

The Mayer-Vietoris and the Puppe sequences in K -theory for C^* -algebras

by

J. HILGERT (Darmstadt)

Abstract. We show the existence of a Mayer-Vietoris and a Puppe sequences in the K -theory for C^* -algebras. Both sequences generalize the respective sequences in the commutative case in the sense that they reduce to those sequences under the identification $K_*(C_0(X)) = \tilde{K}^*(X)$ if all algebras involved are chosen to be commutative, i.e. of the form $C_0(X)$ for a locally compact space X . The sequences are used to calculate the K -theory of certain bundle- C^* -algebras with continuous identity field.

0. Notation and preliminaries. For any C^* -algebra A call $SA := \{f: [0, 1] \rightarrow A \text{ continuous, } f(0) = 0 = f(1)\}$ the *suspension* of A . For two C^* -algebras A and B we say that two morphisms $\varphi_i: A \rightarrow B$, $i = 0, 1$, are *homotopic* if there exists a family $\Phi_t: A \rightarrow B$ of morphisms for $t \in [0, 1]$ such that $\Phi: I \times A \rightarrow B$ defined by $\Phi(t, a) = \Phi_t(a)$ is jointly continuous and $\Phi_t = \varphi_i$ for $i = 0, 1$. We write $\varphi_1 \simeq \varphi_0$. The morphism $\varphi: A \rightarrow B$ is called a *homotopy equivalence* if there exists a morphism $\psi: B \rightarrow A$ such that $\varphi \circ \psi \simeq \text{id}_B$ and $\psi \circ \varphi \simeq \text{id}_A$. A C^* -algebra C is called *contractible* if $\text{id}_C \simeq 0: C \rightarrow C$. Recall (cf. [3]) that the K -functor does not distinguish homotopic morphisms. Thus homotopy equivalences induce isomorphisms and contractible C^* -algebras have vanishing K -groups.

I. Mayer-Vietoris sequence. Let B_1 , B_2 and C be C^* -algebras and $f_i: B_i \rightarrow C$ C^* -morphisms for $i = 1, 2$. Suppose f_2 is onto. Consider the pullback

$$\begin{array}{ccc}
 D & \xrightarrow{g_1} & B_1 \\
 \downarrow g_2 & & \downarrow f_1 \\
 B_2 & \xrightarrow{f_2} & C
 \end{array}$$

The C^* -algebra D can be written as $\{(b_1, b_2) \in B_1 \oplus B_2 : f_1(b_1) = f_2(b_2)\}$. Then there is a natural inclusion $j: D \rightarrow B_1 \oplus B_2$. The map j induces group homomorphisms $j_*: K_*(D) \rightarrow K_*(B_1) \oplus K_*(B_2)$.

We define group homomorphisms $v_*: K_*(B_1) \oplus K_*(B_2) \rightarrow K_*(C)$ by $v_*: (f_1)_* - (f_2)_*$, where $(f_i)_*: K_*(B_i) \rightarrow K_*(C)$ is the group homomorphism

induced by f_i for $i = 1, 2$. This means, for $b_i \in K_*(B_i)$, that $v_*(b_1 \oplus b_2) = (f_1)_*(b_1) - (f_2)_*(b_2)$.

There are two more maps which play an important role in the Mayer–Vietoris sequence. We show the construction of $\alpha_0: K_0(C) \rightarrow K_1(D)$; the map $\alpha_1: K_1(C) \rightarrow K_0(D)$ is constructed analogously.

Note first that there is a natural isomorphism between $\ker f_2$ and $\ker g_1$. Let $l: \ker f_2 \rightarrow D$ be the inclusion induced by that isomorphism. Note also that the surjectivity of f_2 implies that g_1 is onto. Thus we get the following commutative diagram with exact rows:

$$\begin{array}{ccccccc} 0 & \longrightarrow & \ker f_2 & \xrightarrow{l} & D & \xrightarrow{g_1} & B_1 & \longrightarrow 0 \\ & & \parallel & & \downarrow g_2 & & \downarrow f_1 & \\ 0 & \longrightarrow & \ker f_2 & \xrightarrow{i} & B_2 & \xrightarrow{f_2} & C & \longrightarrow 0 \end{array}$$

