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The Mayer-Vietoris and the wlnl‘llppe seq
in K-theory for C*-algebras

by

1 HILGERT (Darmstadt)

Abstract. We show the existence of a Mayer- Vietoris and a Puppe sequences in the K-
theory for (*-algebras. Both sequences generalize the respective sequences in the commutative

case in the sense that they reduce to those sequences under the identification K,(Co(X))
= K*(X) if all algebras involved are chosen to be commutative. ig. of the form Co(X) for a
locally compact space X. The sequences are used to calculate the K-theory cf certain bundle-C*-
algebras with continuous identity field.

0. Notation and preliminaries. For any C*-algebra A call $A
=100, 1] 4 continuous, f(0) = 0'=f (1)} the suspension of A. For two
(*-algebras 4 and B we say that two morphisms ¢;: A= B, i=0, L, are
homotopic if there exists a family &, A — B of morphisms for re[0, 1] such
that @: I x 4~ B defined by @(t. a)= &, (a) is jointly continuous and &
= for i =0, 1. We write ¢, ~ ¢,. The morphism ¢: A - B is called a
homotopy equivalence if there exists a morphism ¥: B— A such that poy
~>idy and yop=~id,. A C *.algebra C is called contractible if id¢ zQ:
€~ C. Recall (cf. [3]) that the K-functor does not distinguish homotopic
Mmorphisms. Thus homotopy equivalences induce isomorphisms and
Contractible ¢ *-algebras have vanishing K-groups.

. Mayer-Vietoris sequence. Let B,. B, and C be C*-algebras and f;: B,
~C C*-morphisms for j = 1. 2. Suppose f; is onto. Consider the pullback

p— »5

azl f

B————>C
2 4

hl::; S 2 natural inclusion j: D— B; @B;. The map j induces group
Morphisms j,: K, (D) K, (B,) ® K, (B)).
We define group *homomorphisms ty: Ky(B) ®K,(B)— K, (C) by

* e~(£3),, where (f),: K, (B)— K, (C) is the group
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induced by f; for i=1,2 This means, for bcK,(B;). that v, (b @by
= (fl)* (bI)—'(fZ)t (bz)- _

There are two more maps which play an important role in the Mayer-
Vietoris sequence. We show the construction of ay: Ko(C) — K, (D); the map
a;: K, (C)— Ky(D) is constructed analogously.

Note first that there is a natural isomorphism between ker f, and kerg,.
Let I: ker f, - D be the inclusion induced by that isomorphism. Note a}so
that the surjectivity of f, implies that g, is onto. Thus we get the following
commutative diagram with exact rows:

O-———>ker fz___.":__._,.D——gl-—)BT'——'—')O
lgz lff
O———>ker b—>3, » » 0
i f

This diagram induces the following commutative diagram with exact rows:
(g1)e

(g

3 a
> Ko By) —2 Ky ker f;)— 2 k(D) — 9% e (B) — >

(f*l)*l l(gz)* (,‘1)*

e > Kol O Kier ) —— KBy~ Ki(C) ——>
%

(f)e ¢

Now we define ay: Ko(C)— K, (D) by a,:= lg0d;.

THEOREM (Mayer-Vietoris sequence, cf. [2), (6]). Let B,, B, and C be
C(*-algebras. f;: B, — C be C*-morphisms fori=1,2 and let D be the pullback

over f, and f,. Moreover, assume that f> is surjective. Then the following
sequence Is exact:

J
Kok D) — > Ky(B) 9 K B,) — 2 K, (C)
0Ly !

/

K{C) KB ®K(B,) <-~7———K‘(D)
»

2%

Proof. First we show that imj, ckerv,. For deK,(D) we have
Dol (0) = 1, ((g1), (D) D (g), (1))
= (/1) “gl)t(b))_(fz)t (_(gz)t(b)) =(£1961)s D) —(f,042), (D) =0.
. The reverse inclusion is obtained by a diagram chase in the above
dTl;egragl- Let b, €K, (B;) and b,e K, (B,) be such that (f1)a (By) = (f2)a (B2
N 64(by) = ¢, 0(fy), (b,) = &, O(f2)4(b;) = 0 whence there exists de K, (D)

. N s 132 92) (b)) = 0 so that there €x "
e K, (ker f2) with iy (a) = b, —(g,), (b). Now we set b = b+1,(a) and obtaid
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95 (0) = (g) D) +0=b, and (g,),()) = (g)y (D) +ig; 0D, (a) = (g3), (D) +
+i,(a) =b,. Thus we have proved that im Je = keru,.

