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1. Int : ,
kusifisks. 1 r‘:\‘}“(“?":‘- Sinee the pioncering works of Tn Schwartz J. Mi-
m‘ﬂﬁlﬂiéat’ign‘ ‘ﬂl ?trnd, (. E. Shilov and others the problem of dist,ribution
Watician, Dis Cl; zbfftl’axct@d the attention of the practi sel-minded math-
1 linear differl,l.. 1:,‘[10113 are o wonderful tool to work with in the theory
fop emmpl;g i;uh:';l 1unat’fous. But, aias, most of the real problems,
stems; au (’1 - }1}cufit.en1atlca1 physics aI¢ connected with interacting
ferential equicti ~t"13§"t10n 11.16&115 noulinearity for the corresponding dif-
carvhody ‘—: v QHE- .bO & Gistribution multiplication is required althongh
v knows quite well that this problem cannot be golved in & general
d in the literature. (In our reference
aling with this problem; 6L
But Lhis list is far from being
motivated by the specinl appli-
they contain 2 large amount
anthors insist upohs
tive. But el-
ative models

Way, N
%Y. Numerous &
list we hqiel ous spproaches ean be foun
r ¢
S ‘[9£ incladed some of the papers de
A (1], [237, [29]
tg¢,) R 14 4 ’
e ) Many of these ap sroaches are
‘ot the auth ese appros 165 are
4 matherngt] Jor hax in mind, and therefore,
atical arbitrariness. A specia.l point, most

is )
Y that th .
¢ distributi N
stribution 1!1111t1pl10&11‘Jn has to be comuiute
¢ that nouc:ommut

men
ntary e .
Lot 01(11‘} ealeulation (Seetien 2) show
3 A coar . iy , ‘o
be eonsidq‘llm sene but, 1n addition, thab the uoncommumthty ean
d s the mathematical analogue of tie fact that physwid
Section 3)- We

not contain

uld, in & canoni-
to

(‘Ollserv( .

therefo;: 1(;;1 _1:”“'5 can be violated bY discontinuities (

ny arbjtral_.ehev“ that distribution ultiplicationt sho

@l way clnesg at all, and that the product qefinition sho

tarry Oyu’t SOme out of clementary algebraio pmperties. Of course

fpace, h uch a program cerfaid sacrifices; iD terms of the size ©

I’n taYe to be made.

Droveq t&::,tp-a’per we pick up 2l old ides [7] from 1967

3 multiplic in the space of the so-called 2 un:
ation is given in 2 canonical Wa¥-
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Section 2. In Seceti
2. In Secetion 3 thi
problem in shock his algebra is applied t
'k wav T ; o the 3
corresponds to the ‘jiﬂllu,_ﬂ,cand we demonstrate thab n;i(::t elementary
through the shock fronotatlmn of energy density comerv&t(')mmglmtwmy
braic conce : . In the last two secti servation by going
) ' pt, lyin ; sections we rali
tributions, to ; 1';, ihir behlnd1 the multiplication of ‘bﬁf:(l}zzall)lze tiuii alge-
: 1O @ Tather general ¢ d cor ' ¢ st-bounded dis-
cess illuminates th and completely abstr: . .
he aleebraic back y abstracl situation. This pro-
construeti - = ackground. ¥ T P
ions will be published in a subS:qllllr“{Ger applications of these
ent paper.

2. The almost-bound .
physics, as w . e(.l distributions. Ifor n .
of partial dif;lél.zitlisl &Pplleq mathematics, whi;inifg:; e‘g) rob}ems o
giSCOHtinuouS functionquiajmn's, some relevant solﬁtionscr;rzd ;E‘:ITHE;
ynamics, ete.). So, it s .g., in shock wave t /

of the COI';QSI)COE‘; d?ﬂ‘;’ dlitffseemsz natural to look tf}(l)iof1§;t Ig;;&;?izum ellec.tro-
are described by nonlin ?’i‘lntlal e'quations. But, alas, often fil ]11 i 1;)‘0110116
no “reasonable” distrib car equations, and it is Wel{ kno ese probien?
ution algebra [23]. This is easily ;V;Ifhgtbﬂ'lewlls