This diagram induces the following commutative diagram with exact rows:

$$\begin{array}{ccccccccc} & \xrightarrow{(g_1)_*} & K_0(B_1) & \xrightarrow{\partial_g} & K_1(\ker f_2) & \xrightarrow{l_*} & K_1(D) & \xrightarrow{(g_1)_*} & K_1(B_1) & \xrightarrow{\partial_g} \\ & \downarrow (f_1)_* & \parallel & & \parallel & & \downarrow (g_2)_* & & \downarrow (f_1)_* & \\ & \xrightarrow{(f_2)_*} & K_0(C) & \xrightarrow{\partial_f} & K_1(\ker f_2) & \xrightarrow{i_*} & K_1(B_2) & \xrightarrow{(f_2)_*} & K_1(C) & \xrightarrow{\partial_f} \end{array}$$

Now we define $\alpha_0: K_0(C) \rightarrow K_1(D)$ by $\alpha_0 := l_* \circ \partial_f$.

THEOREM (Mayer–Vietoris sequence, cf. [2], [6]). *Let B_1, B_2 and C be C^* -algebras, $f_i: B_i \rightarrow C$ be C^* -morphisms for $i = 1, 2$ and let D be the pullback over f_1 and f_2 . Moreover, assume that f_2 is surjective. Then the following sequence is exact:*

$$\begin{array}{ccccccc} K_0(D) & \xrightarrow{j_*} & K_0(B_1) \oplus K_0(B_2) & \xrightarrow{v_*} & K_0(C) & & \\ \uparrow \alpha_1 & & \uparrow & & \downarrow \alpha_0 & & \\ K_1(C) & \xleftarrow{v_*} & K_1(B_1) \oplus K_1(B_2) & \xleftarrow{j_*} & K_1(D) & & \end{array}$$

Proof. First we show that $\text{im } j_* \subset \ker v_*$. For $d \in K_*(D)$ we have

$$\begin{aligned} v_*(j_*(d)) &= v_*((g_1)_*(d) \oplus (g_2)_*(d)) \\ &= (f_1)_*((g_1)_*(d)) - (f_2)_*((g_2)_*(d)) = (f_1 \circ g_1)_*(d) - (f_2 \circ g_2)_*(d) = 0. \end{aligned}$$

The reverse inclusion is obtained by a diagram chase in the above diagram. Let $b_1 \in K_*(B_1)$ and $b_2 \in K_*(B_2)$ be such that $(f_1)_*(b_1) = (f_2)_*(b_2)$. Then $\partial_f(b_1) = \partial_f \circ (f_1)_*(b_1) = \partial_f \circ (f_2)_*(b_2) = 0$ whence there exists $d \in K_*(D)$ such that $(g_1)_*(d) = b_1$. We have $(f_2)_*(b_2 - (g_2)_*(d)) = 0$ so that there exists $a \in K_*(\ker f_2)$ with $i_*(a) = b_2 - (g_2)_*(d)$. Now we set $d' = d + i_*(a)$ and obtain

$(g_1)_*(d') = (g_1)_*(d) + 0 = b_1$ and $(g_2)_*(d') = (g_2)_*(d) + (g_2 \circ l)_*(a) = (g_2)_*(d) + i_*(a) = b_2$. Thus we have proved that $\text{im } j_* = \ker v_*$.

It remains to be shown that the Mayer-Vietoris sequence is exact at the corners. We show that for the right side, the left side is proved analogously. To see that $\text{im } v_* \subset \ker \alpha_*$ calculate for $b_i \in K_*(B_i)$ that $\alpha_*((f_1)_*(b_1) - (f_2)_*(b_2)) = \alpha_*((f_1)_*(b_1)) - \alpha_*((f_2)_*(b_2)) = l_* \circ \hat{c}_g(b_1) - l_* \circ \hat{c}_f(b_2) = 0$.

