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Solitons in Interaction
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Several new nonlinear Systems are given which are completely integrable. These systems can be
considered as flows describing the self-interaction of single solitons in multisoliton fields. The
construction of action variables, recursion operators, bi-hamiltonian formulation and the like is
performed for these nonlinear systems.  Furthermore virtual solitons are introduced and it is shown
that 2-solitons in general may be understood as the superposition of two pairs of interacting solitons
exchanging one virtual soliton and that the interacting soliton itself can be considered as the result
of a collision of a wave with a virtual soliton. In a sense, virtual solitons only pop up during the time
that solitons interact with each other. In case of the KAV the details of decomposition into interact-
ing and virtual solitons are plotted, and a qualitative analysis of interaction is given. A brief
discussion is appended, how to describe multisolitons by their “trajectories”.

$1. Introduction

’ We show that, for constant m, the following nonlinear homogeneous partial
differential (integrodifferential) equations:

SSt=SSu“‘ZSxSI+2m SSr , (1'1)
2, .2 _ s 3 3 3

$78:=8§ Srxx 3SSISIIT_2—SI +7m325z , (1'2)
- 3(7)’15_'311)2

Se _Sux+m31 , (1-3)

-1 T _ms(6)—se(8) :
S = scos[[mz (&7 5, (6 a’é], (1-4)

I wlz w.t - l.zp‘z.xl W'Z“}‘ ZWImw-‘F?ZwI'z—— Z(mq}'+ Z’WI)Zq_j‘ (1'5)

well-known integrap]e d
. B o n an
cubic Schrodinger equa urgers, KdV, MKdV, sine-Gordo

équations, namely,
tion. In g sense : . . litons
in interaction, they describe the time evolution of 80

Interaction of soliton solutions in the two-soliton case of the KdV
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U= Urrz T 60U (1'6)

has been studied by Lax in a fundamental paper.” He found out that, basicalls;,
there are three different types of interaction for solitons of the KdV.- Thfase type-of-
interaction depend on the ratio of speeds ¢i and c: of the asymptotic solitons:

c1fe2<(3+45)/2 (case a),
(3+5)/2<c1fcs<3  (case b),
3<er/e; (case ¢) .

Lax observed that in case a) “the two solitons interchange their role without passing
through each other” wheareas in cases b) and c¢) “the big wave first a'.Dsorbs,‘ then
reemits the small wave, and that in case b) the absorption of the small Wave raises a
secondary peak on the big wave”. In order to have a better understanding for' these
different behaviors we have plotted all three cases in Fig. 2-4. In these figures
—compared to the scaling of the variable r—the height of the solitons has been

enlarged by a factor 7 and the time ¢ has been enlarged by a factor 4. In all cases &
has been chosen to be

¢1=2.56
and c¢; has been chosen to be the following:
c2=1.08 Fig. 2 (case a),
c2=0.92 Fig. 3 (case b),
c2=0.64 Fig. 4 (case ¢).

In addition—for reasons which become obvious later on—we have added (Fig. 1) 2
plot for c;=144. This shows again a type-a interaction.

In this paper, by a -change of viewpoint, we find that even in the KdV-case
basically there is only one type of interaction.

In order to motivate our change of viewpoint let us consider as analqu for
multisoliton solutions of the KdV field consisting of several particles. Certainly, €
study the interaction of these particles one would rather like to have a look. gt thi
individual particle during the interaction instead of considering the superposttion O._
all particles. Since the multisoliton solution in itself corresponds to the SuperPOSl
tion, one easily gets the idea that consideration of the individual soliton might -glveif
better understanding for soliton interaction, The only problem which remains is ho¥

to “individualize” the Interacting soliton because a look o the KdV-solution 089
gives asymptotic solitons,

This is what has been done in this paper.
of the recursion operator with the X-derivatives
using the structure of this operator we are ab]

equation for the time evolution of thege interacting solitons, Surprisingly, the 0
field-variable entering in these equations is

i s iable
the soliton in itself, not the vari he
corresponding to the Superposition of solitons, The interaction is reflected by

. : tors
As usual we identify the eigenvec

nly
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nonlinear terms of the equation. Thus each interacting soliton is described by a
nonlinear equation where only self-interaction appears. And the information about
other solitons in the field is hidden in the initial data. Thus small variations of initial
data characterize different states of these interacting solitons.

To be more explicit: Each N-soliton solution of, for example, the KdV is a
superposition of N solutions of different equations of type (1:2). These equations
differ only by the masses m;. These masses m; appear in the corresponding N-
soliton solution as asymptotic speeds of emerging solitons.

The same holds for other equations where a recursion operator is known. The
evolution equations for single solitons in interaction for

Ut=Uzer + 60 Uz, (modified-KdV)

Uy :%sin(D“‘u) (potential sine-Gordon)
and

br=—idr+2ip| P (cubic Schroedinger equation)

are given by Eqs. (1-3) to (1-5). The corresponding equation for

U= Uz + 20, (Burgers equation)

is given by (1-1). If no recursion operator is known, the situation is more compli-
Cated. These cases will be treated in a subsequent paper.

Thus a decomposition of N-soliton solutions into solutions of the more fundamen-
tal “single-soliton” equations has been performed for most of the popular completely
integrable equations in 1+1 dimensions. For the two-solitons of the KdV, which
Were given in Fig. 1~4, this decomposition has been plotted. Figure n.A gives the
time-evolution of the larger soliton appearing asymptotically in Fig. n, whereas
Fig. n.B gives the time evolution of the smaller soliton.