8 . Obviously,

for the ¢-distributioc
ribution 6(x) we have xd(x) =0 1
— 0. Furthermore, — = 1.
x

Hence, because of

(2.1)

N 1
o(a) = ( ) 3(a) % - fod(a) =0,

there can b

' e nccnniadi

Since ignc:;;nzzb?:mmve algebra for the distributions

we do not know © sometimes a preci ’ ,
this re ous asset, let 3 :

&(x)n(x), where 7 (;b ??Slﬂt- .For the fun of it, we ,cale lust Sﬂppob? thaz

for # = 0. From I ) is the jump-function 77(1‘7) _ ulate the produs

of 7,/2 7](.T)~ = 1 and 7]’(.%‘) — 250, hat "‘1 for x.< 0 &Ild -E-l

2.2) ’ (z) we obtain, by differentiation

Because of

@ (0(x)n(2)) = {xd(2))n(x) =0

we see that ; .
Since theay,sclsmslainzﬁll?ted by multiplication with «
iples of the §-distribution are tine only distribu-

tions which
h are annihi
Wwe have ihilated by multiplication with the C*-functiod x
3 , ,

And from o(x)n(x) = ad(x), aeC.

(2.3)

(2.4) (Gn)n = 3Gp) = 81 = 3,
(6n)n = adn = a%d
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ve see th LR
at «* — 1. Hence o = -1 and the algebra must (by virtue of

£2.2)) be noncommutive.
» Of course, all this only makes sense if w
es we have used so far. These rules are:

¢ can justify the calculation

2

E? E-l) product rule for differentiation,

(9‘;2) associativity of the product,

25.3)  the distribution algebra has to be an extension of the usual

function algebra.
F .
y 401' the sake of convenience We include the following
: L) ) the algebra has to be translation invariant.
@ : . -
24). OF :S see }f tl'mre is @ canonical algebra whieh satisfies the rules
tative al ZEISG,- in virtue of (2.1), the best weé can hope for 18 2 noncommu-
expoct f ra 1n a:.subspa,ce of distributions. And the least we have to
rields ’ax;ml FWO Q1fferent algebras, because interchanging the factors
algebra isomorphism different from the identity (noncommu-

tativity!),
2.1. DEFINITION it s
DerINITIoON. A distribution ¢ 13 said to be almost-bounded if,

for .

every » € N, its nth derivative is of the form
¢(x) = b(x)+4(2)s

d where 4 ha

we denote the space O

Where b i
Withfu’; is a locally bounded function an s a discrete support
boun ac.cumulahion point. BY B(R) £ amert
ed distributions.
2.2 7 -
. Trror®M [7]. For the space of almost—bouwded di

are e;
exactly two algebras fulfilling (2.5). These algebras are

stributions there
for @, g € B(R)

fiven, by
2.8 3
) @la)p () = limg (z +6)# (7)
angd def £,0
2.5 3
! ¢ (2)p (x) = limel” 4-8)g (&)

def £10

9.7) do always e nee Definition 2.1

xist st

of ¢, @ live are not too
hat we have to expect
say that the almost-
structure. Before we
arent we like

ensuilgeﬂ?}oducts (2.6) and ( ‘

tlose to ‘t‘d»t the P?‘ewes where the singularities

at lea.stgiz ber. _IH View of Theorem 2.2 and the fact t
wo different algebras, We are en

bo .
unded distributions have @& ©
d more {ransp

kgroun

. e goj
going to make the algebraic bac
ot a simple example.

to i1

ustrate the use of these algebras
In this gection we desc
s of the nonlinear partial differen-

