess n. The

e o=1o(0)
fiber of the tntersection over a point in Cp ©
s diffeomorphic 10 Iy tim

es the unit n — | sphere.
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becirsoé)];f I(Jle;)ut;_“ (r,() € T7(X)\0 such. that (v,v) € Cp' o Cp. Then,
respondence W';h IT fiber over (v, ) of the intersection is in one-to-one cor-
fiber is diffe()nl . }t-le set of all (py, po) such that {p1,po,v) € CL. Hence the
Gffoommnt 101p-11c to the set of all (py, p_) which satisfy (18). Hence it is
orphic to the set (£4,¢_) € R** which satisfy for ¢ € R™ fixed

641/ VAT = I/ Vam £ 0, & =€ =C.

HQHAC\E the fiber is parametrized by t € R and {4 € R" with [£4] = 1.

of tils jofsgz(ziqtl'lencz*of propositi(,ln (4)} the 'fovrmula fo? the principal symbol

Gimony g 101‘1 SLSj where § = Y x Y, involves integration over n — 1
al spheres. This formula was derived, without using the calculus

of Fourier
ourier integral operators, by Beylkin and Burridge [2].

4 . . . P
Inversion for Jump Discontinuities

i);;aatltr:;lisl‘?’.tils (lletermined at it§ scatterin.g point by (18). When we
lead to the 931; ! ‘t 1e law .Of l"E‘fléCt-l()ll folr primary rays we see that both
fore if 3 14 ald‘i 15‘-;a}"1'elat=|.011 if 3 = am 4\’1. and v c N*(Z). There-
from the e );;1 )1]1t101.] \\'1thvonly CO‘I.IOI‘Hla.l Slrl'gulé.ll‘lthS at Z then, a\\:ay
associated Canloni;:; ‘p]O]FtS‘ & and' L3 are Founer 1.11teg1‘al oiperators with
fine the sets of e\(cé It? a‘]?n CL Gl'\‘en a source—rece;\-’c:r manifold S’ x’ve de-
W W " ptional points with respect to S, Hffg = Ch.g(l"/o ) and
g = Ht(f}SE ’[?’)H Furthermore. we (.leﬁne the f.-racs on S as the distribution
sk i :]) i (1 >< 8), where ks 18 .(leﬁnt‘d in (22). It is now natm-'al to
Wil (‘fnlo:; I;IO_JCCUOH‘ (‘)])era‘torr applw(.l t.o.ub: procl}xces a perturbation Jé;
Sngularitios Z.f f;llglllal‘ltlos at Z, ax}d, if t.l'us.:s so, if the strengths of the
F‘-Ul(‘tk;] ﬁ fl are related to the size oi: the jump of.a‘ at Z |
oo tlsy\\ uch are SI}]l)Ot-h H“:li ‘[(_)'l_zda jump ;lilfcl‘.;)gntlzullty at Z are
. ﬂt7 more precisely, (‘f)(:\gu.\f) c [N Z) lee ori-
) I)Ositi\-: Jideﬂn(‘s a ('lef()11}[)0?tt,101'1 of t}rl(’. cor'lor.x;narl bundlfe 9f Z into
tion on \ a'I;(' a nog‘atwe side, :\f"‘(?) = }}"l(Z)LJ;\’_(Z).. If ¢ 1s a fune-
di o) e- I\h\\ il(‘h V'EllllSh{?S on 7 and is positive (resp. negative) on Xy then
' N(Z) (vesp. dip(z) € N*(Z)) at = € Z.

g‘l;e(})}‘emr 1 Assume 3 is an admissible background with 3= a in Xy Let

2 Y be a source-receiver manifold. Let X e V(R x S5) compactly sup-

Ported with 1VF(x)N (T 5T 3s) = 0. Ther, e i fhe trace on S, Lyxus ©
: (X:Z) and WF(Livus) N N3(Z) = 0. Let § € C=(X,UX) with

B=0in X, and
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—cot # ‘
50y g4y g, CObfL —cotd_ ifze Z. (25)
,'3_(2) = —4(37(') G-}-(“’)COb O‘T'Cot 0+ + cot 9_ :

Here 0, is the angle of veflection of the primary ray reflected at z G.ZE‘
The angle of refraction 0_ s given by Snell’s law (8). Then LixLsp
[a=302 Z), and

Lsxus — LyxLsB € [P11=512( X, 7y (26)

. ofie al
The psendo-differential operator Ly Ls € WY X) is non-characteristic a

those points in NZ(Z) which are related vig CrLs to non-characteristic points
of v.