Looking at these pictures one observes that basically there are only one, or,
depending on the viewpoint,at most two different types of interaction. In any way
the bounds given in 18) for the quotients of celerities, do not seem to have a meaning
any more if interacting solitons are considered. Generally speaking, the solitons are
always attracted by each other. The attraction becomes very strong when the
Positions of the solitons are close. Each soliton is stretched in shape under the
Altraction given by the other soliton. However, if the number of maxima is counted,
then there still is a difference between the larger soliton and the smaller one. And for
Some choices of parameters, one may detect a difference in the behavior of the larger
Soliton, The smaller soliton always develops a second maximum (which becomes
€Xponentially small with the distance of the other soliton) whereas the larger soliton

3 a second maximum if characteristic speeds of both humps are close together
(arfe,< 2). Thissituation is illustrated by the two-soliton solution givenin Fig. 1 and its
decomposition into interacting solitons. o '

The development of second maxima can be understood by considering 'a sxmple
4nalogy where the soliton is replaced by some elastic compound of material being



Fig.1.A. Larger Soliton. ¢1=2.56, interacting with
c2=1.44.

Fig. 3.A. Larger Soliton. ¢:=258, interacting with
cy=092.

Fig. 2.A. Larger Soliton. ¢,=2.56, interacting with
cz2=1.08.

Fig. 4. A. Larger Soliton. c1=2.56, interacting with

c2=0.64.
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Fig. 1.B. Smaller Soliton, c¢:=1.44,
with ¢,=2.56.

Fig. 3.B. Smaller Soliton. ¢.=092,
with £,=2.56.

interacting

interacting

Fig. 2.B. Smaller Soliton. ¢:=1.08, interacting
with ¢,=2.56.

Fig. 4.B. Smaller Soliton. ¢:=0.64, interacting
with 1=2.56.
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under the influence of an attraction becoming exponentially small with the relative
distance of the attractor. The more extended this compound is, then, when’the source
of the attracting force is close by, the difference between the force af:tlng on the
material on the left and the right side of the compound becomes S0 cons&derabh? that
the hump is stretched so much that a girth develops, hence a second maximum
becomes visible, In any case, the less localized a soliton is, the more probable a
second maximum will develop. ' ‘ .
One might argue that the consideration of maxima of field functlons‘ls not a
is essential for a qualitative description of interaction. This certainly is true froma
physical viewpoint. And from the mathematical viewpoint this is tru.e for the syStEIyﬂ
consisting of the superposition of interacting solitons, where the maxnr.na do‘not ha\E
an essential meaning (apart from giving a rough idea of what a function might looy
like). AHowever, the maxima of the interacting solitons are important insofar as th;)
give rise to the systematic derivation of classical particle movements connected to .tt e
original system. In the literature very many such connections betw.een ﬁ.m e]
dimensional flows (particle systems) and pure soliton solutions of inﬁnite-dlmens.lona
flows can be found (see 16), 24), 4), 3), 2), 1), only to name a few). Sometimes,

cannot be identified completely with the solitons, since the humps given by the so]ltOQS
seem to jump from the trajectory of one particle to that of another paft‘ide' Th s
phenomenon can be understood by looking at the maxima of the “mteractlﬂi{
solitons”. Trajectories mostly describe positions of maxima, but this in such a Wafl
that while the interaction takes place, the trajectory changes from the big to th‘? sma
maximum. Since the small maximum becomes exponentially small with the dlsta_nCe
of the two solitons, these trajectories look ag if they were changing from one S"htgn.
to the other. A typical picture of trajectories of this kind would be obtamed_ ¥
taking the positions of the obvious maxima in Fig. 1. We explain these connections
with particle systems in more detail in a subsequent paper. pich
In § 2 we review the principal spectra] properties of the recursion operator W ! ‘
are needed for our analysis, Furthermore, there the relevant notions of dlﬂerene
solitons are introduced. In §3 the equations of motion for interacting solitons are
derived, in § 4 their complete integrability is shown and their recursion operators ?rf
given. In §5 the different states of interacting solitons are characterized in terms 0

. . R - with
“virtual” solitons. In the last chapter we Compare the work done in this paper
the work of others,

§2. Solitons, or the Spectral properties of the recursion operator

We give a short review
broperties of the recursig
We are interested in

. tral
on the relation between soliton solutions and spec
1 operator (for more detajls see 10)).
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SITUATION 1:
On some infinite-dimensional manifold of suitable functions in the real variable x we

consider an equation
w=K(u), wu=ulz,t), -1

such that there is a hereditary operator”® ®(u) generating the vector field K{(u) out
of the generator of the translation group, i.e.,

K(u)=0{u)u, . (2-2)
The property of hereditariness then implies that the vector fields
Ko(u)=0(u)"u., n=01,- (2-3)

do commute in the Lie-algebra of vector fields. Because of K(x)=Ki(u) we then
have constructed infinitely many generators of one-parameter symmetry groups for
(2:1).

This situation applies to all known completely integrable differential equations in
one space variable. An exception seems to be the Benjamin-Ono equation, but this is
an integro-differential equation. However, in several space variables the situation is
different. Nevertheless most of the technigues developed in the following also apply
to these more complicated situations, although some arguments have to be changed
considerably.

Let us give some of those examples which we shall need later on anyway.

EXAMPLE 1-
The following operator is hereditary”
O{u)=D*+2u +2DuD ™", (2-4)

where D denotes the operator of taking the z-derivative and D™ stands for

D)= [ Hede .

The Korteweg-de Vries equation is of the form

U= O(u) e = thrre + 6UUs . (2-5)
The operator

O(u)= D+ DuD™ (2:6)
is hel‘editary” and

ue= Q) ur=wzr+20ur (2-7)
Vields Burgers equation. Other hereditary operators are

D(u)=D*+4Dul 'u (2-8)

(2+9)

O(¢)=~iD+4igD'Re( "),
which generate the modified-KdV (mKdV) and the nonlinear Schrodinger equation,
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respectively. In (2+9) the operator Re(¢-) stands for taking the real part of its entry
multiplied by ¢, ie,
Re(#w) = ($w + piv) (2-10)

where the bar denotes complex conjugation. Other examples for hereditary opera-
tors which are far more complex can be found in 9), 12) and 13).1] - ‘
Apart from Burgers equation in all these cases the function-space under CO'nSlderit_lOU
is S(R), the space of C*-functions vanishing with all their derivatives r_apl.dly aF 70011
For Burgers equation we choose S-(R), the space of C*-functions vanishing with al
their derivatives rapidly at —oo. .