The reverse inclusion again requires a little diagram chase. Suppose, for $c \in K_*(C)$, that $\alpha_*(c) = 0$. Then $l_* \circ \hat{c}_f(c) = 0$ and there exists a $b_1 \in K_*(B_1)$ with $\hat{c}_g(b_1) = \hat{c}_f(c)$. Therefore $\hat{c}_f((f_1)_*(b_1) - c) = \hat{c}_g(b_1) - \hat{c}_f(c) = 0$. This in turn implies that there exists a $b_2 \in K_*(B_2)$ with $(f_2)_*(b_2) = (f_1)_*(b_1) - c$, thus $c = v_*(b_1 \oplus b_2)$.

The inclusion $\text{im } \alpha_* \subset \ker j_*$ is seen from the following calculation for $c \in K_*(C)$. We have $j_*(\alpha_*(c)) = j_*(l_* \circ \hat{c}_f(c)) = (g_1)_* \circ l_* \circ \hat{c}_f(c) \oplus (g_2)_* \circ l_* \circ \hat{c}_f(c) = 0 \oplus i_* \circ \hat{c}_f(c) = 0$.

Finally we get the reverse inclusion again by diagram chasing. Note that $\ker j_* = \ker(g_1)_* \cap \ker(g_2)_*$. Thus for $d \in \ker j_*$ there exists an $a \in K_*(\ker f_2)$ with $l_*(a) = d$. We get $i_*(a) = (g_2)_* \circ l_*(a) = 0$ and hence there exists a $c \in K_*(C)$ with $\hat{c}_f(c) = a$. This implies that $\alpha_*(c) = l_* \circ \hat{c}_f(c) = l_*(a) = d$. This concludes the proof. ■

II. Puppe sequence.

DEFINITION. Let A and B be C^* -algebras and $\varphi: B \rightarrow A$ a C^* -morphism. Define the *mapping cone*, denoted by C_φ , as follows:

$$C_\varphi = \{(b, f) \in B \oplus P(A) : \varphi(b) = f(0), f(1) = 0\},$$

where $P(A) := \{f: I \rightarrow A \text{ continuous}\}$ is the algebra of paths in A .

Given the map $i: SA \rightarrow C_\varphi$ defined by $i(f) = (0, f)$ we get a sequence of C^* -algebras which we call the *Puppe sequence*:

$$SB \xrightarrow{S\varphi} SA \xrightarrow{i} C_\varphi \xrightarrow{v_\varphi} B \xrightarrow{\varphi} A$$

where $S\varphi(g) := \varphi \circ g$ and $v_\varphi((b, f)) := b$.

THEOREM. *The Puppe sequence induces the following exact sequence in K -theory:*

$$\begin{array}{ccccc} K_0(C_\varphi) & \longrightarrow & K_0(B) & \longrightarrow & K_0(A) \\ \uparrow & & & & \downarrow \\ K_1(A) & \longleftarrow & K_1(B) & \longleftarrow & K_1(C_\varphi) \end{array}$$

Proof. First we show that we can replace $K_*(SB)$ and $K_*(SA)$ by $K_*(C_i)$ and $K_*(C_{v_\varphi})$ respectively. In fact, we construct maps $k: SA \rightarrow C_{v_\varphi}$

and $l: C_i \rightarrow SB$ that induce isomorphisms in K -theory and give a diagram of the following kind that is commutative up to homotopy:

$$\begin{array}{ccccccc}
 & & SB & \xrightarrow{S\varphi} & SA & \xrightarrow{i} & C_\varphi \\
 & \uparrow l & \nearrow v_i & & \downarrow k & \nearrow v & \\
 C_i & & & & C_{v_\varphi} & & \\
 \end{array}$$