Remark, Formula (25)
A backprojection operator
jump discontinuity.

corresponds to formula (47) in Bleistein et a,l.. [3].
for Ls applied to the trace us produces a modified
Here modified means that only half of the wavefront set
of a full jump discontinuity is present. ,

Proof. Let (P1.po) € Cy. Let 7 be the primary ray from po to py via the
reflection point pr € HyNH_. Let P+ = (L, £0) € T=(2) where y(¢,) = pr-
Throughout the proof we use local coordinates r = (2',20) = (w0, 2", n) 2
introduced in section 3 such that the specular point, i.e., the X-component
of p., becomes the origin. Then p, = (5¢') with 2" = 0, ¢ > 0, and Pt =
(', 0:¢",F£,) where & > 0 and Plps) = 0. Let v = (0; —2£,). Then (lb)r
holds and » ¢ N*(Z). Then (p1. po. v) € Cp. The associated scattered 1‘,&)
and 5 define the same bicharacteristics, [ere we use that # = a in X4
Assume that (P1.p0) ¢ Cy and that (py, po. ) € Cponly if 7 = v. ,

Given b conormnal with respect to Z,be I™(X; 7), we define the multi-
plication operator By = b oy 1 € D'(Q) with WE(e)n N*(T) = 0' Hfj)rtj
we regard boas g distvibution on 0. Microlocally at (p1.po). Lbis a FO““.C[

UPetator associated with the canonical relation (. Arguing as In
ool af proposition 9 we obtain a factorization at (p1-po)

Mitegral

the- ]

.)'-
Eh= (1~ YNGR ad) (27)

(131 and (27 differ only

) _ vy T - that
i w the factors EYRG and G 307, We 'L’.ho“ o
the principal

symbols of e vperators ave equal at (py, p_) il b = 3.

Fhe coordinates 5 nduce coordinates (+,2) on the product ) x € d?
cancnical coordinates ((1*;5).(;;&) or THQ) % () near (py,p_). Let i

be the H,-fowont intq T, 20 of the set given by the equations

. 28
TEI o, =0, ¢ = ¢, pla,€) =0, (23
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Note that H,a, > 0 at p,. (") is canonical relation with boundary dC) given
by (28). hc tangent space Ay = Tip, p_)Ch is given by the equations

Ny b7 =62 bz, =0, 68 =68(, plé + ppéf = 0. (29)

We use the coordinates (r.() on C7.
Let y be the Lagrangian subspace of Tip, .p_)
the equations

(T*(0) x T~(82)) given by

e 80 =006 = s1'. bk, = 0y, (30)

jis transversal to the fiber dr = &z = 0 and to Ay if € > 0 is sufficiently
small.

Lemma 1 Ede € 190 < ;€1\ 9CY) at (pysp- ) and

=L(n41) ‘

31 1/2
o(ET ) (pg, poip) =€ ¢l

drd

Lemma 2 Let b ¢ [7(X: 7). Then GBy € "2 x GV 0C1) o

(ﬁ+aP-) and

—1/4, ~Z(n=1) bv)

2
o(GBy)(ps,p_ip) = (27) e prn(midld@l

where b is the principal symbol of the symbol

ba” ) = [ e gl

q“l(tl\ speaking the symbols are defined at (pe-p-)

lim
ts along 4, .

The Jemmas are pr()\e( I below.
proof (Jf fh(‘ th( OTCT. f)' has a ]ump dl\(Oiltl“U

e 9C; by taking

Assuming them we continue with the

ity at 7. Hence i is conormal

."§(0~En) = E)"/‘}(OO—)

Tl

btain. using {12), the lemmas.

LOmbining this with the definition of 3 we o
and cos’ 9 "-n/(a-l- 60)

+ [V .
o(EFRE)(py, p-i ) = 0GB 0 W py poi i)

=d by the same transport
The principal symbols of E+ -and G are governe b
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equations on v,. Hence the principal svinhol of V(g —Lg3) vani'shes.. Recall
v € N2(Z}). Observe that L3y Ls is non-characteristic at v if y 1s non-
characteristic at ¢ where (o, p1, po)
theorem follow from this.

The formula
A C A-—-Cp-te g
sgn (o p | =sen 0 I

. - . . . . I'l
18 useful when computing signatures of Symimetric matrices. It holds whe
B! exists. We shal] use 1t in the proof of the le
factors.