It is interesting to note that (2-8) also generates the potential sine-Gordon
equation

0= O(u) e =sin(D 11 (2-11)

A decisive role in characterizing soliton solutions is played by the linear hull of th?
Symmetry generators K,(u), n=0, 1, -, By K we denote the nontrivial (not al)
coefficients equal to zero) linear combinations of the Kn(«), n=0,1, . If L(f‘
=212.K(2) is an element of K then the polynomial P(£)=31a,£" is called its
characteristic polynomial, Observe that L(x)=p,( O(u))u,. L is said _t? be
nondegenerate if the zeros of its characteristic polynomial have only multiplicity 1
Given some LEK then the set of those % such that 7.(x)=0 or, equivalently,

P @)u=0 (2-12)

is said to he a multisoliton manifold. 1)

Since being a multisoliton solution should not change with time evolution of (2-1:
it is important that all the submanifolds determined by (2-12) are invariant under
(2-1). In other words: Whenever the initial condition u(t=0) fulfills one of thes;‘
conditions, then the solution (2 fulfills the same condition for all time /. The preo

P . . . R . . ors
of this is a simple application of the fact that the K,(«) are infinitesimal general
of one parameter Symmetry groups.

- . . . 11 u
As observed in 7), 9), 10) for multisoliton solutions we have a decomposition of
in terms of eigenvectors of @, To be precise:
THEOREM 1.

The following are equivalent:

() There is 4 nondegenerate L=3anKn such that 1(u)=0,
(i) The generator of the tramsiation &roup can be decomposed

Us=wot @i+ + (213
into eigenvectors of O(u).

. .. on
Since we need Some parts of the argument leading to thig decomposition later
anyway, we may as well give a proof of this.
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Proof of the theorem
{)=(iD): Let A, -, Av be the set of zeros of the characteristic polynomial of 7.. Then,
obviously,

(0 AN @ —A) (@ —An)u.=0.

Consider the polynomial P(&)=(&—A)(E—A)--(£—2xv) and define the polynomials
(&), n=0, -, N by (£~ A)T.(&)=P(£). Since, all zeros of P(£) have multiplicity
1 we know from elementary calculus that

1= 2 anllh(),

where the @, are given by

@ =(P(E)re-s) ™ .

Hence
i S
e= 32 anlln D) (2:14)

Now, introducing w.= anll(®)u- we see from
(0= Aa)wn=P(P)2ez=0

that w, must he an eigenvector of @ with eigenvalue A» and that (2-14) is the desired
decomposition.
(11):>(i): Let A, ---, Av be the set of different eigenvalues occurring in the decomposition

(2-13) of u,. Then, obviously
(@A) @—2)(@— A uz=0.
Thus, if P(£)=(£ - o) (&—A\)-(£— Ax)=3'a.E", we have found some

L(u)tzanKn(u)

With L.(u)=0 such that the zeros of the characteristic polynomial are given by the
As

Assume that (2-13) holds. Introduce the quantities
(D= @)= [Twdeaz,  i=0.n.

Then (2-13) reads
U=sobsit ot (2-15)
I, asymptotically, the s; become localized at different positions, then for |¢[~co and
=5, we must have

@(S)SJ:: AiSz
or

Aisr=K(s) . (2-16)
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This means that s; is asymptotically a one-soliton with celerity A;, i.e., a solution of
(2-1) of the form

ulz, =s(x+:4) . (2-17)

Because of this, and for the reason that the decomposition (2-15) remains val’ld over
the time evolution, the s. appearing in (2-15) are called “interacting solitons”. The
decomposition (2:15) is the well-known decomposition into solitons ernergmi
asymptotically (in experiments already observed by Scott Russel [23), p. 323]). O
course, this notion only makes sense if we are able to treat the s; completely as
“individuals”, i.e., if we are able to describe their dynamics independently.of the other
members appearing in the decomposition (2-15). This will be done in the next
section.

We close this section by defining different types of “interacting solitons” accord-
ing to their respective spectral properties with respect to @(u).

DEFINITION 1I: o
Let u be a solution of (2:1). If w is an eigenvector of ®(%) then s=D"'w is said t.o
be an “interacting soliton” in the soliton field ». The corresponding eigeanil}‘e 5
called the “celerity” of this interacting soliton. If the eigenvalue has multiplicity 1
then s is said to be a “non-degenerate soliton” otherwise we call it a “resonance
soliton”.

. . N e we
In case a soliton is asymptotically disappearing, ie., if for its eigenvalue A
have

lims(x ~ ¢, £)=0 {pointwise) ,

then the soliton is said to be a “virtya” soliton. Otherwise we call it a “real” 5011t<_>ﬂ1-

Resonance solitons appear for multisolitons where the characteristic I)OIY“OHTla
is degenerate, ie. has multiple roots. This implies that the (:orrespon("mg
eigenvalues have higher multiplicity than 1. [n these cases the corresponding solito?
field is said to be g “resonance multisoliton”.

jton
For example, take in case of the KdV (ie., the @ given by (2+4)) the two-solit0
manifold defined by

Rl ) =20K300)+ e =(@ ~ AN @~ 2)yrp = (2-18)

Then by taking a certain limit'®

B _cohiton
of the well-known' non-degenerate two-soli
solution one finds the following sin

gular solution:

=16£225Inh*(y) — kdsinh(2) (2-19)
ulz, =164 (sinh(Zy) —2ka)t >
where
A=44k?
r=hr+akdt+g (2-20)

A=(x—xo)+ 1242 .