3. An elementary app]icaﬁon,
ve theory (oth order). Bores

d]'au L)
tia} : ¢ Jumps) by distribution solution
Quations derived from shallow water W
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are sheeck res {se iH
e thckt.wmehs {see the standard literature [4], [17], [24], [27]) which
he time, have even attract i o 1 -
Ve ) ttracted much attention in th i
orer the hav . n in the popular scien-
e Whz)(;ture (for example [18]). This fact can be understood by every-
non;enou *\Trf}l had 'tho, opportunity to observe such 2 beautii’ul phue-
nome W{.{m. iematically speaking, bores are in complete analogy to the
X ave phenomena of nonlinear gas dynamics
or reasons i i i
o oo b e ge,r iWhtl'Gh Wflllhbecome obvious later on, we like to have
vation of the relevant equations. W i [
ook« dert n ¢ WV quations. We consider the {low
an incompressible fluid along the horizontal z-axis

free surface

constant pressure

7/// //ZZO 7

Aulx,t)

1 0 ¢
/ 7 /’/,j/ s .
7 /// ;i%/’/‘//////é//‘ 7

“bottom 7 ,(/

flow at time ¢

k 13.5.1)

H H 4 o -
. e(lz(; iz‘(ffi ; Qt, lf) denotes the velocity along the s-axis and o(a,y,?) the
¥ in the direction of the y-axis. We assume that the Vi’sc(;sity is

zero S
exte,rizf df O;hat.jthere 15 Ifmther surface tension nor rotation. The only
wave theor ?e(olfb Ogt‘rk‘:“jmhon. Then the assumptions of shallow water
be indel)ongent Iy Ol'd.er? are v(x,y,1) = 0 and that w(z,y,?) has 0
l'enl&in/vertical Zeézioihls 1,:1 tttllle same as assuming that vertical sections

vl sections an at the pressure p(x i id is
the same as the hydrostatic pressure: p(z,y,t) in the fluid !

pg{hir, ) —y} —
gih{e, ) ~y} —p(x, y,1) = constant (exterior pressure).

Here o, g are sui

> 0 re suit: o

the OOI’lSz\vaaﬁ(;:it?)lf)le physical constants. In other words, we can assume
> mass between moving vertical sections a(f) and b(t)

b(t)

f B(x, t)dr = constant,
a(t)

(3.1)

cund hart the Chan €N n
t Nng 101T ;
v g | lentum 18 glten b‘ the dlffel ence Of tl I

32) o2 3{9 h e )
. e— (z, ) u(x, t)de = :
a g (@, 1)z of P(a(t),y,t)dy—f p(b(D), v, 09

0
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Hementary manipulation with these cquations yield the usual non-

linear equations
8.3.1)

3.3.2)

(hae),+hy = 05
ity Gl iy = 0.
(. 1) = h(x—ect), w(z, 1) = u{x —ect), one
do oecur. So at first view it seems that
all since it even eannot be used
na. But we completely forgot
e used commutativity freely
derivation again, without
tions are

Yow, inserting the ansatz b
sees that no shock wave solutions
our distribution algebra is of no use at
{0 describe the most elementary phenome
that the algebra was noncommutative, and w
by going from (3.1), (3.2) to (3.3). Doing this
wing eommutativity, we see that the relevant equa

(3.41)
(3.4.2)

(ha)g +he = 04
Rty + 1 g (B)g Rt = 0

instead of (3.3).

Now 2 shock wave ansatz makes sensc:
Bz, t) = H@,1) +an({x—0ct),

(r,1) = U(m,t)+ﬁn(m~ct)-

3.5.2) u

the mean values of right and left hand

Here H(x,t) and U(x,t) denote
respectively:

side limits w_, h_ and ., By
3hy (@5 By +h_(z, D)

Hx, 1) =
U, t) = lu (@ 1) +u_(@; 1)),
a = %(h,l_(x,t)fk,(cc,t)),
g = Yoy (25 1) —_ (@, 0.
Using the algebra given bY, €-8 (2.6), we obtain
(3.6'1) —co+ph, Aot = 0,
862) pu sk, —cfih, +gaH =0. "

- ditions
Insertion of (3.6.1) into (3.6.2) yields the asual shock Wave con

_u_) (e—us) = gH

(3.7.1) (e
which together with (3.6.1)
(3.7.2) B (g —00) = (c—u_) (bs —h_)

draulie jumps)-
by sults are completely

(2.7)) we have chosen-

determs tions (bores
mines the shock wave SOIU that these e

Now it seems appropriate to remalk

independent of the special algebr® ((2-6) or
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course, this is essential si

) sential since ai

ematical arbitrariness e physical results should not depend on math

A more interesti ' o

esting discov i

problem of ener S overy is made i we tur .

tions a(t), b(1) ¢ hg’ey C(}:Joubeﬂrzmtlon of the system. B eltilvgur atbenmog to the

given by the pressace o B (kinetic on the moving sov
y the pressure is and potential) and the power

b(t)

or
Fral vy f }{wh+gh*}de +
a(t)
i A(bd)
. Ny R(atty)
(b(t), )j p(b,y,t)fly~u(a(t),t}f pla,y,t)dy
H ] .