We have $C_{v_\varphi} = \{(b, f, g) \in B \oplus P(A) \oplus P(B): \varphi(g(0)) = f(0), f(1) = 0, b = g(0), g(1) = 0\}$ which we can identify with $\{(f, g) \in P(A) \oplus P(B): \varphi(g(0)) = f(0), f(1) = 0, g(1) = 0\}$. There is a map $k: SA \rightarrow C_{v_\varphi}$ defined by $k(f) := (f, 0)$. It is clearly injective. Now consider the cone $CB := \{g \in P(B): g(1) = 0\}$ and the map $\mu: C_{v_\varphi} \rightarrow CB$ defined by $\mu((f, g)) = g$. Since $((1-t)\varphi(g(0)), g) \in C_{v_\varphi}$ for any $g \in CB$ we see that μ is surjective. Clearly $\ker \mu = k(SA)$. But the cone CB is contractible and therefore the six-term sequence associated to $0 \rightarrow SA \rightarrow C_{v_\varphi} \rightarrow CB \rightarrow 0$ shows that $k_*: K_*(SA) \rightarrow K_*(C_{v_\varphi})$ is an isomorphism. Moreover, the natural map $v_v: C_{v_\varphi} \rightarrow C_\varphi$ defined by $(f, g) \mapsto (g(0), f)$ makes the following triangle commutative:

$$\begin{array}{ccc}
 SA & \xrightarrow{i} & C_\varphi \\
 \downarrow k & \nearrow v_v & \\
 C_{v_\varphi} & &
 \end{array}$$

Now consider the mapping cone $C_i = \{(f, g, F) \in SA \oplus P(C_\varphi) \subset SA \oplus P(B) \oplus P(P(A)): i(f) = (g(0), F(\cdot, 0)), (g(1), F(\cdot, 1)) = (0, 0)\}$. We can identify C_i with the algebra $\{(g, F) \in P(B) \oplus P(P(A)): \varphi \circ g = F(0, \cdot), F(1, \cdot) = F(\cdot, 1) = 0, g(0) = g(1) = 0\}$, as one easily sees, and consider the map $l: C_i \rightarrow SB$ given by $l(g, F) = g$. For a given $g \in SB$ set $F(s, t) := (\varphi \circ g(t))(1-s)$; then $(g, F) \in C_i$ and $l(g, F) = g$ whence l is surjective. The kernel of l is $\{(g, F) \in P(B) \oplus P(P(A)): F(0, \cdot) = F(1, \cdot) = F(\cdot, 1) = 0\}$ which is isomorphic to the cone $C(SA)$. Thus $l_*: K_*(C_i) \rightarrow K_*(SB)$ is an isomorphism. The map $v_i: C_i \rightarrow SA$ is given by $(g, F) \mapsto F(\cdot, 0)$. Consider the family of maps $\Phi_t: C_i \rightarrow SA$ defined by $\Phi_t(s) := F(s(1-t), st)$; then $\Phi_0 = v_i$, $\Phi_1(s) = F(0, s)$ and Φ_t is a homotopy. Clearly $\Phi_1 = S\varphi \circ l$.

Now it suffices to prove that any sequence $C_\varphi \rightarrow B \rightarrow A$, where C_φ is the mapping cone of φ and the map v_φ is the projection onto the first factor, induces an exact sequence in K -theory. But this sequence gives rise to the short exact sequence $0 \rightarrow SA \rightarrow C_\varphi \rightarrow B \rightarrow 0$ which in turn induces the exact sequence $K_*(C_\varphi) \rightarrow K_*(B) \rightarrow K_{*-1}(SA)$. Since the triangle

$$\begin{array}{ccc}
 K_n(B) & \xrightarrow{\quad} & K_{n-1}(SA) \\
 & \searrow \varphi_* & \downarrow \\
 & & K_n(A)
 \end{array}$$

where the vertical map is the suspension isomorphism commutes we deduce that $K_*(C_\varphi) \rightarrow K_*(B) \rightarrow K_*(A)$ is exact. Thus the following sequence is exact:

$$K_*(SB) \xrightarrow{S\varphi_*} K_*(SA) \rightarrow K_*(C_\varphi) \rightarrow K_*(B) \xrightarrow{\varphi_*} K_*(A)$$

and we remark that $C_{S\varphi} = S(C_\varphi)$ so that we can close the exact sequence to obtain the diagram in the statement of the theorem. ■

III. Examples. The Mayer-Vietoris and the Puppe sequences can be applied to calculate the K -theory of C^* -algebras that are represented as section algebras of C^* -bundles. The following simple examples show how to calculate the K -groups of a section algebra from the K -groups of restrictions to smaller spaces.