Solitons in Interaction 1033

Certainly, the time evolution of this solution of the KdV is far from decomposing
asymptotically into traveling waves. In the study of the KdV solutions like this one
sometimes are neglected because it has a pole (of second order). Singular solutions
like this have been studied for the KdV in 15). However, these kind of solutions need
not to be singular in all possible cases. See, for example, the corresponding nonsin-
gular solutions in case of the sine-Gordon equation.”

It should be remarked, that even in the degenerate case of resonance multisolitons
there always is a decomposition corresponding to (2-13). This is easily seen by going
again through the proof. If, for example,

PL(@)uz:O s

then take the decomposition into fractional parts of P.(§)™' and multiply these by
P.(&) in order to obtain a representation of 1 in terms of a sum over factors of P.(£).
This representation then yields a formula similar to (2-14). The only difference is
that the sum not only goes over the eigenvectors but also over the principal vectors,
ie, all those w such that there is some k=1 with (@(x)-A)*w=0. We skip the
details since in this paper we do not present completely integrable systems describing
higher order parts of resonance solitons.
Examples of virtual solitons will be given in § 5.

§3. Dynamics of solitons in interaction
It is well known™® that the time evolution of an eigenvector w of the recursion
operator @(u) of Eq. (2-3) may be prescribed by
we=K(u)|w], (3-1)

where K'(2) denotes the variational derivative with respect to #. This derivative is
defined to be

K'(u)[w]=Ti|s=nK(u+ew). (3-2)

Equation (3+1) is a direct consequence of the recursion property of @(u), ie. a
onsequence of the equation

798?@(”)=K'(u)<1)(u)'* O(u)K'(u) (3-3)

which holds for solutions u(¢) of (2+1). Rewriting (3-2) for the interacting soliton of

(2-1), we find
se=(D'K'(2)D)s .

Now the procedure for obtaining the dynamics for s, which should not explicitly
depend on the field #, is straightforward. We use the eigenvector equation

(3-4)

O(u)s,=Ass | (3-5)

35 a differential equation to determine u in terms of s. The integration constants
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coming up in the general solution of (3:5) will be determined by the asymptotic
behavior for « and s, respectively, i.e.,, by the requirement that the functions # and s
have to be on the prescribed manifold. Insertion of %= wu(s) into (3+4) then yields the
desired nonlinear dynamics describing the time evolution of s.

EXAMPLE 2 (KdV):
Insertion of the recursion operator (2+4) of the KdV into (3-5) yields

ASr=Szzr+dus, +2u,s . (3-6)

Assuming s to be given, this equation can easily be solved for # since the correspond:
ing equation

dus:+2u5=0

with inhomogeneous part equal to zero is trivially solved. Then the full solution is
found by variation of constants. We find

u:%s’z(/lsz—ZssqusIz)-f-c.s 2 &R0

Since # vanishes rapidly at infinity, we find by (3-6) that
sz~ gt r=+o0

Under the assumption of this asymptotic behavior, 37N vields u=¢: at z=+%.
Hence, c,=0 and

~=ﬁ»usz—zs§u+&z) (3-8
or

( \":T)n +u v";:

PN

¥ 39
which right away vields that the Kqv is an isospectral flow for the Schrodinger
operator.  Using (3-2), we find for the Kdv

KGO=D"+6D . (310
Therefore the time evolution of s js

St Szrr tbusy | (310
Replacing « by (3-8) we find Eq. (1-2) (with m=RA).

EXAMPLE 3 (Burgers equation):
The eigenvector problem for the recursion operator o

@(u)w:(D-!-DuD")w:,lw

f Burgers equation has the for™

or

ASr= sz + (us), (3-12)
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if rewritten in terms of s=D"'w. Solving this for #, we find for the general u

u=s {As—s,)+Cs™". (3-13)
The requirement that s vanishes at either +o0 or —0 gives C=0. Hence

u=5""(As—5z). (3-14)
Inserting this in the dynamics of the eigenvector

5e=D"ND*+2Du) Ds = sz +2use (3-15)
yields Eq. (1-1) (again m=2).
EXAMPLE ¢;
For the mKdV equations (3-4) and (3-5) have the form

$1=Szrz+6u’sy (3-16)

ASe=Srer+4DuD M usy . (3-17)
Rewriting (3-17) as differential equation we obtain

(3-18)

Ut (S2e— As) — U™ H(Szzzr— Ase) =45z .
As a solution we get
u:ﬁL¥ﬂ$ (319
2 Jist—s2+C
and C must be equal to zero because of the boundary condition at infinity. Using this

%e can rephrase (3-16) such that (1-3) is obtained for m=4.
For the potential sine-Gordon equation relation (3-4) has the form

Su:%cos(D"u)s ) (3-20)

Since the recursion operator for this equation is the same as the one for the.mKdV e
fan use (3:19) to replace w in (3-20). This yields (1-4) for the evolution of the
Interacting soliton.

EXAMPLE 5

ReDlacing in case of the cubic Schrdinger equation w by ¥ and by
3:1) has the following form:

¢ we find that

Vo= — iU+ 40| ¢ +2i0° T . (3-21)
And the eigenvector problem for the recursion operator is
AW+ i, =digo, &2
Where
(3-23)

P=D"Re(F¥)= 5 D (F¥ +47)
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is a real function. Solving (3-22) by variation of constants, one easily finds ¥
=¥(¢, p) to be

Llf:zie""r, z_:Dfl(qspe-ixz). (324)

The integration constant disappeared because of the boundary condition at infinity.
This yields

$Uf=4e"“r¢7=4p"(p$e‘“)r:4p‘1rDr“ (3-29)
and inserting this into (3-23) we obtain

e=2D 'p7'D(zr7) .
Using again the boundary condition at infinity this can be solved:

o =4|c]. (3-26)
Hence, we obtain from (3-24) the identity

[T)p=q0? (3-27)
Insertion of this into the square of (3-22) leads to

AT+ = 16420 = -4 wp,
which gives the desired relation ¢=@( )

b=+ i/200 + ;)| W] (3:28)

which we need in order to rewrite (3-21) in terms of ¥ alone. The resulting eql{a“"r;
is (1'5) (for m=41). So, Eq. (1-5) describes the time evolution of the z-derivative 0
the interacting soliton in case of the cubic Schridinger equation.