0
U

B
y elementary manipulation we obtain

1 0F

o Ot

- {%763/6-%916?:,2}1‘“) 1 i
ﬂ(l)+§ f (uh +gh?),dx.
aft)

Hence the energy density is
1 B
o aice = (BWhquRt), 1 (uth+gh?),

ga’ © -
A n hy elel[]e[ arv (}‘dl(} “() Infrer I t'}le a
cula n and (3 3) (53
W rom

1 &EF

(3.8)
o Cltxr

—- lgf
Fg iy, 1k -4 [u, (}l’z)z]} ?

where [ , 1 denotes th
The precoding o he .uﬂua,l commutator I B

of Section 1 )*i(,\,ilzalgcélitl‘?n not only shows t}fat 71{2 d;,:l-lz '.BA'
terms of nonlinear di‘ff J_‘)J 1‘_3 descriptions of discontin stribution ?"lngm
the noncommutativit v(lentlal equations but, in {hdl't‘uous' solutions 1t
the fact that Ph}*Sic‘u»}o of the algebra is the7 ma,t‘hetri :211, it shows that
. For an eXtemgve,({ns<§rxr§htion laws can be viohtedh;;, 10&1. anml.o gue of
distribution multipi iea,t'mvesngation of shoek fro;n“v by discontinuities.
ion, the reader is referred toys[’u;;l th(f [g(él]lteXt of

an .

4‘- The al .
. gebraic ba
zidil)m;ng but not difﬁc‘clig; ‘;“{ﬁ;l[ 7';7he proof of Theorem 2.2 is lengthy
8 etails, i ~ « . Ne Yoy
of view. 8, it does not become tra,n;%r:?&l;eis, even by going through
TFurthermore. i rom the algebraic point
z . e, it is
situations which ! not clear how th
. ) are sli . he pr
or if the convero:;csélghﬂy different. For exg,lggfleh? ; 1;?' bo adapted ¥
. o0 - .
2 suitable ultra.f?lt-er (l‘,n (2.6) or (2.7) is replaced, bor igher dimensbH
. Completely in the dark rema,igsc:]iwerge;fe alli)n‘g
e problem ho

!

|
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fo ex
elem;;‘;dhfhsrglgcbra under consideration by introducing new artifieal
To give & er ﬁo have products like (1/w)8(x), ete.
e light on ;altlsfactory. answer to these problems W
et us trv € e fmlgebrale background of Theorem 2.2.
dthough Somg;_ o pin down what ’ch.e real problem is. It is well known,
spplied mathe niII;E}s‘forgotten, ‘c;hat distributions were invented to enable
Bt taking deri &tl_elaus to consider derivatives of uncontinuous functions.
stribution vatives of, lets say, funetions in the space of almost-bounded
s (almost-bounded functions) is no problem 2t all: Just take

the derivati . R
rivative wherever it exists and forget about the other points. This
Of course, the disadvantage

B .
Ofirllli:();e“ derlv.a‘oion in an honest algebra.
hecause lgl’zc’ich is that then one cannot define & reasonable integra}tion
subspace. Th erpel f)f tha:t derivation will be an infinite-dimensmna,l

d e practical disadvantage of the large gize of this kernel i8

that th B
ere will be no reasonable duality theory where the transpose of
Thus one would obtain an

have to shed

, the di o
differentiation will have nice properties.
ike the 5-distributions —are

algely
gebra, where the interesting elements — 1

Missing,
N : .
0, from this point of view, the real question will be: How t

the

;ﬁimel of an abstract derivation?