Let $Y \subset X$ be compact spaces. Define a C^* -algebra D as the following pullback:

$$\begin{array}{ccc}
 D & \longrightarrow & M_{nk}(C(X)) \\
 \downarrow & & \downarrow r \\
 M_k(C(Y)) & \xrightarrow{d} & M_{nk}(C(Y))
 \end{array}$$

Here r simply denotes the restriction to Y and d is the map that assigns the block diagonal matrix

$$\begin{bmatrix} f & & \\ & \ddots & \\ & & f \end{bmatrix}$$

to an $f \in M_k(C(Y))$, the $k \times k$ -matrix algebra over the continuous functions on Y . For the sake of brevity we define $B := M_{nk}(C(X))$, $A := M_k(C(Y))$ and $C := M_{nk}(C(Y))$. We obtain the Mayer-Vietoris sequence

$$\begin{array}{ccccc}
 K_1(D) & \longrightarrow & K_1(B) \oplus K_1(A) & \longrightarrow & K_1(C) \\
 \uparrow & & & & \downarrow \\
 K_0(C) & \longleftarrow & K_0(B) \oplus K_0(A) & \longleftarrow & K_0(D)
 \end{array}$$

The map $d_*: K_*(A) \rightarrow K_*(C)$ is, if we identify $K_*(A)$ with $K_*(C)$ under $\varphi_*: K_*(A) \rightarrow K_*(C)$ induced by the inclusion $\varphi: A \rightarrow C$ which maps $a \in A$ to the matrix in C that has a in the upper left corner and zeros elsewhere, just multiplication by n . If X is a contractible space and $y_0 \in Y$, the map

ev: $B \rightarrow M_{nk} = M_{nk}(C)$ given as the evaluation at y_0 is a homotopy equivalence. Thus with the canonical embedding $j: M_{nk} \rightarrow C$ we get a commutative triangle up to homotopy:

$$\begin{array}{ccc} M_{nk} & \xrightarrow{j} & C \\ \text{ev} \swarrow & & \nearrow r \\ B & & \end{array}$$

Thus the triangle in K -theory induced by this one commutes, and since ev_* is an isomorphism, we can replace $K_*(B)$ by $K_*(M_{nk})$ and r_* by j_* . If we set $\mathring{A} := \{f \in A: f(y_0) = 0\}$ we get a split exact sequence $0 \rightarrow \mathring{A} \rightarrow A \rightarrow M_k \rightarrow 0$ and hence we get a split exact sequence in K -theory $0 \rightarrow K_*(\mathring{A}) \rightarrow K_*(A) \rightarrow K_*(M_k) \rightarrow 0$. Note that $K_1(M_{nk}) = K_1(M_k) = K_1(C) = 0$ and $K_0(M_{nk}) = K_0(M_k) = K_0(C) = \mathbb{Z}$. Hence we get the following exact sequence:

$$\begin{array}{ccccc} K_1(D) & \longrightarrow & K_1(\mathring{A}) & \xrightarrow{v_1} & K_1(\mathring{A}) \\ \uparrow & & \uparrow & & \downarrow \\ K_0(\mathring{A}) & \xleftarrow{v_0} & \mathbb{Z} \oplus (K_0(\mathring{A}) \oplus \mathbb{Z}) & \xleftarrow{\quad} & K_0(D) \end{array}$$

where the maps v_1 and v_0 are given as follows: $v_1(a) = -na$ for $a \in K_1(\mathring{A})$ and

$$v_0(m \oplus (a \oplus l)) = (0 \oplus m) - n(a \oplus l) = -na \oplus (m - nl)$$

