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ABSTRACT

Infinite dimensional abelian symmetry groups for nonlinear
systems (like the KP equation or the anisotropic Heisenberg
spin chain ) are constructed. Aspects of linearization ,soli-
ton solutions,and action angle variables are discussed.

L.INTRODUCTION

We are interested in nonlinear flows

u, =K(u) , ueM M some manifold. (1)

d K(u) is a suitable

Here t stands for time, u(t) runs on the manifold,an
a one parame-

vectorfield. We assume that if u(0) is any initial condition then
ter group of diffeomorphisms is given by

Ri(t)
u(O)——-—'—"U(t)

(2)
having K as infinitesimal generator. .
Most important are symmetry groups.They may be used for the.construc‘tlon
of conservation laws , for the description of small invariant mamfold_s (s_ohton
solutions), for the linearization of the system and for the diagonalization of
the Hamiltonians (in the quantum mechanical case). The most accessible
symmetry groups are those given by other flows u, = G(u) because then the
corresponding Ry, and Rg commute if and only if [KG]=01n the vectorfield
Lie Algebra. So, the problem of finding the symmetry groups of (1) reduces to
finding those Lie algebra elements G which commute with K. Related to sym-
.meh'ies are conserved quantities, where 1: M - Ris a .conserved quantlt:y
if.for any solution u(t) of (1).the quantity I(u(t)) is time independent. Their
infinitesimal description is reflected by their gradients :

(3)

neral soliton

a
<gradl,v>= 3 |e=0 ( )

If I is conserved then {u €M | grad1{(4) = 0} is invariant.In g€
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manifolds are of this form. For Hamiltonian systems there is a Lie algebra
homomorphism from the Lie algebra of Poisson brackets onto the vectorfields
such that conservation laws are mapped onto infinitesimal generators of sym-
metries (Noether's theorem)*). So, more or less, gradients of conservation
laws reflect the same as generators of symmetries.

2. HEREDITARY STRUCTURES

The systematic search for symmetry generators or conservation laws is facili-
tated by the notion of hereditary symmetry. In order to understand what
that means,we assume that (1) is linearizable, i.e. that there is a
diffeomorphism I" onto a linear space such that (1) has the form :

v =Lv .L linear. (4)

Then I' ' (variational derivative) is a Lie algebra isomorphism between the
corresponding tangent bundles.The L®v are symmetry group generators for
(4).hence they are generated out of a recursive application of the operator L.
Now transferring L back via I'’, we obtain an operator ¢(u) (depending on u)
such that the $"(u)K(u) are symmetry generators for (1). Therefore,$ is said
to be a recursion operator. Such a linearization may be extremely difficuit to
carry out,but it is worthwhile to study the algebraic properties which $(u)
inherits from the linearizability (symmetry of T'' ' and linearity of L). From
these algebraic properties we obtain for all vectorfields A and B

$?[A.B] + [$A,$B] = {[$A.B] + [A.$B]}. (5
Henceforth,® is called hereditary®® if (5) is fulfilled. By simple computation :

THEOREM3):
{f ¢ is hereditary and if ¢ commutes with K, in the sense that Jor all A

¢[K.A] = [K,9A]

then the linear hull of {$"K | neN or Z] is an abelian Lie algebra. Further-
more & commutes with all the $"K.

A popular example® of such a hereditary operator (for the KdV ) is given by
¢(u) = D? + 2u + 2DuD~! where D! denotes integration from —= to x. Trans-
lation invariance yields that ¢ commutes with the generator u, of x-
translation. Since K, is the flow of the KdV we have found infinitely many
symmetry generators. Furthermore, it turns out that ®(u) also yields that
the KdV has two compatible Hamiltonians®’. And the spectral decomposition
of u, with respect to eigenvectors of ¢(u) characterizes the mulitisoliton
solutions®?. Also, it should be noted that the theorem above gives that ¢ and
K;(u) constitute a Lax-pair for the KdV2).