4Is question will be treated in the following.
over the Evaluation operators. Consider § ciative algebra (; )
4 pai o real numbers. A pair (B, 77) of oo is called
o Ir of evaluation operators if

A1 _

) EY,E- are algebra bomomorphis
(ab) = E‘(a)E‘(b)
gt BB = E-,

g reduce

ome 2880
linear operators

ms, 1.6
4
E*(ab) — E* (a)E* (b) and B~ forall a, b€

412
( )  E*,E- are idempotent, ie, BYET
113

) E',E" are right-absorbing, i.e.

and F -g+ =E".
tion operators are the pperations
_pounded functions.

ir of evalud
tho algebra of almost :
(several dimensions, €00

be constructed

EtE- =E¥

Sta
of ll(l}gtard exa.mple for such a p2
- m:nd right side limits in
Verge ny other examples cau
;ce along filters, etc.)
oporape e 1B the following that
ors. Then the “product” * de

.
2 (5+a)-b-+a-(ED)

evaluation

axh =

is o :
Zned the evaluation product.
1. THEOREN. (o, *) is an 089003617 algebra-
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Proof. All properti
‘rool perties —apart from sociativi i
Associativity is proved by direct Calculz;ibjz;].atl‘lty_are easily seen.
ax(b = (B+ -
“(bxe) = (E¥a) (B7b) c—(E*a)-b-(E~¢) fa- (B b)-(H ¢)—
—(E* -
Moving the b (Bra)-(E70)-(L7c) —(ETa) - (B*D) (H7¢).
cido. He racket from (b+c) to (axb) does not change the rig
"I‘h' ncei the operation # must be associative. m ge the xight-hand
is G ‘ )
i I?Eij:u is henceforth called the evaluation algebra
. 2. NITION. (i) «&f5 = 7 i .
singular elements in ,9/.) s=i{rel Bla =0} will be. ealled the
(ii) &7, = {a e /| E+ - :
n o ¢ =1{ae «| Eta= E~a} will be called the continuous elements
Now th ing
15 . eemf:n](:wmg can be verified by direct calculations
. Tk, 1 J+ . — : o
(<, %) into (s, - (i) B and B~ are algebra homomorphisms from
iy «/,-) and from (&, %) into (.7, %) P
he produets in (<7, -) ¢ ’ T
ements, i.e., axb—a-b e o7 ’fo)r danlf f;i)’e*}c/mmmde modulo singulir ¢
(iii) B-a = 0 R
o) o for alll a € /g (since E~ is right absorbing)
) is & two sided ideal in (o, %). .
v is a s o
(vi)) I lbza subalgebra of (o7, ) as well as (, )
e . 1Q - ) ‘ ’ e
tive. » ") Is commutative, then (7, -) and (/,, *) are commuta-
From Remark 4.3 w )
are equal and are ;in‘;(;ilzngw that the quotients (57, -)/ /s and (7, %)/ /s
algebra, by A : stituting an associative algebra. We denote this

(4.3
) A = () )]sty = (o, %)] 5.

Since &7 i i

s 18 a two-sided ideal in /., the quotient
(4.4) '
st b & suba Ac:(dm')/*pjsz(dc? *)/&[S

. a subalgebra 7 i
o kernelaof thgth. We call it the algebra of continuons elements.
quotient map ¢: (7, #)— ;) momorphism E* is equal to the kernel of the
it San,le a ;r, t-hfe map_ E* provides us with a monomorphism
monomorphisms are againuedeg\r tE d' Smce B e
ote y E* and E-. We h
. ave

gE* =gE- =1.