for $m \oplus (a \oplus l) \in \mathbb{Z} \oplus (K_0(\mathring{A}) \oplus \mathbb{Z})$. If we assume that $K_1(\mathring{A})$ is torsion free, then v_1 is injective and therefore $K_1(D) \cong K_0(\mathring{A}) \oplus \mathbb{Z}/\text{im } v_0$. But for $c, d \in K_0(\mathring{A})$ and $m_c, m_d \in \mathbb{Z}$ we have $c \oplus m_c - d \oplus m_d \in \text{im } v_0$ if and only if there is an $a \in K_0(\mathring{A})$ and $m, l \in \mathbb{Z}$ such that $c - d = -na$ and $m_c - m_d = m - nl$. The condition on the integers is always satisfied, thus $K_1(D) \cong K_0(\mathring{A})/nK_0(\mathring{A}) = K_0(\mathring{A}) \otimes \mathbb{Z}/n\mathbb{Z}$ if $K_0(\mathring{A})$ is torsion free, too. Further, we have the exact sequence $0 \rightarrow K_1(\mathring{A})/\text{im } v_1 \rightarrow K_0(D) \rightarrow \ker v_0 \rightarrow 0$. We assumed $K_0(\mathring{A})$ to be torsion free, so $\ker v_0 = \{m \oplus (a \oplus l) \in \mathbb{Z} \oplus (K_0(\mathring{A}) \oplus \mathbb{Z}): -na = 0, m = nl\} \cong \mathbb{Z}$. Thus the sequence splits and since $\text{im } v_1 = nK_1(\mathring{A})$ we have $K_0(D) \cong (K_1(\mathring{A}) \otimes \mathbb{Z}/n\mathbb{Z}) \oplus \mathbb{Z}$. If we now observe that $K_*(\mathring{A}) \cong K_*(C_0(Y)) = \tilde{K}^*(Y)$ we get the following

EXAMPLE 1. Let $Y \subset X$ be compact spaces such that X is contractible and $\tilde{K}^*(Y)$ torsion free, and let D be the C^* -algebra of continuous functions from X into M_{nk} such that the values on Y are block diagonal matrices with identical blocks of size $k \times k$. Then $K_0(D) = (\tilde{K}^1(Y) \otimes \mathbb{Z}/n\mathbb{Z}) \oplus \mathbb{Z}$ and $K_1(D) = \tilde{K}^0(Y) \otimes \mathbb{Z}/n\mathbb{Z}$.

Similarly one calculates

EXAMPLE 2. Let $Y \subset X$ be compact spaces with X contractible and D the algebra of continuous functions $X \rightarrow M_{nk}$ that map Y to block diagonal matrices with blocks of size $k \times k$. Then $K_0(D) = (\tilde{K}^0(Y))^{n-1} \oplus \mathbb{Z}^n$ and $K_1(D) = (\tilde{K}^1(Y))^{n-1}$.

The assumption that X be contractible has of course been made to avoid problems in calculation which arise from the fact that we do not know the map $r_*: K_*(B) \rightarrow K_*(C)$ in general. There are some more cases where we know this map.

EXAMPLE 3. Let $Y \subset X$ be compact spaces and Y a deformation retract of X . Let D be the C^* -algebra of continuous functions $X \rightarrow M_{nk}$ such that the values on Y are block diagonal matrices with identical blocks of size $k \times k$. Then $K_*(D) \cong K^*(Y)$. If the condition that the blocks be identical is dropped we have: $K_*(D) \cong K^*(X) \oplus (K^*(Y))^{n-1}$.

We have seen that torsion in the K -groups can cause trouble. In some cases we can get around that using the Puppe sequence.

Let X and Y be compact spaces and $f: Y \rightarrow X$ a continuous map. Consider the mapping cone C_f . We obtain a map $f': Y \rightarrow C_f$ which is the composition of f and the canonical map $g: X \rightarrow C_f$. Now consider the C^* -algebras $M_k(C(X))$ and $M_{nk}(C(Y))$. We get a map $\varphi: M_k(C(X)) \rightarrow M_{nk}(C(Y))$ by $\varphi(a) := d(a \circ f)$ [cf. Example 1 for the definition of d]. Consider the mapping cylinder M_p given by the pullback

$$\begin{array}{ccc} M_p & \longrightarrow & M_k(C(X)) \\ \downarrow & & \downarrow \varphi \\ P(M_{nk}(C(Y))) & \xrightarrow{\text{ev}} & M_{nk}(C(Y)) \end{array}$$

where ev is the evaluation at $t = 0$. Note that $P(M_{nk}(C(Y)))$ is canonically isomorphic to $M_{nk}(C(Y \times I))$ and $M_k(C(X))$ is canonically isomorphic to the algebra of maps $X \rightarrow M_{nk}$ whose values are block diagonal matrices with identical blocks of size $k \times k$. Thus we see that C_p is the C^* -algebra of maps from C_f into M_{nk} whose values on $g(X)$ are block diagonal matrices with identical blocks of size $k \times k$ and which vanish on $y_0 \in C_f$, the vertex of the cone. Now it is easy to get