§4. Complete integrability of interacting solitons
Essentially there are
of the interacting soliton

SITUATION 2
As before we consider the equation

. ics
two ways to show the complete integrability of the dynam!
- Both ways lead t¢ the same recursion operator.

Ue=K()=0(u)u, 9 hereditary (41
and the eigenvector problem for the interacting solitons
(D' 0(1)D)s= 35 2

This leads vig integra

. icit
tion and use of the boundary condition at |z|=co to the expli
dependence of % on s

u=F(s). (4-3)

This function F(s) we have computed for several examples, see Egs. (3'8), (3-14)
(3-19) and (3-28). The dynamics
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se=(D "K'(u)D)s (4-4)
for the interacting soliton can now be rephrased by use of (4-3)
se=(D'K(F(s))D)s . 4:5)

An obvious method to obtain the recursion operator for (4-5) seems to consider (4-2)
or (4-3) as a Bicklund transformation between Eqs. (4+5) and (4-1) and then using the
transformation formulas for recursion operators which were given in 8). However,
the transformation formulas® do hold only under the assumption that the relation
between « and s defines (maybe in an implicit way) a diffeomorphism between u and
5. Alas, for interacting solitons this never is the case, Certainly, s uniquely defines
u but % only defines s up to a multiplicative constant. This is reflected in the
linearity of (4-2) with respect to s, or the fact that all equations for interacting
solitons are homogeneous (i.e., they admit an additional symmetry whose infinitesimal
generator is the field variable s itself). A consequence of the violation of the require-
ments of the implicit function theorem is that those operators which have to be
inverted in the transformation formulas for recursion operators have nonempty
kernels, hence are not invertible.

Knowing that the kernels of these operators are given by the additional symmetry
coming out of the homogeneity of (4-5), we could try to handle this difficulty by
working in the quotient space given by classes modulo this additional symmetry
generator. The recursion operator then coming out of this procedure will be
indefinite up to an additional multiple of the field variable. Since this indefiniteness
leads anyway to a symmetry generator, we can in fact use the result of this procedure
to generate the infinite-dimensional symmetry group of the evolution equation describ-
ing the interacting solitons. However, working in these equivalence classes has
serious disadvantages. First, it is a somewhat cumbersome procedure. Second, we
like to have an explicit recursion operator in order to be able to study its structure
(hereditaryness, Hamiltonian structure, soliton solutions, angle variables and the
like). Therefore we proceed in a different way by using additional information about
the dynamics for interacting solitons.

The equations commuting with (4-1) are generated by the hereditary operator:

U= Ko(u)= O{u) 1z . (4-6)
there is a one-to-one correspondence between vector
Therefore the equations commuting
(4-6). By the

Modulo an obvious symmetry,
ﬁe_ldS of the s- and x-manifolds, respectively.
With (4-5) are the evolution equations for the interacting solitons of Egs.

Same arguments as before these equations are
se=(D"'K"(2)D)s , n=0,12"".

In (4-4) only K () has to be replaced by Kx(#). Now, using (4-3
“by s in order to rewrite (4:7) as

Se=Gals), n=0,1,2, -,

N

) we can express all

(4-8)

Where
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Guls)=D'K'(2)Ds and u=F(s). (4-9)

Let us look for a recursion formula for the Ge(u). If we use relation (4-3? in ord;,r
to rewrite (4+8) in terms of « we obviously obtain (4-6), Hence, we obtain for the
variational derivative of F:

F’(S)[Gn(s)]:Kn(u) . (4'10)
With (4-9) this reads
Knu)=F"(s)D'"K" (1) Ds . (4-11)

From Ku..= @K, we now obtain the recursion
Gard($)=D K", (1) Ds
=D Y OK,) Ds
=D (u)s: 1K, + D "ODD 'K (1) Ds .
Inserting (4-11) in the first term of the last line and using (4-10) and (4-9), we obtain

.12

CrelS) =D 05 F () + D 0() D) G s) (4-12)

Hence we have found that for u given by (4-9) the operator
W(s)=D”d)’(u)[s;]F’(s)+D“@(u)D , where u=F{(s), (413

: ible
must be a recursion operator for (4-8). Al these operators are hereditary (horri

. . -8) then
explicit computation). The hierarchy of commuting flows given by (4-7) or (4-8) th
can be written as

se=U(s)"s,, n=0,12 - (4-10)

EXAMPLE s:
In the investigation of ¥(s) acr
variational derivatjve F'(s) and i
of i« on s one easily gets the imp

ucial role is played by the operator given by the
ts left inverse, Looking at the explicit dependence
ression that this operator is so complicated that thftf
computation of its inyerse is out of reach. Fortunately, this is not so. Here the fac'
that the kernel of F ‘(s) is known helps tremendously in carrying out the ne(fessz?lj}
computations. Let us present the explicit computation of the variational derivative

r
F(s) in case of the KdV. Instead of F'(s) we compute {F"(s)}"!, i.e., we compute fo
given 3(x) the quantity a(z) fulfilling

F(9)lal=5. (4-15)