It remains to be shown that the Mayer—Vietoris sequence is exact at the
corners. We show that for the right side, the left side is proved analogously.
To see that imc, —kerx, calculate for be K, (B) that x,{(f,), (b))~
~(f2) (02)) = 2y (/1) (b)) =&, ((f2)y (b)) = I 00 (by) =1 07 0 fo)y (by) = 0.

The reverse inclusion again requires a little diagram chase. Suppose. for
ce K, (C), that a,(c) =0. Then /,0¢,(c) = 0 and there exists a b, e K, (B,)
with &,(b;) = &,(c). Therefore &((f,),(by)—c) = &,(b,)—é;(c) = 0. This in
turn implies that there exists a by e K, (B,) with (f;), (by) = (f)4(b;)—c¢, thus
¢=1v,(by ®b,).

The inclusion ima,  kerj, is seen from the following calculation for
te K, (C). We have j,(x, (0) =Ju(ly ©0,(0) = (g1), 01, 08,(0) Dga)y 0l 0 ()
=0®i,08,()=0.

Finally we get the reverse inclusion again by diagram chasing. Note that
kerj, = ker(g,), nker(g,),. Thus for dekerj, there exists an ae K, (ker f,)
with [ (a)=d. We get i,(a) =(gy), 01, (a) =0 and hence there exists a
te K, (C) with &(c) = a. This implies that o, (¢) = I, 0&,(c) = I,(a) = d. This
concludes the proof m

IL. Puppe sequence.
Derinimion. Let A and B be C*-algebras and ¢: B A a C*-morphism.
Define the mapping cone. denoted by C,, as follows:

Co = Ub./)e B® P(A): ¢(b)=/{0).f(1) =0j,

where P(A4):= {f: I » A continuous! is the algebra of paths in A.
Given the map i: §4 — C, defined by i(f) = (0, f) we get a sequence of
(*-algebras which we call the Puppe sequence:

SBg—;SA—i*Cq,;;B;oA

Where So(g):= pog and v, ((b, f)):= b.
THEOREM. The Puppe sequence induces the following exact sequence in K-
theory:

Ko(Cp) —— Kol B)———>Ko(A)

Ky{ A) ——— K, (B <——K,(C,p)

Proof. First we show that we can replace K,(SB) and K,(54) by
K,(C) and K,(C) respectively. In fact, we construct maps k: S4-C,_
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and I: C, - SB that induce isomorphisms in K-theory and give a diagram of
the following kind that is commutative up to homotopy:

S : ¥
SB 4 »SA - :—C‘? ? 3 R ? » A
t[/ lk /
¢ c{

We have C, = (b, [ PeBDPA) @ P(B): ¢(g(0) =1(0), f(1)=0,b
=¢(0), g(1) =0} which we can identify with (/. g)e P{4)® P(B): @(4(0)
=f(0),/(1)=0,g(1)=0}. There is a map k: SA4-»C, defined by kif)
t=(f., 0). It is clearly injective. Now consider the cone CB:= !ge P(B): g(1)
=0} and the map u: C, > CB defined by puf(f,g) =y Sincc
(1=ne(g(0)), g)e C v, fOr any ‘pge CB we see that u is surjective. Clearly
ker i = k(SA). But the cone CB is contractible and therefore the six-term
sequence associated to 0 -S4 C, - CB—0 shows that k,: K,(54)
- K, (C cy) 18 an isomorphism. Morewover, the natural map t,.: (",.la%C«p
defined by (f, g)+(g(0). /) makes the following triangle commutative:

SA——t— C,,

Iy
yl v

¢,

("