EXAMPLE 4. Let X and Y be compact spaces and $f: Y \rightarrow X$ a continuous function. Let C_f be the mapping cone of f and D the C^* -algebra of continuous functions from C_f into M_{nk} whose values on the canonical image of X in C_f are block diagonal matrices with identical blocks of size $k \times k$. Let \hat{D} be the subalgebra of D consisting of those maps that vanish on $y_0 \in C_f$, the

vertex of the cone. Then $K_*(D) \cong K_*(\hat{D})$ and we get the following exact sequence:

$$\begin{array}{ccccc}
 K_1(\hat{D}) & \longrightarrow & K^1(X) & \xrightarrow{nf^1} & K^1(Y) \\
 \uparrow & & & & \downarrow \\
 K^0(Y) & \xleftarrow{nf^0} & K^0(X) & \xleftarrow{\quad} & K_0(\hat{D})
 \end{array}$$

Finally, if we drop the condition on the blocks, we get

EXAMPLE 5. Let X and Y be compact spaces and $f: Y \rightarrow X$ a continuous function. Let C_f be the mapping cone of f and D the C^* -algebra of maps from C_f into M_{nk} whose values on the canonical image of X in C_f are block diagonal matrices with blocks of size $k \times k$. Let $\hat{D} := \ker \text{ev}$, where ev is the evaluation at the vertex $y_0 \in C_f$. Then $K_1(D) \cong K_1(\hat{D})$ and $K_0(D) \cong \mathbf{Z} \oplus K_0(\hat{D})$. Moreover, we have the following exact sequence:

$$\begin{array}{ccccc}
 K_1(\hat{D}) & \longrightarrow & \bigoplus_1^n K^1(X) & \xrightarrow{\Sigma f^1} & K^1(Y) \\
 \uparrow & & & & \downarrow \\
 K^0(Y) & \xleftarrow{\Sigma f^0} & \bigoplus_1^n K^0(X) & \xleftarrow{\quad} & K_0(\hat{D})
 \end{array}$$

References

- [1] M. J. Dupré and R. Gillette, *Banach bundles, Banach modules and automorphisms of C^* -algebras*, preprint, 1980.
- [2] S. Eilenberg and N. Steenrod, *Foundations of Algebraic Topology*, Princeton University Press, 1952.
- [3] J. Hilgert, *Foundations of K-theory for C^* -algebras*, Tulane Dissertation, 1982.
- [4] M. Karoubi, *Foncteurs dérivés et K-théorie*, in: *Lecture Notes in Math.* 136, Springer, Berlin 1971, 107-186.
- [5] —, *K-Theory. An Introduction*, Springer, Berlin 1978.
- [6] J. Milnor, *Introduction to Algebraic K-Theory*, Princeton University Press, 1971.
- [7] J. Rosenberg, *Homological invariants of extensions of C^* -algebras*, preprint, 1980.
- [8] —, *The role of K-theory in noncommutative algebraic topology*, preprint, 1980.
- [9] C. Schochet, *Topological methods for C^* -algebras III, axiomatic homology*, *Pacific J. Math.* 114 (1984), 399-445.
- [10] J. L. Taylor, *Banach algebras and topology*, in: *Algebras in Analysis*, J. H. Williamson (ed.), Academic Press 1975.

FACHBEREICH MATHEMATIK, TECHNISCHE HOCHSCHULE
Schlossgartenstr. 7, 6100 Darmstadt, West Germany

Received August 29, 1983
Revised version February 14, 1985

(1916)