And, obvi ‘
Let ::s;o:(sa}ay;vﬁhe algebras A, B*A, H-A are isomorphi
11 -
standard example a%:heualgebms 4 and 4, look like illo?l)le“i‘*ase of ow
functions. .7 aro thec? that < is then equal to the almost-bounded
unctions whose supports have no accumulation

! ?ild% limit, For example, a derivation in
erivative wherever it exists. But this notion of der

462

" B itg .
tself can be considered as a tri

(4 .
5 Ttension (B x.#), that is & linear ma
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points. Hence A are the almost bounded funetions which are undetermined
on 3 set without accumulation point. And A, are exactly those functions
I A where the limits from both sides coincide. Henee A, are the functions
in A which can be (uniquely) extended to continuous funetions. The
map Bt: A—./ is the map where each g c A4 is replaced by its right-
A is given by taking the usual
ivation has the serious
ns, namely all piecewise
is to extend the algebra
the only functions
¢ elements

lisadvantage that it annihilates to many functio
constant functions. YWhat we would like to do 1w,
4 and this derivation (in @ canonical way) such that
which are annibilated by the oxtended derivation are only thos
in the kernel of d which are continuous. That this can be done in all gen-
erality is the content of the next subsection.
4.I1. Derivations and trivial extensions.

(Z}‘Tays over R or C) and some B-bimodule .#. .
. 15 & vector gpace such that products bm and mb, m € M, b € Bare defined
I8 3 reasonable way (associativity, distributivity). Examples for B-bimod-
ues are two-sided ideals in B. The set (B %.#) can easily be made into

4 associative algebra by

Consider some algebra B
Recall that & B-bimodule

b’zeB,”"/,mEu”'

(45) (, m)(b, M) =, (b, bin | mb),

IThiS algebra is called [8] the trivial putension (of B Vid johe modl.ﬂe M)
1 other words, an algebra C is said to be 2 trivial extension of B if there
are homomorphisms ¢: ¢—B and wv: B->( such that

4. .
( 61) oy = ld!B,

J =ker(g) = {cell ple) = 0}.

of B. For the sake of
case that ¢ = (B < M)
cal homomorphism
_p and (b, m)M
(b, m) = ™

J-J =0  where

vial extension
;‘S"HVe.ni? nce we consider B as & subalgebra of ¢ in Case
( Ba. trivial extension of B (via the module .//_{ ). The canont
arex «#)—=B and projection (B X M) GIVen by (b, ’Iﬂ)‘ 4

denoted by ¢ and P, respectively; 1.€- g(b,m) =01 P

Obw'o_usly, g+p =id.
Now consider a derivation @: B (B x#) fro
P with

m B into the trivial

e (B xX-#)-

from B into B
eorem shOWS
B> (BxA)

d{cie,) = d(6,)ca+€18(2) for all &1, C2
od: B—~B is & derivatiQn
tion. The following th

a deriva follo’ a
extending derivations &:

0 .

3111151 easily ¢hecks then that ¢

h that pod: B—.# is again
at there is a canonical way of
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4.4. THEGREM. Let d: B—(B X.#) be a derivalion. There is a irivial
extension (BXxX#®) of B and a derivation d*: (B X M>)—>(B xH4%) such
that

@) 2> A,

(ii) &lp = d,

(iii) a*: >4,

(iv) if ce(Bx#*) with d*(c)e B, then ¢cB;
and .

(V) if . is generated by d, ie., # = {m| b € B with d(b) = (b, m)},
then M and d* are minimal; that means any other trivial ewtension (B x M)
with derivation d fulfilling (i) to (iv) contains an isomorphic copy of (B X #%)
(isomorphism v) such that d* = v~ dx.

Furthermore,

(Vi) A™ dis the direct sum H°= H DI H DAMD...QI"HD. ..

Proof. Put .#™ to be the set of all finite sequences (of arbitrary
length) (so, 81y -..,8,) in 4. We embed .# into .#™ in the obvious way

8—>(8,0,...) and we define d* on (B x.#%) by:
d*(b)y =d() for beB,
A% (805 81y 00ey 8,) = (0805 815 ...y 8,)  for sg,81,...,€ 4.

That means d* coincides on B with d and shifts all components of elements
in .#* by one place to the right. For the sake of convenience we introduce
base vectors in .#*, i.e., we adopt the notation

n
t

(Sar 81y -0y 85) = Z i€,
izo

where €,,...,€,,... are the obvious base vectors.

We make a B-bimodule of .#™ via the following product definition
for se#, beB, neN:

(4.