Now consider the mapping cone C, = Ug.FleSA®P(C,)=SADPBSD
@ P(P(A)): itf)=(g(0). F(-, 0). {g(1), F(-, 1)) = (0. 0)l. We can identify Ci
with the algebra !(g. F)e P(BY® P(P(A): pog=F(0.-). F(1,)=F(. 1)
= 0,9(0)=g(1) = 0), as one easily sees, and consider the map I: C;— 5B
given by l{g,F)=g. For a given gec SB set F(s, t):={pog(n)(1-s) then
(:;, F)eC; and (g, F)=g whence | is surjective. The kernel of | 18
(9. F)eP(B)® P(P(A): F(0,")=F(l,)=F(-, 1) =0} which is isomorphic
to the cone C(SA). Thus ly: Ky(C))> K, (SB) is an isomorphism.
The map v;: C; >S4 is given by (9. F)—>F(-, 0). Consider the family of
maps @,: C;—SA defined by &,(s):= F(s(1-1), st); then @ =5, 109
= F(0, s) flnd ®, is a homotopy. Clearly &, = Spol.

I\‘Iow 1t suffices to prove that any sequence C,— B A, where C, is the
mapping cone of ¢ and the map v, is the projectli,gn onto the first factor,
induces an exact sequence in K-theory. But this sequence gives rise to the
short exact sequence 0> S 4 --)C.—->B—> 0 which in turn induces the exact
sequence K.(C,)—»K.(B)—-»K,..,I(SA). Since the triangle
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K (B)——K,_,(SA)

Px
K (A)

where the vertical map is the suspension isomorphism commutes we deduce
that K (C,) - K, (B) - K, (A4) is exact. Thus the following sequence is exact:

S, . ¥
K, (SB) 5 K, (SA) — K (C,) > K, (B) S K, (4)

and we remark that C se = 3(C,) so that we can close the exact sequence to
obtain the diagram in the statement of the theorem. =

III. Examples. The Mayer—Vietoris and the Puppe sequences can be
applied to calculate the K-theory of C*-algebras that are represented as
section algebras of C*-bundles. The following simple examples show how to
calculate the K-groups of a section algebra from the K-groups of restrictions

to smaller spaces. ‘
Let Y < X be compact spaces. Define a C*-algebra D as the following

pullback

D———= M, (CiX)

r

M,(C (Y > M (CLY)

Here r simply denotes the restriction to Y and d is the map that assigns the
block diagonal matrix
[j.. ]
S

to an fe M, (C(Y)), the k x k-matrix algebra over the continuous functions
on Y. For the sake of brevity we define B:= M (C(X)) A:= M,(C(Y))
and C:= M, (C(Y)). We obtain the Mayer-Vietoris sequence

K(D}—— K{B) @ K (A} ———> Ki{C)

| |

Ko{C) Ky B)® Kol A) «——HKo(D)

The map d,: K, (4) - K (C) is, if we identify K,(A) with. K,(C) under
?s: K,(4) > K,(C) induced by the inclusion ¢: A — C which maps ae A
to the matrix in C that has a in the upper left corner and zeros elsewhere,
Just multiplication by n. If X is a contractible space and yoe Y, the map
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ev: B-» M, =M,(C) given as the evaluation at y, is a homotopy
equivalence. Thus with the canonical embedding j: My,—C we get a
commutative triangle up to homotopy:

/

My———>C

"/

Thus the triangle in K-theory induced by this one commutes, and since v,
is an isomorphism, we can replace K, (B) by K, (My) and r, by j,. If we set
A:=!{feA: f(yg) =0 we get a split exact sequence 0> A4 —»A4—M,—~0
and hence we get a split exact sequence in K-theory OHK*(A)*K*(A)
~K,(M)—0. Note that K,(My)=K,(Mp)=K,(C)=0 and Ko(Mu)
=Ko(M,) = Ko(C) = Z. Hence we get the following exact sequence:

K](D) > K1(A?) % L Kg(lﬁ)