Although it looks as if the hereditary operators are completely resolving the
task of finding the symmetries of soliton equations,certain difficulties still
remain. For example, the recursion operator for the Kuperschmidt equation“
is known, but checking whether or not it is hereditary amounts to check if a
integro-differential operator with about 2600 terms is equal to zero. It is
impossible to do that by inspection.We are producing computer programs
(based on algebraic formula manipulation) performing the necessary compu-
tations. It is not easy to implement problems like this on the computer since,
considered as a language problem, we have to do with a context sensitive



423

gl(;(:bltlam. Another prob_lem stems from the fact that hereditary operators are
oo vaays' qf polyn_orrual type. Sometimes they seem to be given by compli-
ed implicit functions.This is the case for the BO (Benjamin - Ono equation):

u, = Hu,, + 2uu, H Hilberttransform (6)

as well as for the KP (Kadomtsev-Petviashvili equation):

Uy, = (Buly — Uyyy)x — 3uyy. (7)

3. MASTERSYMMETRIES

i‘r:ﬂy out of .thesg difficulties is the introduction of mastersymmetries. In
lawer' to explain this we change the point of view by speaking of conservation
s instead of symmetries. We fix Poisson brackets and consider a system

where the dynamic for scalar functions G in the field variable u(t) is given by

G(u(t)), = ~{H,G] .H some Hamiltonian. (8)
ation law if

(9.1)

A functioninu and t issaidtobea time-dependent consery
(d/dt)F(uft).t) =0

which is equivalent to
(3/8t)F = {HF]. (8.2)

nd. Take any function My(u) and apply
={H,.] of H, ie. take F = exp(tH)M,
tion law. Convergence difficulties are

f}?rmally, such quantities are easily fou
the exponential of the adjoint map H
avep thlg is a time-dependent conserva

oided if one considers those F where the sum is finite

N
F= 3 Mt
n=0

(10)

(of order N)5). Take for example &
Then, by virtue of (9) Hy = {H,Mo}
t H, = {H;M¢} is again

Imnaté}::: case we call My a mastersymmetry
must lf;symmetry F = Mg + tM; of order one. N
con e conserved and the Jacobi identity yields tha i
invosler?ed.Now. for example, if the conservation laws for (8) are in
o, ;Itlon,we can proceed further producing a set Hpyy = {H, Mg} of conserva-
Vatr“ aws. Fortunately, even if we do not know in advance whether the conser-
u ion laws are in involution we can check this by structural properties of

0-S0, one mastersymmetry of first order yields a set of conserved quantities

l(Trlnastersymme:tries of order 0). And this can be continued: One mastersym-
etry of second order yields (eventually infinitely) many mastersymmetries

gf first order, etc.

cut' there seem to be serious difficulties. Consider, for example, a system with

ompact orbits, then a mastersymmetry of first order obviously cannot exist,
e first order term grows

since its absolute term remains bounded whereas th
the classical har-

linearily in time . In order to understand this we consider
rtainly has compact orbits.Easily we

monic oscillator x, = = i
t=Y =X which ce 't ; .
find  that F, =Sin(zt)(xz--—y”)(xz+y3)'l +cos(2t)(2xy)(x2+yz) 1 jg time
d a conservation law of first order,

;:‘dependent.But then, we also can fin . :
amely , F, = 1/2arcsin(F,) =t = arcsin(y/x) which seems to be in contradic-

:;?n to the reasoning above. This apparent contradiction easily resolves by

‘ € observation that F; is not globally defined. But, certainly we can use Fy

b‘”’ the construction of further conserved quantities since its gradient is glo-
ally defined, and gradients are all what weé need in computing the Poisson

R
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brackets. So, a way out of these difficulties is to work with external deriva-
tions on the Lie algebra of Poisson brackets. Furthermore, if one looks at the
absolute term of F, one discovers that this is the angle-variable of the sys-
tem. That this is not globally defined just reflects the fact that the motion is
periodic. This carries over to the general case, where we take a suitable
series of first-order mastersymmetries F;F,..and the corresponding con-
served quantities E;={HF;}.Then we parametrize our manifold by the new
coordinates given by the E; and the T;=M; E;”!. Now,in the coordinates E;, T;
the flow goes with constant velocity on lines being parallel to the T, - axes,
i.e. the flow is represented in action-angle variables.

But how to find all these quantities? Simply,find one mastersymmetry of
second order and take commutators with H (as described before). In order

to give a meaningful example we consider the BO (eq. (8)), where Hamiltonian
and Poisson brackets are given by

H= f(—é—uHu, - ‘é‘ua)dx, {A,B] = f(grad A)(grad B),dx.

Then a mastersymmetry of second order is®):
MO = -é—fxzu dx.

From this we obtain the action-angle variables as described above.

Other examples where this concept has been applied successfully are the
KP®) the anisotropic Heisenberg spin chain’

H= Z(Jx Ur’:( arf-ﬂ + Jy UX UK-H + Jz oﬁag«ﬂ)
n

the XY-sgin chain with external magnetic fieid" and the Landau- Lifshitz
equation ).
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