=1

1) (se)b = 8 (—1p-+ (3) s-@n)3es,

k=0

(4.7.2) b(sen) g5 X (=1 * () (@) s}ey,
k=0

where, on the right-hand side, the multiplication in (B x.#) is used:

A direct inspection shows that .#™ and d* have the required properties
(i) to (iv) and (vi).

. assertion is proved. To prove the clai

istributi 449
Algebraic foundation of some distribution algebras

o / and d ful-
Let us now sketeh the proof for the minimality. Take fl "
. . u
filling (i) to (iv). Recall that .# < . We claim that the §

ADAMDTHD .-

. s and the mlnimﬂllty
is direct in .. This is then an isomorphic copy of 4 an
' direct in 4. This is then an m assume that

n
N a,dk(m,) =0,

k=0
We have to show that all the df"mk
= (b, m,) (which exists since . 18 gener

< . de1(my)} € B.
d{b+,;a" '"k}

a # 0, a € Ry my, € M.

= (0, Take some beB with d(b)
ated by d). Then

Hence, by property (iv),
My = 0

and

n—1 . 0
Z gy @ (myepa) = 0+
=0

algebra (&, *)-

Indnction yields that all m; =0 ®
ments s FOT

Let us go back to the situation 0
Let 4 be the quotient with respect to
€4 and s € o5 define

(48.1)

¢ the evaluation
the singular ele

= (BEta)*$,
as = (B )

(4.8.2) sa g5+ (BT

;-sociatiﬁty
s iy seen from the a5 isms.
Then &/ is an A-bimodule. This ;—eaélli(i/ 4y are hemomorphisms
'l—’ <

: hat BT . opsider @ derivation
" (;{’ *) and the ﬁj]ct ttlza:he trivial extension- CO: gzieri\”ation D,- 4
- y 0 . S
D, A0W41€g£4 X &sllir tellllis can be eonsniered also @
17 A4, viously, U av be too
4 % o7, ) ot the kernel of D {md)— 1d like
Ourssta,ndard example guggests f‘.h“ his derivation. We YO“ . el
large t | sonable analysis with & ides on Ao (continuous
toi 10 do any readerivmon p* which comclhM its kernel is the inter-
emeilt)s?c;ﬁfllg Yaid which has the property ¢
1 .
section - of A, with the kel'ﬂ(?l O.f I)b . Ay < Ax s
Fortunately, another derivation La-

‘D2 == E+ '_E‘.

js given by

(4.9)
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That thi e e
theitretlius gnn;;@t be‘)ﬂ; derivation is the consequence of a rather general
, e ([8], Prop. 20.1.1) but it can also be checked by a simple ¢: i
Now g v a simple ealculation.
;&}.}0)' . D =D,+D, =D, +E*—F".
1S is 3 ivati :
e zf flmd.tgzn‘ D: A—->A X/ and certainly its kernel is the inter-
pection o c t\?}Vll the ke1:ne1 of D,. But now we have to deal with the
algebm‘ ;{;c&{ at our der}vation is not completely defined on all of the
Teking the g '.I._‘o abolish 't-his disadvantage we need Theorem 4.4
" C, canonical extension provided by that theorem we obtain
4.5. CorOLLARY. There is a trivial e i % i
vation D¥: A X QA X AT suc]:mt(;c,la;mmswn AT o 4w o
(i) &Y o g,
(il) D*y = Dy +E*—E~ and D*|, = D]
(iii) D*: .27;—,\9/%", ’ e
(iv) if D*(a)e A thenac A, ] ;
PR € A, in particular if D*(a) = 0, then a & A, with
and
(v) if /g is generated by D,, i
“ : d by D, i.e., (ET—E~ = oy
D* arve minimal realizations of (Zi’) to’(gf) EDA = oty then 5 "
Furthermore,