Ky(A) <—To-z@u<oui’)@z)<—xo<m

where the maps v, and v, are given as follows: v, (a) = —na for ae K, (4)
and

Lom@ (@D =0@m-na®) = —na@®(m—nl)

for m@a@NeZ ®(Ko(A) @ Z). If we assume that K, (A) is torsion free,
then v, is injective and therefore K,(D)= Ko(A) @ Zfimv,. But for
¢. b6 Ko(4) and m, meZ we have c®m—d@meimr, if and only if
there is an ae Ko (A) and m, le Z such that c(—d = — na and m.—my = m—nl.
The condition on the integers is always satisfied, thus K, (D) = KO(A)/"KO(A)
=Kod) ® Z/nZ if K,(4) is torsion free, too. Further, we have the exact
sequence 0 K, (A)fimv, — K, (D) - ker v, — 0. We assumed Ko(A) to D¢
torsion free, so kero, = m®(a @ De Z ®(Ko(A)@2Z): —na=0,m=nl}=Z.
Thus the sequence splits and since im v; =nk, (zi) we have Ko(D)
2K ((A)®ZMZ)SZ. I we now observe that K (A) = K.(Co(y))
= K*(Y) we get the following *

ExampLE 1. Let Y < X be compact spaces such that X is contractible
and K* (Y) torsion free, and let D be the C*-algebra of continuous functions
from X into M, such that the values on Y are block diagonal matrices with

identical blocks of size kxk. Then K.(D)= RUYRZNZI)DZ
K,(D)=KR°(Y)® Z/nz. o) = (RN @ Zjn2)
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Similarly one calculates

ExampLE 2. Let Y c X be compact spaces with X contractible and D the
algebra of continuous functions X — M, that map Y to block diagonal
matrices with blocks of size k xk. Then K,(D)=(K®(Y)f' '@®Z" and
K (D)= (K" (y)y .

The assumption that X be contractible has of course been made to
avoid problems in calculation which arise from the fact that we do not know
the map r_: K, (B)— K, (C) in general. There are some more cases where we
know this map.

ExampLE 3. Let Y = X be compact spaces and Y a deformation retract
of X. Let D be the C*-algebra of continuous functions X — M, such that
the values on Y are block diagonal matrices with identical blocks of size
kxk. Then K, (D)= K*(Y). If the condition that the blocks be identical is
dropped we have: K, (D) = K*(X)®(K*(Y))'".

We have seen that torsion in the K-groups can cause trouble. In some
cases we can get around that using the Puppe sequence.

Let X and Y be compact spaces and f: Y— X a continuous map.
Consider the mapping cone C,. We obtain a map f’: Y- C,; which is the
composition of f and the canonical map g: X —»C,. Now consider the
C*-algebras M,(C(X)) and Mu(C(Y) We get a map o: My(C(X)
~ My (C(Y)) by ¢(a):=d(aof) [cf. Example 1 for the definition of d].
Consider the mapping cylinder M, given by the pullback

M —> M, (C{X)

P
?

P(My(ClY ) —g7—> MulCY))

where ev is the evaluation at 1 = 0. Note that P(M(C (V) is caponically
isomorphic to M, (C(Yx 1)) and M, (C(X)) is canonically isomorphyc to t.he
algebra of maps X — M,, whose values are block diagonal matrices with
identical blocks of size k x k. Thus we see that C, is the C*-algebra of maps
from C ; into M, whose values on g(X) are block diagonal matrices with
identical blocks of size k x k and which vanish on yoe C;, the vertex of the

cone. Now it is easy to get _
ExampLE 4. Let X and Y be compact spaces and f: Y— X a continuous

function. Let C, be the mapping cone of f and D the C "-a_lgeb'ra of
continuous functions from C  into M, whose values on the cangmcal image
of X in C  are block diagonal matrices with identical block§ of size k x k. Let
D be the subalgebra of D consisting of those maps that vanish on yo€ C,, the
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vertex of the cone. Then K_(D) = K*(Ij) and we get the following exact
sequence:

. ! .
K (D) —— K'(x) L K (Y)

K ) ———KLx) = KoB)
n

Finally, if we drop the condition on the blocks, we get

ExampLE 5. Let X and Y be compact spaces and /: Y~ X a contmuou::
function. Let C; be the mapping cone of f and D the C*—a!gebra of mapl:
from C; into M, whose values on the canonical tmage of X in C, are ploc
«liagonal matrices with blocks of size k x k. Let D : = ker ev, where ev is the
evaluation at the vertex y¥o€C;. Then K, (D)=K,(D) and Ky(D)
> Z @ Ko(D). Moreover, we have the following exact sequence:

n f‘
K,(ﬁ)—-—-——-)— ‘E:*;\‘K1(X)-—§—-"K1(Y)

A

Ko7

0 <l
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