This we do by solving first the homogeneous equation
F(s)an]=0

and then by the method of variation of ¢
homogeneous equation we

generator of the additional s
of the ansatz

. the
onstants we solve (4-15). The solutlQ“ O_fm al
know already because this must be the inﬁmtesrltio 0
ymmetry for s, i.e., ay= y5, where y=constant. Inse
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a(z)=y(x)s(x),  (variation of constants) (4-16)

into (4+15) yields
%5’2{25317@ —45257r—25%Yeer =8

This reduces to
(s72)r=—2s8.
Or, under appropriate boundary conditions at infinity
y=—2D"'s"'D7'sp .
Using (4-16) this yields
a={F(s)}"'=—(2sD's"'D's)B. (4-17)
Hence
{F(s))'=—(2sD 's7'D7's) (4-18)

is the right inverse of
F(s)=—Fs 'DsDs " (4-19)

For the investigation of structural properties of the recursion operator given by (4 -}3)
two observations are helpful. First we obtain, because of F' "(s)s =0 and O(u)s:=Asx,
that s is an eigenvector of ¥(s), i.e.

Pls)s=2s. (4-20)
Furthermore, one observes that ¥(s) is homogeneous with respect to s, Le,
¥(as)=W(s) for all cER.
This yields by differentiation
T (s)s]=0.

We recall that an operator ¥ in some Lie algebra is said to be hereditary
A B in the Lie algebra the following holds:

(4-21)

9 if for all

VYA, Bl+[ WA, ¥B]=¥{[¥A, Bl +[A, ¥Bl. (1-22)
An important consequence of this is that whenever It up to I» commute
I, rl=0 i, r=1,-n
and fulfill, for all A, the relation
r(r, Al=(r;, ¥A], (4-23)
then the linear hull of
(4-24)

{W"ﬂ|i=1, g nEN}
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constitutes an abelian Lije algebra. In our case we consider as Lie algebra the
algebra of vector fields, We claim that whenever @ is hereditary, then the operator
¥ given in (4-13) again is hereditary.
We give a brief indication for the proof of this:

If there were a diffeomorphism between x and s, then this would yield right away the
hereditaryness of ¥ (see 8), 9)) since this property is preserved under homomor-
phisms. But as we have mentioned before, this is not the case. However, this fact
helps to infer that ¥ ig hereditary modulo a multiple of 5. Let us be more precise
For local operators (local with respect to the manifold variable, not x) we know” that
¥ is hereditary if for all vector fields v, w,

B(¥)w, V)=B(¥)v, w) , (4-25)
where B(¥) stands for
B(¥Xw, v)= TlEwle— 8wy . {4-26)

All variational derivatives are taken with respect to the variable s. Now, using
u=F(s) we find with (4-20) and (4-21) out of the hereditaryness of @ that

B(T)(w, )=~ B(¥)(y, w)=as, eER .

Since B(¥)(w, v) depends in a semilocal Wway on the space variable z, this onl.y 15
possible for ¢=0. Here “semilocal” means local with respect to the topology given
on {x|xER} by the open intervals {(—oo, olac R},

Now, we can use the hereditaryness of & to find that the linear hull generated by
s and the vector fields ¥ "(s)sz2, nEN is abelian, Hence, we have infinitely many
symmetries for (4-7). But this is not S0 suprising since the different flows for u were
already commuting,

A more important consequence of hereditaryness is that we can find infinitely
many constants of motion which are in involution,

For this we need a Hamiltonian formulation. We keep the notation of 20) or 8
An evolution equation is Hamiltonian if it is of the form

5e=O(s)f(5) (4-27)
with f(s)= H(s) the gradient of a scalar quantity, and ©(s) an antisymmetric linear
map from cotangent space to tangent space fulfilling the following identity for all

covector fields q, b, ¢,

0=¢a. O1001e>+<6, 016cla> +<c, O(6uls) (4-28)

{a, b}a=Ta, Oppy (4-29)

defines Poisson brackets among the scalar quantities, Here I7 defines the operatio®
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of taking the gradient. The time derivative of scalar quantities is expressed in the
usual way by this Poisson bracket. Furthermore &(s) maps gradients of conserved
quantities onto infinitesimal generators of one-parameter symmetry groups.

Since we were able to compute the operator F7(s)™', we are now able to transfer
the Hamiltonian structure from Eq. {4-1) to Eq. (4-5). We write (4-1) in Hamiltonian
form

w=20)H (), 2(u) implectic, H{u) scalar field. (4-30)
For the KdV equations-this would be

w=or( [ :w(u(g)u%u(s)é)df)_ (4-31)

For other equations one easily finds their respective Hamiltonian formulation in the
literature (for example, 8), 20), etc). Now

s:=0(s)F H(u(s)) (4-32)
with
O(s)={F"(s) "' 2(u){F ()} (4-33)

is a Hamiltonian formulation for Eq. (4:5). Of course, in (4-32) the gradient has to
be taken with respect to the variable s, and the notation F’* denotes the adjoint of F7
with respect to the cotangent-tangent duality. The operator &(s) is implectic (the
proof proceedes exactly as in 8)).

The full power of the hereditary structure now comes into the game. We observe
that the covector field

) =F H{u(s)) (1-34)

is the gradient of a conservation law. Because of the hereditaryness then all the
Covector fields

Yauls)=W(s)"y(s), n=0,1,- (4-35)
The fact that these covector fields have
»  All conserved quantities
Hence,

are again gradients of conserved quantities.

Dotentials is a simple consequence of hereditaryness.”

Constructed this way are in involution with respect to the Poisson brackets.

the action variables are constructed. In fact, also the angle variables can be found by

use of &, or by the mastersymmetries which can be constructed out of ¥ (see 11)).