(5\'i) g s the divect sum AT — A DD A, EDPAD
. Duality. is ¢ i . const
o s :lxa4 tg; nIn‘ thfts chapter. we briefly indicate what the construction
oon & a do for anailysm in the context of duality theory.
msp@t e J,(hem:'x;e‘ e;valua,twn algebra (=7, *) and its quotientwA with
oobuot o the i.:uﬂlhzi elements /5. Again A4, denotes the continuous
; 5 . rthermore, w y i i
is generated by Et —E-, ’ i.:,as‘i;‘lsn li t(}gf lfgg'gl;ilthls section that %
Pit :n integral be given. To be precise consi(]:er
5.1. Situation: Let J b i i
tony o Pituati that; ¢ some left ideal in A and f - a linear func¢-
(i) DJ < J,
(il) AJ =(ET—E7)d,
(i) fD,(j) =0 for all jeJ, = A,NJ
iv) f ; ’
5_[' O)kec:;) Zviry nonzero a € A there is some jeJ with [aj #0-
D oncrete example in mind consider our standard examplo

and let J be the ideal
+(:;E all almost-bounded functions with compach

support and put { R .
put f to be [ -dr. Then all required assumptions are fulfilled.

Let us return to t_hm :
. : e S - .
Situation 5.1 1neans. abstract situation and let us interprete whab i

~ Qur problem is, whether or not W
: functionals on J (or an enlarged ide

A* S A* and some loft ideal JF 2 T of A
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Abbreviate {(a,j> == [ aj, @€ 4, jedJ. Then the elements of A
@n be considered as linear functionals on J via a-—{a, ). Because of
{iv) this map is injective. Therefore we identify ¢ with {a, ->. Now (iii)
means that integration by parts is possible for continuous elements, L.e.

6.1) (Doa, jy — —<a, Dyj>  Vacdyiede

o can embed A into an algebra of linear
al) such that there is a derivation
ty that it coincides on A¢ with D,

D on that algebra having the proper
pect to D) holds in general.

and such that integration by parts (with res
The answer is yes!

5.2 ; ini com A* of A, a derivation D*:
5.2. THEOREM. There 18 @ trivial ex on of 4,

tenst
* and a bilinear functional DL
A* xJ* >R such that
(iy D*J* < J*,
(i) D*|,, — Dy,
(i) <a,j> = [ aj for al acA, jed,
(iv) (D*a,j) = —<La, D% Jor all acA*, § ed’.
Proof. Take A* — A x &% and p* as in Theorem 4.5.

A# . .
13 a direet sum

5:2) A* = A@&/S@D*yzs@...@p*ws@... .
_ Since D is 3 derivation,

Consider J* — J -+ A" 4-D*AW DA :

this is o left ideal;‘furthermo're, prg* e J*andJ *  J. Again from DJcd
‘ in 8 ® o . From (i) of
) we obtain s J :nL;JO Dt From (

J. Hence, using Ad <

Recall that

and our product formula (4.7 ;
J, we

Sg“ati(m 51 we have o = (E' ~B7)
obtain finally
. Y] B
63 gt — geE- B @D"E I ®...@D"E T ){1 o
. . e
and this sum must be direct (see 3-2)- The projectios ;I;I::e;,a‘ Tflfnctimml
by , the projection onto (B —B7)J We call p. Defin®
on J* by
(5.4) i aT;:f“(j)’f Dyv() '
Where y(j)ed is such that (B" ~E)vU) = P(gl)e.ment of J the fane-
_ Although y(j) is arbitrary up to & contmuou:he e aons lements
tional is well defined because y Y& on *j = 0 for all j ed”.
of J. The functional is linear. We clat Flfat [ vanishes on D (EY—
In view of (5.3) and the fact that, by definitiol J oo o 7. So, let jed
—E~)J, n =1, we have only to prove the oclaim
and let '
(6.5)

for all J ed

[* v = [ w0 DD = [ Dij—[Dibs
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Wwhere h may be an element of J with (E* —E“)h == p(D*j). Since j €,
o

we have p(D"j) = (Bt —E7)j. Therefore we may take A = j and obtain
in (5.5)

['D%j =o.

Observe (by (5.4)) that [* is
* .
[

Now define for a € A*, jeJ*

an extension of [, i.e.,

(5.6) Ji

for all jed.

. *
I AN
Then all the required properties are fulfilled. m

Acknowledgement. T am indebted to my colleague K. H. Kiyek who
undertook the difficult task to teach some elementary algebra to an
analyst.
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