€ ("',‘.:,. The remaining assertions of the

mmas to evaluate Maslov

Proof of Lemmaq 1. We rewrite (9) as

(Ge)(',0) = (2m)~! /(t“i“’z”v*(z')t.'(:)(lzn(lw}(lzn|~1/2

where r{z") = 1if .v — . In combination with (10) this yields

(EYe ) (z,2) = (?W)hlwfe'@a(ﬁc,z',-ﬂ)r(z')dz?

where
(b(;ra <, T)) = C5(/1‘ :" 0) -

The principal symbol of this |,

Lpw, 0 = (H,LU) e ]Rn+1.
agrangian distribution s (cf. [8, Chapter 23))
U(Eitl)(/’hﬂﬁ-f/l) =ar (1‘1/26?3’ 1/2

where ¢ = [D(x, ¢’ d);)/D(.r,:,v‘))[

dxd(]

, and

" }
AT
$ = sgn 7 Y. o1,

H " "
(I)ﬂl‘ (bi?z 2y

(10 1
Q—h(() 1/6)' (31

ifr =2 0, = 0, 2" = 0, and ¢g = 0. This really is a
=Tlatp,. A straightforward evaluation of determinants
1s s = —sgn () = —{n+1). Here we have to choose
¥ small so that terms composed of derivatives of ® with
respect to r

'n are suitably dominated. The proof of Lemma 1 is complete.
Proof of Lemmaq 2. Let Cy be the canonical relation given by the equations
T=2 2, =90, ¢ = ¢". The tangent space Ao =

where

We have gr — 1

Tipy.p_)Co is
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Ao br=4é:z br, =0, 56 = 6(. (32)

(2',£,,C) are coordinates on (. We first show that B, is a Fourier integral
operator near (py, p_} and compute its principal symbol. The multiplication

by b can be written as the inverse Fourer transform of a convolution:
(Byw)(x) = (‘er)_2 ‘[6"”" b(lz'”,a)@"(““)z“w(:v',z,l)d-:ndadr.

Now we insert for w(z’, z,,) its Fourier inversion formula and obtain a repre-

sentation of the Schwartz kernel of By
Bu(x.2) = (‘271’)—2_”fei‘plA)((lr",a)dJ(leO

where
(x,z,0,7r,0)= (0,2 — S+ T(Te — Zn) + 020

retrizes C!) near {py, —p-)- bis a
Jrtr/A(Qx C!). The principal

The non-degenerate phase function @ paran
symbol of order m +n/4—1/2. Hence By €
symbol of B, is

B papos ) = (20T a0 dndc (39
‘v’\"here d = |D(z',d' ,<I>’__,¢>19)/D(.r.:,ﬂ)|, ) = (0,7,9) and where s is the
signature of & with the block ®”, replaced by 7, — Q. {Q 13 the same
MALTix as in (31).) Straightforward computations show d = 1 and s = —n.

To compute GB, we use the calculus of Melrose and Uhlmann [14].
N ' . . . . . . . ,
(CO’Cl) are an intersecting pair of Lagrangian manifolds with intersection

Gney = dC7. We solve
(A — 303G By = By

using the constructions of section 6

with (1'83) € ]m+n/4—3/2(Q % Q.(‘é(‘;)
. f [14] correspond to Tn, .

I [14]. The notations f, g.and b in section 4 0
and (1',¢) here. We write
l1/2 {34)

o{ By} = rlda'dCdp
|1/2' (35)

_ r(H,) " |de'dzdés

The symbol calculus of [14] gives

o(GBy) -;|da:’d(:dp|1/2 on C4\ 9C1,

i - ' 1/2 ' ' 16
o(GBy) = (am)eFr(Hyra) da'dGdzal T 08 cI\ac,  (36)
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The Maslov factors are correctly accounted for if we show that Jis tra-nsve”[ffi
to the natural counecting path hetween A, and A We check this. ich
connecting path consists of the Lagrangian subspaces W, 0 563_ SEI{V}VQF-
are spanned by Ao\, and sH, + (1 - sML,,. Let (6x,6€. 62" g)l R -;fore..
Then 82" = 62/ 65, = 0. and 6¢" = 8¢’ because Ws C Ao+ Ay, and ther
using (30), we have 0 =8z =0, =82 = 0. Furthermore,

(

Spg, 665 + spy, + (1 - §))br, = 0.

and

—€6&, + br, = 0.

Since gl > 0 also oz, and 6€, vanish if ¢ > 1 1s sufficiently {Smén' 330, (34).
'l‘hews\'mhoi formula stated in the lemma now follows [rom (330, {
(35}, and (36). The proof of Lemma 2 iy Lere 18 N0

Remark. Ap mspection of the proof of Theorem 1 shows .that t ii;(jdhf]l(?
difficulty in generalizing it to non-smooth background media provided

N - l}'-
. . . . TR . } 3, h orst
non-smoothness arises only as jump discontinuities across smooth yp
faces.

complete.
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