But describing all the details of this procedure goes beyond the aim of this paper.
At the end of this section we like to convey (without proof) some additional

fnformation:

f) All the equations (4-7) again have Hamiltonian form.

i) Furthermore Eq. (4:7) has = different Hamiltonian formulations.

implectic operators are
Ou(s)=T"(s)O(s) .

i) All flows given by (4-7) are isospectral flows for the operato

The respective

r ¥(s). Hence all
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these flows have a Lax representation.

iv) The covector field given by the gradient of the quantity A in Eq. (4-20) is an
eigenvector (with eigenvalue 1) of the operator ¥ (s).

§5. Multisolitons of the interacting-soliton equation
and their decomposition into virtual solitons

(1-5). This then leads to the discovery of new completely integrable systems which
eventually describe even more elementary parts of the multisolitons of the original
equations. The decomposition into these parts, we call the second decomposition.
Although the time evolution of the components of the second decomposition looks
mmore complicated than for the equations we started with, its solutions are, at least
from the viewpoint of types of interaction, far more simple. Going through this
procedure one encounters virtual solitons. It is a very simple exercise to compute
these solutiong explicitly out of the original solutions,

Let me describe the necessary procedure in all detail for the case of a two-soliton
solution of some completely integrable system. We start with the system

we=Kilu) (5-1)

having the recursion operator @(u) which generates the symmetry group generators
out of the generator of the translation group

Ka(2)= @(u)"y, . (5:2)

From § 2 we know that the tw

0-soliton solution of (5:1), with asymptotic speeds A, 4
is a solution of

Eala0)= (A + D) K1) + v dgag, =0 (5-3)
or, equivalently,
(@) =) B(2) ~ )= (5-4)

Using theorem 1 and the coefficients given in its
decomposition into eigenvectors of O(u) to be

Ur=w+ w, (55)
where

W1=(Az‘/{l) "(@(u)—Rz)uz=(/iz—/h)"{Kl(u)—/lzux} N ' (5'6)

we={4 ‘Jz)fl(w(u)‘il)u.r=(/h‘/iz)”l{K](u)‘ﬁluz} . (57)

Integration then vields the interacting solitons

Sx=(/iz—/h)_‘D‘I{K](Zd‘Azu.z} , (5’8)
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ss=(h—A) "D HEKi(n)- Aoz} (5+9)

in terms of the symmetry generators of Eq. (5-1). This is how the functions given in
Fig. n.A. and Fig. n.B. can be computed in a simple way.

Now, let us study the time-evolution of one of these interacting solitons say s=s..
Evolution equation, symmetry generators and recursion operators can be computed as
it was described in §§ 3 and 4.

Let ¥ (%) and Ga(u) denote the recursion operator and the symmetry generators
of this dynamic system as they were given in formulas (4-9) and (4-13). Then using
{4-10) we find from (5-3) that s fulfills

62(3)_(/11+A2)G1(3)+Alﬂzb‘x:0 (5-10)
or, equivalently
(F(s)= )W (s) ~ A)s=0. (5-11)

Hence, from the point of view of the spectrum of ¥(s), our interacting soliton s is a
two-soliton solution of equation

St:Gl(S) .

Hence, we may decompose this solution again into interacting solitons. Thus we
have applied the “soliton decomposition” twice to the original equation. The
asymptotic speeds for this second decomposition which can be found from formula
(5-11) are again A and 4. But since we know that asymptotically only one soliton
s “really” emerging we know that the other part in this second decomposition must
be a “virtual soliton” as it was defined in §2. So, from this point of view, the
interacting solitons of the KdV are superpositions of “real solitons” and suitable
“Virtual solitons” of the dynamic systems given by the second decomposition. In
addition one finds out that these virtual solitons only pop up when collision of the
original solitons occurs.

Of course, once we have seen that an iteration of the soliton decomposition is
Possible, one may study further decompositions and proceed indefinitely wi.th ‘this
Procedure. But in case of the two-soliton solution this does not give a new insight
Into the qualitative description of interaction. In case of higher order multi-solitons
this may be different.

Let me present the simple computation necessary for the sec ’
¢ase of the two-solitons. Application of formulas (5-8) and (5-9) to (5-12) instead of

1) yields for the soliton 0., and ez of $=5i.

(5-12)

ond decomposition in

== 4) 'D {Gils)—Auss) , (5-13)
ai,z:(AI_Az)_lD_l{Gl(S)*Als.r} B (5'14)

By use of (4-9) we find
(5-15)

Oun=(=1/"(h =&)D" (D7 K ) =~ s

Where &'=2 if =1 and vice versa. Insertion of (5-8) or (5-9), respectively, yields




Fig. 1.V. Second Decomposition of KdV. Virtual
Soliton. ¢1=2.56, c.=1.44.

Fig. 3.V. Second Decomposition of KAV, Virtual
Solitan. c1=2.56, ¢2=0.92.

Fig. 2.V. Second Decomposition of KdV. Virtual
Soliton. ¢,=2.56, ¢;=1.08.

Fig. 4.V. Second Decomposition of KdV. Virtual
Soliton. ¢1=2.56, c2=0.64.

¥P01

ABUIDISSYONL



Fig. LAa. Second Decomposition of KdV. Larger
Soliton. ¢1==2.56, c2=1.44.

Fig. 3.Aa. Second Decomposition of KdV. Larger
Soliton. ¢,=2.56, ¢.=0.92.

Fig. 2.Aa. Second Decomposition of KdV. Larger
Soliton. ¢,=2.56, c;=1.08.

Fig. 4.Aa. Second Decomposition of KdV. Larger
Soliton. ¢;=2.56, ¢,=0.64.
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Fig. 1.Bb. Second Decomposition of KdV. Smaller
Soliton. £,=2.56, ¢,=1.44,

Fig. 3.Bb. Second Decomposition of KdV. Smaller
Soliton. €,=256, ¢,=0.92.

Fig. 2.Bb. Second Decomposition of KdV. Smaller
Soliton. ¢1=2.56, c;=1.08.

Fig. 4.Bb. Second Decomposition of KdV. Smaller
Soliton. ¢1=2.56, c.=0.64.
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Oia= (= 1) (A — ) 2D D K’ (1) — A} (K1) — Awtez) . (5-16)

Study of asymptotic speeds yields that the i and z: have to be the virtual solitons.
We compute only these, because then the 01,; and 02 are easily found from

0i1=81— 0z, (5-17)
022=82— 0z, . (5' 18)

For the virtual solitons (5-14) can be simplified by use of K'(#)u.=DK(u). We
obtain

02,1= 012= ‘(Al—Az)iszl{—(/h+/Iz)Kl(u)-+11/12u1+D71K'1(u)K1(u)} . (5'19)

Hence, the two virtual solitons occurring in the second decomposition are the same.
Now, using (5-3) this reduces to

=0 (o 22D KK )~ i) 20
For the KAV with

K(u)=2z0:+62u-

K(u)=D*+6Du ,
this virtual soliton has the form

Tn=012=— (A~ Ao) H{4D ' uK(u)—2uD ' K(u)} . (5-21)

This quantity is plotted for the different pairs of asymptotic speeds ai=4 in Fig. n.V,,
f‘=l, ,4. Looking at these plots, one sees that any qualitative difference in
Interaction has completely disappeared for the cases considered. For completeness
also the quantities o1, (larger soliton) and 0. (smaller soliton) have been plotted in
Fig. n. Aa and Fig. n. Bb, n=1, -+, 4, respectively.

§6. Comparison with other work and concluding remarks

of

Ever since the discovery of solitons there was constant work on decomposition
14)

afield into its soliton components. This work started with the fundamental paper,
Where for multisolitons the decomposition into squared eigenfunctions is given, and
g:}fs until a recent series of interesting papers on this subject 26)~29), and 19) and
Others, ’
At first glance, it looks as if all those decompositions were the same. And in fact
€y are, and they are the same as the one given in this paper. Nevertheless there is
* fundamental difference between the present paper and the results of othets.
A rather unessential difference lies in the methods applied in order to obtain the
desireq decomposition. Mostly, inverse scattering transform methods are used for
the decomposition, as it was already the case in 14). In fact this is not necessary as

" was shown already in 6). This change in method has two consequences. First, one
discovers that the method must work also in cases where inverse scattering is
conditions at infinity).

‘Mapplicable or only more difficult (e.g., other boundary
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Secondly, this observation opens the road for the discovery, that solitons, as
dynamical systems being coupled to the superposition field, also make sense in cases
where apart from solitons (discrete parts of the spectrum of the recursion operator or
of the scattering method) also continuous parts of the spectrum contribute.

But even this discovery is rather ancient. For example, in 7) and 9) it was stated
that the eigenvector of the recursion operator can be considered as soliton in interac-
tion and that furthermore this soliton in interaction has a well-defined dynamical
behavior, namely, that of a gradient of a conserved quantity.

But our present paper, we believe, contains a completely new aspect. Namely,
that in principle it is possible to find the dynamical behavior of the interacting systefn
in such a way that no external field and no superposition with other solitons enters in

_the description of this dynamical behavior. F urthermore, that the dynamical system
found this way also makes sense in cases which are not pure soliton solutions. So,
the coupled systems which are given by other authors are decoupled, only self
interaction plays a role. To be precise: The dynamics given by other authors for
interacting solitons is the one expressed by Eq. (3-1) which then in the multi-soliton
case leads via (2-13) to a coupled system. In contrast to that the dynamics expressed
by (4-9) even holds in the absence of the decomposition (2-13).

This decoupling is an essential prerequisite for finding a dynamical description of
interacting solitons which is independent of the number of solitons present in the field

Contrary to that, in the soliton-decompositions which can be found in the litera:
ture, one will discover that the coupled equations change with the number of solitons
present,

This decoupling, which mathematically turns out to be a triviality, then alloWS‘tO
study the structure of the interacting solitons (ie., show their complete integrability
in the general case, and find their recursion operators). Another important conse-

quence seems to me that Very many new systems, which are completely integrable, can
be constructed this way, and, if one likeg it, many

» but which seems even more important to me. One of the

- ion into solitong seems to be to find simple dynamica!
descriptions for the “trajectories” of solitons. That means one tries to replace the

" solitons. Thus a flow on so

a finite-dimensiona] manifold, Of course, such a method, if it is known on a Syst.em-

(see 24), 16), 4), 1), 2), 3) and

the most interesting recent papers.”*) But to
knowledge a Systematic a;

nd foolp_roof method of how to find particle systems imitat
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ing the soliton collision is still missing.

But in principle, such a method is a consequence of the results of this paper
(although the technical details may be cumbersome). Let me describe this briefly, say
for the case of the KdV:

Choose a set of trajectories y(t), =1, -, N (to be specified later on) and con-
sider a multi-soliton solution of the KdV, say some N-soliton. Define quantities
2" (r=0,1,2; 7, k=1, -, N) to be the values which the »-th derivative of the soliton
$: attains at y». Then by the eigenvector equation (3-6) and the decomposition given
intheorem I the values at the v« of higher derivatives than  of the s; can be expressed
by the p:..". Now, using the dynamics which is explicitly given for the s; we can
express the time evolution of the p:»" also by these quantities and the time de-
rivatives of the y«. This suggests that reasonable trajectories are those, where the
time derivatives can be expressed also in terms of the ;.. Then for those we have
a complete description of the dynamics of the p:+"". But such trajectories are easily
found, for example, take y. to be the zero of sw. Then

d
g[sk(yk(t), £):=0
together with (1-2) easily gives the desired relation between v« and the pix".
again the explicit knowledge of the dynamics of the interacting soliton plays an
essential role.

Here,
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